
INDEXING AND QUERYING MOVING OBJECTS DATABASES

DAN LIN

A THESIS SUBMITTED

FOR THE DEGREE OF DOCTOR OF PHILOSOPHY

SCHOOL OF COMPUTING

NATIONAL UNIVERSITY OF SINGAPORE

2006

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by ScholarBank@NUS

https://core.ac.uk/display/48631089?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

ii

Acknowledgement

My foremost thank goes to my supervisor Prof. Beng Chin Ooi. Without him,

this thesis would not have been possible. I appreciate his vast knowledge in many

areas, and his insights, suggestions and guidance that helped to shape my research

skills.

I would like to thank Prof. Christian S. Jensen and Prof. Elisa Bertino for their

patience and valuable advice during my internship. I would also like to thank Dr.

Mong Li Lee, Dr. Zhiyong Huang and Dr. Chee Yong Chan for their help when I

started my graduate student life.

I thank all the students in the database lab, whose presences and fun-loving

spirits made the otherwise grueling experience tolerable. I enjoyed all the vivid

discussions we had on various topics and had lots of fun being a member of this

fantastic group. I specifically thank Hua Lu and Linhao Xu for their contributions

to the system development as presented in this thesis.

Last but not least, I thank my family for always being there when I needed

them most, and for supporting me through all these years.

CONTENTS

Acknowledgement ii

Summary xii

1 Introduction 1

1.1 Moving Objects Databases . 3

1.1.1 Indexing Moving Objects . 4

1.1.2 Querying Moving Objects 5

1.1.3 Privacy Issues . 6

1.2 Objectives and Contributions of This Thesis 7

1.2.1 Contributions on Index Structures 8

1.2.2 Contributions on Density Queries 9

1.2.3 Contributions on Protecting Location Privacy in Moving-

Object Environments . 10

1.2.4 Contributions on Extending a DBMS 10

1.3 Outline of The Thesis . 11

iii

iv

2 Literature Review 13

2.1 Traditional Indexes in Spatial Databases 13

2.2 Moving Objects Indexes . 16

2.2.1 Indexing historical movement 17

2.2.2 Indexing current and future movement 18

2.3 Queries on Moving Objects . 25

2.3.1 Range Query . 25

2.3.2 K-nearest Neighbor Query 26

2.3.3 Density Query . 30

2.4 Concurrency in Indexes . 31

2.5 Approaches for Location Privacy Protection 33

2.6 Summary . 35

3 The Bx-tree: Query and Update Efficient B+-tree Based Indexing

of Moving Objects 36

3.1 Synopsis of Our Proposal . 37

3.2 Structure and Algorithms . 39

3.2.1 Index Structure . 39

3.2.2 Querying . 44

3.2.3 Insertion, Deletion, and Migration 54

3.3 Performance Studies . 56

3.3.1 Experimental Settings . 56

3.3.2 Filter Rate . 57

3.3.3 Number of Sub-intervals,n 60

3.3.4 Range Query . 62

3.3.5 kNN Query . 69

3.3.6 Update . 70

v

3.3.7 Effect of Concurrent Accesses 73

3.3.8 Storage Requirements . 74

3.4 Summary . 75

4 Effective Density Queries on Moving Objects 77

4.1 Motivation . 78

4.2 Problem Statement . 80

4.3 The MODQ Framework . 83

4.4 Density Computation . 84

4.4.1 Overview . 84

4.4.2 Density Histogram . 85

4.4.3 Query Processing . 90

4.5 Performance Studies . 95

4.5.1 Experimental Settings . 95

4.5.2 DCT Compression Accuracy 96

4.5.3 Density Queries . 100

4.5.4 Maintenance Cost . 106

4.6 Summary . 107

5 Location Privacy in Moving-Object Environments 108

5.1 Synopsis of Our Proposal . 109

5.1.1 Comparison to Existing Approaches 112

5.2 The Strategies and the Architecture of the Location Privacy Protec-

tion System . 113

5.3 Algorithms . 116

5.3.1 Data Transformation . 116

5.3.2 Updates . 123

vi

5.3.3 Queries . 126

5.4 System Analysis . 130

5.4.1 Privacy . 130

5.4.2 Communication Cost . 135

5.5 Performance Studies . 136

5.5.1 Experimental Settings . 136

5.5.2 Range Queries . 137

5.5.3 K Nearest Neighbor Query 145

5.5.4 Update . 146

5.6 Summary . 148

6 Adapting Relational Database Engine to Accommodate Moving

Objects 150

6.1 System Overview . 151

6.1.1 The SpADE Client . 152

6.1.2 The SpADE Server . 153

6.1.3 Client/Server Protocols in SpADE 154

6.2 System Implementation . 155

6.2.1 Data Modelling and the Bx-tree 155

6.2.2 Implementation Issues . 156

6.3 Performance Studies . 162

6.4 Summary . 163

7 Conclusions and Future Work 164

7.1 Conclusions . 164

7.2 Future work . 166

LIST OF TABLES

3.1 Parameters and Their Settings . 58

4.1 Parameters and Their Settings . 96

5.1 Parameters and Their Settings . 136

6.1 Moving Object Relation Scheme . 157

vii

LIST OF FIGURES

1.1 An Overview of Our Study . 2

2.1 An Example of the R-tree Structure 14

2.2 An Example of the Quadtree Structure 16

2.3 An Example of the TPR-tree . 22

2.4 An Example of the Constrained Range Query 26

2.5 An Example of Nearest Neighbor Search 27

2.6 An Example of the Constrained kNN Query 29

3.1 Space-Filling Curves . 40

3.2 Bx-Tree with n = 2 Phases . 42

3.3 Query Window Enlargement . 45

3.4 Possible Positions of a Query Interval w.r.t. a Label Timestamp . . 47

3.5 Time Length Enlargement . 48

3.6 “Jump” in the Index . 49

3.7 Range Query Algorithm . 50

3.8 Function TimeParameterizedRegion() 51

viii

ix

3.9 kNN Query Algorithm . 53

3.10 Bx-Tree Evolution . 55

3.11 Filter Rates for Varying Query Time 59

3.12 Filter Rates for Varying Query Window Size 60

3.13 Range Query Performance for Varying n and Query Time 61

3.14 Average Range Query Performance for Varying n 62

3.15 Effect of Varying Buffer Size . 63

3.16 Effect of Varying Query Time . 64

3.17 Effect of Query Window Size . 65

3.18 Effect of Varying Query Interval Length 66

3.19 Effect of Maximum Speed on Range Query Performance 67

3.20 Effect of Data Distribution on Range Query Performance 67

3.21 Effect of Data Sizes on Range Query Performance 68

3.22 Effect of k on kNN Query Performance 69

3.23 Effect of Varying Update Time on the Update Cost 70

3.24 Effect of Varying Maximum Update Interval on Update Performance 71

3.25 Effect of Data Sizes on Update Cost 72

3.26 Effect of Concurrent Operations . 74

3.27 Storage Requirement . 75

4.1 An Example of Density Query Results 78

4.2 An Example of Answer Loss . 79

4.3 Overlapping vs. Non-overlapping Regions in a Density Query 81

4.4 Problem Parameters . 82

4.5 An Example of the DCT . 86

4.6 DH Maintenance Algorithm . 89

4.7 Maintenance in DH . 90

x

4.8 Intersection between the Final Answer and DH Cells 90

4.9 Density Query Algorithm . 91

4.10 Conflicting Types of Cells . 92

4.11 Refinement Algorithm . 94

4.12 DCT Compression Accuracy . 96

4.13 False Positives and Negatives for Varying DCT Coefficients 97

4.14 False Positives and Negatives with Elapsed Time 98

4.15 Effect of the Error Factor and DCT Coefficients 99

4.16 Density Query Example . 101

4.17 Histogram vs. Non-histogram . 102

4.18 The MODQ vs. the DCF . 103

4.19 Effect of Density Threshold and Query Size 103

4.20 Effect of Database Size . 105

4.21 Effect of Data Distribution . 105

4.22 Maintenance Cost . 106

5.1 LPP System Overview . 113

5.2 An Example of Position Transformation 118

5.3 Multiple Transformation Generation Algorithm 120

5.4 Super Query . 121

5.5 Update Algorithm . 124

5.6 An Example of Update Operation 125

5.7 An Example of Query Operation 126

5.8 Range Query Algorithm . 127

5.9 Original Data vs. Transformed Data 134

5.10 False Positive Rate for Varying λ 137

5.11 False Positive Rate for Varying Query Size 138

xi

5.12 False Positive Rate . 139

5.13 Impact of Data Sizes on Range Query Performance 140

5.14 Query Cost of One Agent with Varying the Data Size 141

5.15 Impact of Number of Agents on Range Query Performance 141

5.16 Query Cost of One Agent for varying number of agents 142

5.17 Impact of Number of Agents and Data Sizes on Range Query Per-

formance . 143

5.18 Impact of Query Size on Range Query Performance 143

5.19 Query Cost of One Agent for Varying the Query Size 144

5.20 Impact of Skewed Data on Range Query Performance 145

5.21 Impact of k on kNN Query Performance 146

5.22 Impact of Data Sizes on Update Performance 147

5.23 Effect of Number of Agents on Update Performance 148

5.24 Effect of Data Distribution on Update Performance 149

6.1 System Architecture . 152

6.2 Execution of a Spatial-temporal Query 158

6.3 Query and Update Performance of SpADE System 162

xii

Summary

With the rapid developments in positioning technologies such as the Global Posi-

tioning System (GPS) and wireless communications, tracking of continuously mov-

ing objects has become feasible in terms of technology and implementation cost.

However, this recent development poses new challenges to traditional database

technology. In particular, traditional database systems have not been designed

to support high update load due to object agility, predictive and spatio-temporal

based query processing, and location privacy protection. In this thesis, we address

three important basic issues in moving objects databases: indexing, querying and

location privacy protection. The main design criteria of the algorithms and data

structures is cost effective integration into an existing DBMS. In this connection,

we extend an existing RDBMS, MySQL, to include a new indexing mechanism and

query processing strategies with minimal alteration to existing codes.

In moving object applications, large quantities of location samples obtained via

sensors are streamed to a database. Disclosure of new positions cause updates on

the database, and objects are stored as snapshots taken at different times, and

queries against such objects involve interpolation of new positions based on the

xiii

current position, velocity, and the valid time of the objects. To facilitate fast lo-

cation of spatial objects for efficient update and querying, an efficient index must

be designed to meet both objectives, fast update and retrieval. Indexes based on

minimum bounding regions (MBRs) such as the R-tree exhibit high concurrency

overheads during node splitting, and each individual update is known to be quite

costly. This motivates us to design a solution that enables the B+-tree to effi-

ciently manage moving objects. We represent moving-object locations as vectors

that are timestamped based on their update time. By applying a novel linearization

technique to these values, it is possible to index the resulting values using a single

B+-tree that partitions values according to their timestamp and otherwise preserves

spatial proximity. We develop algorithms for range and k nearest neighbor queries.

The proposal can be grafted into existing database systems cost effectively. An

extensive experimental study was conducted to evaluate the performance charac-

teristics of the proposal and the results show that it substantially outperforms the

R-tree based TPR*-tree for both single and concurrent access scenarios.

With the aid of the advanced indexing techniques, more complex queries can

be supported in the location-based services. In this thesis, we study an emerging

query, density query, which is designed to identify dense regions such as regions with

high possibilities of a traffic jam. Specifically, we define a particular type of density

query which reports all evidence of dense regions, and then we proceed to propose

an algorithm for the efficient computation of density queries. While we use the

Bx-tree as the underlying structure, the algorithm is independent of any structure.

We conduct an extensive experimental study to evaluate the performance of the

algorithm, and the results confirm the efficiency of the proposed algorithm.

The expanding use of location-based services has profound implications on the

privacy of personal information. If no adequate protection is adopted, information

xiv

about movements of specific individuals could be disclosed to unauthorized subjects

or organizations, thus resulting in privacy breaches. Therefore, we propose a frame-

work for preserving location privacy in moving-object environments. Our approach

is based on the idea of sending to the service provider suitably modified location

information. Modifications such as transformations by scaling are performed by

agents interposed between users and service providers. Agents execute data trans-

formation and the service provider directly processes the transformed dataset. Our

technique not only prevents the service provider from knowing the exact locations

of users, but also protects information about user movements and locations from

being disclosed to other users who are not authorized to access this information.

A key characteristic of our approach is that it achieves privacy without degrading

service quality. We also define metrics to quantify the privacy properties for our

framework, and examine our approach experimentally.

Based on our proposal, we extend an open source database system MySQL

to provide the required functionalities for managing moving objects. The most

important feature of our system is that we do not infiltrate into the MySQL core.

That is, the proposed indexing structure and algorithms could be crafted into most

existing DBMS backend cost effectively.

To sum up, we have made contributions in addressing three core problems in

moving objects databases and extending an existing DBMS to provide necessary

and efficient support for location based services.

1

CHAPTER 1

Introduction

Spatial databases have been extensively studied in the last two decades resulting

in numerous conceptual models, multi-dimensional indexes and query processing

techniques. In these traditional spatial databases, spatial data objects are usually

assumed to be fairly static, which impedes the direct migration of these techniques

to an emerging area – the moving objects database (MOD).

With the advances in positioning technologies such as GPS and rapid develop-

ments of wireless communication devices, it is now possible to track continuously

moving objects such as vehicles, users of wireless devices and goods. A wide range

of applications related to moving objects have been developed. For instance, in an

intelligent traffic control system, if we store information about locations of vehi-

cles, congestion may be alleviated by diverting some vehicles to alternate routes,

and taxis may be dispatched quickly to passengers. Another interesting example is

location-based digital game where the positions of the mobile users play a central

role. In such kind of games, players need to locate their nearest neighbors to fulfill

2

User

User

User

DBDBDB

Location information

Privacy Protection

Location−based services

Server

Processor
.
.
.

Figure 1.1: An Overview of Our Study

“tasks” such as “shooting” other close players via their mobile devices. MOD tech-

nique is also very important in the military. With the help of the MOD techniques,

helicopters and tanks in the battlefield may be better positioned and mobilized to

the maximum advantage.

New MOD applications engenders new technical challenges [95] which cannot be

met by existing DBMS. Research issues such as data uncertainty, data imprecision,

data modelling, representation by query language, simulation test bed, indexing

techniques, querying techniques and location privacy need to be examined. Among

them, indexing and querying techniques are the most crucial parts in the moving

objects database systems, and privacy protection is an important and sensitive issue

3

that needs to be addressed in order for MOD applications to gain wide acceptance.

These three issues form the focus of this thesis and their relationship is captured in

Figure 1.1. Like any other applications, users and specialized devices are position

providers and query issuers. For example, they could be vehicles or mobile device

holders which are shown as black points in the map. The server manages the MOD

and provides location-based services to users. The server has the functionality and

capability like finding dense regions as shown by the rectangle in Figure 1.1, and

finding k nearest neighbors for a moving object as shown by the circle. When

subscribing such location-based services, users may worry about the leak of their

private information. There are various models to protect privacy within the server.

However, in this thesis, we propose an alternative approach to the privacy pro-

tection problem by introducing an anonymization and mapping layer between the

server and the users.

The rest of the chapter is organized as follows. We first discuss the problems on

indexing, querying moving objects and location privacy protection by examining

existing techniques in Section 1.1. Then, in Section 1.2, we present an overview of

our proposed method and state the contributions we made. Finally, in Section 1.3,

we present the outline of the thesis.

1.1 Moving Objects Databases

In this section, we describe the background on moving objects databases, their

characteristics, and peculiarities, and research problems.

4

1.1.1 Indexing Moving Objects

In the traditional spatial databases, indexes are mainly designed to speed up re-

trievals since objects are usually assumed to be constant unless explicitly updated.

Thus, in order to capture continuously moving objects, traditional indexes have to

update locations of moving objects continuously (e.g., once at each timestamp).

When facing such a large amount of sampling states streaming to the database,

the dominant indexing technique for static spatial data with low dimensionality

– the R-tree [28] (and its descendants such as R*-tree [6])– exhibits poor update

performance.

To reduce the number of updates on the indexes, strategies such as expressing

the objects’ positions as functions of time, and delaying of updates have been

employed. As reported in [16], the use of moving functions reduces the need for

updates by a factor of three for some vehicle data. However, simply applying

these strategies to static databases still can not effectively reflect the dynamic

nature of the moving objects. Thus, many other researchers work on developing

new indexes specifically for moving objects. One representative index is the Time-

Parameterized R-tree (TPR-tree) [76]. In the TPR-tree, both moving objects and

their bounding rectangles are modelled as linear functions of time. The TPR-tree

can then support queries on the current and anticipated near-future positions of

moving objects. Similar to that in the R-tree, bounding rectangles in the TPR-tree

also overlap and the overlap may become serious as time elapses. As a result, a

search operation needs to travel multiple paths from the root of the index tree

to leaf nodes. This problem is inherent in many multidimensional indexes. And

it is exacerbated by the concurrency control algorithms, because concurrent and

frequent tree ascents may lead to costly lock conflicts. Another problem with

existing solutions to moving object indexing is that they cannot be easily integrated

5

into existing database systems due to the complexity of the algorithms.

Therefore, one objective of our study is to design a more efficient index of

moving objects which can be grafted into existing database management systems

cost-effectively.

1.1.2 Querying Moving Objects

Moving objects databases need to accommodate frequent updates while simultane-

ously allowing for efficient query processing. The developments of moving objects

indexing techniques offer a foundation for the various types of query services. The

most common types of queries are point queries, range queries and k-nearest neigh-

bor queries.

• Point queries: “find the location of an object O at a given time t.” For

example, where is the car0001 now? The answer should return the location

of the car0001.

• Range queries: “find all objects whose locations fall within a given range R

from time t1 to t2.” For example, the query could be how many cars are in

the area01.

• K-nearest neighbor queries: “find the top k nearest objects of a given object

O at a given time t.” For example, find the k nearest taxis for a traveller.

Proposals for efficient computation of the above queries can be found in [7, 9,

41, 43, 75, 84, 94]. In this thesis, we will present that our proposed index structure

can answer these common queries efficiently.

There are several more complex queries that have been studied, e.g. reverse

nearest neighbor queries [7], continuous range (k-nearest neighbor queries) [54, 55,

56, 57, 89, 97] and etc.

6

More recently, a new type of query, density query, has been gaining interest

from both industry and research communities. The objective of the density query

is to find dense regions with a high concentration of moving objects. It may have

applications in a range of areas. For example, in traffic management systems,

density queries may be used for identifying regions with potential for congestion and

traffic jams. The concept of density queries on moving objects was first introduced

by Hadjieleftheriou et al. [29]. However, the definition given by them is not very

practical. And they only solved a simplified version of their proposed density query.

In this thesis, we will examine the density queries and present better definitions

and solutions.

1.1.3 Privacy Issues

The expanding use of spatial, mobile and context-aware technologies, the deploy-

ment of integrated spatial data infrastructures and sensor-networks, and the use of

location data as the foundation for many current and future information systems

have profound implications on the privacy of personal information. Today people

are increasingly aware of privacy issues and do not want to expose their personal

information to unauthorized subjects or organizations. An important problem is

represented by the possibility that a piece of personal information released by an

individual to a party be combined by this party, or other parties, with other infor-

mation, leading to the disclosure of sensitive personal information. In other cases,

even if an individual does not directly release personal information to another party,

this party may still become aware of this information if it has to provide a service to

such an individual. This is in particular the case of location-based service providers

that, because of the very nature of the services they provide, need to track user

movements and locations. It is then easy, based on this information, to discover

7

user habits and other personal information. There is therefore an important con-

cern for location privacy in location-based services, that is: “how can we prevent

other parties from learning one’s current or past location? [11]”. By looking more

closely at the privacy problem in such a context, we can see that there are at least

two important requirements, that is, keeping movement and location information

private from service providers and from other users. For example, GPS users who

do not want to disclose their locations to the system may still require service such as

“is there any of my friends close to me now?” There are two privacy requirements

for this query. First, service providers are not allowed to know the real locations

of users. Second, users can only query an authorized dataset (e.g. a list of their

friends).

Some early works on location privacy protection suggest the use of policies

which serve as a contractual agreement about how user’s location information can

be used by service providers [30, 82]. More recent works focus on the development

of anonymization techniques specific to location-based service environments. A

common technique is based on the notion of spatial-temporal cloaking [26]. The

main drawback of these approaches is that they cannot guarantee the accuracy of

the query answers. Motivated by this, we develop a novel scheme that can provide

privacy protection without sacrificing the service quality.

1.2 Objectives and Contributions of This Thesis

As discussed in the previous sections, existing indexing techniques for moving ob-

jects databases still suffer from either update or query problems, and may not be

able to support a new type of query, the density query, in a straightforward way.

Moreover, few work has been done for the location privacy problems in the moving-

8

object environments. Therefore, the aim of this thesis is mainly threefold: (i) to

design a new and efficient index structure; (ii) to explore the proper definition of

density queries and develop a theoretical framework as well as detailed algorithms;

(iii) to establish a framework for preserving location privacy in moving-object envi-

ronments. Besides the theoretical studies, we also aim to build a real system based

on our proposed index structure.

1.2.1 Contributions on Index Structures

We proposed a new index structure, called the Bx-tree, which was based on the

most popular B+-tree. The Bx-tree indexes the positions of moving objects as

linear functions of time. By applying a novel linearization technique, the Bx-tree

maps the two-dimensional positions and time attributes to one-dimensional values,

which makes it possible to adopt the B+-tree technique to manage moving objects

and preserve their spatial proximity. The details of the algorithms will be covered

in Chapter 3. Here, we summarize our contributions as follows.

• Our proposed Bx-tree does not exhibit the update performance problems

associated with bounding-rectangle-based multidimensional indexes.

• Our proposed Bx-tree can support various types of queries and does not com-

promise on query and storage efficiency.

• Our proposed Bx-tree is built on the B+-tree, which is widely used in the com-

mercial databases. Thus, the Bx-tree can be grafted into existing database

management systems more cost effectively than techniques relying on unsup-

ported indexing techniques. Further, the Bx-tree can directly make use of the

well tested and efficient Blink-tree concurrency control mechanism.

9

• A thorough experimental study have been carried out, which show that the

Bx-tree is capable of outperforming the recent TPR*-tree [90] for both single

and concurrent access scenarios.

1.2.2 Contributions on Density Queries

For the density query, we examined its earlier definition and found that the defini-

tion was impractical to some extent. Therefore, we introduced a more meaningful

definition of the density query. Given the new definition, we developed a two-phase

framework which built a filter on top of indexes. The details of this framework will

be presented in Chapter 4. Here, we summarize our contributions as follows.

• We provide a definition of the density query for moving objects that can avoid

the answer loss problem. Based on this definition, we propose a specializa-

tion of the density query that may return useful answers and is amenable to

efficient computation.

• We propose algorithms to process the resulting density query efficiently. The

algorithm utilizes temporal histograms of counters for each partition in a par-

titioning of the data space. We propose to use the Discrete Cosine transform

(DCT) to compress the histograms. This compression incurs very few errors

in the answer set, but offers space savings of up to 90%, which also reduces

I/Os.

• We conduct extensive experiments. The results suggest that our proposed

algorithm offers an improvement of a factor of 4 in terms of I/O, compared

to a naive algorithm. The results also indicate that although we reduce the

storage usage greatly by using the DCT, the answers are still highly accurate.

10

1.2.3 Contributions on Protecting Location Privacy in Moving-

Object Environments

We investigate location privacy issues in moving-object environments, and pro-

pose a framework for location privacy assurance. Details of the algorithms will be

presented in Chapter 5. Specifically, our contributions are the following.

• We propose a framework that can not only prevent service providers from

inferring the exact locations of users, but also keep information about the

location of an individual private from other individuals not authorized to

access such information.

• We propose algorithms in the framework that can support continuous updates

and various types of queries without degrading the service quality.

• We develop metrics to measure the level of privacy achieved by our framework.

In particular, we will investigate the threats posted by the agents and the

query server from discovering the users’ true locations and movement pattern.

We then propose intuitive methods to quantify the level of protection against

these threats in our system.

1.2.4 Contributions on Extending a DBMS

It is a common knowledge that the major database market is cornered by a few

vendors, and it is not an easy task to introduce a specialized DBMS supporting

MOD applications. From the vendors’ view points, it is too risky to touch the

kernel such as implementation of a new index for every new applications as the

new component is not a stand alone software, and it will affect other components

such as query processors, cost model and buffer manager. In this thesis, one of our

11

main goals is to extend an existing DBMS such as MySQL for MOD applications.

Apart from studying individual issues analytically and empirically, we incorporate

our proposals into MySQL. We make the following contributions:

• We propose a client/server architecture for geo-enabled mobile service ap-

plications. The coupling between client and server is minimized to support

system independence.

• We implement a moving object database system utilizing MySQL as the

underlying relational engine. The boundary between our implementation

and MySQL is clearly defined, which ensures the integrity of MySQL and the

easy deployment or even re-porting of our proposal.

• We implement the Bx-tree into MySQL.

• We implement spatial-temporal query processing strategies, by taking full

advantage of the popular database connectivity technology – JDBC.

In summary, we design and implement an extended DBMS architecture for

supporting MOD applications.

1.3 Outline of The Thesis

The rest of the thesis is organized as follows:

• Chapter 2 reviews indexing and querying techniques in static spatial databases

and moving object databases, and surveys state-of-the-art privacy preserving

strategies.

• Chapter 3 presents our proposed index structure for moving objects, called

the Bx-tree. This novel index structure enables the B+-tree to manage moving

objects as well as various types of queries.

12

• Chapter 4 presents a new definition of the density query and corresponding

solutions. We propose a general framework based on which we solve the

density query in an efficient way.

• Chapter 5 presents an approach to ensure location privacy in moving-object

environments. We interpose agents between users and servers and use multi-

ple successive transformations on data to keep the server from inferring the

real positional information.

• Chapter 6 presents an operable database system which is built on top of a

popular relational database system MySQL. In this system, we implement

the Bx-tree non-intrusively into the MySQL core.

• Chapter 7 concludes our work and discusses directions for future work.

Two papers have been published from the work reported in this thesis. The

main idea of indexing moving objects, presented in Chapter 3, has been published

in [36]. The work on querying moving objects, presented in Chapter 4, has been

published in [37].

13

CHAPTER 2

Literature Review

In this chapter, we first briefly review the traditional indexes in spatial databases.

Then we investigate existing indexing and querying techniques for moving objects

databases. Finally, we discuss some related work in location privacy issues.

2.1 Traditional Indexes in Spatial Databases

Most indexes of moving objects are based on some famous traditional indexes [10,

23, 79, 80, 100], especially the R-tree (and its variants), thus, we will first make a

brief review of these indexes to obtain a better understanding of later works.

The R-tree [28] (see Figure 2.1) is a hierarchical, height-balanced index struc-

ture. Objects are represented by minimum bounding rectangles (MBRs). Each leaf

node of the R-tree points to the MBRs of objects and each internal node points

to other internal nodes or leaf nodes. Due to possible overlaps of the MBRs, the

search to find out rectangles intersecting a given range has to descend all subtrees

14

that intersect or fully contain the range specification. To insert an object, they

traverse a single path from the root to the leaf. At each level they choose the child

node whose corresponding MBR needs the least enlargement to enclose the MBR of

the new object. If there is not enough space left in the leaf node, the node should

be split and its ancestor nodes should be adjusted accordingly. As for deletion,

they first perform an exact match query for the object in question. If it is found in

the tree, it will be deleted. If the deletion does not cause an underflow, they check

whether the MBR could be reduced and propagate this adjustment upwards. If an

underflow occurs, they remove all entries in this leaf node and then reinsert them.

R1

R2

R3

R4

R5

R6

R7

P1
P2

P3

P4

P5

P6P7

P8

P9

P10

P11 P12

P13

R1 R2

R3 R4 R5 R6 R7

P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12 P13

Figure 2.1: An Example of the R-tree Structure

Based on a careful study of the R-tree, Beckmann et al. [6] identify several

weaknesses of the node splitting algorithms used by the R-tree, and then propose

the R*-tree. Beckmann et al. also confirm the observation of Roussopoulos et al.

that the insertion phase is critical for good search performance. The design of the

R*-tree therefore introduces a policy called forced reinsert: if a node overflows, it

15

is not split at once. Rather, part of the entries of the node are removed and then

reinserted into the tree. The R*-tree has been proved to be the most successful

variant of the R-tree. Beckmann et al. report performance improvements of up to

50% compared to the R-tree.

If we simply apply the R-tree like technique to index the locations of moving

objects, readjusting the entire index is inevitable. For example, the short movement

of p12 in Figure 2.1 will cause the nodes and MBRs along two paths to be adjusted.

Such adjustments are expensive when large numbers of updates are continuously

issued. Hence, the original R-tree technique is not directly suitable for moving

objects. However, due to its robustness in handling spatial objects, the R-tree and

its variants are still good basis for extension for supporting moving objects.

Another often used index structure is the quadtree. Samet [77] has done a thor-

ough survey of the quadtree and the related hierarchical data structures. The basic

idea of the quadtree is to recursively decompose the space. Variants of quadtrees

can be differentiated on the following two bases: (i) the type of data that they are

used to represent; (ii) the principle guiding the decomposition process; and (iii)

the resolution (variable or not). Currently, the quadtrees are used for point data

[8, 21], regions [42], curves [4, 31, 86] and volumes [35, 50]. The decomposition

may be into equal parts on each level, or be governed by the input. The resolution

of the decomposition (i.e. the number of times that the decomposition process is

applied) may be fixed beforehand, or be governed by properties of the input data.

Figure 2.2 shows an example of common quadtree structure, where the shaded re-

gions denote the places containing data. The root node corresponds to the entire

space, and each son of a node represents a quadrant of the region of this node. We

can see that the quadtree is not a balanced tree.

Directly adopting the quadtree technique in the moving object database en-

16

B

F G H I J L M

37 38 39 40 57 5958 60

QON

C ED

A

B

QL

J

F G

H I

ON

57 58

59 60

37 38

39 40

M

Figure 2.2: An Example of the Quadtree Structure

counters similar problems as existing in the R-tree like structures. In the following

section, we will see what kind of modifications are needed to make the quadtree

suitable for moving object indexing.

2.2 Moving Objects Indexes

Traditional indexes for multidimensional databases, such as the R-tree and its vari-

ants were, implicitly or explicitly, designed with the main objective of supporting

efficient query processing as opposed to enabling efficient updates. This works

well in applications where queries are relatively much more frequent than updates.

However, applications involving the indexing of moving objects exhibit workloads

characterized by heavy loads of updates in addition to frequent queries.

Several new index structures have been proposed for the moving-object index-

ing, and recent surveys exist that cover different aspects of these [2, 53, 61]. One

may distinguish between indexing of the past positions and indexing of the current

and near-future positions of spatial objects. Our work belongs to the latter one.

17

2.2.1 Indexing historical movement

Historical data of moving objects is very useful in applications such as the road

planning and resource management. However, in such a database, the volume would

be very large since objects move all the time and the database has to capture a

great deal of the location information. Hence, the critical problem is to decide what

is good historical data and how to store them efficiently.

One of the earliest work is the Historical R-tree (HR-tree) [59] which constructs

an R-tree for each timestamp in history. Consecutive R-trees can make use of com-

mon paths if objects do not change their positions, and new branches are created

only for objects that have moved. HR-trees are very efficient for timestamp queries,

as search degenerates into a static query for which R-trees are very efficient. Their

disadvantage is the extensive duplication of objects that leads to huge space con-

sumption. As a side effect of this fact, their performance on interval queries is

very poor. Aimed at achieving good performance on both timestamp and inter-

val queries, Tao and Papadias propose the Multi-version 3D R-tree (MV3R-tree)

[88] which combines Multi-version B-trees [5] and 3D R-trees [93]. The MV3R-tree

involves numerous improvements that result in large space savings without compro-

mising timestamp query performance compared to the HR-tree. Furthermore, the

MV3R-tree includes a small auxiliary 3D R-tree on the leaf nodes (not on the ac-

tual objects). As reported by the authors, the MV3R-tree usually outperforms the

traditional 3D R-tree on interval queries and its performance does not deteriorate

significantly when time evolves.

Another direction of indexing historical information of moving objects is to

represent the historical movement of objects by their trajectories, i.e., a set of line

segments. Intuitively, an R-tree can be used to index the trajectories of objects by

bounding the line segments with MBRs. Based on this idea, Pfoser et al. propose

18

the Spatio-Temporal R-tree (STR-tree) and Trajectory-Bundle tree (TB-tree) [69].

The STR-tree organizes line segments not only according to spatial properties, but

also by attempting to group the segments according to the trajectories they belong

to. The TB-tree aims only for trajectory preservation and leaves other spatial

properties aside, while it performs better than the STR-tree. The main problem

of such index structures is the dead space in each MBR which may degrade both

update and query efficiency.

Recently, Frentzos [22] proposes the Fixed Network R-tree (FNR-tree) by taking

into account the constraint of road networks. The general idea that describes the

FNR-tree is a forest of 1-dimensional (1D) R-trees on top of a 2-dimensional (2D)

R-tree. The 2D R-tree is used to index the spatial data of the network (e.g. roads

consisting of line segments), while the 1D R-trees are used to index the time interval

of each object’s movement inside a given link of the network. However, the dead

space problem still exists in the 2D R-trees used by the FNR-tree, and the 1D R-

tree may not be efficient to index objects when the road is long and objects density

is high.

2.2.2 Indexing current and future movement

More recent works focus on indexing current and future movement. This category

can be further divided into two sub-categories: indexing locations of moving objects

and using functions to approximate movement.

Indexing locations of moving objects

One of the differences between moving objects and static objects is that the loca-

tions of moving objects vary over time. In order to represent moving objects in the

database, it is inevitable to employ a large volume of updates.

19

To overcome this problem, Song et al. [83] introduce a hashing technique which

uses buckets to hold moving objects. They save the bucket information for each

object instead of the object’s exact location so that update is triggered only when

the object leaves its original position very far (i.e. moves out of its current bucket).

Although this method reduces update frequency and speeds up the update process,

it suffers from the accuracy problem when answering queries. For example, when

the query range intersects with the bucket, the system can not distinguish which

objects in the bucket are in the range and which are not.

Similar to Song et al.’s idea, Kwon et al. [45] propose the Lazy Update R-tree

(LUR-tree), in which they suggest to ignore deletions of objects that do not move

out from the current MBR, or enlarge MBR slightly if objects do not move far

away from it. However, this algorithm also downgrades query performance since

the ignorance of deletions makes the index loose chances of obtaining a better

structure, and the enlarged MBRs may overlap more severely, both of which cause

subtrees to be traversed unnecessarily.

Later, Xia et al. [96] propose the Q+R-tree. The Q+R-tree makes use of the

topography and the patterns of object movement. It distinguishes fast-moving

objects from quasi-static objects, and stores these two types of objects in a Quad-

tree and an R*-tree respectively. Objects may switch between two trees when they

change their moving status. The Q+R-tree performs well only when there are very

few fast-moving objects.

Another work that aims to speed up the update processing is proposed by Lee

et al. [46]. They observe that the traditional R-tree update strategy is a top-

down search which is inherently inefficient because the objects are stored in the

leaf nodes, whereas the starting point for an update is the root. Therefore, they

propose a bottom-up update strategy. The main idea is to execute the update

20

from the bottom of the tree. They first consider enlarging the leaf MBR or placing

the new object location in another sibling leaf node if the object moves outside its

current leaf MBR. If this strategy does not work, they then ascend the index with

an auxiliary data structure, Direct Access Table (DAT), which is a summary of the

R-tree and provides direct access to the index nodes. This algorithm encounters

the similar problem of the LUR-tree, where the overlaps among enlarged MBRs

result in more unnecessary traversals in the tree.

Indexing based on time functions

A crucial issue in the approach of indexing locations of moving objects is to main-

tain up-to-date information about the locations of moving objects. For a large

amount of objects, too many database update operations may be triggered after

each state sampling. For example, there could be thousands of cars on a small

segment of a highway at any given time of a day. And of course they are moving

continuously unless there is an accident or a heavy traffic congestion on their paths.

Updating their current locations once a second cause thousands of transactions per

second, not to mention the query transactions which could cripple the server at the

control center. Consequently, keeping track of each and every car’s current location

in real time is very hard to achieve and even impossible. Thus, instead of updating

continuously, Sistla et al. [81] present a new model that uses a linear function with

the parameters of the position and velocity vector (so-called dynamic attributes)

to represent the current and near-future locations of moving objects. These pa-

rameters need to be updated only when the moving objects change their speeds

or directions significantly. As reported in [16], the use of such moving functions

reduces the need for updates by a factor of three for some vehicle data.

Largely based on the idea introduced by Sistla el al., the quad-tree or the

21

R-tree based index structures for moving objects have been proposed. Tayeb et

al. [92] employ the PMR quadtree to index the future linear trajectories of one-

dimensional moving points as line segments in (x, t)-space. The segments span

the time interval that starts at the current time and extends some time into the

future, after which time, a new tree must be built. Next, Kollis et al. [43] employ

dual transformation techniques which represent the position of an object moving in

d-dimensional space as a point in 2d-dimensional space. Agarwal et al. [1] extend

the transformation to arbitrary dimensionality, and propose theoretical indexes that

achieve good asymptotic performance. These solutions, however, are not efficient

in practice due to the large hidden constants in their complexities. By using the

similar technique, Patel et al. [67] have developed a practical indexing method,

called STRIPES, which maps 2D moving objects to 4D points and then index

them by the PR bucket quadtree [78]. STRIPES supports efficient updates and

queries but requires large storage space.

Similar to the quadtree-based techniques, Chon et al. [15] model the space-

time domain space as a grid and the trajectory of a moving object as a poly-

line in the grid. The advantage of using the grid is the great speedup of the

query processing. However, this algorithm incurs high overhead of updates since it

requires duplicating an object across all cells. Furthermore, different to previous

models, the trajectories of moving objects in this model are affected by other moving

objects. This means one insertion may cause a series of updates since it not only

needs to change trajectories of the newly inserted object, but may also need to

change the trajectories of other objects who have been influenced by the current

object.

Index structures based on the R-tree are the Time-Parameterized R-tree (TPR-

tree) and its variants. Saltenis et al. [76] propose the TPR-tree which augments

22

R1

(a) MBRs at time T0

R2

R3

R4

R5

R6

R1

(b) MBRs at time T1

R1

R3

R4

R5

R6

R2

R3 R4

R2

R5 R6

 (c) TPR−tree

Figure 2.3: An Example of the TPR-tree

the R-tree with velocities to index moving objects. Figure 2.3 shows an exam-

ple. The white circles represent the positions of moving objects, and the arrows

indicate their movements. Moving objects are stored as a reference position and a

corresponding velocity vector. The coordinates of the bounding rectangles are also

functions of time. As shown in the figure, in each dimension, the lower bound of

a MBR is set to move with the minimum speed of the enclosed points, while the

upper bound is set to move with the maximum speed of the enclosed points. This

ensures that the bounding rectangles are indeed bounding for all times considered.

As time elapses, the grown MBRs will overlap more severely (see Figure 2.3(b))

and adversely affect query performance. Therefore, frequent updates are needed

23

to ensure that moving objects that are currently close are assigned to the same

bounding rectangles. Further, bounding rectangles never shrink and are generally

larger than strictly needed. To counter this phenomenon, the so-called “tightening”

is applied to bounding rectangles when they are accessed.

Next, two notable proposals exist that build on the ideas of the TPR-tree.

Procopiuc et al. [70] propose the STAR-tree. This index seems to be best suited

for workloads with infrequent updates. Tao et al. [90] propose the TPR*-tree.

They adopt assumptions about the query workload and improve the construction

algorithms by carefully choosing the insertion path for each moving object. Their

approach only alleviates the mentioned MBR overlapping problem but still can-

not fully solve it. As reported, the TPR*-tree achieves better and stable I/O

performance compared with the TPR-tree. However, the insertion and deletion

algorithms of the TPR*-tree are much more complicated which may impede its

integration to existing database systems. Further, the performance of the TPR*-

tree is tested by setting the page size to 1K bytes which is not very appropriate

since the typical page size is 4K bytes, and in modern hardware, most OS read in

8K bytes. The smaller page size allows better optimization and may inflate the

performance gain somewhat.

More recently, Cui et al. [18] found that, to better manage moving object

databases, there is a need to improve the utilization of the main memory. Since

main memory is much faster than disk, efficient management of moving-object

database can be achieved through aggressive use of main memory. They propose

an Integrated Memory Partitioning and Activity Conscious Twin-index (IMPACT)

framework where the moving objects database is indexed by a pair of indexes

based on the properties of the objects’ movement, where a main-memory structure

manages active objects while a disk-based index handles inactive objects. This

24

framework can be applied to most existing indexing techniques and it achieves

better performance when the migration of objects between the disk and the memory

is not very frequent.

We would also like to mention that besides the linear moving function model,

which is used in most work, a recent proposal considers non-linear object move-

ment [87]. The idea is to derive a recursive motion function that predicts the future

positions of a moving object based on the positions in the recent past. However,

this approach is much more complex than the widely adopted linear model and

complicates the analysis of several interesting spatio-temporal problems. Thus, we

decide to use the linear model in our work.

Different from previous works, our idea is to enable the B+-tree to index mov-

ing objects and we propose the Bx-tree [36]. We map the object locations to cer-

tain timestamps and then convert them from 2-dimensional space to 1-dimensional

space by employing space-filling curves. Most recently, Yiu et al. [98] suggest that

capturing velocity information and using a higher dimensional Hilbert curve may

achieve better performance. Correspondingly, they propose the Bdual-tree. The

Bdual-tree is composed of two B+-trees and these two trees swap states every max-

imum update interval. Objects in the Bdual-tree are indexed according to the keys

obtained from mapping both location and velocity data to one-dimensional space

by a 4-dimensional Hilbert curve. During the query, they decompose the Hilbert

interval of each node into squares with continuous Hilbert values. These squares

can be treated as MBRs as that in the TPR-tree and hence the query algorithms

of the TPR-tree can be applied to the Bdual-tree by minor modifications. Their

experimental results show that the Bdual-tree is as efficient as the Bx-tree regarding

the update performance, while it performs similarly to the TPR*-tree and outper-

forms the Bx-tree and STRIPES (a recent index based on dual transformations)

25

regarding the query performance. Note that the experiments are carried out by

assuming the disk page size to be 1K bytes which is smaller than the standard

setting (4K bytes). As we know that, an index is chosen not based on certain page

size it is good at, but rather, is chosen based on its performance on the standard

page size. Another disadvantage of the Bdual-tree is that its query algorithm is

more complicated and not based on that of the B+-tree, which may make it hard

to be integrated into existing database systems.

In this thesis, we will present an optimized version of the Bx-tree. We will

compare the Bx-tree with both the TPR*-tree and the Bdual-tree. Our experimental

results will show that the optimized version of the Bx-tree is superior to existing

indexes with respect to both update and query performance.

2.3 Queries on Moving Objects

In this section, we first review the common definitions and solutions of range and

k-nearest neighbor queries which are supported by our proposed index structure.

Then we briefly introduce some variants of range and k-nearest neighbor queries

which are proposed under certain constraints, e.g., network constraints. Finally,

we present the related work to the newly emerging query – the density query.

2.3.1 Range Query

The range query is one of the most common queries in spatial-temporal databases,

which retrieves all objects whose location falls within the rectangular range at a

timestamp or during a time interval. According to the query timestamps, range

queries can be further divided into predictive range queries or historical range

queries. In our work, we focus on predictive queries.

26

For the range query, the search process in an R-tree like index structure is

very different from that in a B-tree due to the lack of ordering and the possible

overlap among keys. To find all bounding rectangles intersecting a given range,

the search process will descend all subtrees that intersect or fully contain the range

specification.

Besides the unconstrained movement that is the scenario mostly asserted in

traditional spatiotemporal access methods, some recent works suggest to take into

account the infrastructure constraint. Objects that constrain movement are termed

infrastructure. For example, pedestrians may be blocked by infrastructures such

as buildings, lakes etc; vessels may be blocked by infrastructures such as rocks,

islands etc. Under this condition, Pfoser et al. [68] propose to decompose a given

query window based on the infrastructure contained in it and then queries the

resulting segmentations not occupied by infrastructure to save cost. Figure 2.4

illustrates a query example. The biggest rectangle is a given range query, the black

blocks denote infrastructure inside this range query and the white rectangles are

the decomposed sub-queries.

Figure 2.4: An Example of the Constrained Range Query

2.3.2 K-nearest Neighbor Query

The k-nearest neighbor (kNN) query retrieves k objects for which no other objects

are nearer to the query object at the query timestamp. The kNN query is a

27

little more complicated than the range query. A number of methods have been

proposed for efficient processing of nearest neighbor queries for stationary points.

The majority of the methods use branch-and-bound strategies and index structures.

Generally speaking, algorithms of nearest neighbor queries can be easily extended

to k-nearest neighbor queries. One outlier example is a method based on Voronoi

cells [74] proposed by Berchtold et al. [9].

The original and most influential search algorithm is proposed by Roussopoulos

et al. [75], which is designed for the R-tree but can also be used for querying moving

objects. It is a depth-first method in a branch-and-bound manner. Specifically,

starting from the root, all entries are sorted according to their minimum distance

(mindist) from the query point, and the entry with the smallest value is visited

first. The process is repeated recursively until the leaf level where the first potential

nearest neighbor is found. During backtracking to the upper levels, the algorithm

uses two metrics: mindist and minmaxdist for ordering and pruning the search tree.

In the example of Figure 2.5, the aim is to find the nearest neighbor of the given

query point, the algorithm first accesses R1 since it has the minimum mindist, and

Query Point

R1

R2

P1

P2

P3

P4
P5

P6

P7

P8

R3

R4

R5

R6

mindist

mindist

Figure 2.5: An Example of Nearest Neighbor Search

28

then R4, where the first candidate object P4 is obtained. When backtracking to

the previous level, R3 is excluded since its mindist is greater than (or equal to)

the distance of P4. Then R2 and R5 are visited, where the actual nearest neighbor

P5 is found. Cheung and Fu [14] prove that, given the mindist-based ordering of

the tree traversal, the pruning obtained by Roussopoulos et al. can be achieved

without use of minmaxdist. Some other branch-and-bound methods modify the

index structures to better support the kNN query [41, 94], e.g. using bounding

circles instead of bounding rectangles.

The most recent work on the kNN queries for moving objects is the work of

Benetis et al. [7]. They use the TPR-tree as the underlying index structure and

propose a branch-and-bound algorithm similar to that in [75], but use a new metric.

This algorithm can return the nearest neighbors for each time point during the

query time interval. And the idea behind the metric is to first visit parts of the

tree that are on average the closest to the query point. Then the rectangle is pruned

if there is no chance that it will contain a point that at some time during the query

interval is closer to the query point than the currently known closest point to query

point at that time.

Besides what we have discussed above, some interesting variants of kNN queries

exist. Song and Roussopoulos [84] introduce a query that is to find k nearest

neighbors in a static database for a moving query point. They propose to use

prefetch and buffer stategies for such kNN queries. Specifically, they make use

of previous result set to bound the current search to a smaller area, or reuse the

previous results if the query point only moves a little. They build two buffers. One

is for current result and the other one for the predicted next query result which

is obtained by prefetching more neighbors of the current query. However, these

strategies may not take effect when the query point moves fast.

29

b

q

a (nearest neighbor)

Figure 2.6: An Example of the Constrained kNN Query

Zhang et al. [101] study the problem of kNN queries under the infrastructure

constraints as introduced in Section 2.3.1. As shown in Figure 2.6, the nearest

neighbor (object b) is not simply the one (object a) with the shortest Euclidean

distance to the query point (object q). Thus, the authors propose to maintain

partial visibility graphs for infrastructures to facilitate the search.

Papadias et al. [66] propose an architecture that can answer general queries

(e.g. range query, kNN query) under the constraints of spatial networks. Two

strategies have been developed. One is called Euclidean restriction. They first

find the object with the shortest Euclidean distance, and then enlarge the search

region with the network distance between this object and the query point. The

other method is called network expansion, which starts the searching from the road

segment covering the query point and then incrementally expands the search region

according to the node connectivity in the network.

Another variant of the kNN query is the group-nearest neighbor query (GNN)

introduced by Papadias et al. [63]. A GNN query retrieves all the objects with the

smallest sum of distances to all query objects. They propose several algorithms

which are mostly based on the idea of using mindist.

30

2.3.3 Density Query

Density queries are aimed at locating regions with a density higher than a given

threshold at the query timestamp.

As will become clear in Chapter 4, any index for moving objects that supports

predictive range queries is able to answer density queries by using our framework

as presented. In this study, we employed our proposed Bx-tree as the underlying

index structure.

Several proposals [62, 64, 65] exist for the computation of spatio-temporal ag-

gregation queries, which are similar to density queries in some sense, since density

queries also need to know the numbers of objects inside certain ranges. However,

a key difference is that the query ranges are given for aggregation queries, while

density queries must locate ranges that satisfy the density threshold.

Existing clustering algorithms [3, 34, 40, 60] can represent the most dense areas

by the centers of the clusters. As good examples, Yiu and Mamoulis [99] cluster

objects at a certain timestamp; and Li et al. [49] cluster moving objects but at the

expense of high maintenance costs. These techniques do not meet the requirements

posed by density queries. They are unable to identify the regions which are not

given by the cluster centers but have densities higher than the specified threshold.

And they are not effective in tracking the continuously changing positions of moving

objects.

The most closely related work is by Hadjieleftheriou et al. [29] who first intro-

duce the concept of the density query. They define the period density query as

to locate arbitrary dense regions in a time interval. They then found that find-

ing all the arbitrary regions that satisfy the density requirements was considerably

difficult, and hence they turned to a simplified density query. Specifically, they par-

titioned data space into disjoint cells, and reported dense cells, instead of arbitrary

31

regions, that satisfy the query conditions. There are at least two disadvantages

of their approach. First, for the applications we envision, finding dense regions

during a time interval appears to be less useful than finding dense regions in a

single timestamp. For example, once a traffic jam occurs in some region (i.e. dense

region), vehicles (i.e. moving objects) around this region may slow down, and

their velocities may change dramatically. Predicting dense regions in the following

timestamps according to the original velocities reported for the moving objects may

be of less value. Second, their schema suffers from what we termed answer loss

problem. Consider an example of a square consisting of four cells, where each cell

contains one object. Given the density threshold 3, there may be a dense region in

the center of the square, but the simplified query algorithm will always report no

dense region. Therefore, one purpose of our study was to present a more pragmatic

definition of the density query.

2.4 Concurrency in Indexes

Nowadays many database applications run in multiuser environments. Incorrect

results may be returned if index structures do not have proper concurrency control.

This section introduces concurrency schemas for the two popular indexes, the B+-

tree and the R-tree. Other index structures based on these two indexes can also

adopt the similar concurrency algorithms.

To provide efficient concurrent traversal and update of the B+-tree, Lehman et

al. [47] propose the B-link tree. The structure of B+-tree is slightly modified where

every node keeps a right link pointing to the right sibling node in the same level.

All nodes in a right-link are ordered by their highest keys. When a search process

goes down in the tree, it will learn of any splits racing with it by comparing the

32

highest keys. If the highest key is lower than the expected key, conclusion can be

made that a split must have taken place. This guarantees that insertion can be

performed without blocking search processes.

For the R-tree, Kornacker et al. [44] propose the R-link tree which employs a

similar modification as that in the B-link tree. The main difference between the R-

tree and the B+-tree is that keys in the R-tree are not ordered. Therefore, a unique

logical sequence number (LSN) is introduced for each node and kept in each entry

of the internal nodes. Comparison of these LSNs is used to discover node splits. A

right link chain is again used to locate newly split nodes.

If a node is split, the new split node is inserted into the right link chain and

it holds the old node’s LSN. The original node is assigned a new LSN which is

higher than the old one. Before the new node is installed, the expected LSN in the

corresponding entry of the parent node is not updated. The split of a node can be

detected by comparing the expected LSN taken from the entry in the parent node

with the actual LSN in this node. If the latter is higher than the former, there is

an uninstalled split. Travelling along the right link chain, therefore, is necessary.

The traversal is terminated when a node with LSN equal to the expected LSN is

encountered. Another difference is that if the bounding rectangle in the leaf node is

changed, we must propagate the change to its ancestor nodes. This process employs

top-down lock-coupling.

The locking strategy of the B-link tree and the R-link tree is deadlock-free

since there is always only one lock in the B-link tree, and the R-link tree employs

lock-coupling only in the top-down process.

33

2.5 Approaches for Location Privacy Protection

Privacy issues in location-aware mobile devices [51] have recently attracted consid-

erable research interest. Some early works on location privacy protection suggest

the use of policies, which serve as a contractual agreement about how user’s loca-

tion information can be used by service providers [30, 82]. Typically, users have to

trust the service providers. However, such a trusted relationship is hard and costly

to establish especially for small or temporary service providers.

Therefore, more recent works focus on the development of anonymization tech-

niques specific to location-based service environments. A common technique is

based on the notion of spatial-temporal cloaking. The idea is firstly introduced by

Gruteser et al. [26]. They propose the application of the k-anonymity technique

to cloak location information in order to support anonymous applications. Specifi-

cally, a user’s location is represented by a region in which other k−1 users are also

present. The disadvantage of this model is that it is not suitable for non-uniform

distribution. This model has later been improved by Gedik et al. [24]. Their

approach supports the assignment of different values for different users to the k

parameter in a system. However, they did not consider query execution. In [11],

Beresford et al. use the k-anonymity metric in pseudonymous applications. The

idea is to rename user’s identity when there are at least k users in the same zone.

When there are less than k users in the same zone, a user may refuse to disclose

his location. Recently, Cheng et al. [13] study the trade-off of location cloaking,

privacy and quality of service. They developed queries that evaluate cloaked data

and provide probabilistic answers. They also presented quality metrics in order to

quantify the effect of cloaking on service quality. Based on the similar idea, Mokbel

et al.[52] propose a framework to protect mobile users in location-based services,

which adopts the cloaking idea and supports various k parameters. Another recent

34

approach hilbASR is proposed by Kalnis et al. [39], who use Hilbert space filling

curve [58] to group users into buckets of k. The idea of hilbASR is later applied to

a distributed mobile system called PRIVE [25]. The PRIVE relieves the risk of the

collapsing of the single centralized agent, by adopting P2P techniques. However,

it could be hard to convince users to use such a system because users need to take

too many responsibilities.

The above k-anonymity model based approaches have at least one of the fol-

lowing drawbacks. First, some approaches cannot guarantee the accuracy of the

query answers. Second, some approaches cannot be applied when there are less

than k users in a specific area. Third, they trust agents and allow agents to store

information about users, which may make agents the target of attacks by malicious

parties. Finally, such a k-anonymity model may not be able to support anonymiza-

tions around sensitive areas such as home addresses in non-anonymous applications.

For example, if a user’s ID is known, the cloaking region around his home address

will tell attackers that the user is probably at his home.

For non-anonymous applications, Gruteser et al. [27] propose to partition each

region, covered by the system, into sensitive and insensitive zones. Based on such

a distinction, they propose disclosure-control algorithms that only release users’

positions when they are in insensitive areas and hide users’ location information

when they enter sensitive areas. However, service quality is not investigated as

part of their work. Service quality however may drastically decrease in such an

approach due to delays and omission of location information.

A different approach has been proposed by Hore et al. [32], based on encryption.

In particular, they suggest encrypting location data and using a privacy-preserving

index for executing range queries over encrypted data. However, this technique

only works for specific query operators and is unable to provide accurate query

35

answers.

Unlike existing approaches to the problem of location privacy protection, our

approach can be applied to anonymous, pseudonymous and non-anonymous appli-

cations, and guarantees 100% correct query answers without information leaking.

2.6 Summary

In this chapter, we first introduced some traditional sptatio-temporal indexes. Then

we examined existing indexing techqniues for moving objects. We have seen that

most of them are developed from the traditional indexes. Next, we discussed two

common types of queries, range queries and kNN queries, as well as some of their

variants. We also explored a newly emerging type of query, the density query. After

that, we introduce two basic concurrency control algorithms for index structures.

Finally, we reviewed some techniques related to privacy protection in the moving-

object environments.

36

CHAPTER 3

The Bx-tree: Query and Update Efficient

B+-tree Based Indexing of Moving

Objects

An infrastructure is emerging that enables data management applications that rely

on the tracking of the locations of moving objects such as vehicles, users of wireless

devices, and goods. Further, a wide range of other applications, beyond those

to do with moving objects, rely on the sampling of continuous, multidimensional

variables. The provisioning of high performance and scalable data management

support for such applications presents new challenges. One key challenge derives

from the need to accommodate frequent updates while simultaneously allowing for

efficient query processing [38, 61]. In this chapter, we address this challenge and

present a new index structure, called the Bx-tree.

The rest of the chapter is organized as follows. Section 3.1 gives a synop-

37

sis of our proposed solution. Section 3.2 describes the structure of the Bx-tree,

and it presents the associated query and update operations. Section 3.3 covers

comprehensive performance experiments. Finally, Section 3.4 concludes.

3.1 Synopsis of Our Proposal

We propose a novel way of indexing moving objects using the classical B+-tree

without compromising on query and storage efficiency. The motivation for using

the B+-tree is threefold. First, the B+-tree is used widely in commercial database

systems and has proven to be very efficient with respect to queries as well as up-

dates, robust with respect to varying workloads, and scalable. Second, being a one-

dimensional index, it does not exhibit the update performance problems associated

with MBR-based multi-dimensional indexes. Third, it is typically appropriate to

model moving-object extents as points. This enables linearization and subsequent

B+-tree indexing.

To use the B+-tree, we must be able to linearize the representation of the

locations of the moving objects. This is done by means of a space-filling curve,

which enumerates every point in the discrete, multi-dimensional space. Attractive

space-filling curves such as the Peano curve (or Z-curve) and the Hilbert curve,

which we use in this study, preserve proximity, meaning that points close in the

multidimensional space tend to be close in the one-dimensional space obtained by

the curve [58].

A B+-tree with the above space-filling curves works very well for static databases.

A naive way to accommodate moving points is to update each object in the database

at each timestamp. To avoid an excessive update overhead, we propose a novel

indexing method, termed the Bx-tree, where “x” indicates the flexibility of the

38

proposed method in employing a specific (“x”) space-filling curve as part of the

linearization function.

First, we model moving objects as linear functions of time. Thus, the data to

be indexed in the Bx-tree are not points (constant functions), but linear functions

coupled with the times they were updated. Intuitively, an update occurs when

the position predicted by an existing function is deemed inaccurate [16]. A recent

study of GPS logs obtained from two dozen cars traveling in a semi-urban environ-

ment measures the number of updates needed to ensure that the values recorded

in the database do not differ by more than some threshold from the real values.

For realistic thresholds, the use of linear functions reduces the amount of updates

to one third in comparison to constant functions [16]. Second, we effectively “par-

tition” the index, placing entries in partitions based on their update time. More

specifically, we first partition the time axis into intervals where the duration of

an interval is an approximation of the maximum duration in-between two updates

of any object location. We then partition each such interval into n equal-length

sub-intervals, termed phases. Each phase is assigned the time point it ends as a

label timestamp, and a label timestamp is mapped to a partition. An update is

placed in the partition given by the label timestamp of the phase during which it

occurs. For an object, the value indexed by the Bx-tree is the concatenation of its

partition number and the result of applying the underlying space-filling method to

the position of the object as of the label timestamp of its phase.

This mapping scheme overcomes the limitation of the B+-tree, which is able

to only keep the snapshot of all the objects at the same time point. This scheme

reduces the update frequency, it preserves spatial proximity within each partition,

and it facilitates queries on anticipated near-future positions.

Based on the above, we propose efficient algorithms for range and k nearest

39

neighbor queries. The algorithms are general and can be applied to indexes that

use sampling techniques to model moving objects. Like any new indexing method

built on top of the B+-tree, the Bx-tree can be grafted into existing database

systems cost effectively.

We report on an extensive experimental study, which includes a comparison with

the TPR*-tree and the Bdual-tree. The results show that the Bx-tree outperforms

the TPR*-tree and the Bdual-tree with respect to storage space, range and k nearest

neighbor queries in both single and concurrent access environments. Throughout

the chapter, we identify the main optimizations over the basic version of the Bx-

tree.

3.2 Structure and Algorithms

We first describe the structure of the Bx-tree. Then we present the algorithms for

range queries and kNN queries in detail. Finally, we cover the insertion, deletion,

and so-called migration.

3.2.1 Index Structure

The base structure of the Bx-tree is that of the B+-tree. Thus, internal nodes serve

as a directory. In order to support B-link concurrency control [85], each internal

node contains a pointer to its right sibling (the pointer is non-null if one exists).

Each leaf-node entry represents a moving object and contains the id, velocity, single-

dimensional mapping value and the latest update time of the object. Different from

the earlier version of the Bx-tree [36], we optimize the fanout of the leaf nodes by

not storing also the locations of moving objects, as these can be derived from

the mapping values. We proceed to describe how object locations are mapped to

40

single-dimensional values.

Specifically, we use a space-filling curve for this purpose. Such a curve is a

continuous path that visits every point in the discrete, multidimensional space

exactly once and never crosses itself.

We consider versions of the Bx-tree that use the Peano curve (or Z-curve) and

the Hilbert curve (see Figure 3.1). Although other curves may be used, these two

are expected to be particularly good. Analytical and empirical studies [20, 58]

show that for the two-dimensional space we consider, these curves are effective in

preserving proximity, meaning that points close in the multidimensional space tend

to be close in the one-dimensional space after the mapping. The Hilbert curve is

expected to be (slightly) better than the Peano curve [20].

Peano curve (Z−curve) Hilbert curve (H−curve)

Figure 3.1: Space-Filling Curves

In what follows, we term the value obtained from the space-filling curve the

x value; and for brevity, we use simply the Peano curve in most discussions.

To reduce the update workload, we model point values as linear functions of

time, rather than simply as static points, i.e., constant functions. An object loca-

tion is thus given by O = (−→x ,−→v), a position and a velocity, and an update time

tu, where these values are valid.

In a leaf-node entry, an object O updated at tu is represented by a value

41

Bxvalue(O, tu):

Bxvalue(O, tu) = [index partition]2 ⊕ [x rep]2 (3.1)

where index partition is an index partition determined by the update time, x rep

is obtained using a space-filling curve, [x]2 denotes the binary value of x, and ⊕

denotes concatenation. We proceed to elaborate this definition.

If we index timestamped object locations without differentiating them based on

their timestamps, we not only lose the proximity preserving property of the space-

filling curve; the index will also be ineffective in locating an object based on its

x value. To overcome such problems, we effectively “partition” the index, placing

entries in partitions based on their update time. More specifically, we denote by

∆tmu the time duration that is the maximum duration in-between two updates

of any object location. We then partition the time axis into intervals of duration

∆tmu, and we sub-partition each such interval into n equal-length sub-intervals,

termed phases.

By mapping update times in the same phase to the same so-called label times-

tamp and by using the label timestamps as prefixes of the representations of the

object locations, we obtain index partitions, and the times of updates determine

the partitions the updates they go to. In particular, an update with timestamp tu

is assigned a label timestamp tlab = ⌈tu + ∆tmu/n⌉l, where operation ⌈x⌉l returns

the nearest future label timestamp of x.

For example, Figure 3.2 shows a Bx-tree with n = 2. Objects with timestamp

tu = 0 obtain label timestamp tlab = 1
2
∆tmu; objects with 0 < tu ≤ 1

2
∆tmu obtain

label timestamp tlab = ∆tmu; and so on.

Next, for an object with label timestamp tlab, we compute its position at tlab

according to its position and velocity at tu. We then apply the space-filling curve

42

mu

x

update insert

update

insert
...

0 timemut 2t

B −tree

Figure 3.2: Bx-Tree with n = 2 Phases

to this (future) position to obtain the second component of Equation 3.1.

This mapping has two main advantages. First, it enables the tree to index

object positions valid at different times, overcoming the limitation of the B+-tree,

which is only able to index a snapshot of all positions at the same time. Second,

it reduces the update frequency: there is no need to update the positions of all

objects each time only some of them are being updated. The two components of

the mapping function in Equation 3.1 are consequently defined as follows:

index partition = (tlab/(∆tmu/n)− 1) mod (n + 1)

x rep = x value(−→x +−→v · (tlab − tu))

With the transformation, the Bx-tree contains data belonging to n + 1 phases,

each given by a label timestamp and corresponding to a time interval. Within each

of these, we apply a space-filling curve to an object position.

The choice of the value of n affects query performance and storage space. A

large n results in smaller enlargements of query windows (detailed query algorithms

will be presented in the following section), but also results in more partitions and

43

therefore a looser relationship among object locations. In addition, a large n incurs

higher space overhead arising from more internal nodes. We will explore the optimal

value of n in experimental studies.

To sum up, we formally define the Bx-tree as follows.

Definition 1 The Bx-tree is a B+-tree with the following properties:

1. Each entry of the leaf node is in the form of 〈Bxvalue, v1, v2, tu〉.

2. Each internal node is in the form of 〈pnt0, Bxvalue0, pnt1, ..., Bxvaluek,

pntk〉 (k ≤ m, m is the node capacity).

To exemplify, let n = 2, ∆tmu = 120, and assume a Peano curve of order 3 (i.e.

the space domain is 8 × 8). Object positions given by O1 = ((7, 2), (−0.1, 0.05)),

O2 = ((0, 6), (0.2,−0.3)), and O3 = ((1, 2), (0.1, 0.1)) are inserted at times 0, 10

and 100, respectively. We calculate the Bxvalue for each as follows:

Step 1: Calculate label timestamps and index partitions.

t1lab = ⌈(0 + 120/2)⌉l = 60, index partition1 = 0 = (00)2

t2lab= ⌈(10 + 120/2)⌉l = 120, index partition2 = 1 = (01)2

t3lab = ⌈(100 + 120/2)⌉l = 180, index partition3 = 2 = (10)2

Step 2: Calculate positions x1, x2, and x3 at t1lab, t2lab, and t3lab, respectively.

x′
1 = (1, 5)

x′
2 = (2, 3)

x′
3 = (4, 1)

Step 3: Calculate Z-values.

[Z value(x′
1)]2 = (010011)2

[Z value(x′
2)]2 = (001101)2

[Z value(x′
3)]2 = (100001)2

44

Step 4: Calculate Bxvalues.

Bxvalue(O1, 0) = (00)2 ⊕ (010011)2 = (00010011)2 = 19

Bxvalue(O2, 10) = (01)2 ⊕ (001101)2 = (01001101)2 = 77

Bxvalue(O3, 100) = (10)2 ⊕ (100001)2 = (10100001)2 = 161

Note that at most n+1 ranges exist at a single point in time. As time passes,

repeatedly the first range expires (shaded area in Figure 3.2), and a new range is

appended (dashed line in Figure 3.2). This use of rolling ranges enables the Bx-tree

to handle time effectively.

3.2.2 Querying

In this section, we outline the search strategies of the range query and the k nearest

neighbor query in the Bx-tree.

Range Query

We consider the time interval range query instead of the more restricted timeslice

range query provided for the basic version of the Bx-tree.

An interval range query retrieves all objects whose locations fall inside the

rectangular range q = ([qxl
1, qx

u
1], [qx

l
2, qx

u
2]) within a time interval [ts, te] where ts

is not prior to the current time (“l” denotes lower bound, and “u” denotes upper

bound). The timeslice range query is the special case of the interval range query

where ts is equal to te.

A key challenge is to support predictive queries, i.e. queries that concern future

times. Traditionally, indexes that use linear functions handle predictive queries by

means of bounding rectangle (BR) enlargements (e.g. the TPR-tree family); to the

best of our knowledge, no algorithm for predictive queries has been proposed for

indexes that use snapshots of moving objects (e.g. the Lazy Update R-tree).

45

We present a generic approach to processing such queries that is not constrained

by the base structure. Figure 3.7 outlines the range query algorithm, which we

proceed to explain. To support queries on the anticipated, near future positions of

objects, the Bx-tree uses query window enlargements instead of BR enlargements.

This is done through the TimeParameterizedRegion function call in the algorithm

(see Figure 3.8). Because the Bx-tree stores an object’s location as of some time

after its update time, the enlargement involves two cases: a location must either

be brought back to an earlier time or forward to a later time.

We first consider the enlargement in the timeslice range query, and then gener-

alize it to the time interval range query. Consider the example in Figure 3.3, where

tref denotes the time when the locations of four moving objects are updated to their

current values, and where predictive queries q1 and q2 (solid rectangles) have time

parameters tq1
and tq2

, respectively. The figure shows the stored positions as solid

dots, and the positions of the two first objects at tq1
and the positions of the two

last at tq2
as circles. The two positions for each object are connected by an arrow.

timeqt
ref

t tq
2

p’
42

3
p’

1

p

v l
1

v
1

v
2
l

2
l

u

2
u

2
p

v

4

3

q

q’

uv
2

v
1
l

1
v

q’

q

v1

1

1

2

2

p’

p’

p

p

u

current
1

Figure 3.3: Query Window Enlargement

The relationship between the two positions for each object is p′i = pi + −→v ·

(tq − tref). The first two of the four objects are thus in the result of the first

query, and the last two objects are in the result of the second query. To obtain

46

this result, query rectangles need to be enlarged to the dashed rectangles as shown

in Figure 3.3. We first compute the minimum and maximum velocities of objects

inside the query rectangle in each dimension, denoted as
−→
vl

1 ,
−→
vl

2 ,
−→
vu

1 , and
−→
vu

2 . For

q1, the upper bound of the query rectangle is attached with the maximum velocity

and the lower bound is attached with the minimum velocity. In contrast, the upper

bound of the query rectangle of q2 is attached with the minimum velocity, and the

lower bound is attached with the maximum velocity.

In summary, the enlarged query window q′ = ([eqxl
1, eqx

u
1], [eqx

l
2, eqx

u
2]) is given

as follows:

eqxl
i =











qxl
i +
−→
vl

i · (tref − tq) if tq < tref

qxl
i + (−−→vu

i) · (tq − tref) otherwise
(3.2)

eqxu
i =











qxu
i +
−→
vu

i · (tref − tq) if tq < tref

qxu
i + (−

−→
vl

i) · (tq − tref) otherwise
(3.3)

The computation of the enlarged query window q′ proceeds in two steps. In

the first step, we use the maximum speeds across all objects for obtaining a pre-

liminary q′. In the second step, we try to reduce the query window, by using a

two-dimensional speed histogram (e.g. a grid). In particular, for each partition in

the Bx-tree, we create a speed histogram that for each cell captures the maximum

and minimum projections of velocities onto the axes of the objects in the cell. We

intersect the preliminary q′ with the histogram, thus obtaining a set of cells which

cover the q′. We then use the maximum speeds across these cells to enlarge the

original q and obtain a new q′ which may be smaller than before. This step can be

repeated until q′ no longer shrinks. The histogram of speeds can easily be main-

tained in main memory. Each time an object is updated, we adjust the speeds in

the cell that this object belongs to. As time passes, repeatedly the oldest histogram

expires with the associated partition, and a new histogram will be constructed.

47

For the interval range query, the situation of the enlargement becomes a little

more complicated. The naive approach of computing the enlarged query window

at each timestamp during the query interval is obviously inefficient. Because the

enlarged query windows at different timestamps share the same center (the original

query window), they usually overlap with one another, which leads to duplicated

search in the overlapped region. Therefore, a better solution is to only retrieve

objects in the largest query window after the enlargement, and then distinguish

them by the individual timestamps.

timelab

ii

i

iii

query interval

t

Figure 3.4: Possible Positions of a Query Interval w.r.t. a Label Timestamp

To identify the largest enlarged query window, we need to examine the possible

positions of the query interval with respect to the label timestamp. Figure 3.4

illustrates how three cases may be discerned: (i) the query interval ends before the

label timestamp tlab; (ii) the query interval intersects tlab; and (iii) the query in-

terval starts after tlab. The different types of intersections are handled by different

strategies for the query window enlargement. For the first case, we use the start

time of the query interval to perform a backward enlargement. Similarly, for the

third case, we use the end time of the query interval to perform a forward enlarge-

ment. In the second case, the query interval is partitioned into two parts by the

label timestamp. Both forward and backward enlargements of the query window

are performed. Then we compare the sizes of the enlarged query windows and keep

the larger one.

Next, we discuss the time argument of the query. In the optimized version of the

48

query interval

2 T30T T1

t mu∆

0T

T1

T2

time0

time length
enlargement

mut ∆2

T

Figure 3.5: Time Length Enlargement

Bx-tree, we remove the constraint that the maximum enlargement is not allowed to

exceed ∆tmu. Therefore, all the sub-trees are involved in a query. Considering the

example in Figure 3.5, suppose queries are issued between 1
2
∆tmu and ∆tmu with

the maximum predictive query interval equal to ∆tmu, and that T0, T1, and T2 are

the partitions corresponding to the label timestamps 1
2
∆tmu, ∆tmu, and 3

2
∆tmu,

respectively. A query may have different time arguments of the query enlargement

for the different partitions (or subtrees) it is applied to. The query on partition

T0 may be extended to time 2∆tmu at most; the query on T1 may be extended

backward to time 1
2
∆tmu and forward to time 2∆tmu; the query on T2 may be

extended backward to time 1
2
∆tmu and forward to time 2∆tmu.

Having obtained the enlarged query window for each partition in the Bx-tree,

we employ the algorithms for the range query in the B+-tree with space-filling

curves. The use of a space-filling curve means that a range query in the native,

two-dimensional space becomes a set of range queries in the transformed, one-

dimensional space—see Figure 3.6. Hence, multiple range queries are to be pro-

cessed. We optimize the processing by calculating the start and end points of the

one-dimensional ranges and traverse the intervals by “jumping” in the index (as

in [71]).

49

Index pagesI
2

I
1 I

3

I
4

Data pages... ...

I
1

I
m

jump

Figure 3.6: “Jump” in the Index

Let us step through the entire algorithm in detail. The pseudo code of the

algorithm is shown in Figure 3.7.

For each partition of the Bx-tree, we first enlarge the query window q to q′ by

means of function TimeParameterizedRegion (see Figure 3.8), where the three cases

of enlargement discussed earlier are tested.

Having obtained an enlarged query window, we traverse the index. Suppose

the intervals of the transformed range query are given by the sequence of x values

i1, i2, . . . , i2m−1, i2m in ascending order. The pair of values (i2j−1, i2j) start and end

interval Ij (1 ≤ j ≤ m), and the number of intervals is m.

We first calculate the start and end points of this sequence of intervals (denoted

as q′s and q′e). We have that q′s equals i1 and that q′e equals i2m. Then we start the

search from the leftmost interval I1. The leaf node containing the start point of I1

is located, and all entries in this leaf node that are after the start point are checked.

If the last entry is smaller than the end point, we continue traversing right siblings

by the right link (lines 8–11). Otherwise, we compute the next leftmost interval

Ij by function LeftmostInterval (line 6), where j can exceed 2 because intervals

contained in the leaf nodes that have already been accessed will be skipped. In this

way, we improve the query performance compared with the basic Bx-tree version

50

Algorithm Range query (q, ts, te)

Input: q is the query range and [ts, te] is the query time interval

1. for i← 0 to n

2. q′ ← TimeParameterizedRegion(q, ts, te, i)

3. calculate start and end points q′s, q′e for q′

4. low ← 0

5. repeat

6. [start, end]← LeftmostInterval([q′s, q
′
e], [low ,∞))

7. locate leaf node containing start

8. repeat

9. store objects with x rep ≥ start in L

10. follow the right pointer to the sibling node

11. until entry.x rep ≤ end, for the node’s last entry

12. low ← entry.x rep + 1

13. until LeftmostInterval([q′s, q
′
e], [low ,∞)) = ∅

14. for each object in L do

15. if the object’s position during [ts, te] is inside q then

16. add the object to the result set

17. return result set

end Range query.

Figure 3.7: Range Query Algorithm

which needs to check all the intervals and may lead to some redundant accesses.

To find the start point of Ij, we backtrack to a higher level where one “jumping”

occurs; there we proceed to retrieve the objects with positions in interval Ij. This

takes place in line 7 of the algorithm, where traversal from the root is avoided

when possible. When all the intervals have been checked in this manner, we have

obtained the set of all objects that may possibly belong to the result of range

query q. For each object, we check its positions during [ts, te] and return only those

objects whose positions are actually in the query window q (lines 14–17).

51

Algorithm TimeParameterizedRegion (q, ts, te, i)

Input: q is the query range, [ts, te] is the query time interval,

and i is the partition number

1. tilab ← the label timestamp of partition i

2. if te ≤ tilab then

3. enlarge q backward to ts, and store the result in q′

4. else

5. if ts ≥ tilab then

6. enlarge q forward to te, and store the result in q′

7. else

8. enlarge q backward to ts, and store the results in q1

9. enlarge q forward to te, and store the results in q2

10. q′ ← Max(q1, q2)

11. return q’

end TimeParameterizedRegion.

Figure 3.8: Function TimeParameterizedRegion()

Claim 1 For any range query, our range query algorithm can find correct answers

(i.e. all the qualified objects).

Proof 1 Our range query algorithm consists of two main steps: (i) enlarge original

query range; (ii) retrieve objects in the enlarged query range. The second step is

supported by an existing algorithm for the B+-tree with the space-filling curve, and

hence its correctness has already been proved. Here, we only need to prove that

the enlarged query range contains all qualified objects. We first look at a timeslice

range query and then extend our discussion to the interval range query.

Given a timeslice query q = ([qxl
1, qx

u
1], [qx

l
2, qx

u
2]) with query time ts. Suppose

for a partition labelled with tref , there is a qualified object O(x1,x2,v1,v2) outside the

enlarged query range q′ = ([eqxl
1, eqx

u
1], [eqxl

2, eqx
u
2]). Without loss of generality,

52

we assume that ts is after tref and the object O is on the left of the enlarged query

range.

From the condition that the object O is outside the range of q′, we have the

following inequality:

x1 < eqxl
1 = qxl

1 − vu
1 (ts − tref)

Since O is a qualified object, its position at ts should inside the range of query

q, which results in the following inequality.

qxl
1 − x1 ≤ v1(ts − tref)

Consider the above two inequalities together, we have vu
1 < v1, which contradicts

the condition that vu
1 < v1 (vu

1 is the maximum velocity of this dimension). There-

fore, the hypothesis is invalid. As a consequence, the algorithm of the timeslice

query is correct.

An interval query can be seen as a set of timeslice queries. For each timeslice

query, there is a corresponding enlarged query range. Our algorithm selects the

maximum enlarged query range which covers the enlarged ranges for all timesslice

queries, and hence we can find the correct answers. 2

k Nearest Neighbor Query

Assuming a set of N > k objects and given a query object with position q =

(qx1, qx2), the k nearest neighbor query (kNN query) retrieves k objects for which

no other objects are nearer to the query object at time tq not prior to the current

time.

We compute this query by iteratively performing range queries with an incre-

mentally enlarged search region until k answers are obtained. The algorithm is

53

outlined in Figure 3.9. We first construct a range Rq1 centered at q and with ex-

tension rq = Dk/k, where Dk is the estimated distance between the query object

and its k’th nearest neighbor; Dk can be estimated by the equation [91]:

Dk =
2√
π

[

1−

√

1−
(

k

N

)
1

2
]

We compute the range query with range Rq1 at time tq, by enlarging it to a

range R′
q1 and proceeding as described in the previous section. If at least k objects

Algorithm kNN query(q(qx1, qx2), k, tq)

Input: a query point q(qx1, qx2), a number k of neighbors,

and a query time tq

1. construct range Rq1 with q as center and extension rq

2. R′
q1 ← TimeParameterizedRegion(Rq1, tq)

3. flag← true // not enough objects

4. i← 1 // first query region is being searched

5. while flag

6. if i = 1 then

7. find all objects in region R′
q1

8. else

9. find all objects in region R′
qi −R′

qi−1

10. if k objects exist in inscribed circle of Rqi then

11. flag← false

12. else

13. i← i + 1

14. Rqi ← Enlarge(Rqi−1, rq)

15. R′
qi ← TimeParameterizedRegion(Rqi, tq)

16. return k NNs with respect to q

end kNN query.

Figure 3.9: kNN Query Algorithm

54

are currently covered by R′
q1 and are enclosed in the inscribed circle of Rq1 at time

tq, the kNN algorithm returns the k nearest objects and then stops. It is safe to

stop because we have considered all the objects that can possibly be in the result.

Otherwise, we extend Rq1 by rq to obtain Rq2 and an enlarged window R′
q2.

This time, we search the region R′
q2−R′

q1 and adjust the neighbor list accordingly.

This process is repeated until we obtain an Rqi so that there are k objects within

its inscribed circle.

In some B+-tree implementations, leaf nodes are not only chained left to right,

but also right to left. The kNN search algorithm can exploit right to left sibling

pointers to avoid always having to traverse the tree from the root when an interval

is extended for a next iterative range search. This reduces the search cost but

increases the update cost.

3.2.3 Insertion, Deletion, and Migration

The insertion algorithm is straightforward. Given a new object, we calculate its

index key according to Equation 3.1 and then insert it into the Bx-tree as in the B+-

tree. To delete an object, we use the most recently provided positional information

for the object. In particular, using the positional information provided when a new

position for the object was most recently inserted and the time of that insertion, we

calculate the object’s index key and employ the same deletion algorithm as in the

B+-tree. Updates are simply combinations of deletions and insertions. It can be

observed that these Bx-tree operations inherit the good properties of the B+-tree,

and we expect very good update performance.

Next, it should be noted that the Bx-tree does differ from the B+-tree in how

updates are applied. The Bx-tree clusters updates during a certain time period

to one time point and maintains several sub-trees corresponding to different time

55

intervals. For example (see Figure 3.10), objects updated between t0 and t1 are

stored in partition T0; objects updated between t1 and t2 are stored in T1; etc. T0,

T1, and T2 co-exist before t3. From t3 to t4, T1, T2, and T3 co-exist, and T0 has

expired. The total size of three sub-trees is equal to that of one tree indexing all

the objects.

In some applications, there may be some object positions that are updated

relatively rarely. For example, it may be that most objects are updated at least

every 10 minutes, while a few objects are updated only once a day. Instead of

letting outliers force a large maximum update interval, we use a “maximum” update

interval within which a high percentage of the objects have been updated.

Object positions that are not updated within this interval are “migrated” to a

new partition using their positions at the label timestamp of the new partition. In

the example shown in Figure 3.10, suppose that some object positions in T0 are

not updated at the time when T0 expires. At this time, we move these objects to

T3. Although this introduces additional update costs, the (controllable) amortized

cost is expected to be very small since outliers are rare.

The forced movement of an object’s position to a new partition causes no prob-

lems in locating the object, since the new partition can be calculated based on the

original update time. Likewise, query efficiency is not affected.

For example, consider an object, the position of which has been migrated from

T

B −tree
x

B −tree
x

B −tree
x

time
t 0 t 1 t 2 t 3 4 t 5

3 4210

t

T T T T

Figure 3.10: Bx-Tree Evolution

56

T0 to T3. If the object issues an update during the time when partitions T1, T2,

and T3 exist, we note that partition T0 to which the old position belongs no longer

exists. This implies that the object’s position has been migrated. Then we replay

the migration procedure to determine that the position is now in T3.

Finally, we would like to mention that the correctness of the update algorithm

is guaranteed since the Bx-tree has the same structure as the B+-tree. The only

difference is the key value computation which does not determine the correctness.

3.3 Performance Studies

In this section, we cover extensive experimental studies conducted on the Bx-

tree.First, we introduce the experimental settings. Then we study the properties

of the Bx-tree. Finally, we report on a comparison with the TPR*-tree and the

Bdual-tree.

3.3.1 Experimental Settings

Two versions of the Bx-tree are implemented: Bx (Z-curve) and Bx (H-curve),

denoting the Bx-tree using the Peano and the Hilbert curve, respectively. As a

reference, we compare the Bx-trees against the TPR*-tree (the source code is ob-

tained from the author’s website) and the Bdual-tree (representing structures based

on dual transformations). All the experiments are conducted on a 2.6G PentiumIV

Personal Computer with 1 Gbyte of memory. The disk page size is 4K, which re-

sults in node capacities of 200, 256 and 332 of the TPR*-tree, the Bdual-tree and

the Bx-tree, respectively. The default LRU buffer size is 50 pages, which is enough

to hold all the internal nodes of the Bx-tree.

The workloads that we subject the indexes to use synthetic datasets of moving

57

objects with positions in a space domain of 1000 × 1000 distance units. In most

experiments, we use uniform data, where object positions are chosen randomly,

where the objects move in a randomly chosen direction, and where a speed ranging

from 0 to 3 is chosen at random. A similar number of objects are updated at each

time unit during a simulation, and all objects are updated at least once within the

maximum update interval. One may think of the unit of space being kilometer and

the unit of speed being kilometer per minute.

Other datasets were generated using an existing data generator, where objects

move in a network of two-way routes that connect a given number of uniformly

distributed destinations [76]. Objects start at random positions on routes and are

assigned at random to one of three groups of objects with maximum speeds of 0.75,

1.5, and 3. Whenever an object reaches one of the destinations, it chooses the next

target destination at random. Objects accelerate as they leave a destination, and

they decelerate as they approach a destination.

For each dataset, we construct the indexes at time 0 and measure the average

query cost after the simulation has run for 120 time units (i.e. a maximum update

interval), which is used as a standard workload in all experiments. Each query

has three parameters: (i) query size, (ii) query interval, and (iii) predictive length.

Unless noted otherwise, we test 200 square timeslice range queries with side length

50 and with predictive length uniformly distributed in the range [0, 120].

The parameters used are summarized in Table 3.1, where values in bold denote

the default values used.

3.3.2 Filter Rate

Before the comparison with the other indexes, we examine properties of the Bx-

tree itself, starting with the filter rate. In this study, we consider the filter and

58

Parameter Setting

Page size 4K
Buffer size 50 pages, ..., 250 pages
Number of phases 1, 2, 3, 4, 5, 6
Maximum update interval 60, 120, 180, 240
Maximum predictive length 120
Query interval length 0, 10, ..., 100
Query window size 10, . . . , 50, . . . , 100
Number of neighbors, k 1, 10, 20, 30, 40, 50
Number of queries 100
Dataset size 100K, . . . , 1M
Dataset Uniform, Network-based
Space-filling curve Z, H

Table 3.1: Parameters and Their Settings

refinement steps separately in the Bx-tree, and we compute the filter rate in terms

of both objects accessed and nodes accessed.

The object filter rate for a query is computed as Nacto/Nreto, where Nacto is

the number of objects in the (final) query result, and Nreto is the total number of

objects accessed during the query processing. The ideal filter rate is 1, meaning

that no objects are accessed that are not in the final result.

Similarly, the node filter rate of a query is computed as Nactn/Nretn , where Nactn

is the number of nodes accessed containing objects contributing to the (final) result,

and Nretn is the total number of nodes accessed during the query processing. The

experiments that follow report the two types of filter rates with respect to various

parameters.

Effect of Time

In this experiment, we compute the two types of filter rate after every 30 time units

in a 100K dataset, and the indexes run for 360 time units. Since the first 120 time

units are used to populate the trees with objects inserted at different times, we

59

only consider their performance from time 120.

Figures 3.11 (a) and (b) show the object filter rate and the node filter rate for

the two Bx-trees, respectively. We can see that the Bx-tree (H-curve) exhibits a

0%

1%

2%

3%

4%

5%

6%

120
 150
 180
 210
 240
 270
 300
 330
 360

Time Unit

O
b

je
c
ts

 F
ilt

e
r

R
a

te

Bx-tree (Z-curve)

Bx-tree (H-curve)

(a) Object Filter Rate

40%

45%

50%

55%

60%

120
 150
 180
 210
 240
 270
 300
 330
 360

Time Unit

N
o

d
e

s
 F

ilt
e

r
R

a
te

Bx-tree (Z-curve)

Bx-tree (H-curve)

(b) Node Filter Rate

Figure 3.11: Filter Rates for Varying Query Time

better filter rate than does the Bx-tree (Z-curve). This is because the numbers

of objects in the results are the same for these two, while the numbers of objects

retrieved by the Bx-tree (H-curve) are smaller than those for the Bx-tree (Z-curve).

This is so because the Bx-tree (H-curve) accesses fewer nodes than does the Bx-tree

(Z-curve) during query processing. Later experiments will demonstrate this.

Moreover, the object filter rates are much smaller than the node filter rates.

This is because each time a node is retrieved, all objects in the node are checked.

In the Bx-tree, the node capacity is large, which means one node can contain many

objects. Therefore, when the objects in the query answer set spread across several

nodes, a large number of objects are retrieved.

60

Effect of Query Window Size

In this section, we vary the query window size and examine the resulting filter rates.

The results are shown in Figure 3.12. When the query window size increases, both

types of filter rates increase. The increase in the filter rates is mainly due to the

increase in the query selectivity, i.e. the increase in the numbers of objects in the

results.

0%

1%

2%

3%

4%

5%

6%

7%

8%

10
 20
 30
 40
 50
 60
 70
 80
 90
 100

Query Window Size

O
b

je
c
ts

 F
ilt

e
r

R
a

te

Bx-tree (Z-curve)

Bx-tree (H-curve)

(a) Object Filter Rate

0%

10%

20%

30%

40%

50%

60%

70%

10
 20
 30
 40
 50
 60
 70
 80
 90
 100

Query Window Size

N
o

d
e

s
 F

ilt
e

r
R

a
te

Bx-tree (Z-curve)

Bx-tree (H-curve)

(b) Node Filter Rate

Figure 3.12: Filter Rates for Varying Query Window Size

3.3.3 Number of Sub-intervals,n

The choice of the number of phases n in a Bx-tree affects the query performance. A

large n results in smaller enlargements of query windows, but also more partitions

and therefore a looser relationship among object locations. This experiment is

aimed at estimating the best value of n for the experimental setting considered.

Figure 3.13 shows the range query cost for the two Bx-trees at different times-

tamps with n ranging from 1 to 6. From the figure, we may observe the following:

First, the Bx-tree (Z-curve) and the Bx-tree (H-curve) exhibit similar trends in

61

0

10

20

30

40

50

60

70

80

120
 150
 180
 210
 240

Time Unit

R
a

n
g

e
 Q

u
e

ry
 I

/O
s

n=1
 n=2
 n=3

n=4
 n=5
 n=6

(a) Z-curve

0

10

20

30

40

50

60

70

120
 150
 180
 210
 240

Time Unit

R
a

n
g

e
 Q

u
e

ry
 I

/O
s

n=1
 n=2
 n=3

n=4
 n=5
 n=6

(b) H-curve

Figure 3.13: Range Query Performance for Varying n and Query Time

performance for the various values of n. Second, the performance curves of both

Bx-trees oscillate as time passes. The bigger the value of n, the smaller the oscilla-

tion. Third, there are two types of patterns of performance curves corresponding

to even and odd values of n. Finally, we observe that both Bx-trees with n equal to

3 perform best at most times (only at some points, the performance is worse than

for n equal to 1 and 2).

To further explore the performance of the Bx-tree with various n, Figure 3.14

plots the average range query cost during the time period [120, 240]. We can see

clearly that the Bx-trees achieve best performance when n = 3. Therefore, n = 3

is used as the default setting in the following experiments. Note that n is set to 2

in the basic version of the Bx-tree which may not be the optimal choice.

The behavior of the Bx-trees is influenced by two factors: the number of objects

in each partition and the time length of the query window enlargement, both of

which change with time. For example, when n = 1, there are at most two par-

titions in one Bx-tree. At time 0, the Bx-tree has only one partition. As time

passes, objects in the first partition are updated gradually and inserted into the

62

35

40

45

50

55

60

65

70

1
 2
 3
 4
 5
 6

Number of Sub-intervals,
 n

R
an

ge
 Q

ue
ry

 I/
O

s

Bx-tree (Z-curve)

Bx-tree (H-curve)

Figure 3.14: Average Range Query Performance for Varying n

second partition. Meanwhile, the average time length of the enlargement in the

first partition increases, and in the second partition, this value decreases first and

then increases. Viewed separately, if the time length of the enlargement is fixed,

the fewer the objects there are in the partition, the lower the query cost will be; if

the number of objects is fixed, the shorter the time length of the enlargement is, the

better the query performance will be. The resultant performance of the Bx-trees

can be seen as the combination of the two effects. Moreover, the performance of the

Bx-tree stabilizes with the increase of n since there are less differences in numbers

of objects and time lengths due to more partitions.

3.3.4 Range Query

We now compare the range query performance of the TPR*-tree and the Bdual-tree

against that of the two Bx-trees. We experiment with a wide range of workloads

with different combinations of parameter settings. We evaluate the effect of varying

the buffer size, query time, query window size, query interval length, object speed,

data distribution and dataset size.

63

Effect of Buffer Sizes

We employ an LRU buffer and study the effects of different buffer sizes, by varying

the number of buffer pages (see Figure 3.15). As is generally the case for indexes,

TPR*-tree

B
dual
-tree

B
x
-tree(Z-crve)

B
x
-tree(H-curve)

0

10

20

30

40

50

60

70

80

90

100

50
 75
 100
 125
 150
 175
 200
 225
 250

Number of Buffer Pages

R
an

ge
 Q

ue
ry

 I/
O

s

Figure 3.15: Effect of Varying Buffer Size

all indexes experience reduced I/Os as the buffer size increases. Since the Bx-tree

incurs fewer page reads originally, the effect of an increasing buffer size on the index

is consequently more pronounced. Specifically, the Bx-trees save about 60% I/Os

by using 250 buffer pages compared with that using 50 buffer pages, whereas the

TPR*-tree saves 40% and the Bdual-tree saves 50%.

Effect of Query Time

To study the search performance of the indexes evolving with the passage of time,

we compute the query cost using the same 100 timestamp range queries with a

query window size of 50, after every 30 time units on a 100K dataset. The workload

duration is 360 time units (three maximum update intervals).

Figure 3.16 summarizes the results. As shown, the Bx-trees always perform best

among all the indexes, and the TPR*-tree and the Bdual-tree have the similar query

cost. This is because the TPR*-tree experiences continuous enlargements of the

64

MBRs which are not updated as time passes, no matter how carefully it chooses the

position to insert an object. The Bdual-tree employs similar search algorithms as the

TPR*-tree and hence also suffers from the MBRs overlapping problem. Moreover,

the Bdual-tree even performs a little worse than the TPR*-tree since each node in

the Bdual-tree is associated with multiple MBRs which may increase the chance of

overlapping.

TPR*-tree

B
dual
-tree

B
x
-tree(Z-crve)

B
x
-tree(H-curve)

0

20

40

60

80

100

120

140

160

180

120
 150
 180
 210
 240
 270
 300
 330
 360

Time Unit

R
an

ge
 Q

ue
ry

 I/
O

s

Figure 3.16: Effect of Varying Query Time

We also note that the query cost of all indexes is almost not affected by the

query time. The periodical behavior of the Bdual-tree and the Bx-trees is caused by

the use of index partition (i.e. multiple subtrees).

In addition, the Bx-tree (H-curve) achieves better performance than the Bx-tree

(Z-curve) because the Hilbert curve generates a better distance-preserving mapping

than does the Peano curve, and hence yields fewer search intervals on the Bx-tree,

i.e., fewer disk accesses. This result also suggests that Bx-trees with better mapping

techniques may achieve better performance.

65

Effect of Query Window Sizes

We next investigate the effect of varying query window sizes by varying the square

window length from 10 to 100 for a dataset of size 100K. As expected, the results

in Figure 3.17 show that the query costs increase with an increasing query window

size. Larger windows contain more objects and therefore lead to more node accesses.

TPR*-tree

B
dual
-tree

B
x
-tree(Z-crve)

B
x
-tree(H-curve)

0

20

40

60

80

100

120

140

10
 20
 30
 40
 50
 60
 70
 80
 90
 100

Query Window Size

R
an

ge
 Q

ue
ry

 I/
O

s

Figure 3.17: Effect of Query Window Size

However, the effect is slightly more obvious on the TPR*-tree. This is so because

the TPR*-tree benefits relatively more from small query windows than do the other

two types of trees. This ability of the TPR*-tree leads to performance degeneration

when the query window becomes large. Specifically, when the window size reaches

100, the TPR*-tree cost is twice those of the Bx-trees.

Effect of Query Interval Lengths

In addition to considering the effect of varying query window size, we also study

the effect of query interval length, varying it from 0 to 60 time units. The results

are shown in Figure 3.18. It is not surprising that the query cost of all the indexes

increases with the query interval length, as more moving objects may intersect the

query window during a longer query time interval. Here, all the indexes degrade at

66

TPR*-tree

B
dual
-tree

B
x
-tree(Z-crve)

B
x
-tree(H-curve)

0

20

40

60

80

100

120

140

0
 10
 20
 30
 40
 50
 60

Query Interval

R
an

ge
 Q

ue
ry

 I/
O

s

Figure 3.18: Effect of Varying Query Interval Length

similar rates. This is because both the Bdual-tree and the TPR*-tree are optimized

for query intervals within the horizon parameter (i.e., how far into the future the

insertion algorithm of the index assumes that queries “see” the bounding rectangles

created; here, this parameter is 240 time units), and the increased query cost of all

the indexes is mainly due to the increased number of the answers.

Effect of Object Speeds

Another factor that may affect the performance of the Bx-tree is object speed, which

co-determines the enlarged query window sizes, together with the time length of

the enlargements. Hence, in this experiment, we study the effect of the speeds of

the moving objects on the TPR*-tree, the Bdual-tree and the Bx-trees, by varying

the maximum speed from 1 to 3, choosing object speeds at random from 0 to the

maximum speed.

As shown in Figure 3.19, all the indexes yield better performance when the

speeds of the moving objects decrease. This is because the MBRs in the TPR*-tree

and the Bdual-tree obtain smaller expanding speeds and because the enlargements

made to query windows for the Bx-trees also become smaller.

67

TPR*-tree

B
dual
-tree

B
x
-tree(Z-crve)

B
x
-tree(H-curve)

0

20

40

60

80

100

120

1
 1.5
 2
 2.5
 3

Maximum Speed

R
an

ge
 Q

ue
ry

 I/
O

s

Figure 3.19: Effect of Maximum Speed on Range Query Performance

Effect of Data Distributions

This experiment uses the road network dataset to study the effect of data distri-

butions on the indexes. The dataset contains 100K data points. Figure 3.20 shows

the range query cost when the number of destinations in the simulated network

of routes is varied. The term “uniform” in the figure indicates the case where the

objects can choose their moving directions freely.

Observe that the query cost in the TPR*-tree increases with the number of

destinations, and the cost is sometimes larger than that of the uniform dataset. The

TPR*-tree

B
dual
-tree

B
x
-tree(Z-crve)

B
x
-tree(H-curve)

0

20

40

60

80

100

120

140

50
 100
 200
 300
 Uniform

Number of Destinations

R
an

ge
 Q

ue
ry

 I/
O

s

Figure 3.20: Effect of Data Distribution on Range Query Performance

68

possible reasons of the behavior are as follows. When there are only a few number

of destinations, objects moving in the same directions may be well clustered by the

TPR*-tree. However, when the number of destinations is big, objects assigned to

each road decreases, and hence the TPR*-tree may put objects on different roads in

one MBR which results in either more dead space or heavier overlaps. In contrast,

the performance of the Bx-trees is not much affected by the data skew because

objects are stored using space-filling curves, meaning that the density has less of

an effect on the index. For the Bdual-tree, though it stores the objects by space-

filling curves, its query still uses the MBRs, and therefore its performance pattern

is in-between the TPR*-tree and the Bx-tree.

Effect of Data Sizes

At the end of the experiments on the range query, we study the scalability of the

TPR*-tree, the Bdual-tree and the Bx-trees. We vary the number of moving objects

from 100K to 1M. Figure 3.21 shows the average number of I/O operations for each

index. We can observe that all the indexes scale well. When the dataset size is

10 times bigger, the query cost only increases about 6 times. This behavior may

TPR*-tree

B
dual
-tree

B
x
-tree(Z-crve)

B
x
-tree(H-curve)

0

50

100

150

200

250

300

350

400

450

100K
 200K
 300K
 400K
 500K
 600K
 700K
 800K
 900K
 1M

Number of Moving Objects

R
an

ge
 Q

ue
ry

 I/
O

s

Figure 3.21: Effect of Data Sizes on Range Query Performance

69

be explained as follows: The TPR*-tree carefully chooses the path to insert an

object which leads to less overlap during a certain time interval. In the Bdual-tree

and the Bx-trees, every object has a linear order which is determined by the space

domain (or also velocity domain) and is relatively independent of the number of

moving objects. As the dataset grows, the range query cost of the Bdual-tree and

the Bx-trees increases mainly due to the increase in the number of objects inside

the range.

3.3.5 kNN Query

We proceed to evaluate the efficiency of kNN queries using the same settings as for

range queries. The performance difference between the TPR*-tree and the Bx-tree

of the kNN queries exhibits a behavior similar to that of range queries. The Bx-

tree’s kNN search algorithm is essentially an incremental range query algorithm;

hence the results exhibit similar patterns as the results for range queries. Here, we

present a representative result which is the effect on performance of the number of

k of required nearest neighbors. As shown in Figure 3.22, with the increase of k,

the search cost increases slightly for both indexes. Due to the data size and side

TPR*-tree

B
dual
-tree

B
x
-tree(Z-crve)

B
x
-tree(H-curve)

0

10

20

30

40

50

60

70

80

1
 10
 20
 30
 40
 50

k

K
N

N
 Q

ue
ry

 I/
O

s

Figure 3.22: Effect of k on kNN Query Performance

70

effect of the query and MBR enlargement, the effect of k is not very significant.

3.3.6 Update

We now compare the average update cost of the Bx-trees against that of the TPR*-

tree and the Bdual-tree. Note that for each update, one deletion and one insertion

are issued, which leaves the size of the tree unchanged.

Effect of Time

First, we investigate performance degradation across time. We measure the perfor-

mance of all the indexes after every 30 time units. Figure 3.23 shows the update

cost as a function of the time. We can see that the Bdual-tree and both variants

TPR*-tree

B
dual
-tree

B
x
-tree(Z-crve)

B
x
-tree(H-curve)

0

1

2

3

4

5

6

7

8

120
 150
 180
 210
 240
 270
 300
 330
 360

Time Unit

U
pd

at
e

II/
O

s

Figure 3.23: Effect of Varying Update Time on the Update Cost

of the Bx-tree achieve significant improvement over the TPR*-tree. In most cases,

one update in the Bdual-tree or Bx-trees only incurs two I/O operations since they

are all B+-tree based indexes. However, the update cost in the TPR*-tree keeps

increasing with time for the time duration considered in the experiment. This is

because in the Bx-trees, given the key, an insertion, and a deletion need to travel

down one path only. As all the internal nodes of the Bx-tree are stored in the buffer,

71

the update cost is reduced to one leaf node access. In the TPR*-tree, each deletion

entails a search to retrieve the object to be removed, which results in traversing

multiple (partial) paths from the root toward the leaf level. We attribute the de-

grading performance to MBRs that overlap increasingly with the passing of time.

In this experiment, the performance of the Bx-tree (Z-curve) and the Bx-tree

(H-curve) are comparable, since the update efficiency is independent of the spatial

proximity preservation.

Effect of Update Interval Length

Next, we study the effect of the maximum update interval length on the indexes,

by varying this parameter from 60 to 240. Figure 3.24 shows the average update

cost after the workload has run for one maximum update interval. We observe

TPR*-tree

B
dual
-tree

B
x
-tree(Z-crve)

B
x
-tree(H-curve)

0

1

2

3

4

5

6

7

8

9

60
 120
 180
 240

Maximum Update Interval

U
pd

at
e

I/O
s

Figure 3.24: Effect of Varying Maximum Update Interval on Update Performance

that the performance of the TPR*-tree degrades as the maximum update interval

increases, whereas the Bdual-tree and the Bx-trees are not affected. The main reason

is that, as the update interval increases, the overlap among MBRs becomes more

severe and thus affects the performance of the TPR*-tree. In contrast, the update

operations in the Bdual-tree and the Bx-trees depend only on the key values, which

72

do not change over time.

Effect of Data Sizes

In this experiment, we examine the update performance for varying dataset size.

We compute the average update cost after the maximum update interval of 120

time units. From Figure 3.25, we can see that the B+-tree based indexes, i.e. the

Bdual-tree and the Bx-trees, consistently maintain very good performance. The

TPR*-tree

B
dual
-tree

B
x
-tree(Z-crve)

B
x
-tree(H-curve)

0

2

4

6

8

10

12

14

100K
 200K
 300K
 400K
 500K
 600K
 700K
 800K
 900K
 1M

Number of Moving Objects

U
pd

at
e

I/O
s

Figure 3.25: Effect of Data Sizes on Update Cost

gap between the TPR*-tree and the B+-tree based indexes widens as the dataset

grows in size. For the dataset of 1M objects, the cost of the TPR*-tree is nearly

six times that of the other three trees. One reason for the degeneration of the

TPR*-tree is that the MBRs have higher probabilities of overlapping when the

number of objects increases, which results in multiple search paths. We note that

this cost can be reduced by maintaining a hash-table to locate objects quickly, and

performing a bottom-up update as in [46]. However, such an auxiliary structure

incurs an additional storage overhead and complicates memory management and

concurrency control.

For the Bdual-tree and the Bx-trees, the update operation needs to traverse only

73

one path, no matter how large the dataset is. Thus the cost of updates in the

Bdual-tree and the Bx-tree is only related to the height of the tree.

3.3.7 Effect of Concurrent Accesses

In this section, we compare the concurrent performance of the TPR*-tree, the Bdual-

tree and the Bx-trees. We implemented the R-link technique for the TPR*-tree

and the B-link technique for the Bdual-tree and the Bx-tree. We use multi-threaded

programs to simulate a multi-user environment. The number of threads varies

from 1 to 8. Workloads contain 20% queries and 80% updates. We investigate the

throughput and response time of search and update operations. The throughput

is the rate at which operations could be served by the system (i.e., numbers of

operations per second). The response time is the time interval between issuing

an operation and obtaining the response from the system when the task has been

successfully completed.

Figure 3.26 shows the throughputs and response times for the three indexes for

varying numbers of threads. The throughputs of the Bx-trees are the highest (up

to 10 times than those of the TPR*-tree), and the response times of the Bx-trees

are always least among all the indexes. There are two reasons. First, the average

query and update cost of the Bx-tree are less than those of the the TPR*-tree

and the Bdual-tree. Second, the Bx-trees seldom lock internal nodes. Recall that

in the query processing, we will first travel down to the leaf level, then retrieve

the leaf nodes for the answers by following the left-to-right sibling links. We may

occasionally ascend to an internal node for a “jump,” but this often happens at the

lower levels of the index. Also, in the update processing, the Bx-trees only need to

travel down one path. In contrast, in the TPR*-tree, deletions and queries lead to

searching along multiple paths, which introduces more frequent locks on the internal

74

TPR*-tree

B
dual
-tree

B
x
-tree(Z-crve)

B
x
-tree(H-curve)

0

100

200

300

400

500

600

700

1
 2
 4
 6
 8

Number of Threads

T
h

ro
u

g
h

p
u

t
(/

s
)

(a) Throughput

TPR*-tree

B
dual
-tree

B
x
-tree(Z-crve)

B
x
-tree(H-curve)

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

1
 2
 4
 6
 8

Number of Threads

R
e

s
p

o
n

s
e

 T
im

e
 (

s
)

(b) Response time

Figure 3.26: Effect of Concurrent Operations

nodes. Further, the TPR*-tree may hold locks longer due to its complicated update

algorithms. All these factors reduce the parallelism of concurrency operations on

the TPR*-tree. For the Bdual-tree, its query algorithm is quite similar to that of

the TPR*-tree and hence it shares the similar problems.

3.3.8 Storage Requirements

Index size is an important issue in moving object databases since a small index size

may enable the caching of the entire index in main memory in order to improve

performance. Figure 3.27 shows the storage requirement of the indexes, in which

the Bx-trees require the least storage space. For the 1M dataset in particular, the

storage space of the TPR*-tree is more than three times larger than that of the

Bx-trees. And the storage space of the Bdual tree is also larger than that of the

Bx-tree. The main reason is that the Bx-trees have relatively large node capacity

(332) and high utilization of this capacity (about 73%). For the TPR*-tree, the

capacity is about 200. For the Bdual-tree, the capacity is a little less than that

of the Bx-tree due to the longer key value obtained from the higher-dimensional

75

TPR*-tree

B
dual
-tree

B
x
-tree(Z-crve)

B
x
-tree(H-curve)

0

10

20

30

40

50

60

100K
 200K
 300K
 400K
 500K
 600K
 700K
 800K
 900K
 1M

Number of Moving Objects

S
to

ra
ge

 S
pa

ce
 (

M
by

te
s)

Figure 3.27: Storage Requirement

space-filling curves.

3.4 Summary

Database applications that entail the storage of samples of continuous, multidimen-

sional variables pose new challenges to database technology. This chapter addresses

the challenge of providing support for indexing that is efficient for querying as well

as update.

We propose a new indexing scheme, the Bx-tree, which is based on the B+-tree.

This scheme uses a new linearization technique that exploits the volatility of the

data values being indexed, i.e. moving-object locations. Specifically, data values

are first partitioned according to their update time and then linearized within

the partitions according to a space-filling curve, e.g. the Peano or Hilbert curve.

Algorithms are provided for interval range queries and k nearest neighbor queries

on the current or near-future positions of the indexed objects. Queries that reach

into the future are handled via the query region enlargement, as opposed to the

MBR enlargement used in TPR*-trees.

Our extensive performance studies indicate that the Bx-tree is both efficient

76

and robust. In fact, it outperforms the TPR*-tree, especially when it comes to

update operations. Further, being a B+-tree index, the Bx-tree may be more easily

integrated into existing database systems than its competitors.

77

CHAPTER 4

Effective Density Queries on Moving

Objects

Continuing advances in consumer electronics, mobile communications, and posi-

tioning technologies combine to render it increasingly realistic to assume that en-

tire populations of users of mobile services, i.e. moving objects, can be tracked

accurately. These developments offer a foundation for the delivery of increasingly

sophisticated location-enabled mobile services. Motivated by this scenario, one line

of research aims to develop appropriate data management foundations like indexing

techniques presented in the previous chapter. The other line of research aims to

provide efficient query services with the aid of data management systems. In this

chapter, we will study a novel type of location-based service, the querying for dense

regions, termed density query.

The rest of the chapter is organized as follows. Section 4.1 states our motivation.

Section 4.2 gives the problem statement. Section 4.3 describes our proposed frame-

78

work. Section 4.4 presents the algorithm used to realize the framework. Section 4.5

reports the experimental results. Finally, Section 4.6 makes a conclusion.

4.1 Motivation

The objective of the density query is to find regions in space along with associated

points in time where the regions have a density that exceeds a given threshold.

Figure 4.1 illustrates an example where three square-shaped windows compose the

Figure 4.1: An Example of Density Query Results

answer to a density query. The density query may have applications in a range of

areas. For example, in traffic management systems, density queries may be used

for identifying regions with potential for congestion and traffic jams.

Density queries for moving objects was first considered by Hadjieleftheriou et

al. [29]. They define the Region Density as: density(R, ∆t) = min∆t N/area(R),

where min∆t N is the minimum number of objects inside R at any time during

∆t and area(R) is the area of R. They define the Period Density Query as:

given N moving objects, a horizon H, and thresholds α1, α2, and ρ, find regions

R = {r1, ..., rk} and associated maximal time intervals ∆t = {δt1, ..., δtk|δti ⊂

[tnow, tnow + H]} such that α1 ≤ area(ri) ≤ α2 and density(ri, δti) > ρ (where tnow

79

is the current time, i ∈ [1, k], and k is the query answer cardinality).

For the applications we envision, finding dense regions for a period of time

appears to be less useful than simply finding dense regions for a point in time.

For example, once a traffic jam occurs in some region, all the objects around the

region will slow down, and their velocities will change dramatically. As a result,

predicting the density at following timestamps according to the original velocities

reported for the objects does not seem to be of much value. Therefore, we focus

on the identification of dense regions as of a timestamp tq ∈ [tnow, tnow + H] that is

given as a parameter to the density query.

Hadjieleftheriou et al. [29] find the general density-based queries difficult to

answer efficiently and hence turn to simplified queries. Specifically, they partition

the data space into disjoint cells, and the simplified density query report cells,

instead of arbitrary regions, that satisfy the query conditions. This scheme may

result in what we term answer loss. Consider the example shown in Figure 4.2

where each cell (of solid lines) is a unit square and the density threshold ρ is 3.

There actually exists a dense region (the dashed square) in the center of the space,

but the simplified query reports no regions. In our density query definition, we

guarantee that there is no answer loss.

Figure 4.2: An Example of Answer Loss

We proceed to formulate the problem setting and define the notions of density,

dense region, and effective density query.

80

4.2 Problem Statement

We assume that a population of moving objects exists, where each object is capable

of transmitting its current location to a central server. A moving object transmits

a new location to the server when the deviation between its real location and its

server-side location exceeds a threshold, dictated by the services to be supported.

In general, the deviation between the real location and the location assumed by the

server tends to increase as time passes. In keeping with this, we define a maximum

update time (U) as a problem parameter. This quantity denotes the maximum

time duration in-between two updates of the position of any moving object.

We model the position of a moving object as a linear function from time points

to points in two-dimensional Euclidean space. The position of a moving object at

time t, x̄(t), is thus given by a triple (x̄, v̄, tupd) of parameters as follows: x̄(t) =

x̄ + v̄(t − tupd), where x̄ and v̄ are the two-dimensional position and velocity,

respectively, of the object at the latest update time tupd and t ≥ tupd.

The motivation for this choice of modeling is threefold. First, the extent of a

moving object is typically considered to be of little relevance for the query type we

are considering. Second, studies of real positional information obtained from GPS

receivers installed in cars show that representing positions as linear functions of

time reduces the numbers of updates needed to maintain a reasonable accuracy by

as much as a factor of three in comparison to using constant functions [17]. Linear

functions are thus much better than constant functions. Third, several indexing

techniques exist that index this representation and which can be reused.

With this general data setting in place, we proceed to define the density query.

Definition 2 (Density): The density of a region R at a time t is the number of

objects in the region at time t divided by the area of the region.

81

Definition 3 (Dense Region): A region is dense at time t if its density at time

t is higher than a density threshold ρ.

Note that a part of space that contains one dense region is likely to contain

many such regions. Most of these may overlap substantially, as illustrated in Fig-

ure 4.3(a). Reporting all such regions is not helpful. We proceed to propose an

effective density query that only reports non-overlapping regions. The resulting

answer set clearly identifies regions of high density, as shown in Figure 4.3(b).

(a) (b)

Figure 4.3: Overlapping vs. Non-overlapping Regions in a Density Query

Definition 4 (Effective Density Query): Find all dense regions at time t that

satisfy the following conditions:

1. Any reported region is constrained to a certain shape and an area range.

2. No two regions in the result overlap.

3. Any dense region in the argument data is in the result, or is represented in

the result by a region that overlaps with it.

The first condition provides mechanisms for ensuring that meaningful answers

are reported. For example, an arbitrarily small region that contains one point object

is infinitely dense, but makes little sense as a result. Therefore, we may want to

82

specify a lower bound of the area of the result regions. Similarly, we may want to

limit the region area so that it is not too large. Also not all shapes of result regions

may be desirable. Imagine a (space filling) curve that goes through all the point

objects. Therefore the user may require the dense regions to be squares, circles,

etc. The second condition guarantees that a non-redundant result is produced.

The third condition guarantees that the query result contains evidence of any dense

region in the data, ensuring that query results do not suffer from answer loss.

We purposefully define the effective density query so that different, but equally

valid and useful, results may be produced for the same data argument and query

parameters. An algorithm implementing the query may exploit this flexibility. For

convenience, we abbreviate the term effective density query to density query in the

sequel.

We assume that the time parameter tq of a density query Q is not earlier than the

current time and that it only reaches at most W time units into the future. Thus,

with iss(Q) being the time that query Q is issued, iss(Q) ≤ tq ≤ iss(Q)+W . The

lower bound indicates that we are not considering past data. The assumption that

an upper bound exists is considered reasonable. Updates are inherently frequent,

making it meaningless to look too far into the future.

Finally, define time horizon H = U +W as the maximum duration of time that

the representation of a moving object can be queried. Figure 4.4 illustrates the

relationships among parameters U , W and H. We can see that H represents how

H=U+W

t upd timeiss(Q)

W

U

Figure 4.4: Problem Parameters

83

far into the future a query may reach. In other words, a technique for computing

the density query support queries that reach up to H time units from the update

of an object into the future.

4.3 The MODQ Framework

As a precursor to considering the processing of density queries, we constrain the

general setting for density queries as presented in Section 4.2 with the objective

of rendering the query processing manageable. We term this setting the Moving

Object Density Query (MODQ) framework.

In this framework, we constrain the dense regions to be square-shaped and of

certain sizes. We maintain all moving objects in an index structure. During the

query processing, we first partition the data space into equal-sized, square-shaped

cells of the smallest size that satisfies the query constraint. Then we issue range

queries that explore these cells, and we report the dense regions found.

Note that a dense region is not necessarily a cell in the partitioning—it might

instead intersect with cell partitions, as does the dashed, square region in Figure 4.2.

Therefore we may need to issue a range query that is defined by two or more

adjacent cells. By exploring all cells (and maybe all combinations of two or more

adjacent cells), we are able to report evidence of all dense regions.

While the framework applies to dense regions of a range of sizes, we focus on

finding dense regions of one size in this paper.

84

4.4 Density Computation

4.4.1 Overview

If we process the density query straightforwardly using range queries on the index,

we are likely to end up issuing too many range queries. Instead, we propose a

two-phase algorithm that efficiently computes the density query as stated in the

previous section.

The algorithm relies on certain information that needs to be maintained. We

maintain a counter that records the number of objects for each cell at point in time.

As each object is updated, we calculate the trajectory of the object and obtain the

cells it intersects during the query time range [tnow, tnow + H]. For each (cell, time)

pair of a cell intersected and the time of intersection, we increase the corresponding

counter by one (in case of deletion, we decrease the counter).

At the same time, the object is maintained and updated in an index structure.

This index may be well maintained already for other types of queries, such as range

and nearest neighbor queries, so the major space overhead is that of the space for

maintaining the counters. When the numbers of cells and time windows are large,

the number of counters needed is huge. We describe a method to efficiently maintain

them in a compressed fashion in Section 4.4.2.

Next, query processing consists of two phases:

1. The filtering phase: We use the counters to quickly prune the cells that

are surely not in the answer set and produce a set of candidate cells for the

next phase.

2. The refinement phase: To extract the final answers from the candidate

cells obtained in the filtering phase, we issue range queries corresponding to

the cells on the index and this way determines the actual positions of the

85

objects in the cells. Then we can determine the dense regions. Without loss

of generality, we exploit the Bx-tree (in Chapter 3) to maintain the moving

objects.

The query processing algorithm is given in Section 4.4.3.

4.4.2 Density Histogram

We maintain a two-dimensional density histogram (DH) equal sized, square cells,

where each cell contains a counter of the number of objects in the cell at all times

in [tnow , tnow + H]. The DH is the main structure used for the filtering phase.

As we need to maintain a histogram for a long time period for each cell, the total

memory use may be prohibitively large. Moreover, if the DH is too big, it may

need to be stored on disk, and hence substantial I/O is needed to maintain it and

use it during the query processing. Therefore, it is critical to reduce the size of the

DH. We propose to use the Discrete Cosine Transform (DCT) [72] for compression.

The detailed algorithm and analysis are as follows.

Histogram Construction

For each cell, the number of objects in the cell varies across time, but the number

is not likely to change greatly for adjacent time points. We thus view the time-

varying count in each cell for a time range as a signal s(t), and we then perform the

Discrete Cosine Transform (DCT) on s(t). As the DCT is a good approximation of

the Karhunen-Loève Transform (KLT) [72], the first few components of the DCT of

s carry the major information in s. We store only the first few (typically 10–20%)

components and discard the rest. We can restore the s(t) by an inverse DCT when

we maintain the histograms or use them for the query processing.

86

The DCT of a signal s(t) of length H is also a signal G(k), of length H. The

transform is defined as follows:

G(k) = c(k)
H−1
∑

t=0

s(t) cos
π(2t + 1)k

2H
where (4.1)

c(0) =
√

1/H, c(k) =
√

2/H, and k = 0, 1, ..., (H − 1)

The inverse DCT is defined as follows:

s(t) =
H−1
∑

k=0

c(k)G(k) cos
π(2t + 1)k

2H
, t = 0, 1, ..., (H − 1) (4.2)

Figure 4.5 shows an example of transform between the signal and the DCT.

DCT

0 t1 t2 t3 t +H0t4 t0 t1 t2 t3 t +H0t4

5

Number of objects

2

4

6

9
8

lifespan

time

Number of objects

lifespan

timet

Figure 4.5: An Example of the DCT

After trimming some components of the DCT, the restored signal s′(t) differs

from s(t) because of the information loss. Therefore, the results of the query is

approximate. However, the DCT has the good property that even though we trim

off a great portion of the components, the difference between s′(t) and s(t) is still

quite small.

Note that the difference between s′(t) and s(t) may be positive or negative,

that is, s′(t) may overestimate or underestimate s(t). As a result, we may get

87

both false positives and false negatives when we choose candidate cells for further

examination in the refinement phase. False positive candidate cells increase the

query processing cost, while false negatives would cause answer loss (although the

loss could be very small). To avoid false negatives, we may add something to s′(t)

so that s′(t) is guaranteed to overestimate s(t). We derive the bound of s(t)− s′(t)

next. We assume that we use the first g coefficients of the DCT to compress and

trim the remaining ones.

s(t)− s′(t) =
H−1
∑

k=g

c(k)G(k) cos
π(2t + 1)k

2H

=
√

2/H
H−1
∑

k=g

G(k) cos
π(2t + 1)k

2H

≤
√

2/H
H−1
∑

k=g

|maxH−1
k=g {G(k)} cos

π(2t + 1)k

2H
|

≤
√

2/HmaxH−1
k=g {|G(k)|}

H−1
∑

k=g

| cos
π(2t + 1)k

2H
| (4.3)

where t = 0, 1, ..., (H − 1) and maxH−1
k=g {|G(k)|} denotes the maximum absolute

value of G(k) for k = g, ..., H − 1. Therefore if we estimate s(t) by s′(t), the error

bound Eb is given as follows.

Eb =
√

2/HmaxH−1
k=g {|G(k)|}

H−1
∑

k=g

| cos
π(2t + 1)k

2H
| (4.4)

Before trimming the coefficients from the DCT of s(t), we get maxH−1
k=g {|G(k)| and

store it with the g remaining coefficients; and
∑H−1

k=g | cos(π(2t + 1)k/2H)| can be

calculated on the fly, giving us the error bound. To guarantee no false negatives,

we just need to add the error bound to s′(t). However, this increases the number of

false positives and hence increases the query processing cost. In some applications,

88

we may be willing to trade a small number of false negatives for better performance.

To capture the degree to which we are willing to tolerate false negatives, we

introduce the parameter error factor ef ∈ [0, 1] that can be specified by the user.

We then estimate s(t) by s′(t) + ef · Eb. When ef = 1, we guarantee no false

negatives. As ef decreases, the probability of false negatives increases, and when

ef = 0, we estimate s(t) by s′(t). In the experiments reported in Section 4.5, there

are no false negatives in most of the cases, even when ef = 0.

Histogram Maintenance

A location update contains the old and new information of a moving object, includ-

ing the position, velocity and the time when these apply. When such an update

is received, we compute both the old and new trajectories of the object. Then we

adjust the DCT functions in the cells that the moving object passes by.

The adjustment comprises three steps. First, we unwrap the DCT function,

i.e., we compute the number of moving objects during each time point within the

lifespan of the function. The second step treats deletion and insertion differently.

For a deletion, we simply decrease the number of moving objects by one during the

period that the old trajectory intersects with the cell and then modify the start

time of the lifespan of the function to the current time. For an insertion, we set

the lifespan from the current time tnow to tnow + H, and initialize the number of

moving objects exceeding the old period to zero. Then we increase the number

of moving objects during the intersection period by one. Third, we calculate new

DCT functions for the affected cells.

Figure 4.6 summarizes the maintenance algorithm. First, note that deletion

and insertion may affect the same cell if the new trajectory does not deviate much

from the old one. In such a situation, we only unwrap and recompute the DCT

89

Algorithm DH maintenance(Po(x, v, t), Pn(x, v, t))

Input: Po and Pn are the old and new object, respectively

1. compute the trajectory of Po during [Po.t,Po.t + H]

2. Lo ← list of cells intersected by Po

3. compute trajectory of Pn during [Pn.t,Pn.t + H]

4. Ln ← list of cells passed by Pn

5. L← Lo

⋃

Ln

6. for each cell in L do

7. set the start time of lifespan to current time

8. V ← value list of DCT function in its lifespan

9. if there is a deletion in this cell then

10. decrease corresponding value in V by one

11. if there is an insertion in this cell then

12. set the end time of lifespan to Pn.t + H

13. extend V to Pn.t + H, adding value 0

14. increase the corresponding value in V by one

15. compute new DCT function from V

end DH maintenance.

Figure 4.6: DH Maintenance Algorithm

functions of the cell once, since we do the deletion and insertion together in the

second step. Second, the lifespan we maintain is no longer than H, either in the

deletion or in the insertion. This makes it possible to use the same number of

parameters to represent the DCT function.

To exemplify, Figure 4.7(a) depicts an original DCT function of a cell before

updates, and Figures 4.7(b) and (c) illustrate an independent deletion and an

insertion in this cell. As shown in Figure 4.7(b), an object intersecting the cell

during time t2 to t3 is deleted, and hence, counters at corresponding time points

are decreased by one. Figure 4.7(c) shows an insertion of an object at time t1.

90

time0 t1 t2 t3 t +H0t4 0t t +H03t2t1t 4t

deletion time

2

8
8

5 5
4

(b) Deletion

time

Number of objects

lifespan

0t 3t2t1t 4t t +H0 t +H1

insertion time

8

5

9

1

5

3

6

(c) Insertion

time

Number of objects

lifespan

(a) Original DCT

5

2

4

6

9
8

lifespan

Number of objects

t

Figure 4.7: Maintenance in DH

The lifespan of the function is then changed to [t1, t1 + H]. The trajectory of this

object intersects with the cell from time t4 to t1 + H, and hence the corresponding

counters are increased by one.

4.4.3 Query Processing

The Filtering Phase

The filtering phase aims to identify areas that may possibly contain answers to the

density query. The output of this step is a list of grid cells of sizes one to four times

larger than the query range size. This is because the dense squares may intersect

with one to four cells, as shown in Figure 4.8 (the shaded areas represent dense

squares).

41 2 3

Figure 4.8: Intersection between the Final Answer and DH Cells

We examine the cells of the DH in the order from left to right and top to bottom.

The algorithm is shown in Figure 4.9.

91

Algorithm Density query(ρ,R, tq)

Input: threshold ρ, query range R, query time tq

1. Nmin ← R · ρ
2. for each cell in the space do

3. Nb ← number of objects in the cell at tq

4. if Nb > Nmin then

5. report this cell as a final answer

6. else

7. Ns ← number of objects in square S4 // S4 consists of four cells

8. if Ns ≥ Nmin then

9. flag ← true

10. for each combination of two cells S2 do

11. N2 ← the density in the two cells

12. if N2 ≥ Nmin then

13. invoke Refinement(S2, ρ, R, tq)

14. if an answer is found then

15. modify histogram

16. flag ← false

17. if flag then

18. invoke Refinement(S4, ρ, R, tq)

19. if an answer is found then

20. modify histogram

end Density query.

Figure 4.9: Density Query Algorithm

Given a query range R and a query threshold ρ, we have Nmin = R · ρ, which

is the minimum number of objects that should occupy a dense square. This way,

we transform the density threshold ρ to the number of objects Nmin. Then, for

each cell, we compute the number of objects it contains at the query time tq.

If it contains at least Nmin objects, it is added to the final answer list directly.

Otherwise, we check the square consisting of four cells and having the current cell

92

at the top left corner. If this square has less than Nmin objects, it is obvious that

this square does not contain any dense square. We can safely prune the current cell

and set the tags of combinations of any cells in this square to false (i.e., we need

not take into account these combinations next time).

If the number of objects in the square is larger than Nmin, we check the density

of each cell in this square and report those cells satisfying the density threshold

themselves. In the remaining cells, we check the cells of types 2 and 3 as shown

in Figure 4.8. If the number of objects in the combinations is no smaller than

Nmin, we pass them to the refinement phase. Only when all three types of cells

fail to contain any final answer, we pass the whole square to the refinement phase.

Each time we get an answer from the refinement phase, we decrease the number of

objects in the corresponding cells.

To avoid overlaps among final reported ranges, the area covered by the answer

is tagged and will not be considered during the following search. We also adopt

heuristics to help speed up the processing. As shown in Figure 4.10, in one square,

cells of types 2 and 3 are not allowed to coexist; the fourth type of cell is not allowed

4 and 32 and 3 4 and 1 4 and 2

Figure 4.10: Conflicting Types of Cells

to coexist with any other type of cell. Once an answer of one type is confirmed, we

do not need to search the conflicting type.

93

The Refinement Phase

We introduce a new structure, which we term an object pool, that temporarily stores

information for the objects in retrieved cells at the query time.

The refinement phase needs to obtain the objects in each candidate area. The

algorithm first checks whether any part of a given candidate area has ever been

retrieved. If this is the case, we load the objects from the object pool and tag this

part. Then a general range query covering the untagged parts of the candidate area

is issued on the index. We store the newly retrieved objects in the object pool.

After obtaining objects, algorithms that differ only slightly are applied to the

different types of cells in order to identify final answers. There are cells of types 2,

3, and 4.

For cells of type 2, we sort the positions of the objects according to their x

coordinates. Then we count the number of objects every l length units (l is the

query range size) along the x axis until the count reaches or exceeds the threshold

Nmin, which means we have identified an answer. We handle the cells of type 3

similarly to those of type 2, except that we sort the object positions along the y axis

this time. For type 4 cells, we first sort the object positions along the x axis. When

we count the number of objects every l length units along the x axis, we maintain

an array that stores the number of objects along the y axis. As the starting point

of the counting moves forward, we decrease the corresponding values in the array.

Once we obtain a count that reaches or exceeds Nmin, we will check along the y

axis as in the case of type 2.

Objects in the top-left cell are discarded from the object pool since this cell

may not be accessed any more according to our scan order. Therefore, the object

pool only needs to store up to a row of cells. Moreover, each time we identify an

answer, we remove the objects in the answer set from the object pool.

94

The detailed algorithm is shown in Figure 4.11.

Algorithm Refinement(S, ρ,R, t)

Input: candidate area S, density threshold ρ, query range R, query time t

1. Nmin ← R · ρ, Sr ← φ, L1 ← φ

2. for each cell B in S do

3. if the cell B has been retrieved then

4. load objects from object pool to L1

5. Sr ← Sr

⋃

B

6. L2 ← RangeQuery(S − Sr, t)

7. L← L1

⋃

L2

8. l←
√

R

9. if S is of type 2 or 4 then

10. sort objects in L along x-axis

11. project objects to x-axis

12. else

13. sort objects in L along y-axis

14. project objects to y-axis

15. N ← the number of objects within each l length

16. if any N larger than Nmin then

17. if S is not of type 4 then

18. report an answer

19. else

20. project objects to y-axis

21. M ← number of objects within each l length

22. if any M larger than Nmin then

23. report an answer

end Refinement.

Figure 4.11: Refinement Algorithm

95

4.5 Performance Studies

In this section, we present the results of an extensive performance study on our

proposed technique.

4.5.1 Experimental Settings

All the experiments were run on a 2.6G Pentium IV desktop with 1 Gbyte of

memory. The page size is 4K.

We employ the Bx-tree (H-curve) (presented in Chapter 3) as the index for the

refinement phase. An LRU page buffer of 50 pages is used [48], with the internal

nodes of a tree being pinned in the buffer.

The space domain is 1000 × 1000 units. The datasets are generated using

an existing data generator, where objects move in a network of two-way routes

that connect a given number of uniformly distributed destinations [76]. Objects

start at random positions on routes and are assigned at random to one of three

groups of objects with maximum speeds of 0.75, 1.5, and 3. Whenever an object

reaches one of the destinations, it chooses the next target destination at random.

Objects accelerate as they leave a destination, and they decelerate as they approach

a destination. In most experiments, the average interval between two successive

updates of an object equals 60 time units. Unless noted otherwise, the number of

moving objects is 100,000.

The query workload is 100 density queries. Each query has three parameters:

(i) the density threshold ρ; (ii) the squared-shaped query range side length l; and

(iii) the prediction lengths ql. The query cost is measured in terms of CPU time

and I/O.

The parameters used are summarized in Table 4.1, where values in bold denote

96

the default values used.

Parameter Setting

Page size 4K
Buffer number 50
Max update interval 60, 120, 240
Density threshold 0.8, 0.9, 1.0, 1.1, 1.2
Max prediction length 30
Density query range size 20, 25, 50
Number of density queries 100
Dataset size 100K, . . . , 1M
Number of destinations in dataset 50, 100, 200, 300

Table 4.1: Parameters and Their Settings

4.5.2 DCT Compression Accuracy

First, we look at a representative result of the DCT compression of the histograms.

We execute 100 density queries with query range size of 25 in a 100K dataset.

Figure 4.12 shows the actual numbers of objects (s(t)) and the restored numbers

of objects from the DCT compression (s′(t), which we term the DCT compression

in the sequel) in cells of density 0.8 and 1.2, respectively, as a function of elapsed

time. We see that the curves for the predicted number of objects match the curves

0

100

200

300

400

500

600

700

800

900

1000

0 10 20 30 40 50 60 70 80 90

N
um

be
r

of
 m

ov
in

g
ob

je
ct

s

Time unit

input, rho = 0.8
output, rho = 0.8

input, rho = 1.2
output, rho = 1.2

Figure 4.12: DCT Compression Accuracy

97

for the actual number of objects very well.

Next, we evaluate the accuracy of the DCT compression using two metrics,

the rates of false positives and false negatives, while varying the number of DCT

coefficients used, elapsed time, and the error factor ef . The rate of false positives

indicates the percentage of squares in the answer set that have lower density than

the given threshold, and the rate of false negatives is the percentage of squares that

are missing in the answer set to the total number of correct answers. The correct

answers are obtained by using the histograms without compression by the DCT.

Effect of the Number of DCT Coefficients

First, we investigate the effect of the number of DCT coefficients. We create a

density histogram of 100K data at time 0, and then issue 100 square density queries

of size 25, prediction length in the range [0, 30], and density threshold equal to 0.8,

1.0, and 1.2, respectively.

Figure 4.13 shows the rates of false positives and negatives for varying numbers

of DCT coefficients. As expected, the more DCT coefficients we used, the better

0%

10%

20%

30%

40%

1
 5
 10
 15
 20
 25

Number of coefficients

E
rr

or
 r

at
e

(%
)

rho = 0.8 (positive)

rho = 1.0 (positive)

rho = 1.2 (positive)

rho = 0.8 (negative

rho = 1.0 (negative)

rho = 1.2 (negative)

Figure 4.13: False Positives and Negatives for Varying DCT Coefficients

98

the accuracies of the results. Both types of errors virtually disappear when the

number of DCT coefficients exceeds 10. The results suggest that our method is

highly accurate while saving about 90% of the space (the original DCT has 90

coefficients).

In addition, the DCT functions work well when the density threshold is large.

When the density threshold is close to the average density, both types of errors

increase since a small deviation in the DCT function may wrongly report or prune

many squares.

Effect of Time

We use 20 DCT coefficients in the following experiments. The density histogram

and the index of 100K objects are created at time 0 and are then maintained until

time 240. To avoid frequent transformations between the DCT and the real data,

we employ the batch update technique where each batch contains 1,000 updates.

After each maximum update interval (60 time units), density queries with the same

parameters as in the previous experiment are issued. Figure 4.14 plots the false

0%

3%

6%

9%

12%

15%

0
 60
 120
 180
 240

Time units

E
rr

or
 r

at
e

(%
)

rho = 0.8 (positive)

rho = 1.0 (positive)

rho = 1.2 (positive)

rho = 0.8 (negative

rho = 1.0 (negative)

rho = 1.2 (negative)

Figure 4.14: False Positives and Negatives with Elapsed Time

99

positives and negatives.

We observe that the false positive decrease to 0% as time passes, while the false

negatives approach 10%. This is because the DCT compression underestimates the

real number, resulting in fewer false positives, but also missing answers. Moreover,

new coefficients are computed based on existing ones, leading to an increasing

underestimation.

Effect of the Error Factor

In order to avoid false negatives, we can add a positive value to the restored in-

formation. This experiment examines the effect of overestimating the restored.

Figure 4.15(a) and (b) show the false positives and the query I/O cost, respec-

tively, for varying error factors and numbers of DCT coefficients.

0%

10%

20%

30%

40%

50%

60%

1
 5
 10
 15
 20
 25

Number of coefficients

F
al

se
 p

os
iti

ve
 (

%
)

ef = 0

ef = 0.25

ef =0.5

ef = 1

(a) False positives

0

500

1000

1500

2000

2500

1
 5
 10
 15
 20
 25

Number of coefficients

IO
 c

os
t

ef = 0

ef = 0.25

ef =0.5

ef = 1

(b) Query I/O cost

Figure 4.15: Effect of the Error Factor and DCT Coefficients

The false positives decrease as the number of DCT coefficients increases—with

more coefficients, the DCT becomes more accurate. We also observe that when

the error factor increases, the false positives also increase. This behavior is ex-

pected since the error factor indicates how much we overestimate the number of

objects. When we guarantee no false negatives, that is ef = 1, the false positives

100

are at about 50% when using only one DCT coefficient, but decrease to about 20%

when additional coefficients are used (but still significantly smaller than the total

number).

The actual false negatives for these experiments are at 0%. This means that

we may need to overestimate to guarantee no false negatives, although the actual

numbers of false negatives are very low, even when we do not overestimate at all.

The query I/O cost shown in Figure 4.15(b) exhibits a similar trend to that for

the false positive. This is because the more the false positives, the more times we

need to search the index, which increases the I/O cost. Similarly, there is a tradeoff

between the error factor and query I/O. When we use a smaller error factor, that

is, larger probability of false negatives, we obtain better query performance. In the

following experiments, we always keep the false negatives to 0 and then evaluate

the query and maintenance performance.

4.5.3 Density Queries

We proceed to evaluate the efficiency of the density query processing algorithm

while varying different parameters. We start by showing an example of the results

of a density query.

An Example of the Density Query

Figure 4.16(a) shows a snapshot of the dataset with 50 destinations in the simulated

road network. Given a density query with query range size 25 and density threshold

1.0, Figure 4.16(b) shows the density query result (denoted by squares) obtained.

We can clearly see that the algorithm identifies all the dense regions.

101

(a) Data space (b) Dense squares

Figure 4.16: Density Query Example

Histogram versus Non-Histogram

This experiment evaluates the pruning effectiveness of the DH. We compare our

method, which uses the DH, with a straightforward method as described in Sec-

tion 4.3, which uses the MODQ framework and the same refinement algorithm as

in our histogram-based algorithm, but does not use histograms and the two-phase

query algorithm (we simply call it the non-histogram algorithm). To locate the re-

gion of the required density, the non-histogram algorithm executes a series of range

queries covering the whole space, where each range query covers a square consisting

of four cells. As the cost of refinement phase dominates the overall performance,

we mainly compare their I/O costs of executing range queries.

Figure 4.17 shows the average number of I/O operations per density query for

varying density thresholds. Our algorithm improves over the non-histogram at a

factor of 4 in terms of I/O cost.

102

0

500

1000

1500

2000

2500

3000

0.8
 0.9
 1
 1.1
 1.2

Density

IO
 c

os
t
 Non-Histogram

Histogram

Figure 4.17: Histogram vs. Non-histogram

The MODQ versus the DCF

We also compare our algorithm with the dense cell filter (DCF) algorithm [29],

which exhibits the best performance among other algorithms. Due to the different

definitions of the density query, the DCF is not able to identify dense squares

across cells. Figure 4.18 shows the percentages of lost answers for the DCF and our

algorithm. We can see that the number of lost answers of the DCF increases quickly

as the density threshold increases. This is because the result set size decreases as

the density threshold increases, with the effect that there are relatively more lost

answers. As expected, our algorithm has no answer loss.

Effect of Density Threshold and Query Size

Next, we investigate the effect of the density threshold and the query range size.

Since the I/O cost incured in the refinement phase always dominates the cost of

a query, in order to study the behavior of the filter and refinement algorithms

independently on the index structure, we partition the density query cost into the

103

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0.8
 0.9
 1
 1.1
 1.2

Density

F
al

se
 n

eg
at

iv
e

(%
)

DCF

MODQ

Figure 4.18: The MODQ vs. the DCF

range query cost (I/Os) and in-memory processing cost (CPU time), and then plot

them separately.

Figure 4.19(a) and (b) measure the density query performance in the same 100K

dataset for varying density thresholds and query range sizes. Figure 4.19(a) shows

0

100

200

300

400

500

600

700

800

900

0.8
 0.9
 1
 1.1
 1.2

Density

IO
 c

os
t

QWIN 20

QWIN 25

QWIN 50

(a) Query I/O cost

0

0.1

0.2

0.3

0.4

0.5

0.8
 0.9
 1
 1.1
 1.2

Density

In
-m

em
or

y
pr

oc
es

si
ng

 ti
m

e
(s

)
 QWIN 20

QWIN 25

QWIN 50

(b) In-memory processing time

Figure 4.19: Effect of Density Threshold and Query Size

the range query I/O cost per density query. The I/O cost decreases as the density

threshold increases. The possible reason is as follows.

104

When the density threshold is close to the average density (about 0.5 for a query

range size of 25), the pruning ability of the filtering phase decreases. This is so

because most regions of the data space have average density. Even if the density

of one cell is lower than the threshold, its combinations with other cells still have

high probabilities of satisfying the density threshold. Hence, many range queries

are issued in the refinement phase, which results in higher query cost. When the

density threshold is high, the filtering phase can prune cells that have few objects.

Thus, the total range query cost is smaller. Moreover, we observe that the query

cost decreases as the query range becomes larger. This is because the number of

answers is smaller for larger query ranges; hence, fewer range queries are issued in

the refinement phase.

Figure 4.19(b) shows the corresponding in-memory processing cost. The trends

are similar to those seen for the range query I/O cost. The reasons for this behavior

are similar to those given for the I/O cost.

Effect of Database Size

To test the scalability of our technique, we performed the density query while vary-

ing the number of moving objects from 100K to 1M. We fix the density threshold at

1.0 and use a query range size of 25. Figure 4.20(a) and (b) show the range query

I/O cost and the in-memory processing cost per density query, respectively. We

observe that both the I/O cost and the in-memory processing cost grow linearly

as the number of moving objects increases. This is because the average density in

each cell increases as the number of moving objects increases. More regions that

satisfy the density requirements need to be checked.

105

0

1000

2000

3000

4000

5000

100K
 300K
 500K
 700K
 900K

Number of moving objects

IO
 c

os
t

MODQ

(a) Query I/O cost

0

1

2

3

4

5

6

7

8

9

100K
 300K
 500K
 700K
 900K

Number of moving objects

In
-m

em
or

y
pr

oc
es

si
ng

 ti
m

e
(s

)

MODQ

(b) In-memory processing time

Figure 4.20: Effect of Database Size

Effect of Data Distribution

In this experiment, we evaluate the density query performance for different data

distributions by using numbers of destinations in the simulated route network in

the range from 50 to 300. The fewer the destinations, the more skewed the dataset

becomes. Figure 4.21(a) and (b) plot the query I/O cost and in-memory processing

cost, respectively. We observe that the query costs of the 50- and 100-destination

datasets are higher than those of the 200- and 300-destination datasets. This is

0

100

200

300

400

500

600

700

800

900

1000

0.8
 0.9
 1
 1.1
 1.2

Density

IO
 c

os
t

50 Destinations

100 Destinations

200 Destinations

300 Destinations

(a) Query I/O cost

0

0.1

0.2

0.3

0.4

0.5

0.8
 0.9
 1
 1.1
 1.2

Density

In
-m

em
or

y
pr

oc
es

si
ng

 ti
m

e
(s

)
 50 Destinations

100 Destinations

200 Destinations

300 Destinations

(b) In-memory processing time

Figure 4.21: Effect of Data Distribution

106

because skewed data tend to result in high density in more regions so that more

queries in the index are needed. In addition, it is interesting to see that the density

query cost of the 100-destination dataset is sometimes higher than that of the 50-

destination dataset. This behavior can be explained as follows. Places around the

destinations may have high densities since moving objects usually assemble there.

In the 100-destination dataset, the densities at these places are possibly close to

the given density threshold. Thus, there are more possible candidate dense cells

that need to be further checked in the refinement phase, which causes the higher

query cost.

4.5.4 Maintenance Cost

Finally, we evaluate the maintenance cost of our histogram-based algorithm while

varying the length of the maximum update interval U (the query prediction length

is fixed at 30). We create the index at time 0 and then perform object updates for

the duration of a maximum update interval. Figure 4.22 shows the average main-

tenance cost per insertion or deletion. We observe that the average maintenance

0

0.01

0.02

0.03

0.04

0.05

60
 120
 240

Maximum update interval

H
is

to
gr

am
 u

pd
at

e
tim

e
(m

s)

 MODQ

Figure 4.22: Maintenance Cost

107

cost increases as the maximum update interval increases. The reason is that each

update of an object incurs updates on the cells that its trajectory intersects. As

the maximum update interval increases, the length of the trajectory increases, and

therefore the maintenance cost also increases.

4.6 Summary

In this chapter, we give a pragmatic definition of the density query for moving

objects that avoids answer loss. Based on this definition, we proposes a specializa-

tion of the density query that returns useful answers and is amenable to efficient

computation.

We then propose an algorithm that aims to process the resulting density query

efficiently. The algorithm utilizes temporal histograms of counters for each parti-

tion in a partitioning of the data space. These histograms help prune the majority

of regions in an initial filtering phase of the query processing. As the histograms

consume substantial storage space, which in turn increases the I/O cost, techniques

are proposed that use the Discrete Cosine transform (DCT) to compress the his-

tograms. This compression incurs very few errors in the answer set, but offers space

savings of up to 90%, which also reduces the I/O cost.

We also report on extensive empirical studies of the behavior of the proposed

algorithm. The results suggest that the algorithm offer an improvement of a factor

of 4 in terms of I/O, compared to a naive algorithm. The results also indicate that

although we reduce the storage usage greatly by using the DCT, the answers are

still highly accurate. It is shown that it is easy to trade a small number of false

negative answers for performance.

108

CHAPTER 5

Location Privacy in Moving-Object

Environments

The expanding use of location-based services has profound implications on the

privacy of personal information. If no adequate protection is adopted, information

about movements of specific individuals could be disclosed to unauthorized subjects

or organizations, thus resulting in privacy breaches. In this chapter, we propose a

framework for preserving location privacy in moving-object environments.

The rest of the chapter is organized as follows. Section 5.1 gives a synopsis of

our proposal. Section 5.2 describes our system architecture. Section 5.3 presents

the detailed algorithms for location updates and queries. Section 5.4 presents

the system analysis. Section 5.5 covers comprehensive performance experiments.

Finally, Section 5.6 concludes.

109

5.1 Synopsis of Our Proposal

Today people are increasingly aware of privacy issues and do not want to expose

their personal information to unauthorized subjects or organizations. An impor-

tant problem is represented by the possibility that a piece of personal information

released by an individual to a party be combined by this party, or other parties,

with other information, leading to the disclosure of sensitive personal information.

In other cases, even if an individual does not directly release personal informa-

tion to another party, this party may still become aware of this information if it

has to provide a service to such an individual. This is in particular the case of

location-based service providers that, because of the very nature of the services

they provide, need to track user movements and locations. It is then easy, based

on this information, to discover user habits and other personal information. There

is therefore an important concern for location privacy in location-based services,

that is: “how can we prevent other parties from learning one’s current or past

location? [11]”. By looking more closely at the privacy problem in such a context,

we can see that there are at least two important requirements, that is, keeping

movement and location information private from service providers and from other

users. For example, GPS users who do not want to disclose their locations to the

system may still require service such as “is there any of my friends close to me

now?” There are two privacy requirements for this query. First, service providers

are not allowed to know the real locations of users. Second, users can only query

an authorized dataset (e.g. a list of their friends).

In this chapter, we address such a problem by developing a framework to pre-

serve location privacy in moving-object environments. The basic idea of our ap-

proach is to send transformed user location data to the service provider. We support

a number of different types of transformations, such as scaling, translation, rota-

110

tion, to cloak user information. These transformations are performed by agents

interposed between users and service providers. Agents are only responsible for

transforming information either received from the users or the server. They serve

as intermediaries and do not store user information. The service providers receive

the transformed data and compute answers to queries on these transformed data.

An important feature of our approach, which is critical for privacy assurance, is

the use of multiple agents. The user can randomly choose the agent to receive his

information each time he issues an update. Thus, each agent only has a part of the

information concerning the user. Such an approach is crucial for enhancing privacy.

For example, if an adversary hacks one agent, it is still unable to track the user; if

some agents illegally store user information, they cannot determine the trajectories

of users without colluding with other entities. Here our approach closely adheres

to an important security principle, dictating that sensitive information should not

be entrusted to a single entity; rather such information should be spread among

several entities.

In our framework, the server stores for each agent a sub-dataset specific to the

agent. A query is thus executed by the server separately on the sub-dataset of each

agent. Note that location-based queries require that relative distance among users

through the same agent be maintained after the transformation. The transforma-

tions we adopt have such a property. Specifically, we employ a combination of the

three basic types of transformations, that is, scaling, rotation, translation, as our

transformation functions. It is however important to notice that maintaining the

relative distance after the transformation may reveal the map topology. Therefore,

we introduce the concept of multiple transformation that applies slightly differ-

ent transformation functions to users’ positions updated at different time instants.

This makes the relative distance hard to be inferred. Correspondingly, the multiple

111

transformation also needs to be applied to queries. To avoid handling the increased

number of queries, a super query is then proposed, which covers all queries after

the multiple transformation. As explained later, a super query is essentially an

approximate version of the original query, which facilitates efficient evaluation of

this framework with a small amount of filtering costs.

Our technique not only prevents service providers from inferring the exact lo-

cations of users, but also keeps information about the location of an individual

private from other individuals not authorized to access such information. Specif-

ically, users have a list of group IDs that indicate which groups they belong to.

Based on these group IDs, the server can remove the query answers that are not in

the qualified groups, so that users can avoid their privacy leaked to other users not

belonging to the same group. A key characteristic of our approach is that privacy

is achieved without degrading service quality. Based on the experiments that we

have carried out, our approach does not affect any update performance, which is

very important in moving-object environments where update frequency is always

high.

Finally, we develop metrics to measure the level of privacy achieved by our

framework. In particular, we investigate the threats posted by the agents and the

query server from discovering the users’ true locations and movement patterns. We

then propose intuitive methods to quantify the level of protection against these

threats in our system.

Before go into details of our techniques, we summarize the difference between

our work and most related approaches in the following subsection.

112

5.1.1 Comparison to Existing Approaches

Cheng et al. [13] adopt the idea of location cloaking, which represents a user loca-

tion by a region. Their approach cannot provide accurate query answers, whereas

accuracy is guaranteed by our approach.

Gruteser et al. [26] propose a quad-tree based algorithm to partition the space

so that each sub-space contains more than k objects, i.e., satisfies the anonymiza-

tion requirement. The main drawback of this method is that it fails to meet the

anonymization criterion for skew data. Our approach does not have any constraints

on the data distribution.

k-anonymity model has also been used in [24, 39, 52]. They all utilize a cen-

tralized anonymizer which collects all user information. Such an anonymizer may

become the target of attacks by malicious parties. In our approach, we impose

multiple agents in-between users and service providers and hence reduce the risk

of compromising a single point. Moreover, unlike existing approaches where agents

must store users’ locations in order to carry out post-processing, agents in our pro-

posed system do not need to store any user information which further reduce the

chance of information leak.

Most recently, Ghinita et al. [25] propose a distributed architecture for anony-

mous location-based queries. They did not use any agent. Instead, they treat each

user as a peer which is eligible to become an anonymizer for other users. Their

approach certainly avoids the bottleneck caused by centralized techniques both in

terms of anonymization and location updates. However, the proposed system poses

more responsibilities and burdens to users. A user selected as a cluster head needs

to work as a server, which may not be feasible if users are only equipped with

lightweight devices. Also, the system requires users to trust one another in the

same cluster. This is different from creating trust between users and agents where

113

agents can be well verified. If a user does not want to trust any other users, he/she

will not subscribe to the location-based services provided by the proposed system.

In addition, there is a common problem of the approaches discussed above.

They may not be able to support anonymizations around sensitive areas such as

home addresses in non-anonymous applications. For example, if a user’s ID is

known, the cloaking region around his home address will tell attackers that the

user is probably at his home. However, in our system, this type of attack will be

shown to be a very hard task.

5.2 The Strategies and the Architecture of the

Location Privacy Protection System

In this section, we describe the strategies and the architecture of our Location

Privacy Protection (LPP) system. Figure 5.1 illustrates this architecture. The basic

...

Server

... ...

... ...

...

DBDB

Agent

User User User

Agent Agent

User

Processor

DB

Figure 5.1: LPP System Overview

114

strategy underlying our approach is to reduce the leaking of private information by

using data transformation and employing m agents in-between users and servers.

Each time a user1 needs to update his position, he does not directly contact the

server; instead, he randomly selects an agent to which he sends his data. When

querying, the user has to send the query to all agents. Then the agents will execute

a transformation on the user data or queries and pass the transformed data to the

server. The server handles the data processing and returns the query results to the

agents. After receiving the results from the server, the agents perform a reverse

transformation before returning the results to the user. We now proceed to describe

in details how each component of our system works.

• User

Users are position providers or query issuers. Users’ positions are assumed to

be unchanged until next update, that is, the location database at the service

provider keeps the latest position of each user. Users may have a list of

qualified agents, and they are assumed to have the ability to randomly choose

agents and perform some postprocessing.

Different policies can be adopted to protect information about a given user

from other users. One policy is a global ranking, which allows users with high

ranks to query location and movement information about users with equal or

lower ranks. Another policy is a group policy, under which users can query

location and movement information about users in the same group. A user

can be a member of multiple groups and hence he may have a list of group

IDs. In our system, we adopt the latter policy. Hence, in location databases,

users are represented by records of the form 〈uid, gids, loc, tup〉, where uid is

1We use the term ‘user’ in the discussion. In reality the described activities are carried out by
some client software residing at the user’s device.

115

the user ID, gids is a list of group IDs, and loc is the user’s location at time

tup.

• Agent

Agents are a critical component in our approach. An agent transforms the

data received from the users and sends them to the server. It also executes re-

verse transformations on the data obtained from the server and then forwards

them to the users.

The types of transformations supported by an agent includes the transfor-

mation of the user ID, the group IDs, and the user locations. Agents peri-

odically change their transformation functions in order to prevent the server

from analyzing the data from the same agent. Thus, agents need to main-

tain transformation tables for each type of data. Such tables store records of

the form 〈tid, fid, countid〉 and 〈tloc, floc, countloc〉, where t records the time

instant at which the transformation function f has started to be used, and

count is the number of objects being transformed by f .

There are three important features about our agents. First, for the security

purpose, agents are independent of the main server, which means they are

not under control of the server. Second, agents do not store any user data

and hence they are lightweight computers. Therefore, it is possible to verify

their code in order to provide assurances about their correct behavior. Third,

transformation functions for different types of data do not need to be changed

at the same time.

• Server

The server is responsible for data storage, maintenance and query processing.

It also maintains datasets transferred by various agents separately. Any index

116

for moving objects that supports efficient updates and queries can be adopted

to manage the datasets in the server.

The main advantage of our approach is that no single entity (m agents or server)

is able to track the movement of any user without colluding with other entities in

the system. Because each agent only collects a subset of the locations of each user

in the system, the level of trust required from each agent does not need to be high.

Moreover, the use of m agents allows multiple transformations to be applied to the

data by the same user. This makes it much harder for the server to keep track of

the relative distance among users. In essence, the server is only a computing engine

for the various agents.

Finally, we would like to mention that we focus on queries over moving objects

in this study. For queries over static objects (e.g. restaurants, gas stations), our

framework can be extended in the following way. We can store the static objects

in a separate database in the server since such objects may not have any concern

over location privacy, and then we use slightly modified query algorithms (which

will be explained later). Unless specified otherwise, we assume the data of interest

are moving objects in subsequent discussions.

5.3 Algorithms

In this section, we present the detailed algorithms for data transformation, queries

and updates in the LPP system.

5.3.1 Data Transformation

Data transformation includes transformation of user IDs, group IDs, user locations,

and queries. We address each of them respectively in the following sections.

117

ID Transformation

The main purpose of ID transformation is two-fold. First, we need to prevent the

server from identifying the same users through different agents. This can be easily

achieved by choosing different transformation functions for different agents. There

are no restrictions on the transformation function itself. It could be a simple en-

cryption. Also, we need to prevent the server from tracking the positions of the

same user from one agent. We thus propose to periodically change the transfor-

mation functions for each agent, which can assign different pseudo-IDs to the same

user who sends data at different time instants. A transformation table is then

maintained for each agent. As mentioned previously, the transformation table con-

sists of records of the form 〈tid, fid, countid〉. Algorithms for its maintenance are

covered in section 5.3.2.

Location Transformation

Just transforming IDs is not enough to provide location privacy for users because

some locations (e.g. homes) are strongly associated with user IDs and may thus

cause information leak. Therefore, we introduce the notion of location transforma-

tion, which is a crucial feature of our system.

The main challenge in the development of suitable functions for location trans-

formation is to keep the relative distance in each sub-dataset (the dataset obtained

from the same agent) unaltered by the transformation in order to support location

based services (e.g. nearest neighbor queries). Possible transformation functions

include scaling, rotating, translation, and their combinations. In our system, we

employ a combination of scaling, rotation and translation. We represent the trans-

formation function through its parameters denoted by the tuple [s, θ, (tx, ty)], where

s is the scaling factor, θ is the rotation angle, and tx, ty are the translation distance

118

along the x and y axes respectively.

However, the preservation of the relative distance among objects could disclose

the map topology. For example, if the server tries to connect objects close to

one another, it may be able to discover the joint distribution of objects and then

determine the road network. Figure 5.2 gives a simple example. Suppose that the

q’

O7
O8 O9

O4 O5 O6

O1 O2 O3

q

O’7

O’1

O’2

O’3

O’4

O’5

O’6
O’9

O’8

O’9O’6
O’1

O’2

O’3

O’5
O’4 O’7

O’8

Original Data

Single Transformation

Multiple Transformation

q’

Figure 5.2: An Example of Position Transformation

original data lie on a grid-like road network. If they are transformed by a single

transformation function, the server may discover the grid by connecting objects on

the same lines (dashed lines in the figure). To address such a problem, our approach

is to make the relative distance hard to be inferred. We thus adopt a strategy that

requires each agent to periodically change the location transformation function.

We refer to such strategy as multiple transformation. The bottom-right part of

Figure 5.2 shows the effect of the multiple transformation strategy. Assume that

objects O1, O3, O7 and O9 are transformed by a function f1; O2, O4, O5, O6 and

119

O8 are transformed by another function f2 that is only a little bit different from f1.

From the transformed objects, it is hard to discover the original data distribution.

We now proceed to present the generation of the multiple transformation. The

first transformation function can be an arbitrary one, while the following trans-

formation functions need to fulfill some constraints. The differences among the

transformed positions obtained by various transformation functions should be kept

within a small range. Such a constraint is crucial in order to provide good quality

answers to queries based on the relative distance among objects.

A simple strategy to satisfy the above constraints is to apply the translation

operations with different parameters to the first transformation function. Moreover,

to achieve efficient queries, multiple transformation should preserve the following

property.

Property 1 Let 〈x, y〉 be a point, 〈x0, y0〉 be the position obtained by applying the

initial transformation function to 〈x, y〉, and 〈x1, y1〉, 〈x2, y2〉,..., 〈xn−1, yn−1〉 be the

positions obtained from subsequent multiple transformation functions. The distance

between 〈x0, y0〉 and 〈xi, yi〉 (1 ≤ i ≤ n−1) must be less than or equal to a threshold

λ.

The detailed algorithm for multiple transformation is summarized in Figure 5.3.

The first step selects an initial transformation function [s0, θ0, (tx0, ty0)], sets its

counter count0 to 0, and stores the values in the transformation table. After a

period of time tint, we generate a new transformation function. We first randomly

choose a value d in (0, λ), and then randomly generate the parameter dx (the

translation distance of x axis) in the range of (−d, d). The parameter for the

y axis dy can be computed by dy = ±(d2 − d2
x)

1

2 . Then we insert a new tuple

〈t1, [s, θ, (tx0 +dx, ty0 +dy)], 0〉 in the transformation table. This process is repeated

every tint time interval. There are two things worth noting. First, each agent

120

Algorithm Multiple Transformation(Ttable, tc)

Input: Ttable is a transformation table, tc is current time

1. if (tc = 0) then

// select the first transformation function

2. randomly generate s0, θ0, tx0, ty0

3. insert 〈0, [s0, θ0, (tx0, ty0)], 0〉 into Ttable

4. else

5. randomly generate d in the range of (0, λ)

6. randomly generate dx in the range of (−d, d)

7. randomly select dy from {−(d2 − d2
x)

1

2 , (d2 − d2
x)

1

2}
8. insert 〈tc, [s0, θ0, (tx0 + dx, ty0 + dy)], 0〉 to Ttable
end Multiple Transformation.

Figure 5.3: Multiple Transformation Generation Algorithm

can choose his own λ. Second, the transformation table will not keep growing.

Functions that are no longer used by users will be removed during the update

operations (as addressed in Section 5.3.2).

Query Transformation

We now address how to transform queries. In the discussion, we focus on range

queries. A range query retrieves all objects the location of which falls within the

circular range q = (c(x, y), r) at time tq not prior to the current time, where c(x, y)

is the center and r is the radius of the query.

Due to the multiple transformation on the users’ positions, a query has to handle

data from different transformations. One solution is to transform the query using

all transformation functions, and then execute multiple queries. However, this is

not efficient and may disclose the relationship among transformation functions.

Therefore, we introduce the concept of super query, which covers all queries after

121

multiple transformations. For example, in Figure 5.2, a range query q is first

transformed into two queries (represented in the figure as dashed circles) by function

f1 and f2. Instead of answering these two queries, we propose answering a super

query q′ that covers the regions of these two queries. In this case, the query

efficiency mainly depends on the extra area covered by the super query. In the

following, we first describe how to generate the super query, and then analyze the

characteristics of the super query.

Given a query q = (c(x, y), r), we can obtain a set of transformed queries by

using the multiple transformation functions. Since the transformation functions

change with time, to compute a super query that tightly bounds all transformed

queries requires the checking of all the transformation functions and thus involves

extensive computations. We propose to use an easily-computed super query (de-

noted as qs) which is always a superset of the transformed queries unless the param-

eter λ changes. Specifically, qs is computed as: qs = (c(f0(x) , f0(y)), f0(r) + λ),

where f0 is the first (initial) transformation function. Figure 5.4 illustrates an

example, where the black point is the transformed query center by using the first

transformation function, white circles are positions after other transformations, and

the transformed radius of the query is r′.

The generation of the easily-computed super query is based on Property 1 (see

λ
λ

Super query

+r’

Figure 5.4: Super Query

122

previous section). Property 1 prevents the super query from growing arbitrarily

large. It guarantees that the radius of the super range query is at most λ larger

than that of any transformed query. It is true that the super query may incur some

overhead due to the search of a larger space compared to the query transformed

by any one of the transformation functions. To characterize the super query, we

define its false negative rate as the number of missing query answers divided by the

number of correct query answers, and define its false positive rate as the number

of false query answers divided by the number of correct query answers. Esstimates

for false positive and false negative rates are established by the following theorem.

Theorem 1 Let q = (c, r) be a query, and f0, f1, ..., fn−1 be a set of transfor-

mation functions, where f0 is the initial transformation function. Its super query

qs = (cs, rs) satisfies the following properties

(i) false negative rate fn is 0;

(ii) false positive rate fp is approximately 2λ/fi(r) (0 ≤ i ≤ n− 1).

Proof 2 We denote the query transformed by fi as qi = (ci, ri) (0 ≤ i ≤ n − 1).

We denote the correct answer set as A.

(i) To prove the false negative rate is 0, we need to prove that for any a ∈ A, a

can be captured by qs.

We know that a is transformed by one of the transformation functions, say fi

(0 ≤ i ≤ n − 1). Then, a can be captured by the query qi which is transformed by

the same transformation function.

According to Property 1, the distance between the centers of qi and q0 (trans-

formed by f0) is less than λ. According to the generation algorithm of the super

query, the center of q0 is the same as the center of qs, and the radius of the qs is

λ more than that of the qi. Consequently, we have rs− ri ≥ distance(cs, ci), which

indicates that qs covers qi. Hence a can be captured by qs.

123

(ii) Assume the data points are evenly distributed, then we may use the areas

to see how more points can be covered by the super query compared with the query

by a single transformation (i.e., the number of false positives is proportional to the

extra area).

The area Si covered by a query qi is πr2
i . The area Ss covered by the super

query is π(ri + λ)2. Then the percentage of increase in the area of the super query

is:

fp = Ss−Si

Si

=
π(ri+λ)2−πr2

i

πr2
i

= λ(2ri+λ)

r2
i

When λ≪ ri, fp ≃ 2λ/ri. 2

Theorem 1 demonstrates the correctness of the super query (no false negatives)

and points out a way to tune the performance of the query. Given a false positive

rate, we can choose a proper λ.

Note that from the users’ point of view, there will be no false positive because

the agent will filter the data rerturned by the server in order to eliminate the false

positives.

5.3.2 Updates

Generally, an update is interpreted as a deletion followed by an insertion. Figure 5.5

shows the detailed update algorithm.

To insert a tuple 〈uid, gids, loc, tup〉 of a user, three steps are executed. First,

the user randomly selects an agent and sends his information to the agent. Second,

the agent transforms the user ID, the group ID list and the location, and then

sends the transformed data to the server. During the transformation, the agents

will adjust the counters of the transformation functions, and remove the ones with

counters equal to 0 which will not be used in the future. Finally, the server tags

the data with the agent ID and stores them.

124

Algorithm Update

User:

Insertion:

1. randomly select an agent with ID aid

2. send 〈uid, gids, loc, tup,
′ i′〉 to the agent aid

Deletion:

1. send 〈uid, gids, loc, tup,
′ d′〉 to the agent aid

Agent:

1. receive 〈uid, gids, loc, tup, op〉 from the user

2. fid ← ID transformation function of time tup

3. (uid′, gids′)← fid(uid, gids)

4. floc ← location transformation function of time tup

5. loc′ ← floc(loc)

6. send 〈uid′, gids′, loc′, tup, op, aid〉 to the server

7. if (op ==′ i′) then // this is an insertion

8. countid ← countid + 1

9. countloc ← countloc + 1

10. else // this is a deletion

11. countid ← countid − 1

12. countloc ← countloc − 1

13. if (countloc is 0 and floc is not 1st function)

14. delete the tuple of floc from transformation table

15. invoke Multiple Transformation every tint

Server:

1. receive 〈uid′, gids′, loc′, tup, op, aid〉 from the agent

2. if (op ==′ i′) then // this is an insertion

3. insert 〈uid′, gids′, loc′, tup, aid〉
4. else // this is a deletion

5. delete 〈 uid′, gids′, loc′, tup, aid 〉

Figure 5.5: Update Algorithm

125

For the deletion, the user needs to submit his old information to the same

agent which handled the insertion of this information. The agent will check the

transformation table and look for the corresponding function at the update time.

Then, the agent will use this function to transform user information, and decrease

the counter of this function by one. If the counter is 0, the function (except for the

first one) will be removed from the transformation table. The remaining process

for deletion is similar to the insertion.

It is worth noticing that users can send deletion message to the old agents and

insertion message to the new agents.

Consider the example shown in Figure 5.6. Suppose there are four users O1,

O2, O3 and O4, and two agents A1 and A2. O1 and O3 select agent A1, and O2

and O4 select agent A2. The transformed data of O1 and O3 is O′
1 and O′

3, and the

transformed data of O2 and O4 is O′
2 and O′

4, respectively.

A2

2

O4O3

O1

O’3

O’2

O’4

O’1

User Space Agents Server Space

A1O

Figure 5.6: An Example of Update Operation

We also consider the situation when an object disappears accidentally without

being able to notify the server. The information of such objects will soon be

outdated. We define that an object is outdated if difference between its latest

update time and current time is larger than a given threshold. During each insertion

or deletion, we identify and delete outdated entries in accessed nodes.

126

5.3.3 Queries

Our model supports various types of queries, such as range queries and k nearest

neighbor queries. In the following, we outline the query execution strategies.

A2

1

O3

O4
q1

q2
O’1

O’3q’’1
q’1

O’2

O’4

O2

q’’2

q’2

Agents Server SpaceUser Space

A1
O

Figure 5.7: An Example of Query Operation

Range Query

A range query retrieves all objects whose location falls within the circular range

q = (c(x, y), r) at time tq not prior to the current time, where c(x, y) is the center

and r is the radius of the query.

As object positions are transformed in different ways through different agents,

we have to send a query to all agents. Each agent will generate and send a super

query to the server. After receiving the query answers from the server, the agent

needs to transform them back and to check whether they are the correct answers

to the original query. Finally, users will aggregate the partial results obtained from

the agents. If user ranks or group IDs are to be taken into by the query, one more

filtering step will be carried out by the server in order to prune unqualified answers.

Note that the server can filter the results based on transformed IDs before sending

any results to agents. Figure 5.8 shows the outline of the algorithm.

127

Algorithm Range Query

User:

1. for (i← 0) to (i < m) do

2. send 〈uid, gids, c(x, y), r〉 to the ith agent

Agent:

1. receive 〈uid, gids, c(x, y), r〉 from the user

2. gids′ ← fid(gids)

3. 〈c′(x′, y′), r′〉 ← 〈c(f0(x), f0(y)), f0(r) + λ〉
4. send 〈c′(x′, y′), r′, gids′, aid〉 to the server

Server:

1. receive 〈c′(x′, y′), r′, gids′, aid〉 from the agent

2. find users in the query range

3. remove users that not in any group of gids′

4. return query result 〈qresult〉 to agent aid

Agent:

1. receive the query result 〈qid′, qresult〉 from the server

2. qresult′ ← reverse transform qresult

3. for each result qr in qresult′ do

4. if (qr not an answer of the original query) then

5. remove qr from qresult′

6.return qresult′ to user uid

User:

1. for (i← 0) to (i < m) do

2. receive qresult from the ith agent

3. aggregate all the query results

Figure 5.8: Range Query Algorithm

Figure 5.7 gives a simple query example, where q1 is a current circular range

query and the dataset in Figure 5.6 is reused. We can see from the user space that

O3 and O4 are the query answers. Since O3 and O4 are transformed by different

128

agents, in order to capture their transformed positions in the server space, q1 needs

to be transformed through all agents. The transformation generates queries q′1 and

q′′1 . Then q′1 will return the answer O′
3 to agent A1, and q′′1 will return the answer

O′
4 to agent A2. Agents execute reverse transformations on the obtained answers

and send the final answer O3 and O4 back to the user.

If a range query about static objects that have no privacy (e.g., restaurants) is

submitted by the user, the algorithm in Figure 5.8 is simplified as follows. First,

the query does not contain any user group information. Second, the user only sends

it to any one of the agents. The agent does not need to do any transformation (i.e.,

steps 2 and 3 are skipped). The server then evaluates the query as usual, but this

time using the static object database. Finally, the agent simply passes back the

result obtained from the server to the user without doing any transformation.

K Nearest Neighbor Query

Given a query object with position (qx, qy), the k nearest neighbor query (kNN

query) retrieves k objects for which no other objects are nearer to the query object

at time tq not prior to the current time.

One way to compute this kind of query is to transform the position of the query

object using all the functions in the agent’s transformation table. And the server

needs to consider kNN for each transformed query position. For simplicity, we

propose to compute the kNN query by iteratively performing range queries with

an incrementally expanded search region until k answers are obtained.

The conversion from a kNN query to a range query is as follows. The first range

query q0 is centered at (qx, qy) with radius r0 = Dk, where Dk is the estimated dis-

tance between the query object and its k’th nearest neighbor; Dk can be estimated

129

by the equation [91]:

Dk =
2√
π



1−

√

1−
(

k

N

)
1

2





where N is the number of objects. The radius will be enlarged by rq = Dk/k

at each iteration in query processing, until k answers are found.

Like the range query, a kNN query also needs to be sent to all agents. The main

difference is that each agent needs to convert the kNN query to a range query first.

Then the agent transforms the range query and the expansion parameter rq, and

sends them to the server (the transformed query and rq are denoted as q′ and r′q

respectively). The server will keep processing the range query q′ with the radius

extended by r′q each time, and return the query result to the agent once it obtains

k qualified answers. Finally, each agent computes the correct distance, and sends

the distance along with the user IDs to the user that issued the query. The user

then combines these to find his true k nearest neighbors.

For example (see Figure 5.7), q2 is a nearest neighbor query, and q′2 and q′′2

are corresponding queries in the server space after the transformation. From q′2,

agent A1 gets a candidate nearest neighbor O′
1. From q′′2 , agent A2 gets a candidate

nearest neighbor O′
2. Then the user will receive two candidates O1 and O2. After

comparing the real distance between candidates and the query object, the user

finally obtain its nearest neighbor O1.

If a kNN query is executed over non-private static objects, the query just needs

to be submitted to one of the agent, which does not do any transformation and

forward the query to the server. The server executes the kNN query over the static

object database and returns the result to the user through the help of the agent.

If the query object of the kNN query is a private property (e.g., it is the current

location of the user), then the kNN query can be converted to a range query in

130

order to hide the actual position of the query object.

5.4 System Analysis

This section analyzes the privacy protection, communication costs and concurrent

processing in the LPP system.

5.4.1 Privacy

For the privacy analysis, we provide a formal model for better understanding and

evaluation of the LPP system. We focus on location breach rather than ID pro-

tection in the following discussion. Several assumptions are adopted in the model.

First, we assume that agents are trustable since they are lightweight systems and

may be easily verified. This assumption is commonly used in many other location

privacy protection methods (e.g. [13, 52]). Second, we assume that the server

knows the overall architecture of the LPP system, which means the server knows

from which agent an update or a query is sent. Based on these assumptions, we

define our privacy model, Spatial Γ−anonymity, as below.

Definition 5 Spatial Γ−anonymity

Given a user U , U is said to satisfy Spatial Γ−anonymity if the probability that

the server can infer the position of this user is less than or equal to Γ.

In the LPP system, a global privacy threshold Γ is guaranteed for all users by

properly setting system parameters. Given a privacy requirement, there could be

more than one applicable system settings. An important step of the system config-

uration is to define an analytical model of the privacy achieved by our approach. In

what follows, let ΓLPP denote the spatial anonymity achieved by the LPP system.

We describe how ΓLPP is formulated.

131

First, let us review the multiple transformation strategy. At each agent, the

first transformation function is randomly selected and the following transformation

functions are developed from the first function by using λ. We define Γtri
as the

probability that the first transformation function of agent i is disclosed, and Γλi

as the probability that the λ value of agent i is disclosed. To guess one location

of a user, the server needs to know the reverse transformation function of the

corresponding agent, of which the probability is Γtri
· Γλi

. Then for any user, we

have ΓLPP as follows:

ΓLPP = maxm
i=1(Γtri

· Γλi
) (5.1)

where m is the number of agents. We now proceed to present how to obtain Γtr

and Γλ and analyze possible threats in the LPP system (for convenience, we drop

the subscript i from Γtri
and Γλi

). We will mainly introduce two types of privacy

issues: privacy against location discovery and privacy against pattern discovery.

Γtr largely determines the privacy against location discovery since the data

transformation is dominated by the first transformation function. To compute

Γtr, we classify the servers into three categories: (i) Servers without any prior

knowledge; (ii) Servers with weak prior knowledge; and (iii) Servers with strong

prior knowledge.

We denote the user’s original position as (x, y). After applying a combination

of translation, scaling and rotation (i.e., the first transformation function), we

obtain the transformed position (x′, y′). The transformation process is formalized

as follows:











x′ = Rθ(dx + s · x)

y′ = Rθ(dy + s · y)
(5.2)

132

where Rθ denotes the rotation (θ is the angle), dx and dy are translation parameters,

and s is the scaling parameter. The original domains of θ, d and s are denoted as

R0, D0 and S0.

If the server does not have any prior knowledge, and in particular it does not

even know the type of applied transformation, it is unable to determine (x, y) from

(x′, y′) because the right side of the equation 5.2 is totally unknown to it. In this

case, the probability Γtr that the server can infer the user’s location at this agent

is close to 0, which means that user locations have the maximum degree of privacy.

If the server has some weak prior knowledge, for example it knows the type

of transformation and some constraints on the application, the original domain

of the parameter can be narrowed to some extent. Let R, D and S denote the

new domains. To find the original location (x, y), the server needs to try all the

combinations of the three transformation parameters in the new domains. Here,

Γtr represents an estimate of the possibility of determining the original position. If

the values in the domain are discrete, Γtr can be evaluated by equation 5.3, where

|R|, |D| and |S| are the cardinalities of the domains.

Γtr =
1

|R| · |D| · |S| (5.3)

If the values in the domain are continuous, Γtr can be estimated by the volume of the

three domains. Given the range of each domain to be R = [R−, R+], D = [D−, D+]

and S = [S−, S+], and the granularity that an application requires to be G, we

measure Γtr by equation 5.4.

Γtr =
1

(|R
+−R−|

G
+ 1)(|D

+−D−|
G

+ 1)(|S
+−S−|

G
+ 1)

(5.4)

133

Just having the knowledge of the first transformation function, the server can

only infer that the user location is within a certain circle with radius λ. λ is the

value that indicates how much a transformed location will deviate from the one

strictly preserving the relative distance. Therefore, we define Γλ in equation 5.5.

The larger the λ, the harder it is to discover the real location of the user, and

privacy is thus better protected.

Γλ =
1

πλ2/G
(5.5)

On the other hand, λ also protects privacy against pattern discovery. If

the server has strong prior knowledge, such information may not only provide in-

formation on parameter constraints of the transformation functions, but may also

indicate the pattern of distribution of users’ locations. However, the identifica-

tion of such patterns is still a difficult problem for both statisticians and computer

scientists [19, 33], and after using our proposed multiple transformation strategy,

the problem could become even harder as illustrated in Figure 5.9. Figure 5.9(a)

shows the original data (about 1K user locations), from which we can clearly ob-

serve the road topology. Figure 5.9(b) shows the transformed data from one agent

(3 agents in total), which is transformed by the combination of scaling, rotation

and translation. We can see that after transformation, it is hard to identify the

pattern; only some dense regions can be seen. To have better understanding of this

advantage in the LPP system, let us look at the following example. Given that the

server might use publicly available information (e.g. home addresses), to find out

the corresponding person, the server first needs to map the home address to the

transformed space, i.e., the server needs to find out the transformed home address,

which is a very hard task as discussed above.

134

(a) Original Data (b) Transformed Data

Figure 5.9: Original Data vs. Transformed Data

To sum up, Γtr gives the probability that the server discover the single trans-

formation function at each agent; and Γtr · Γλ gives the probability that the server

discover the multiple transformation strategy. Then, the final ΓLPP is the maxi-

mum value of Γtr · Γλ of m agents, which is the probability that the server knows

about data transformation at any agent. We would like to mention that ΓLPP is

generally very small and can satisfy most privacy requirements. To have some idea

of how small this ΓLPP could be, let us look at the following example. Suppose

at the agent with the most prior knowledge, the rotation domain has been con-

strained within 0 degree to 60 degree, the translation domain is [0..10], the scaling

value is chosen from 1 to 3, πλ2 is 10, and the granularity G is 10−6. Thus Γtr

is 5.6 × 10−10 and Γλ is 0.1, and consequently ΓLPP is about only 6 × 10−11. On

the other hand, we can also see that by adjusting domain size or λ value, the LPP

system can achieve a given privacy requirement. The detailed configuration is left

to the future work.

Another common threat in network services is eavesdropping during communi-

cations. However, we do not consider it in our paper since this type of threat can

be mitigated or avoided by data encryption.

135

5.4.2 Communication Cost

In our system, there are two types of operations: update and query operations. An

update needs one round of communication between a user (agent) and an agent

(server). Its communication cost is independent of the number of agents. A range

query needs one round between a user and m agents, and a server and the m agents.

A k nearest neighbor query may need several rounds of communications between

a server and the m agents because agents need to inform the server if the received

results contain enough answers. The notification messages sent to the server are

very short compared to the entire query result set, and hence we do not consider

their cost here. Suppose the message sizes of a query and a query result set are

Sq and Sr respectively. The subquery result size is Sr in the worst case. Then the

communication cost of a query is 2m(Sq + Sr). Since m determines the privacy

level (m = 1 i.e. no privacy), the larger the value of m, the higher the privacy level

would be. Therefore, a trade-off exists between the communication costs and the

privacy level.

The trade-off issues between privacy and communication costs have been widely

studied in context of network-level privacy protection. In particular, techniques

have been devised to enhance network privacy by increasing the communication

costs. For example, in [12, 73], in order to conceal the IP address, network packets

have to go through m agents before reaching the receiver. In this case, a complexity

of O(m) for communication costs is required.

136

5.5 Performance Studies

5.5.1 Experimental Settings

All the experiments were run on a 2.6G Pentium IV desktop with 1Gbyte of mem-

ory. The page size is 4K. At the server side we employ the Bx-tree(H-curve) (pre-

sented in Chapter 3) to index moving objects. The original range query algorithm

for the Bx-tree only supports rectangle ranges. We modified it to support the circle

ranges by executing a regular rectangle range query which tightly covers the circle

range, and then filtering the extra results. We compare both query and update

performance of our model against the pure Bx-tree. Performance is measured in

terms of disk page I/O.

We use the same synthetic datasets as used in the Chapter 3. The space domain

is 1000 × 1000. In most experiments, we use uniform data, where users’ positions

are chosen randomly. The maximum interval between two successive updates by

a user is 120 time units. Unless noted otherwise, we create the initial dataset for

all users at time 0, and then evaluate the system performance after one maximum

update interval during which each user has issued at least one update.

Parameter Setting

Page size 4K

Buffer pages 50

Number of agents 2, 3, 4, 5, ... , 20

λ/f(r) 0.01, ..., 0.05, ... , 0.1

Time interval of changing function 0, 5, 10, 15, ... , 50

Max update interval 120

Query size (diameter) 10, ..., 50, ... , 100

Number of neighbors, k 1, 10, 20, 30, 40, 50

Number of queries 100

Data size 100K, ..., 1M

Data distribution uniform, network-based

Table 5.1: Parameters and Their Settings

137

The parameters used in the experiments are summarized in Table 5.1, where

values in bold denote the default values.

5.5.2 Range Queries

Impact of Super Queries

The notion of super query is an important component of our approach with respect

to the protection of the map topology. However, super queries may introduce some

false positives that may adversely affect performance. In the experiments reported

here, we thus investigate the performance impact of the super query by examining

the false positive rate. Recall that the false positive rate is the number of query

answers filtered by the agent divided by the number of query answers received from

the server. The smaller the false positive rate, the less additional work the server

and the agent have to carry out.

First, we use the same size of range queries in a 100K dataset, and test the false

positive rate when varying the values of λ. Figure 5.10 shows the results, where

0%

2%

4%

6%

8%

10%

12%

14%

16%

0
 0.02
 0.04
 0.06
 0.08
 0.1

Lambda/f(r)

F
al

se
 p

os
iti

ve
 r

at
e

LPP

Figure 5.10: False Positive Rate for Varying λ

138

the x-axis is the rate of λ/f(r) (f(r) is the query radius after transformation). As

expected, the false positive rate increases linearly with λ/f(r); a larger λ results

in a larger searching space.

Then, we fix the value of λ/f(r) to 0.05 and vary the query range diameter

from 10 to 100. Figure 5.11 shows the corresponding false positive rate. We can

observe that the false positive rate decreases when the query size increases. As we

know, the higher the value of λ is, the more obscure the transformed data pattern

would be. This indicates that the LPP system provides higher privacy and with

smaller performance overhead when the query size is large.

0%

2%

4%

6%

8%

10%

12%

10
 20
 30
 40
 50
 60
 70
 80
 90
 100

Query size (diameter)

F
al

se
 p

os
iti

ve
 r

at
e

LPP

Figure 5.11: False Positive Rate for Varying Query Size

Next, we vary the time interval tint between each pair of consecutive transfor-

mation functions. As shown in Figure 5.12(a), the false positive rate for different

tint is almost the same. The reason is that the super query is computed based on

the first transformation function and the value of λ, and hence the frequency of the

transformation function changes does not affect performance.

We also evaluate the false positive rate for values of data size ranging from 100K

to 1M. Figure 5.12(b) shows that the false positive rate oscillates around 7% for

139

0%

1%

2%

3%

4%

5%

6%

7%

8%

0
 5
 10
 15
 20
 25
 30
 35
 40
 45
 50

Time interval of changing functions

F
al

se
 p

os
iti

ve
 r

at
e

LPP

(a) Varying Time Interval

0%

1%

2%

3%

4%

5%

6%

7%

8%

9%

100K
 300K
 500K
 700K
 900K

Number of users

F
al

se
 p

os
iti

ve
 r

at
e

LPP

(b) Varying the Number of Users

Figure 5.12: False Positive Rate

different sizes of dataset. This again shows that the false positive rate is dominated

by the rate of λ/f(r) as stated in Theorem 1.

Impact of Data sizes

In this set of experiments, we vary data sizes and analyze the range query perfor-

mance of the single Bx-tree and two versions of our model. “LPP (superquery)” de-

notes the version that uses the concept of the super query; “LPP (non-superquery)”

denotes the version that uses the single transformation. The reason for comparing

these two versions is to investigate the possible performance degradation incurred

by the super query.

Figure 5.13 compares the query cost of the Bx-tree and the sum of query cost of

all agents in our model. Based on the results reported in the figure, we can make the

following observations. First, the performance of the approach based on the super

query is quite similar to that of the approach based on the single transformation.

The difference between them is less than 3%, which indicates that the use of the

super query provides increased privacy protection without compromising query

140

0

10

20

30

40

50

60

100K
 300K
 500K
 700K
 900K

Number of users

T
ot

al
 q

ue
ry

 I/
O

s

Bx-tree (H-curve)

LPP (Superquery)

LPP (Non-superquery)

Figure 5.13: Impact of Data Sizes on Range Query Performance

performance. This is an important experimental result that validates a key idea of

our approach. In the experiments reported in what follows, we thus only consider

the version of our techniques that uses the super query. Second, given m agents,

the total query cost of our approach is sometimes a little bit higher but not m times

more than that of the Bx-tree. This is because one query will be sent to all agents

according to our schema, and the server needs to compute the transformed queries

from all agents. The cost of computing a query from an agent is less than that of

evaluating a query in the single Bx-tree since the query from an agent is executed

on a smaller dataset that maintains transformed data from the same agent.

Although our model may incur a little bit higher total query costs, the query

response time of our model could be better given that the server supports multi-

tasks or there are multiple servers; it can run multiple queries in parallel since

each sub-dataset is relatively independent. As shown in Figure 5.14, the query

cost corresponding to each agent is much smaller than that of the Bx-tree, and

the difference increases with growing data size. This behavior is not surprising. As

mentioned previously, the cost to compute a query from an agent is smaller because

141

0

5

10

15

20

25

30

100K
 300K
 500K
 700K
 900K

Number of users

S
ub

-q
ue

ry
 I/

O
s

Bx-tree (H-curve)

LPP

Figure 5.14: Query Cost of One Agent with Varying the Data Size

it is executed on a small sub-dataset.

Impact of Number of Agents

We next study the impact the number of agents has on the query performance.

The Bx-tree is used as the baseline for comparison.

Figure 5.15 shows the total query cost as a function of the number of agents. We

0

5

10

15

20

25

2
 4
 6
 8
 10

Number of agents

T
ot

al
 q

ue
ry

 I/
O

s

Bx-tree (H-curve)

LPP

Figure 5.15: Impact of Number of Agents on Range Query Performance

142

observe that, for our model, the total query I/O cost increases with the number of

agents. The underlying causation of this behavior is more complicated than what

it looks, which is addressed in the following. The total query cost is determined

by two factors: the query cost of one agent and the number of agents. When

the number of agents increases, the query cost for one agent (i.e. sub-query cost)

decreases due to the decreased dataset size with respect to one agent. However,

the sub-query cost does not decrease as fast as the increase of the number of agents

(as can be seen from Figure 5.16). Therefore, the resultant total query cost keeps

increasing.

0

1

2

3

4

5

6

2
 4
 6
 8
 10

Number of agents

S
ub

-q
ue

ry
 I/

O
s

Bx-tree (H-curve)

LPP

Figure 5.16: Query Cost of One Agent for varying number of agents

Figure 5.16 also indicates that our model may achieve better response time

compared with the Bx-tree. This is because queries in our model may have more

potentials of being executed in parallel.

In the following experiments, we explore the combined effect of the number of

agents and data sizes. Figure 5.17 shows the results in the 100K and 500K dataset

by using up to 20 agents. We can observe that the performance of 100K and 500K

dataset demonstrates similar patterns.

143

0

10

20

30

40

50

60

70

2
 4
 6
 8
 10

Number of agents

T
ot

al
 q

ue
ry

 I/
O

s

Bx-tree (H-curve) (100K)

Bx-tree (H-curve) (500K)

LPP (100K)

LPP (500K)

Figure 5.17: Impact of Number of Agents and Data Sizes on Range Query Perfor-
mance

Impact of Query Sizes

In this section, we analyze the effect of query sizes by varying the query diameter

from 10 to 100 for a dataset of size 100K. Figure 5.18 shows that the query costs

of both Bx-tree and the LPP system increase with the query size. The reason is

straightforward. Larger query ranges contain more objects and hence lead to more

0

2

4

6

8

10

12

14

16

18

20

10
 20
 30
 40
 50
 60
 70
 80
 90
 100

Query size (diameter)

T
ot

al
 q

ue
ry

 I/
O

s

Bx-tree (H-curve)

LPP

Figure 5.18: Impact of Query Size on Range Query Performance

144

tree node accesses.

Figure 5.19 compares the sub-query cost of each agent with that of the Bx-tree,

which shows the similar performance patterns as that of previous experiments.

0

2

4

6

8

10

12

10
 20
 30
 40
 50
 60
 70
 80
 90
 100

Query size (diameter)

S
ub

-q
ue

ry
 I/

O
s

Bx-tree (H-curve)

LPP

Figure 5.19: Query Cost of One Agent for Varying the Query Size

Impact of Skewed Data

To analyze the query performance on skewed data, we use network-based datasets

with various destinations. The fewer the number of destinations, the more skewed

the data is. Figure 5.20 shows the experiment results. We can observe that the

difference of I/O costs between the Bx-tree and the LPP system keeps almost

constant for different skewed data. The main reason could be that the performance

of the Bx-tree is nearly independent of the data skewness (as examined in Chapter

3). Therefore, the performance of the sub-queries sent by the agents are also not

affected much by data skewness.

145

0

2

4

6

8

10

12

14

16

18

20

50
 100
 200
 300
 Uniform

Number of destinations

T
ot

al
 q

ue
ry

 I/
O

s

Bx-tree (H-curve)

LPP

Figure 5.20: Impact of Skewed Data on Range Query Performance

5.5.3 K Nearest Neighbor Query

We proceed to evaluate the efficiency of kNN queries. Because the kNN query is

treated as an incrementally expanded range queries, the difference of the query

cost at the server side between the Bx-tree and the LPP system exhibits a behavior

similar to that of range queries when considering the effect of the super query, data

sizes, number of agents and so forth. Here, we present a representative result which

is the impact of the value of k, that is, the number of required nearest neighbors.

As shown in Figure 5.21(a), the total query costs increase for both the Bx-tree

and the LPP system as k increases. The LPP system has higher query cost because

the server must execute a kNN query in each sub-dataset corresponding to each

agent, and the search range would be bigger for the same k in a smaller dataset.

Next, we evaluate the communication cost between the server and the agents.

Figure 5.21 shows the total number of tuples sent by the server. Compared to the

Bx-tree, the LPP system has higher communication cost mainly because each agent

needs to obtain k answers to ensure that the aggregate final result is correct. Given

m agents, the communication cost of the LPP system is about m times higher than

146

0

2

4

6

8

10

12

14

16

1
 10
 20
 30
 40
 50

k

T
ot

al
 q

ue
ry

 I/
O

s

Bx-tree (H-curve)

LPP

(a) I/O Cost

0

50

100

150

200

250

1
 10
 20
 30
 40
 50

k

N
um

be
r

of
 r

es
ul

t t
up

le
s

Bx-tree (H-curve)

LPP

(b) Communication Cost

Figure 5.21: Impact of k on kNN Query Performance

that of the Bx-tree. In addition, we also note that there may be multiple rounds of

communications between the server and the agents since the agents need to inform

the server whether the received result sets contain enough final answers. However,

the notification message is extremely small (e.g. one bit would be enough to tell the

server to continue querying or stop querying); and in our experiments, we observe

that most kNN queries (more than 90%) only require one round of communication,

and very few queries require two rounds. Therefore, the cost of sending notification

messages can be ignored compared to the cost of sending query result sets.

5.5.4 Update

We now compare the average update cost (amortized over insertion and deletion)

of our model against the Bx-tree.

147

Impact of Data Sizes

First we examine the update performance with respect to the dataset size. We

compute the average update cost after the maximum update interval of 120 time

units. From Figure 5.22, we can see that our model achieves same performance as

the Bx-tree. The reason is that each update in the LPP system is sent to only one

0

0.5

1

1.5

2

2.5

100K
 300K
 500K
 700K
 900K

Number of users

U
pd

at
e

I/O
s

Bx-tree (H-curve)

LPP

Figure 5.22: Impact of Data Sizes on Update Performance

agent. That means each update affects only one sub-dataset stored by the server,

i.e., only one Bx-tree corresponding to that sub-dataset needs to be updated.

Impact of the Number of Agents

In this section, we investigate the update performance of our model when using

varying values for the number of agents in the system. Figure 5.23 shows the

update I/O cost. Observe that the update cost of our model is still the same as

that of the Bx-tree. With the increase of the number of agents, the dataset of each

agent becomes smaller. Although an update executed in a smaller dataset in the

LPP system is expected to be more efficient, we cannot see this difference from

the figure since the Bx-tree already achieves near minimum update cost which is

148

0

0.5

1

1.5

2

2.5

2
 4
 6
 8
 10
 12
 14
 16
 18
 20

Number of agents

U
pd

at
e

I/O
s

Bx-tree (H-curve)

LPP

Figure 5.23: Effect of Number of Agents on Update Performance

corresponding to one read and one write on the leaf node containing the updated

object.

Impact of Skewed Data

Finally, we evaluate the update performance in the skewed datasets that we used

in the experiments on queries. As shown in the Figure 5.24, both the Bx-tree and

the LPP system have a performance similar to that of the uniform datasets. This

is becase the update cost of the Bx-tree (or the small Bx-trees in the LPP system)

is only subject to the height of the tree and almost independent of other factors.

5.6 Summary

In this chapter, we propose a novel system framework to address the problems

of location privacy in moving-object environments. Our framework achieves both

high assurance privacy and good performance. Specifically, our framework uses

a number of agents in-between users and servers. Agents are lightweight systems

149

0

0.5

1

1.5

2

2.5

50
 100
 200
 300
 Uniform

Number of destinations

U
pd

at
e

I/O
s

Bx-tree (H-curve)

LPP

Figure 5.24: Effect of Data Distribution on Update Performance

which do not store any user information, but only perform data transformation.

In this way, our system can prevent servers from knowing exact locations of users,

and even the map topology. We have also developed metrics to analyze the degree

of privacy protection.

We have carried out extensive performance studies to assess the impact of var-

ious parameters. We have tested our technique on both uniform and skewed data,

and have analyzed the impact of various parameters, such as data size, number

of agents and query sizes. We have also compared the performance of our tech-

nique with the Bx-tree without any privacy protection. The results show that our

approach has a little higher query cost but the same update performance as the

Bx-tree.

150

CHAPTER 6

Adapting Relational Database Engine to

Accommodate Moving Objects

Past few years have witnessed considerable research efforts on moving objects

databases. These previous works so far have been emphasizing on different aspects

including data modelling, novel indexing, efficient query processing, etc. Whereas

from a practical perspective, a real system supporting moving objects storage and

retrieval needs to take into account all these aspects and to integrate them in a

systematic way. There are two approaches to implementing an MOD system. One,

a specialized system could be developed from scratch. Such a system is lean and ef-

ficient. However, it may offer less functionalities that are required in conventional

business processing, and such approach is time consuming and costly. Two, an

existing DBMS is extended to provide the required capability for handling spatio-

temporal data and processing. Such an approach is less costly and its existing core

database engine can continue to serve the conventional business processing, and

151

complement the MOD applications. This is in line with the approach being taken

in the commercial DBMS products where different cartridges are built on top of

the data server for different applications. However, such an approach may be tricky

as any major alteration to the data server may cause many of its core components

to be affected. Further, it may not yield the best performance since riding on

top of already bulky system offers less room for optimization. In this chapter, we

will discuss our implementation for moving objects on top of a popular relational

database system MySQL. The Bx-tree is a B+-tree index, and it could even be

implemented as a stored procedure in existing DBMS without touching the code.

Although we have the source code of the MySQL, we keep the modification to the

minimal. In our implementation, moving object data is transformed and stored

directly on MySQL, and queries are transformed into standard SQL statements

which are efficiently processed in the relational engine. Most importantly, all these

are achieved neatly and independently without infiltrating into the MySQL core.

The rest of the chapter is organized as follows. Section 6.1 presents the system

architecture with MySQL as the underling relational engine. Section 6.2 concretizes

the integration of the Bx-tree to the MySQL. Section 6.3 shows the system perfor-

mance. Finally, Section 6.4 concludes.

6.1 System Overview

This section gives an overview of our system – the SpADE system which stands

for “Spatio-temporal Autonomic Database Engine for managing moving objects”.

Figure 6.1 demonstrates the system architecture.

Our proposal assumes a client/server architecture, within which moving objects

are regarded as mobile clients and data server as the server respectively. Non-static

152

Figure 6.1: System Architecture

entities like vehicles and pedestrians are abstracted as moving objects. They obtain

positioning information with GPS (Global Positioning System) receivers installed,

and are able to communicate via wireless network with the server, sending queries

to and receiving results from it. The server is responsible for managing moving

object information and processing queries from mobile users. By employing the

industry standard JDBC for the data access, our server can also support providing

services for other application interfaces such as the Web.

6.1.1 The SpADE Client

In the SpADE system, each client has a mobile computing device (e.g., PDA or

high-end mobile phone) that is equipped with the SpADE client software and a GPS

receiver. Thus, all these moving objects are able to report their latest velocity and

position information to the SpADE server. Specifically, a SpADE client includes

the following four components:

153

• GPS Service Module is responsible for receiving and parsing the GPS infor-

mation. Therefore, each moving object can know its own latest velocity and

position information.

• Map Service Module is responsible for displaying moving objects on a city

map, listening to all events from the user, and downloading the latest city

map from the SpADE server.

• Query Service Module is in charge of constructing the spatial-temporal queries

according to the user’s input or pen event on the map.

• Communication Manager listens to all network messages occurring between

the client and the server and then dispatches them to the corresponding

service module for further processing.

6.1.2 The SpADE Server

In general, the SpADE server is responsible for storing the velocity and position

data of all moving objects and processing spatial-temporal queries issued by clients.

Specifically, the SpADE server comprises the following five modules:

• Communication Manager receives query messages or GPS data updating re-

quests from the clients, dispatches them to other modules, and returns query

results to the client user.

• Map Service Module maintains the map data displayed at the client side and

notifies all clients to update their map if a new map is provided.

• MOD (Moving Object Data) Service Module is used to define the motion pat-

tern of the moving objects for different moving objects with different motion

patterns. A distinguishing feature of the SpADE system is that it allows users

154

to plug their preferred motion patterns to the server for precisely predicting

the future position of the moving objects. This makes the SpADE system

very flexible in terms of customizing the most suitable motion pattern for a

particular moving object.

• Index Service Module is responsible for constructing and maintaining the in-

dices used for processing spatial-temporal queries. Similar to the MOD ser-

vice module, a user can add a particular index structure into the index service

module for the motion pattern customized by the user. In our implementa-

tion, we adopt the Bx-tree.

• MySQL Database is used to store index and query the velocity and position

data of all moving objects. It contains three types of tables, namely user table,

moving object table and static object table. The user table stores all users

registered into the SpADE system, which is used to evaluate the validation

of moving clients; the moving object table stores moving object information

(e.g. positions and velocities); and the static object table stores the road

network information as well as buildings in the city.

6.1.3 Client/Server Protocols in SpADE

In our system, each SpADE client accesses the SpADE server via the standard

socket protocol. Note that the usual java package (e.g. java.sql) cannot be used

to develop the client program for the purpose of interacting with the server in a

wireless and mobile environment.

Information from the clients such as register request, login request, update and

query request, is represented as a simple byte stream and parsed by the SpADE

server.

155

6.2 System Implementation

In this section, we describe the implementation of the Bx-tree on top of the MySQL.

We first briefly review the Bx-tree (details can be found in Chapter 3), and then

discuss the implementation issues occurring in the indexing and query phases re-

spectively.

6.2.1 Data Modelling and the Bx-tree

We model a moving object by O = (−→x ,−→v), a position and a velocity respectively.

Every moving object updates its information to the data server when it feels nec-

essary at time tu.

To harness the widely available and efficient index B+-tree, the first task is to

linearize the representation of the locations of the moving objects. This is done

by means of a space-filling curve, which enumerates every point in the discrete,

multi-dimensional space. Attractive space-filling curves such as the Peano curve

(or Z-curve), which we use in our system, preserve proximity, meaning that points

close in the multidimensional space tend to be close in the one-dimensional space

obtained by the curve [58].

Since the B+-tree with space-filling curves only works well in static databases, in

order to maintain the proximity preserving property in moving object environments,

the moving objects need to be differentiated based on their timestamps. Therefore,

the index is effectively partitioned by placing entries in partitions based on their

update time. Specifically, the time axis is partitioned into intervals of duration

∆tmu, and then each such interval is further partitioned into n equal-length sub-

intervals, termed phases. Here ∆tmu is the maximum duration in-between two

updates of any object location.

156

Then, updates in the same phase are mapped to the same so-called label times-

tamp. For an object with label timestamp tlab, its position at tlab is computed

according to its position and velocity at tu. This future position is then trans-

formed to a 1-dimensional value by applying the space-filling curve.

Finally, an object O updated at tu is represented by a value Bxvalue(O, tu):

Bxvalue(O, tu) = [index partition]2 ⊕ [x rep]2 (6.1)

where index partition is an index partition determined by the update time, x rep

is obtained using a space-filling curve, [x]2 denotes the binary value of x, and ⊕

denotes concatenation. And the two binary value are computed as follows:

index partition = (tlab/(∆tmu/n)− 1) mod (n + 1)

x rep = x value(−→x +−→v · (tlab − tu))

6.2.2 Implementation Issues

In the implementation, we have the following technical issues to resolve.

Relational Table Definition

First, we need to define for moving objects a proper relational table that can

be indexed by the B+-tree so that we can exploit its power when manipulating

moving object information. For this purpose, we add a field Bx V alue (computed

by equation 6.1) into the table of moving object and make it as the primary key

indexed by the B+-tree. A simple relation scheme is demonstrated in Table 6.2.2

with concise explanations. Extra fields can also be defined according to the practical

needs in a specific application.

In our system, there are two such tables. One is to store the latest update

157

Field Type Note

id integer Object identifier

Bx V alue∗ long Value of formula 6.1

pos x double Longitude of last update

pos y double Latitude of last update

vel x double Longitude speed of last update

vel y double Latitude speed of last update

time long Update time

Table 6.1: Moving Object Relation Scheme

information of the moving objects, called the current information table. Note that

this table is indexed by the Bx V alue obtained according to the Bx-tree rationale.

The other table simply keeps all the historical information, called the historical

information table.

Time Synchronization and Representation

The next important issue is to synchronize time between clients and the server

because the time displayed in users’ mobile devices may be a little different from

the server time. In our system, we always treat the server time as the standard

time. All the messages received from clients are stamped with the current server

time. For example, an incoming update is assigned with the current server time

and then stored in the table. Moreover, the server will notify the clients to adjust

their local time if the time difference between them is higher than a threshold.

For the representation, we use long type for time by converting the real time

(date and time) into a long value. Besides, as the Bx-tree uses a periodic time

representation for the index partition, we also need to “roll up” the real time

periodically in our system. In other words, the server need to transfer the real time

to the label timestamp tlab periodically.

158

Space Extent Normalization

Another issue is the map extent and space-filling curve transformation. For brevity

and computation simplicity, we usually assume a unit data space when using a

space-filling curve to represent moving object positions in the Bx-tree. But this is

not the case when we turn to real applications where geographical maps are used.

To deal with this, we add a coordinate normalization module in front of the Bx-tree

implementation. When geo-related information is received from any moving object,

the relevant geographic coordinates are transformed into the ones acceptable by the

space-filling curves, and then used to generate Bx values.

Processing Spatial-Temporal Queries

In the SpADE system, the typical process of executing a spatial-temporal query will

take several steps involving different system components, as shown in Figure 6.2.

Module

JDBC Driver

Query Parameters

MOD Service ModuleModule

Query Service

Map Service Module

Communication Manager

MySQL Query Engine

Index Service

Internal Request

Result Package

Client Server

VisualizationUser Action

Query Parameters

Records

Query Request

SQL StatementsRecords

Data

Record Set

Database

Figure 6.2: Execution of a Spatial-temporal Query

1. On the client side, a user first selects the query type (e.g. kNN or range

query). The map service module then obtains the query parameters by lis-

159

tening to the user’s pen event on the map.

2. Then, the query service module constructs the user query according to the

query parameters and sends the query request to the server via the commu-

nication component.

3. Once receiving the query message, the server side communication part ex-

tracts query parameters and passes them to the MOD service module.

4. The MOD service module composes SQL statements according to the query

parameters and the Bx-tree rationale, and passes the SQL statements to the

MySQL query engine via the JDBC connection.

5. Inside the MySQL, the index established will be exploited to retrieve data

requested. The data will be returned to MOD service module via the JDBC

connection.

6. Along the reversed direction, the data will be sent back to the client with

necessary packing/unpacking operations inserting/extracting corresponding

controlling bytes.

7. Finally, when the map service module on client side receives the desired mov-

ing objects with the velocity and position information, it can visualize the

results on the map according to the user’s preference specified beforehand.

We now proceed to elaborate the query processing in steps 4 and 5 which in-

volves the interaction with the MySQL database. We first address the current and

near-future queries which are directly supported by the Bx-tree. As described in

[36], in the Bx-tree, a range query in the 2-dimensional space is first enlarged and

then transformed into a set of range queries in the 1-dimensional space. Each sub-

query corresponds to a sequence of Bx V alues, which are used to locate records in

160

the MySQL database. Specifically, our implementation expresses the sub-queries

as the traditional SQL statements by using the start (end) point of the sequence of

Bx V alues as the lower (upper) bound for the searching. It is worth noting that we

do not need multiple SQL statements for sub-queries since too frequent interactions

with the MySQL query engine may result in poor query performance. Instead, we

combine all the query conditions into one SQL statement. For example, suppose

m sub-queries are represented by start and end points of their corresponding se-

quences, i.e., [〈subst
0 , subed

0 〉, 〈subst
1 , subed

1 〉, ..., 〈subst
m, subed

m〉] (“st” denotes the start

point, “ed” denotes the end point), and the data table name is MO, the resultant

SQL statement is the following:

SELECT ∗

FROM MO

WHERE (Bx V alue ≥ subst
0 AND Bx V alue ≤ subed

0)

OR (Bx V alue ≥ subst
1 AND Bx V alue ≤ subed

1)

OR ...

OR (Bx V alue ≥ subst
m AND Bx V alue ≤ subed

m);

To further improve the query efficiency, we propose to combine sub-queries with

Bx V alues close to one another. The two sub-queries are considered to be close

if the interval between their sequence is less than a given threshold. According to

our experiments, this strategy can greatly reduce the total number of conditions in

the SQL statements and achieve better query performance.

The retrieved objects are only candidates of the final results. They will be

further examined before correct ones are returned to the user. Other types of

queries like the k nearest neighbor queries and the continuous queries can be easily

solved by the algorithms of the range queries with minor modifications.

161

From the above discussion, we can clearly see that our implementation of query

processing is non-intrusive, and such implementation could easily be ported to other

backends or platforms.

Updating Spatial-Temporal Data

To query moving objects, the velocity and position of all moving objects must be

kept fresh. The SpADE system provides two ways to update a moving object’s

spatial-temporal information.

1. Users are able to set their preferred update frequency to determine how often

to update their velocity and position data. When the setting time has expired,

the latest GPS information will be automatically reported to the server.

2. The client queries the server at a regular time interval to check if the distance

between the predicted location and the actual location exceeds the system

threshold. If it is the case, the new GPS data will be updated to the server.

Generally, the SpADE system takes four steps to refresh the velocity and po-

sition information of all moving objects. In the first step, the client obtains the

velocity and position information from the GPS service module and then transfers

them to the server. In the second step, according to the identifier of the moving

object, the old information is removed from the table and inserted into a history

table. In the third step, the index service module calculates the index key of the

Bx-tree in terms of the new velocity and position data. Finally, the new index key,

velocity and position data are inserted into the MySQL database.

162

6.3 Performance Studies

The SpADE system resides at an IBM x255 server running Linux with four Intel

Xeon MP 3.0GHz/400MHz processors and 18G DDR main memory. To evaluate

the system performance, we simulate clients from 100K to 1M and measure the

response time of each range query and update. The parameters used is the same as

the default settings in Chapter 3. In the following, we present two representative

results.

First, we show the average range query performance in Figure 6.3(a). We can

observe that the average response time increases with the number of moving objects

(i.e. clients). This is mainly due to the corresponding increase of the number

of moving objects inside the query range which requires the underlying MySQL

database in the SpADE system to retrieve more data. Note that the performance

pattern is similar to that shown in Figure 3.21 of Chapter 3 which examines the

query performance of the Bx-tree.

Figure 6.3(b) shows the average update response time of the SpADE system.

0

1

2

3

4

5

6

7

100K
 200K
 300K
 400K
 500K
 600K
 700K
 800K
 900K
 1M

Number of Moving Objects

Q
u

e
ry

 T
im

e
 (

s
)

SpADE

(a) Query Response Time

0

0.5

1

1.5

2

2.5

3

100K
 200K
 300K
 400K
 500K
 600K
 700K
 800K
 900K
 1M

Number of Moving Objects

U
p
d
a
te

 T
im

e
 (

m
s
)

SpADE

(b) Update Response Time

Figure 6.3: Query and Update Performance of SpADE System

163

As expected, the update cost keeps constant when the number of moving objects

grows up. This is because in the SpADE system, each insertion or deletion only

incurs one insertion or deletion in the MySQL database which has a B+-tree on the

primary key, i.e., the Bx V alue.

To sum up, our SpADE system preserves the properties of the Bx-tree and is

ready to provide high quality service to a large number of clients.

6.4 Summary

In this chapter, we present our design on extending an existing DBMS to support

spatio-temporal query processing. We present the architecture of SpADE. SpADE

is based on a client/server architecture, within which the moving object data is

stored and managed on the server on top of a relational database system called

MySQL. On the server side, we made use of the the B+-tree to implement the

Bx-tree for indexing moving objects. We present implementation issues related to

both updates and queries. Note that all these have been achieved cleanly without

rewriting any main components of MySQL backend. It is obvious that our pro-

posed design could be implemented on any proprietary commercial backends cost

effectively.

164

CHAPTER 7

Conclusions and Future Work

7.1 Conclusions

Moving object applications that entail the storage of samples of continuous, multi-

dimensional variables pose new challenges to the traditional database technology.

This thesis addresses the challenges of providing supports for indexing, querying

and privacy protections in moving-object environments. Also, this thesis presents

the system architecture of SpADE.

For the indexing, we proposed a new index structure, the Bx-tree, which in-

dexes current and near-future positions of moving objects. The Bx-tree uses a new

linearization technique to exploit the volatility of the data values being indexed

(i.e. moving object positions) such that the moving points can be indexed using

a classical B+-tree. The Bx-tree is able to support various types of queries, such

as predictive interval range queries and predictive k nearest neighbor queries. Ac-

cording to our extensive experimental studies, the Bx-tree is efficient and robust

165

regarding both update and query operations. In fact, the Bx-tree significantly out-

performs the TPR*-tree, especially for the update operations. This result is not

surprising since being a B+-tree based index, the Bx-tree inherits good properties

of the B+-tree and avoids multiple-path searching during the update processing.

One possible limitation of the Bx-tree though is that it is a little sensitive to

the parameters. However, compared to its competitors, the Bx-tree is still far more

efficient. Unlike its competitors, the Bx-tree is elegant in design and scalable in

terms of data sizes and page sizes, and can be incorporated into existing DBMS

cost effectively.

Apart from the queries that are directly supported by the Bx-tree such as the

range, KNN and respective continuous queries, we also studied an emerging type

of query. The density query is to locate the regions with a density higher than

a given threshold. In this thesis, we first presented the definition for the density

query which eliminates the answer loss problem, and then proposed a two-phase

filter-refinement framework which can be applied to most existing index structures.

The experimental results show that our approach achieves efficient query perfor-

mance and requires little storage space. The good query performance is possibly

attributed to the filtering. The filter phase maintains a density histogram, which

enables quick pruning and reduces the number of candidates to be further ex-

amined. The compact storage space is mainly due to the use of Discrete Cosine

Transformation which compresses the density histogram to a great extent. To sum

up, our framework provides a way to handle density queries efficiently. Such tech-

niques may be very useful in a traffic control system to help predict possible traffic

jams.

With the expanding use of the Location-Based Services, such as the traffic con-

trol system just mentioned, users are becoming more sensitive towards the privacy

166

issues when they want to subscribe to such services. Usually, users may not be

willing to disclose their personal information to the service providers. Therefore,

our study attempted to reduce the chance of information leak while still providing

the Location-Based Services. Our proposed system framework achieves high as-

surance privacy without sacrificing the service quality. Specifically, the framework

not only prevents the service provider from knowing the exact locations of users,

but also prevents users’ locations from being disclosed to other users that are not

authorized. The main idea is to employ agents in-between servers and users, which

only serve as information passages and do not store any user data. These agents

transform the user IDs and locations before sending them to the server. Therefore,

the server only knows and handles the transformed data. To obtain higher pri-

vacy protection, we may need to pay more communication costs. A trade-off exists

when taking into account the specific system configurations. Extensive experimen-

tal studies were conducted and the results indicate that our technique effective and

feasible.

Besides the theoretical studies on various aspects of the Moving Objects Databases,

we proposed a system design by extending an existing DBMS. We implemented the

Bx-tree on the top of a popular relational database system MySQL. The strength of

our design and the proposal is that we do not have to touch MySQL core extensively

in order to manage moving objects.

7.2 Future work

There are several promising directions for future work in the research area pre-

sented in this thesis. The directions range from direct extensions of the research

to applying the fundamental ideas to other applications.

167

For the indexing structure, one possible direction is to improve the range query

performance in the Bx-tree since the current range query algorithm uses the strategy

of enlarging query windows which may incur some redundant search. Another

direction is to apply the linearization technique to other index structures.

For the density query, we can further consider the algorithms that support con-

tinuous queries and dense regions of different sizes or shapes, e.g., convex regions.

For the privacy issues, further study is needed to refine the proposed privacy

protection metrics by assuming more prior knowledge that the adversary may pos-

sess, so as to better assess privacy risks. And another challenge is to support

continuous query.

In terms of practice, we have implemented the Bx-tree index structure in our

proposed real database system SpADE. We are considering deploying all the other

techniques in the real DBMS, such as supporting density queries and providing

privacy protections. These raises important research problems at the system level,

in terms of the interaction of such algorithms with the actual systems, and issues

related to adaptiveness and frequency of executions, etc.

BIBLIOGRAPHY

[1] P. K. Agarwal, L. Arge, and J. Erickson. Indexing moving points. In Proc.

PODS, pages 175–186, 2000.

[2] P. K. Agarwal and C. M. Procopiuc. Advances in indexing for mobile objects.

IEEE Data Eng. Bull., 25(2):25–34, 2002.

[3] M. Ankerst, M. Breunig, H. P. Kriegel, and J. Sander. Optics: Ordering

points to identify the clustering structure. In Proc. ACM SIGMOD, pages

49–60, 1999.

[4] D. H. Ballard. Strip trees: A hierarchical representation for curves. Commun.

of the ACM, 24(5):310–321, 1981.

[5] B. Becker, S. Gschwind, T. Ohler, B. Seeger, and P. Widmayer. An asymp-

totically optimal multiversion b-tree. VLDB Journal, 5(4):264–275, 1996.

[6] N. Beckmann, H. P. Kriegel, R.Schneider, and B.Seeger. The r*-tree: An

efficient and robust access method for points and rectangles. In Proc. ACM

SIGMOD, pages 322–331, 1990.

168

169

[7] R. Benetis, C. S. Jensen, G. Karciauskas, and S. Saltenis. Nearest neighbor

and reverse nearest neighbor queries for moving objects. In Proc. IDEAS,

pages 44–53, 2002.

[8] J. L. Bentley. Multidimensional binary search trees used for associative

searching. Commun. ACM, 18(9):509–517, 1975.

[9] S. Berchtold, B. Ertl, D. A. Keim, H. P. Kriegel, and T. Seidl. Fast nearest

neighbor search in high-dimensiona space. In Proc. ICDE, pages 209–218,

1998.

[10] S. Berchtold, D. A. Keim, and H. Kriegel. The x-tree: An index structure

for high-dimensional data. In Proc. VLDB, pages 28–39, 1996.

[11] A. R. Beresford and F. Stajano. Location privacy in pervasive computing.

IEEE Pervasive Computing, 2(1):46–55, 2003.

[12] D. L. Chaum. Untraceable electronic mail, return addresses, and digital

pseudonyms. Comm. of ACM, 24(2):84–88, 1981.

[13] R. Cheng, Y. Zhang, E. Bertino, and S. Prabhakar. Preserving user location

privacy in mobile data management infrastructures. In Proc. Workshop on

Privacy Enhancing Technologies, pages 393–412, 2006.

[14] K. L. Cheung and A. W c. Fu. Enhanced nearest neighbor search on the

r-tree. ACM SIGMOD Record, 27(3):16–21, 1998.

[15] H. D. Chon, D. Agrawal, and A. E. Abbadi. Using space-time grid for efficient

management of moving objects. In Proc. MobiDE, pages 59–65, 2001.

[16] A. Civilis, C. S. Jensen, J. Nenortaite, and S. Pakalnis. Efficient tracking of

moving objects with precision guarantees. DB Technical Report TR-5, 2004.

170

[17] A. Civilis, C. S. Jensen, J. Nenortaitė, and S. Pakalnis. Efficient tracking of

moving objects with precision guarantees. In Proc. Int. Conf. on Mobile and

Ubiquitous Systems: Networking and Services, pages 164–173, 2004.

[18] B. Cui, D. Lin, and K. L. Tan. Towards optimal utilization of main memory

for moving object indexing. In Proc. DASFAA, pages 600–611, 2005.

[19] D. L. Donoho and X. Huo. Beamlet pyramids: a new form of multiresolution

analysis suited for extracting lines, curves, and objects from very noisy image

data. In Proc. SPIE, pages 434–444, 2000.

[20] C. Faloutsos and S. Roseman. Fractals for secondary key retrieval. In Proc.

PODS, pages 247–252, 1989.

[21] R. A. Finkel and J. L. Bentley. Quadtrees: A data structure for retrieval on

composite keys. Acta Inf., 4(1):1–9, 1974.

[22] E. Frentzos. Indexing objects moving on fixed networks. In Proc. SSTD,

pages 289–305, 2003.

[23] V. Gaede and O. Gunther. Multidimensional access methods. ACM Comp.

Surv., 30(2):170–231, 1998.

[24] B. Gedik and L. Liu. Location privacy in mobile systems: A personalized

anonymization model. In Proc. IEEE ICDCS, pages 620–629, 2005.

[25] G. Ghinita, P. Kalnis, and S. Skiadopoulos. Prive: Anonymous location-based

queries in distributed mobile systems. Technical Report TRB7/06, 2006.

[26] M. Gruteser and D. Grunwald. Anonymous usage of location-based services

through spatial and temporal cloaking. In Proc. MobiSys, pages 31–42, 2003.

171

[27] M. Gruteser and X. Liu. Protecting privacy in continuous location-tracking

applications. IEEE Security and Privacy, 2(2):28–31, 2004.

[28] A. Guttman. R-trees: A dynamic index structure for spatial searching. In

Proc. ACM SIGMOD, pages 47–57, 1984.

[29] M. Hadjieleftheriou, G. Kollios, D. Gunopulos, and V. J. Tsotras. On-line

discovery of dense areas in spatio-temporal databses. In Proc. SSTD, pages

306–324, 2003.

[30] U. Hengartner and P. Steenkiste. Protecting access to people location infor-

mation. In Proc. SPC, pages 25–38, 2003.

[31] G. R. Hjaltason and H. Samet. Speeding up construction of pmr quadtree-

based spatial indexes. VLDB Journal, 11(2):109–137, 2002.

[32] B. Hore, S. Mehrotra, and G. Tsudik. A privacy-preserving index for range

queries. In Proc. VLDB, pages 720–731, 2004.

[33] X. Huo and D. L. Donoho. Recovering filamentary objects in severely

degraded binary images using beamlet-decorated partitioning. In Proc.

ICASSP, 2002.

[34] V. S. Iyengar. On detecting space-time clusters. In Proc. KDD, pages 587–

592, 2004.

[35] C. Jackins and S. L. Tanimoto. Oct-trees and their use in representing three-

dimensional objects. Comput. Gr. Image Process, 14(3):249–270, 1980.

[36] C. S. Jensen, D. Lin, and B. C. Ooi. Query and update efficient b+-tree

based indexing of moving objects. In Proc. VLDB, pages 768–779, 2004.

172

[37] C. S. Jensen, D. Lin, B. C. Ooi, and R. Zhang. Effective density queries on

continuously moving objects. In Proc. ICDE, page 71, 2006.

[38] C. S. Jensen and S. Saltenis. Towards increasingly update efficient moving-

object indexing. IEEE Data Eng. Bull., 25(2):35–40, 2002.

[39] P. Kalnis, G. Ghinita, K. Mouratidis, and D. Papadias. Preserving anonymity

in location based services. Technical Report TRB6/06, 2006.

[40] P. Kalnis, N. Mamoulis, and S. Bakiras. On discovering moving clusters in

spatio-temporal data. In Proc.SSTD, pages 364–381, 2005.

[41] N. Katayama and S. Satoh. The sr-tree: An index structure for high-

dimensional nearest neighbor queries. In Proc. ACM SIGMOD, pages 369–

380, 1997.

[42] G. Kedem. The quad-cif tree: A data structure for hierarchical on-line algo-

rithms. In Proc. Design Automation Conference, pages 352–357, 1982.

[43] G. Kollios, D. Gunopulos, and V. J. Tsotras. Nearest neighbor queries in a

mobile environment. In Proc. PODS, pages 261–272, 1999.

[44] M. Kornacker and D. Banks. High-concurrency locking in r-trees. In Proc.

VLDB, pages 34–145, 1995.

[45] D. Kwon, Sa. Lee, and Su. Lee. Indexing the current positions of moving

objects using the lazy update. In Proc. MDM, pages 113–120, 2002.

[46] M. L. Lee, W. Hsu, C. S. Jensen, B. Cui, and K. L. Teo. Supporting frequent

updates in R-Trees: A bottom-up approach. In Proc. VLDB, pages 608–619,

2003.

173

[47] P. Lehman and S. Yao. Efficient locking for concurrent operations on b-trees.

TODS, pages 6(4):650–670, 1981.

[48] S. T. Leutenegger and M. A. Lopez. The effect of buffering on the performance

of r-trees. In Proc. ICDE, pages 164–171, 1998.

[49] Y. Li, J. Han, and J. Yang. Clustering moving objects. In Proc. KDD, pages

617–622, 2004.

[50] D. Meagher. Geometric modeling using octree encoding. Comput. Gr. Image

Process, 19(2):129–147, 1982.

[51] R. P. Minch. Privacy issues in location-aware mobile devices. In Proc. HICSS,

page 50127.2, 2004.

[52] M. F. Mokbel, C. Y. Chow, and W. G. Aref. The new casper: Query pro-

cessing for location services without compromising privacy. In Proc. VLDB,

pages 763–774, 2006.

[53] M. F. Mokbel, T. M. Ghanem, and W. G. Aref. Spatio-temporal access

methods. IEEE Data Eng. Bull., 26(2):40–49, 2003.

[54] M. F. Mokbel, X. Xiong, and W. G. Aref. Sina: Scalable incremental pro-

cessing of continuous queries in spatio-temporal databases. In Proc. ACM

SIGMOD, pages 623–634, 2004.

[55] M. F. Mokbel, X. Xiong, W. G. Aref, S. E. Hambrusch, S. Prabhakar, and

M. A. Hammad. Place: A query processor for handling real-time spatio-

temporal data streams. In Proc. VLDB, pages 1377–1380, 2004.

174

[56] M. F. Mokbel, X. Xiong, M. A. Hammad, and W. G. Aref. Continuous query

processing of spatio-temporal data streams in place. In Proc. STDBM, pages

57–64, 2004.

[57] M. F. Mokbel, X. Xiong, M. A. Hammad, and W. G. Aref. Continuous

query processing of spatio-temporal data streams in place. Geoinformatica,

9(4):343–365, 2005.

[58] B. Moon, H. V. Jagadish, C. Faloutsos, and J. H. Saltz. Analysis of the

clustering properties of the hilbert space-filling curve. TKDE, 13(1):124–141,

2001.

[59] M. A. Nascimento and J. R. O. Silva. Towards historical r-trees. In Proc.

ACM Symposium on Applied Computing, pages 235–240, 1998.

[60] S. Nassar, J. Sander, and C. Cheng. Incremental and effective data summa-

rization for dynamic hierarchical clustering. In Proc. ACM SIGMOD, pages

467–478, 2004.

[61] B. C. Ooi, K. L. Tan, and C. Yu. Fast update and efficient retrieval: an

oxymoron on moving object indexes. In Proc. of Int. Web GIS Workshop,

Keynote, 2002.

[62] D. Papadias, P. Kalnis, J. Zhang, and Y. Tao. Efficient olap operations in

spatial data warehouses. In Proc. SSTD, pages 443–459, 2001.

[63] D. Papadias, Q. Shen, Y. Tao, and K. Mouratidis. Group nearest neighbor

queries. In Proc. ICDE, pages 301–312, 2004.

[64] D. Papadias and Y. Tao. Range aggregate processing in spatial databases.

TKDE, 16(12):1555–1570, 2004.

175

[65] D. Papadias, Y. Tao, P. Kalnis, and J. Zhang. Indexing spatio-temporal data

warehouses. In Proc. ICDE, pages 166–175, 2002.

[66] D. Papadias, J. Zhang, N. Mamoulis, and Y. Tao. Query processing in spatial

network databases. In Proc. VLDB, pages 802–813, 2003.

[67] J. M. Patel, Y. Chen, and V. P. Chakka. Stripes: An efficient index for

predicted trajectories. In Proc. ACM SIGMOD, pages 637–646, 2004.

[68] D. Pfoser and C. S. Jensen. Querying the trajectories of on-line mobile ob-

jects. In Proc. ACM Int. Workshop on Data Eng. for wireless and mobile

access, pages 66–73, 2001.

[69] D. Pfoser, C. S. Jensen, and Y. Theodoridis. Novel approaches in query

processing for moving objects. In Proc. VLDB, pages 395–406, 2000.

[70] C. M. Procopiuc, P. K. Agarwal, and S. Har-Peled. Star-tree: An efficient

self-adjusting index for moving objects. In Proc. ALENEX, pages 178–193,

2002.

[71] F. Ramsak, V. Markl, R. Fenk, M. Zirkel, K. Elhardt, and R. Bayer. In-

tegrating the ub-tree into a database system kernel. In Proc. VLDB, pages

263–272, 2000.

[72] K. R. Rao and P. Yip. Discrete cosine transform: algorithms, advantages,

applications. Academic Press Professional, page 490, 1990.

[73] M. Reiter and A. Rubin. Crowds:anonymity for web transactions. ACM

Trans. On Inform. and Sys. Security, 1(1):66–92, 1998.

[74] T. Roos. Dynamic voronoi diagrams. PH.D. Thesis, University of Wurzburg,

Germany, 1991.

176

[75] N. Roussopoulos, S. Kelley, and F. Vincent. Nearest neighbor queries. In

Proc. ACM SIGMOD, pages 71–79, 1995.

[76] S. Saltenis, C. S.Jensen, S. T. Leutenegger, and M. A. Lopez. Indexing the

positions of continuously moving objects. In Proc. ACM SIGMOD, pages

331–342, 2000.

[77] H. Samet. The quadtree and related hierarchical data structures. Computing

Surveys, 16(2):187–260, 1984.

[78] H. Samet. The design and analysis of spatial data structures. Addison-Wesley,

Reading, pages 102–103, 1990.

[79] B. Seeger and H. Kriegel. The buddy-tree: An efficient and robust access

method for spatial data base systems. In Proc. VLDB, pages 590–601, 1990.

[80] T. Sellis, N. Roussopoulos, and C. Faloutsos. The r+-tree: A dynamic index

for multi-dimensional objects. In Proc. VLDB, pages 507–518, 1987.

[81] A. P. Sistla, O. Wolfson, S. Chamberlain, and S. Dao. Modeling and querying

moving objects. In Proc. ICDE, pages 422–432, 1997.

[82] E. Snekkenes. Concepts for personal location privacy policies. In Proc. ACM

EC, pages 48–57, 2001.

[83] Z. Song and N. Roussopoulos. Hashing moving objects. In Proc. MDM, pages

161–172, 2001.

[84] Z. Song and N. Roussopoulos. K-nearest neighbor search for moving query

point. In Proc. SSTD, pages 79–96, 2001.

[85] V. Srinivasan and M. J. Carey. Performance of b-tree concurrency control

algorithms. In Proc. ACM SIGMOD, pages 416–425, 1991.

177

[86] M. Tamminen. The excell method for efficient geometric access to data. Acta

Polytech. Scand. Mathematics and Computer Science Series No. 34, 1981.

[87] Y. Tao, C. Faloutsos, D. Papadias, and B. Liu. Prediction and indexing of

moving objects with unknown motion patterns. In Proc. ACM SIGMOD,

pages 611–622, 2004.

[88] Y. Tao and D. Papadias. Mv3r-tree: a spatio-temporal access method for

timestamp and interval queries. In Proc. VLDB, pages 431–440, 2001.

[89] Y. Tao, D. Papadias, and Q. Shen. Continuous nearest neighbor search. In

Proc. VLDB, pages 287–298, 2002.

[90] Y. Tao, D. Papadias, and Jimeng Sun. The tpr*-tree: An optimized spatio-

temporal access method for predictive queries. In Proc. VLDB, pages 790–

801, 2003.

[91] Y. Tao, J. Zhang, D. Papadias, and N. Mamoulis. An efficient cost model

for optimization of nearest neighbor search in low and medium dimensional

spaces. TKDE, 16(10): 1169–1184, 2004.

[92] J. Tayeb, O. Ulusoy, and O. Wolfson. A quadtree based dynamic attribute

indexing method. The Computer Journal, 41(3):185–200, 1998.

[93] Y. Theodoridis, M. Vazirgiannis, and T. Sellis. Spatio-temporal indexing for

large multimedia applications. In Proc. ICMCS, pages 441–448, 1996.

[94] D. A. White and R. Jain. Similarity indexing with the ss-tree. In Proc. ICDE,

pages 516–523, 1996.

[95] O. Wolfson, B. Xu, S. Chamberiain, and L. Jiang. Moving objects databases:

Issues and solutions. In Proc. SSDBM, pages 154–165, 1998.

178

[96] Y. Xia and S. Prabhakar. Q+rtree: Efficient indexing for moving object data

bases. In Proc. DASFAA, pages 175–182, 2003.

[97] X. Xiong, M. F. Mokbel, and W. G. Aref. Sea-cnn: Scalable processing of

continuous k-nearest neighbor queries in spatio-temporal databases. In Proc.

ICDE, pages 643–654, 2005.

[98] M. Yiu, Y. Tao, and N. Mamoulis. The bdual-tree: Indexing moving objects

by space-filling curves in the dual space. VLDB Journal, 2006.

[99] M. L. Yiu and N. Mamoulis. Clustering objects on a spatial network. In

Proc. ACM SIGMOD, pages 443–454, 2004.

[100] C. Yu, B. C. Ooi, K. L. Tan, and H. V. Jagadish. Indexing the distance: An

efficient method to knn processing. In Proc. VLDB, pages 421–430, 2001.

[101] J. Zhang, D. Papadias, K. Mouratidis, and M. Zhu. Spatial queries in the

presence of obstacles. In Proc. EDBT, pages 366–384, 2004.

