1,148 research outputs found

    Multiple metrics-OLSR in NAN for Advanced Metering Infrastructures

    Get PDF
    Routing in Neighbourhood Area Network (NAN) for Smart Grid's Advanced Metering Infrastructure (AMI) raises the need for Quality of Service (QoS)-Aware routing. This is due to the expanded list of applications that will result in the transmission of different types of traffic between NAN devices (i.e smart meters). In wireless mesh network (WMN) routing, a combination of multiple link metrics, though complex, has been identified as a possible solution for QoS routing. These complexities (i.e Np complete problem) can be resolved through the use of Analytical Hierarchy Process (AHP) algorithm and pruning techniques. With the assumption that smart meters transmit IP packets of different sizes at different interval to represent AMI traffic, a case study of the performance of three Optimised Link State Routing (OLSR) link metrics is carried out on a grid topology NAN based WMN in ns-2 network simulator. The best two performing metric were used to show the possibility of combining multiple metrics with OLSR through the AHP algorithm to fulfill the QoS routing requirements of targeted AMI application traffic in NANs

    A Survey of Network Optimization Techniques for Traffic Engineering

    Get PDF
    TCP/IP represents the reference standard for the implementation of interoperable communication networks. Nevertheless, the layering principle at the basis of interoperability severely limits the performance of data communication networks, thus requiring proper configuration and management in order to provide effective management of traffic flows. This paper presents a brief survey related to network optimization using Traffic Engineering algorithms, aiming at providing additional insight to the different alternatives available in the scientific literature

    Design and analysis of a beacon-less routing protocol for large volume content dissemination in vehicular ad hoc networks

    Get PDF
    Largevolumecontentdisseminationispursuedbythegrowingnumberofhighquality applications for Vehicular Ad hoc NETworks(VANETs), e.g., the live road surveillance service and the video-based overtaking assistant service. For the highly dynamical vehicular network topology, beacon-less routing protocols have been proven to be efficient in achieving a balance between the system performance and the control overhead. However, to the authors’ best knowledge, the routing design for large volume content has not been well considered in the previous work, which will introduce new challenges, e.g., the enhanced connectivity requirement for a radio link. In this paper, a link Lifetime-aware Beacon-less Routing Protocol (LBRP) is designed for large volume content delivery in VANETs. Each vehicle makes the forwarding decision based on the message header information and its current state, including the speed and position information. A semi-Markov process analytical model is proposed to evaluate the expected delay in constructing one routing path for LBRP. Simulations show that the proposed LBRP scheme outperforms the traditional dissemination protocols in providing a low end-to-end delay. The analytical model is shown to exhibit a good match on the delay estimation with Monte Carlo simulations, as well

    RESP: Relay suitability-based routing protocol for video streaming in vehicular Ad Hoc Networks

    Get PDF
    Video streaming in Vehicular Ad Hoc Networks (VANETs) is a fundamental requirement for a roadside emergency and smart video surveillance services. However, vehicles moving at a high speed usually create unstable wireless links that drop video frames qualities. In a high-density network, network collision between vehicles is another obstacle in improving the scalability of unicast routing protocols. In this paper, the RElay Suitability-based Routing Protocol (RESP) which makes a routing decision based on the link stability measurement was proposed for an uninterrupted video streaming. The RESP estimates the geographic advancement and link stability of a vehicle towards its destination only in the small region. To ensure the reliability while extending the scalability of routing, the relay suitability metric integrates the packet delay, collision dropping, link stability, and the Expected Transmission Count (ETX) in the weighted division algorithm, and selects a high-quality forwarding node for video streaming. The experimental results demonstrated the proposed RESP outperformed the link Lifetime-aware Beacon-less Routing Protocol (LBRP) and other traditional geographical streaming protocols in providing a high packet delivery ratio and packet delay with various network densities, and proved the scalability support of RESP for video streaming

    Situation-Aware QoS Routing Algorithm for Vehicular Ad hoc Networks

    Get PDF
    A wide range of services has been developed for Vehicular Ad hoc Networks (VANETs) ranging from safety to infotainment applications. An essential requirement for such services is that they are offered with Quality of Service (QoS) guarantees in terms of service reliability and availability. Searching for feasible routes subject to multiple QoS constraints is in general an NP-hard problem. Besides, routing reliability needs to be paid special attention as communication links frequently break in VANETs. In this paper, we propose employing the Situational Awareness (SA) concept and an Ant Colony System (ACS) based algorithm to develop a Situation-Aware Multi-constrained QoS (SAMQ) routing algorithm for VANETs. SAMQ aims to compute feasible routes between the communicating vehicles subject to multiple QoS constraints and pick the best computed route, if such a route exists. To mitigate the risks inherited from selecting the best computed route that may turn out to fail at any moment, SAMQ utilises the SA levels and ACS mechanisms to prepare certain countermeasures with the aim of assuring a reliable data transmission. Simulation results demonstrate that SAMQ is capable of achieving a reliable data transmission as compared to the existing QoS routing algorithms even when the network topology is highly dynamic

    Joint optimization for wireless sensor networks in critical infrastructures

    Get PDF
    Energy optimization represents one of the main goals in wireless sensor network design where a typical sensor node has usually operated by making use of the battery with limited-capacity. In this thesis, the following main problems are addressed: first, the joint optimization of the energy consumption and the delay for conventional wireless sensor networks is presented. Second, the joint optimization of the information quality and energy consumption of the wireless sensor networks based structural health monitoring is outlined. Finally, the multi-objectives optimization of the former problem under several constraints is shown. In the first main problem, the following points are presented: we introduce a joint multi-objective optimization formulation for both energy and delay for most sensor nodes in various applications. Then, we present the Karush-Kuhn-Tucker analysis to demonstrate the optimal solution for each formulation. We introduce a method of determining the knee on the Pareto front curve, which meets the network designer interest for focusing on more practical solutions. The sensor node placement optimization has a significant role in wireless sensor networks, especially in structural health monitoring. In the second main problem of this work, the existing work optimizes the node placement and routing separately (by performing routing after carrying out the node placement). However, this approach does not guarantee the optimality of the overall solution. A joint optimization of sensor placement, routing, and flow assignment is introduced and is solved using mixed-integer programming modelling. In the third main problem of this study, we revisit the placement problem in wireless sensor networks of structural health monitoring by using multi-objective optimization. Furthermore, we take into consideration more constraints that were not taken into account before. This includes the maximum capacity per link and the node-disjoint routing. Since maximum capacity constraint is essential to study the data delivery over limited-capacity wireless links, node-disjoint routing is necessary to achieve load balancing and longer wireless sensor networks lifetime. We list the results of the previous problems, and then we evaluate the corresponding results

    Routing for Computing and Constrained Mobile Ad-Hoc Network Environment

    Get PDF
    Routing Mechanism in Mobile Adhoc Networks is a difficult task since it has to react proficiently in horrible and unfavorable situations and support conventional IP services. Additionally, the Quality of Service is needed to help the rapid growth of video in mobile traffic. As an outcome, enormous efforts have been committed to design of QoS routing in MANETs. The independent nature of QoS routing protocols brings results in the absence of one-for-all solution in MANETs. Then, the relative significance of QoS measurements in genuine applications isn�t considered in numerous experiments. The one with most astounding weight is the optimal protocol among all the other choices. The reliability and efficiency of SAW-AHP are validated through simulations. An integrated architecture, using evaluation results of SAW-AHP is proposed which incorporates the ad hoc technology into the existing WLAN and therefore provides a solution for the last mile access problems. The protocol selection induced cost and gains are also discussed. We conclude the paper by describing a potential application
    • …
    corecore