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Abstract

Energy optimization represents one of the main goals in wireless sensor network design

where a typical sensor node has usually operated by making use of the battery with

limited-capacity. In this thesis, the following main problems are addressed: first, the

joint optimization of the energy consumption and the delay for conventional wireless sen-

sor networks is presented. Second, the joint optimization of the information quality and

energy consumption of the wireless sensor networks based structural health monitoring

is outlined. Finally, the multi-objectives optimization of the former problem under sev-

eral constraints is shown. In the first main problem, the following points are presented:

we introduce a joint multi-objective optimization formulation for both energy and delay

for most sensor nodes in various applications. Then, we present the Karush-Kuhn-Tucker

analysis to demonstrate the optimal solution for each formulation. We introduce a method

of determining the knee on the Pareto front curve, which meets the network designer inter-

est for focusing on more practical solutions. The sensor node placement optimization has

a significant role in wireless sensor networks, especially in structural health monitoring.

In the second main problem of this work, the existing work optimizes the node placement

and routing separately (by performing routing after carrying out the node placement).

However, this approach does not guarantee the optimality of the overall solution. A joint

optimization of sensor placement, routing, and flow assignment is introduced and is solved

using mixed-integer programming modelling. In the third main problem of this study, we

revisit the placement problem in wireless sensor networks of structural health monitor-
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ing by using multi-objective optimization. Furthermore, we take into consideration more

constraints that were not taken into account before. This includes the maximum capacity

per link and the node-disjoint routing. Since maximum capacity constraint is essential

to study the data delivery over limited-capacity wireless links, node-disjoint routing is

necessary to achieve load balancing and longer wireless sensor networks lifetime. We list

the results of the previous problems, and then we evaluate the corresponding results.
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Chapter 1

Introduction

1.1 Research Motivation

Wireless sensor networks (WSNs) play an important role in both civilian and mil-

itary applications [1]. WSNs have resource-limited nodes, hence, optimization for

the available resources is needed to achieve the highest performance and the existing

resources need to be well utilized.

Numerous studies have been devoted to designing routing for WSNs. These stud-

ies include energy-efficient algorithms [2–4], delay-efficient algorithms [5, 6] and

location-aware algorithms [7–11]. However, these studies lack the comprehensive

understanding of WSNs node limitations and application requirements. Most of

these investigations require previous information to be known before making the

routing decision. Since this requirement can not be met, routing for WSNs is the

point of interest. This motivates us to develop a joint placement, routing and flow

assignment for the case of the structural health monitoring (SHM) using WSNs.

A typical sensor node is usually powered by a limited-capacity source. Consequently,

energy optimization represents the main goal in WSNs design where collected data
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needs to be delivered within a certain limit and with a definite quality. In this

thesis, we aim to enhance the performance of WSNs, by optimizing the utilization

of available resources. We formulate and solve the optimization problem jointly

subject to additional constraints.

1.2 Research Objective

In this thesis, the following problems are addressed in separate chapters in manuscript

style: First, the joint optimization of the energy consumption and delay for a con-

ventional WSNs is presented. Second, the joint optimization of the information

quality and energy consumption for the WSNs based structural health monitoring

is outlined. Finally, the multi-objectives optimization of the former problem under

several constraints is shown. Motivated by the promising preliminary results ob-

tained in single objective formulation WSNs, we extend the problem formulations

to the multi-objective formulation WSNs to further limit the amount of flow to

neighbouring nodes while taking into consideration the node-disjoint and flow as-

signment.

In the first problem, the following points are presented: First, we introduce a joint

multi-objective optimization formulation for both energy and delay for most sensor

nodes in various applications. Second, we present the Karush-Kuhn-Tucker analy-

sis to demonstrate the optimal solution for each formulation. Third, based on the

multi-objective optimization formulation, we introduce a method for determining

the knee on the Pareto front curve, which meets the network designer interest for

focusing on more practical solutions. Lastly, we calculate the optimal weighting

factor for both objectives which allows the network designer balance their mutual

interaction between the two objectives. This technique helps network designers in-
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crease the simplification of the design process.

A joint routing and flow assignment hybrid geographical routing is proposed. In

the proposed algorithm, we use the progressive distance and angle directionality to

choose the best route and determine the optimal flow which is considered a novel

distributed algorithm. A near-optimal flow for diverse network sizes is achieved

by the proposed algorithm under the evaluated network metrics. Hence, the im-

plementation of the proposed algorithm is suitable for the limited-resource sensor

node due to the reduced complexity. Several network metrics will be evaluated; the

simulation will be conducted to complement and to extend the results.

In the second main problem of this work, joint optimization of sensor placement,

routing, and flow assignment is introduced and solved using mixed-integer program-

ming modelling. Sensor node placement optimization has a significant role in WSNs,

especially in structural health monitoring. Since sensor node placement affects the

routing, optimization should be done for the node placement and routing jointly.

Existing work optimizes the node placement and routing separately (by performing

routing after carrying out the node placement). However, this approach does not

guarantee the optimality of the overall solution.

Finding an optimal solution for this joint problem is too complex. Hence, a near-

optimal solution is obtained using genetic algorithms with reduced complexity.

Moreover, a heuristic algorithm for joint routing and flow assignment with placement

is proposed using the effective independence model, which optimizes the information

quality and energy consumption for efficient communication. Last but not least, the

results are presented in a nine-floor building to compare the three proposed algo-

rithms with the heuristic algorithm introduced. The numerical results show the

efficiency of the proposed algorithms and the trade-off between the effectiveness

and complexity. After we have addressed this problem using a single objective to
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minimize the energy consumption, we consider another approach to solving the des-

ignated problem.

In the third main problem of this research work, we revisit the placement problem in

WSNs for SHM. We apply the multi-objective approach for minimizing the energy

consumption and maximize the information quality simultaneously. Furthermore,

we take into consideration more constraints that were not taken into account be-

fore. This includes the maximum capacity per link and the node-disjoint routing.

Whereas the maximum capacity constraint needs to be studied to investigate the

packet delivery over wireless links, node-disjoint routing is necessary to achieve load

balancing among possible paths. We outline the detailed results for the previous

problems and evaluates the performance of the corresponding outcome.

1.3 The Knowledge Gap

After the revision of the previous work in [2–11], the following is a list of holes that

exist in the literature that needs to be filled in a better way. The research problem

can be divided into the following subproblems:

(a) Achieving an optimal flow that provides communication in WSNs that works

in an efficient manner with low delay and satisfies the flow rate constraint

while optimizes the network metrics. An optimization algorithm should be

chosen to bring up optimal routes with the shortest delay at low cost. This

problem is essential as the delay is one of the main constraints in certain

WSN applications. The problem has to be represented as a multi-objective

optimization in order to introduce the flexibility for the network designer and

solved using the chosen optimization tool.
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(b) Finding an optimal flow for WSNs that provides an energy-efficient manner

with the information quality required to be up to a certain value. Moreover,

the optimization algorithm needs to be well-presented enough to guide the path

selection. For this reason, the situation has to be formulated as an optimization

problem to be enlightened using selected solvers. The problem formulation also

needs to be well-presented in order to achieve the optimal solution.

(c) Providing a simple and efficient routing algorithm for WSNs based SHM, which

takes into consideration information quality issues and satisfies different con-

straints. Routing algorithm that minimizes the energy consumption and max-

imizes the information quality is needed. Increasing the number of parameters

for the routing decision can be prohibitive for the resource-limited sensor node.

The multi-objective optimization is needed to give the flexibility of focusing on

one objective more than the other.

1.4 Thesis Outline

The remainder of the thesis is organized as follows: A classification of WSNs and

the literature survey of the previous work is shown in Chapter 2. A joint optimiza-

tion routing and delay for WSNs is presented in Chapter 3. The proposed system

model for WSNs based SHM with the related results is explained in Chapter 4, the

multi-objective optimization model is used for solving the research problem with the

corresponding results is shown in Chapter 5 with the associated heuristic routing

algorithm for WSNs based SHM. Overall conclusions are drawn and the future work

contributions are presented in Chapter 6.

In Chapter 2, we present a comprehensive survey of the existing routing algorithms,

together with the highlights of the classification of these routing algorithms. We
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also provide a taxonomy of different routing algorithms and outline the fundamen-

tal components and challenges associated with routing algorithms. Moreover, the

design requirements of routing algorithms for WSNs are discussed to provide an

insight into the objectives of routing algorithms. We compare existing routing al-

gorithms and lay the groundwork for further research.

Most of the proposed routing algorithms are designed to be energy-efficient algo-

rithms while delay caused by these flows has not been taken into account. In Chapter

3, end-to-end delay is mathematically formulated and a sub-optimal routing algo-

rithm to minimize the delay is proposed. In this chapter, the problem is formulated

assuming that the average delay follows the Poisson arrival process.

In Chapter 4, we present a new and detailed analytical model for calculating the

flow traffic in WSNs-based SHM. Routing in SHM introduces a new aspect to the

typical joint optimization in SHM networks. To the best of our knowledge, there

is no analytical model which can jointly optimize the information quality and the

energy consumption in a WSN based SHM. Optimizing the routing in such system

helps to provide important insights into designing efficient routing algorithms (the

assumption introduced in Chapter 4 is improved, using the mathematical analysis

based on the multi-objective formulation as outlined in Chapter 5).

The model of the joint optimization is employed in Chapters 4 and 5 to add the

node-disjoint routing into our optimization. We propose the algorithm by combin-

ing placement, optimal routing, and flow control in Chapter 4. After the proposed

algorithm in Chapter 4, a sub-optimal routing is introduced due to the following

reasons; (1) the energy consumption is decoupled from the information quality and

(2) a sub-optimal approach is employed in the node placement and node’s flow are

selected for each link.

In Chapter 5, we obtain the optimal solution by formulating the problem as a
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large-scale mixed integer linear programming optimization problem. To solve the

optimization problem, we also propose a solution based on the branch and bound

algorithm. In order to reduce the computational complexity of the optimal solution,

we propose a near-optimal joint placement and routing algorithm in Chapter 5. In

the near-optimal algorithm, we solve the problem by decoupling the optimal energy

consumption and information quality from the optimal placement.

In Chapter 6, we summarize the contributions presented in this dissertation and

discuss several potential extensions to this work in our future work section.
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Chapter 2

Routing Algorithms for Wireless

Sensor Networks based Structural

Health Monitoring

2.1 Abstract

The building blocks of WSNs are the sensor nodes. Each node is deployed randomly

or manually to collect readings about chosen attributes of an environment with

access limitations such as in harsh environments [1]. All collected data need to be

reported to the central node, called a sink, which is intended to manipulate the

collected readings. In order to reach the sink, traffic can be sent directly or through

intermediate nodes by a number of hops. The frequency of readings and reporting

is application dependent.

This work focuses on WSNs as a special kind of ad-hoc network. These networks

are subject to difficulties that have raised a number of research issues including

deployment [12, 13], sensing [14, 15], decision making [16] and routing [1, 17, 18].
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The development of routing for WSNs needs to address many challenges such as

high computational overhead for processing data and prior knowledge requirements

about the route. These challenges need to be handled during the process of routing

algorithm design.

An overview of the WSNs is outlined in Section 2.2. Existing routing algorithms

for WSNs are surveyed in Section 2.3.

2.2 Overview of Wireless Sensor Networks

WSNs consist of tiny, spatially scattered, autonomous devices or nodes equipped

with several sensors that cooperatively monitor physical or environmental attributes

and communicate wirelessly between each other. These attributes can be temper-

ature, lighting, sound, vibration, pressure or motion depending on the application.

Attributes of the WSNs also introduce special design requirements for the selected

communication algorithm. The nature of WSNs as resource-constrained networks

demands a communication algorithm that is optimized and customizable in terms

of average end-to-end delay, energy consumption and memory size. WSNs have the

potential to be an integral part of many applications. Examples include environ-

mental monitoring and conservation, manufacturing, asset tracking, transportation,

automation and health care [1].

The main goal for WSNs, which consist of mainly battery-powered nodes, is to pro-

long the lifetime of the network as it senses information and delivers it to the sink.

As the main power source in WSNs, batteries cannot be replaced due to cost, or the

hostility or remotivity of the environment. Therefore, the design, implementation

and operation of WSNs require the integration of many disciplines. Unlike other

networks, WSNs promise to connect end-users directly to the physical world in order
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to provide information that is precisely determined in time and space according to

the user’s demands.

WSNs are application-specific, which means that one algorithm in one application

can be more efficient than another algorithm in a different application. WSNs

applications range from small-room temperature monitoring, to the monitoring of

large areas such as airports. Since sensor nodes are usually small in size and low

in cost [19], they are assumed to have low processing power and limited memory.

However, a major problem for WSNs is the limited energy that sensor nodes have

when powered by portable batteries, as these nodes are unattended and most are

unable to receive energy from external sources.

The transmission and reception of bits consume over 50% of the energy in WSNs [20].

The minimization of transmission energy in WSNs has been studied in [21]. Energy

consumption can be reduced by shortening the distance between source and sink,

which can be translated to cutting down the number of hops under the assumption

of fixed transmission range. However, it may be more energy-efficient to send data

directly to the sink when the path loss increases with the increase in the number of

hops.

In most applications, the sensed data should be as accurate as possible to ensure

suitable decision making. Moreover, the sensed data should reach the sink in a

timely manner. Some applications require guaranteed data delivery while other ap-

plications can tolerate the presence of faulty sensors while remaining functional [22].

Energy and delay are two important design parameters in WSNs. Energy-efficient

algorithms achieve longer network lifetime but suffer from high delay, while QoS

supported algorithms offer a lower delay at the cost of faster energy depletion.

Therefore, a trade-off between energy and delay is needed for extending the lifetime

of WSNs while satisfying the traffic requirements.
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WSNs started to be running with a battery. This was preferred because of the

reduction of size and associated cost in addition to helping with mobility. After a

while the proposed power source acts as a burden in the WSNs functionality. The

lifetime of the network is limited to the battery size and how its energy is depleted.

The usage of the WSNs was limited to certain applications.

2.3 Existing Routing Algorithms for Wireless Sen-

sor Networks

Node deployment in WSNs can be done in two ways, either randomly or manually.

When node deployment is done in a random fashion, the nodes in the network form

a wireless ad-hoc structure. Thus, the routing algorithms deployed in the network

have to self-learn the topology information and dynamically forward data through an

energy-efficient operation. When node deployment is done manually, the routes for

transmitting data can be calculated optimally using an off-line algorithm to achieve

some goals of lifetime maximization. In other words, the routes can be predefined.

However, in case of the topology changes due to node/link failures, dynamic routing

schemes are still necessary in manually deployed WSNs.

A survey on routing algorithms for WSNs is introduced in [1, 17, 18, 23, 24]. With

the introduction of WSNs to new applications, QoS metrics are needed to be op-

timized [25–28]. A new category of WSNs routing algorithm are introduced where

delay efficiency is the key design issue. Some examples of delay-efficient WSNs can

be found in [5, 6]. As sensor nodes are equipped with a location finding device or

can apply some kind of localization technique, the node location is used to guide the

routing process. Location-aware routing algorithms are introduced such as [7–11].
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Cross layer routing algorithms are introduced in [29–32] that use MOPT to optimize

the routing decision.

An approach to get the benefits of the energy-efficient routing algorithms and de-

lay efficiency imposed by the new user/applications requirement raises the need for

energy and delay efficient routing algorithms. Some of these algorithms were intro-

duced in [33–35]. Applying the idea of location-aware routing algorithms to achieve

a balance between energy efficiency and delay efficiency is introduced in [36].

Energy-efficient algorithms are introduced in Section 2.3.1. They focus on mini-

mizing the energy consumption in a node in order to extend the network lifetime,

which is defined as the time till the first node runs out of energy. This is followed

by a survey of algorithms, which try to make use of the node’s location as well as

the location of its neighbours in order to choose the next hop. These algorithms are

called location-aware algorithms and are highlighted in Section 2.3.2. Because the

type of traffic travelling through the WSNs can be data, audio or video, more focus

is directed towards QoS metrics. This is achieved by presenting algorithms which

accommodate such traffic. Delay-efficient algorithms are discussed in Section 2.3.3.

Finally, MOPT routing algorithms are introduced in Section 2.3.4.

2.3.1 Energy-Efficient Algorithms

This section focuses on energy-efficient algorithms that choose the next hop for

routing data in a way to maximize network lifetime [15, 24, 37]. Multiple studies

propose techniques to reduce energy consumption in WSNs as in [38]. Flat-based

energy-efficient routing algorithm is proposed in [39] where each node is assumed to

be a base station. Each sensor node is flooded with information by its neighbours

whether it is requested or not, so that the data availability is increased. Although
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queries in flat-based routing can be received faster than other routing, energy con-

sumption depends on the traffic pattern instead of being uniform in each node.

Moreover, the use of data flooding causes a high collision overhead and the recep-

tion of unnecessary or redundant data. Also, data aggregation is processed through

nodes on the multihop path, which increases the overhead in these nodes. Routing

here can be made optimal, but with added complexity. Thus, flooding is inefficient

in terms of balanced energy consumption and memory management.

Flat-based energy-efficient routing algorithms provide routes based on a flat topol-

ogy. This causes scalability problems as well as increased congestion among all nodes

closer to the sink. Distributed aggregation mechanisms are necessary to decrease the

information content flowing in each part of the network. Also, they suffer from data

overload close to the sink as density increases. The nodes which are located near

the sink route more information than nodes in other parts of the network. On the

other hand, hierarchical routing algorithms maximize network lifetime by forcing

high-power nodes to process and send data to the sink, leaving the low-power nodes

to sense the environment. The network is divided into clusters, so a cluster head

(CH) is chosen whose task is to compress the data and send it to the sink. Cluster-

ing ensures fair sharing of tasks among sensor nodes in the network, which reduces

overhead on low-power nodes. However, data redundancy in the nodes cannot be

prevented, creating the problem of uncertainty in routing data to the destination.

CH loses energy faster, and thus, energy dissipation of the network cannot be con-

trolled [40].

To solve problems associated with a flat-based approach, hierarchical or cluster-

based routing techniques [41, 42] such as low-energy adaptive clustering hierarchy

(LEACH) [3], energy-efficient hierarchical clustering algorithm (EEHCA) [2], and

hierarchical power aware routing (HPAR) [43] have been proposed. LEACH [3] is
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based on the idea of an iterative randomized selection of CH in order to distribute

the load of CH among nodes, hence extending the lifetime of the network. EEHCA

is a hierarchical routing algorithm with reduced complexity presented in [2]. It uses

a weighted function in order to achieve better performance, but still needs an itera-

tive calculation to choose the next hop. HPAR [43], the last hierarchical algorithm,

introduces lower memory requirements, but still suffers from additional calculation

in the building of clusters. All these algorithms try to extend the network lifetime.

The energy efficient routing to come to the foreground such as LEACH [3] and

some other energy efficient algorithms are based on the iterative approaches such

as [4]. All these algorithms were centralized and assumed to be run offline and fed

to nodes. The need for a distributed routing algorithm that can be implemented on

the sensor node drives the trend for the simplified node-based routing algorithms

such as [1, 17,18,23,24].

Power efficient gathering in sensor information systems (PEGASIS) proposed in [4]

employs node localization. PEGASIS makes use of a minimal-energy consumption

rule to determine whether to transmit data directly from one node to another or

to relay it via a different node. This technique can minimize energy consumption;

however, it fails if the node density is low.

Chang et al. propose an approach in [44]. An approach that employs maximum-

lifetime routing (MLR) is introduced in [44]. Energy consumption is distributed

fairly and practically. The sensor nodes adjust their power levels while selecting

routes to optimize their overall performance. MLR achieves the best performance

in terms of network lifetime. However, its computational complexity is high. It

attempts to reduce the cost of data flooding instead of finding the most efficient

path towards the destination.

Flow augmentation routing (FAR), which is nearly optimal in terms of maximizing
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network lifetime, is considered in [44]. However, its computational complexity is

high. It attempts to reduce the cost of data flooding instead of finding the most

efficient path towards the destination. In addition, its QoS metrics are lower than

the traditional techniques such as ad-hoc on demand vector routing (AODV) [45].

A combination of randomized clustering and energy-level awareness is proposed

in [46]. Hybrid energy-efficient distributed clustering (HEED) achieves a better

energy consumption per cluster than LEACH [3] but ends up being more compli-

cated than LEACH. Latency sensitive power control (LAPC) [47] is a power-control

routing algorithm designed to reduce communication delays by adapting the trans-

mission power to the work load. LAPC is not concerned with packet deadlines and

only reduces communication delays in a best effort fashion.

Energy-efficient algorithms, in general, provide scalability in the network by limit-

ing most of the communication inside the clusters formed. Consequently, the traffic

generated in the network can be limited in CHs. This enables large-scale networks

to be deployed without traffic overhead in certain parts of the networks. Moreover,

dynamic clustering mechanisms result in better energy efficiency compared to flat

topology algorithms. In event-based WSNs, where the nodes are mostly passive,

most of the sensors can be put to sleep with the help of the CHs. Furthermore,

most of the information and sophisticated functions are passed to a small number

of CHs and the rest of the nodes perform simple tasks. This improves the overall

network lifetime.

Despite their advantages, energy-efficient algorithms significantly rely on CH and

face robustness issues such as failure of the CHs. Moreover, cluster formation re-

quires additional signaling which increases the overhead in case of frequent changes.

As a result, the trade-off between increased energy consumption of the CHs and the

overhead in cluster formation needs to be considered for efficient operation.
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Furthermore, communication inside the cluster is still a major challenge for many

energy-efficient algorithms. Generally, CHs are assumed to directly communicate

with the sink using high transmission power. This limits the applicability of these

algorithms for large-scale networks, where single-hop communication with the sink

is infeasible. Energy-efficient algorithms mechanisms are generally required in mul-

tihop communication. To make energy-efficient algorithms [4,48] robust to changes

and routing decision locally made, location-aware algorithms are presented in Sec-

tion 2.3.2 that help make the decision distributed.

2.3.2 Location-Aware Algorithms

Routing can be achieved by using the location of the nodes as retrieved from a

device such as global positioning system (GPS) receiver or by applying a local-

ization algorithm. These are called location-aware routing algorithms. In such

routing algorithms, nodes know their actual or relative positions with respect to a

reference point and share this information with their neighbour nodes for routing

processes [7, 49–52].

Most of the location-aware routing algorithms use directed routing, which can over-

come the redundancy problem of the energy-efficient algorithms and reduce energy

consumption by requiring low memory and complexity [7]. Location-aware routing

techniques have been researched for ad-hoc networks for a long time [50]. They

employ the geographical location of the nodes to route information from one node

to another. One challenge with these techniques is to determine the location of the

sensor nodes. Employing GPS to all the nodes in a large sensor network is costly

and power hungry; however, a number of solutions have been presented [53]. An

example would be the employment of reference points transmitting periodic beacon
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signals in which the nodes can localize themselves [10].

In [8], a location-aware routing algorithms, geographical adaptive fidelity (GAF),

has been proposed where the network is divided into fixed zones. For a certain

period of time, a portion of the nodes in the zone sleeps while the rest of the nodes

perform the routing tasks on their behalf. Although this technique is location-based,

it is similar to the hierarchical technique. It cannot overcome most of the problems

faced in the hierarchical approaches, but the selection of nodes is simpler and more

efficient than the hierarchical technique.

Geographic distance routing algorithm (GEDIR) [54] solves this problem by for-

warding a packet to a neighbour that is the shortest distance from the sink instead

of computing the total cost. However, it fails when a data packet crosses the same

path twice in succession. Moreover, a node often selects the same neighbour causing

higher energy consumption in some selective nodes and gets trapped in void regions.

Geographic and energy aware routing (GEAR) [9] uses directional routing to over-

come the data redundancy and collision problem associated with the previous ap-

proaches. The nodes in the network calculate the lowest cost of sending data to the

sink and forward data according to the calculated route. GEAR imposes computa-

tional overhead on the nodes as they try to estimate the total energy requirement

for several paths.

Greedy other adaptive face routing algorithm (GOAFR) [55] uses both the greedy

approach and face routing. The greedy approach forwards data to the nearest neigh-

bour. Whenever a local minimum occurs, it sends the data back through the same

route to the best face of the graph that has the lowest distance from the destina-

tion. The routing of data from source to destination is ensured by this technique;

however, it cannot reduce the cost of routing since it increases as the network size

increases.

19



Although location-aware routing algorithms try to be scalable and energy-efficient,

they are subject to a dead-end problem where no more nodes make better progress to

the sink. Partial-partition avoiding geographic routing (PAGER) [11] addresses this

problem efficiently by identifying the danger zones, dividing the graph accordingly

and providing directions to each node based on the division. Thus, PAGER relieves

nodes from memorizing paths. However, it only routes data along the perimeter of

the obstacle rather than finding an efficient path.

Location-aware routing algorithms exploit local position information for routing

decisions. Instead of routing tables that are explicitly constructed, neighborhood

information is implicitly inferred from the physical placement of nodes. This results

in scalable routing algorithms. Moreover, location-aware routing algorithms have

low complexity since the next hops can be selected based on local information.

On the other hand, the performance of location-aware routing depends on accurate

knowledge of the location. The error in location detection can cause an error in

routing. For example, sensor nodes are prone to failure and may be deployed in a

hostile environment. If the GPS or location device is damaged, sensor nodes that

depend on the device are rendered useless. In addition, the memory cost for the

GPS may be expensive for some applications. Also, the power consumption and

size of the GPS may not be appropriate if sensor nodes are operated by batteries

and deployed in thousands.

Although location-aware algorithms are robust to changes, they do not match fast

delivery constraints as location-aware algorithms are needed to be updated every

interval. Energy-efficient algorithms that were discussed previously did not inves-

tigate the possibility of having time-sensitive traffic. In Section 2.3.3, a number

of algorithms are introduced, which discuss how to accommodate the new type of

traffic.
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2.3.3 Delay-Efficient Algorithms

Routing algorithms designed to offer better results regarding QoS parameters are

called delay-efficient algorithms [56]. Delay-efficient algorithms in WSNs have sev-

eral applications including real-time target tracking in battle environments and

emergent event triggering in environment monitoring applications such as tsunami

alert. Consider an environment where monitoring, locating, detecting and identi-

fying an event is crucial. In order to identify such an event, imaging and/or video

sensors should be employed. After locating and detecting the event, those sensors

can be turned on to capture an image of the target every time interval and to send

it to the base station. Environment monitoring requires a real-time data exchange

between sensors and destination in order to make proper decisions. However, real-

time multimedia require a certain bandwidth with a minimum acceptable delay and

jitter. In that case, a routing algorithm is needed in order to guarantee the delivery

of data within specified time limits.

Threshold sensitive energy-efficient sensor network algorithm (TEEN) proposed that

hierarchical clustering allows CH to impose a constraint when sensors report their

sensed data according to two thresholds; a hard threshold that checks when to send

the aggregated data in CH and a soft threshold that decides when to broadcast a

small change in the value of the sensed attribute [57].

The two tier data dissemination routing algorithm (TTDD), proposed in [58], is a

location-based technique for mobile sinks where data from the source is flooded to

the local nodes in a cell in a grid structure. TTDD, however, does not work for

mobile sources because high flooding is needed. Sensor algorithms for information

via negotiation (SPIN) [6] is a resource-aware algorithm that is able to calculate the

energy consumption required to compute, send, and receive data over the network.

Thus, it can make informed decisions for efficient use of their own resources; how-
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ever, its complexity is high.

An algorithm named SPEED is proposed in [5]. SPEED ensures a desired delivery

speed via a combination of feedback control. It achieves real-time communication,

however, it considers delay as a function of distance.

Heo et al. proposed a routing algorithm for WSNs, especially with industrial ap-

plications energy-aware routing for real-time communication (EARQ) [59]. EARQ

provides real-time, reliable delivery of a packet, while considering energy awareness.

In EARQ, a node estimates the energy cost, delay and reliability of a path to the

sink node, based only on information from neighbouring nodes. However, it cannot

be applied to all kinds of WSNs.

Delay-efficient routing algorithms consider metrics in addition to energy consump-

tion for constructing routes. This provides additional capabilities to WSNs where

more sophisticated applications can be developed. However, providing additional

guarantees increases the cost in terms of energy consumption and hence, network

lifetime. The trade-off between these additional capabilities and their costs should

be carefully tailored to the requirements of the application.

In addition to the previous features, its QoS metrics are lower than traditional

techniques. While routing is built on heuristic, optimization requires fixed inputs

and well defined formulation. Routing algorithms are needed to keep the routing

decision distributed by letting each node decide the next hop.

2.3.4 MOPT Routing Algorithms

Several studies have investigated combining energy consumption with other objec-

tives in WSNs such as in [60–64]. Multi-objective optimization (MOPT) is usually

used when balancing two contradicting variables. In WSNs, MOPT is needed when
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WSNs design needs to match energy and delay requirements. In WSNs, energy

optimization is a challenging issue since maximizing the network lifetime must be

achieved without interrupting the flow of information. Delay optimization is also an

important issue, especially when more delay-sensitive traffic is encountered in spe-

cific WSNs applications. Also, energy and delay optimization in WSNs have been

the subject of several studies in order to find a possible set of solutions. Various

WSNs applications, from environmental monitoring to smart environments, are dis-

cussed in [1, 18]. Routing optimization is used to calculate the optimal flow which

prolongs the lifetime of the network. However, it is complicated for a large sized

network.

A selected MOPT problem is considered in [60] with delay and energy objectives.

An optimal set for the first relay is found where energy, delay and robustness are

considered. Robustness is defined as the probability that a message will arrive suc-

cessfully at the destination with a delay lower than the desired end-to-end delay,

and with a number of hops lower than the hop limit. Another MOPT problem is

presented in [63], where transmission energy and network geometry optimization

are considered.

Madan and Lall [65] propose a cross-layer algorithm that works in the three lower

layers of the communication stack. It is a partial and a distributed algorithm which

aims to maximize network lifetime. They consider a single, stationary sink in this

case. They expand their work in [31, 32] to maximize the lifetime of the network

by employing optimization of transmission power, rate and link schedule. In these

algorithms, Madan et al. introduce only the theoretical formulation of the optimal

performance and no practical implementation or comparison of the required com-

putational power to the existing node capabilities.

A cross-layer strategy to explore trade-off between energy efficiency and packet
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timeliness is shown in [66] through transmission power allocation and routing path

selection schemes. In this article, optimization problem formulation fails to con-

sider the network designers point of view. They fail to find the weighting factor

for different objectives. A weighting factor reflects how each objective is affected

by changes in other objectives. These complicated cross-layer algorithms push the

limited resources of the node, resulting in NP-hardness.

To avoid NP-hardness of the combinatorial optimization problem of cross-layer de-

sign, a heuristic algorithm is proposed in [67] that follows the greedy approach

towards energy efficient communication. A synergy between the physical and the

medium access control layers is introduced to achieve efficient energy minimization.

In this case, MOPT is used to ensure network connectivity and coverage above a

certain level [33]. The utility maximization framework is applied in [68] to optimize

the performance of WSNs.

An iterative algorithm for obtaining an optimal solution is introduced in [64] based

on the upper network lifetime bound for a specific network topology. The complex-

ity of the distributed algorithm is O(N4) where N is the number of nodes. The

duty cycle is tuned dynamically based on network conditions to achieve the desired

end-to-end delay [69]. The authors in [69] introduce a MOPT formulation for two

objectives and find a set of possible solutions. They fail to study the effect of the

objectives on each other.

Delay-energy aware routing algorithm (DEAP) is introduced for heterogeneous wire-

less sensor networks in [70], but it lacks MOPT formulation. A MOPT formulation

for the sensor deployment problem. The solution is found using the genetic algo-

rithms (GAs), which generates a set of optimal solutions in a single run and within

a reasonable time. The designer then selects the best solution to fulfill the objec-

tives [71]. The delay performance with in-network aggregation is introduced in [72].
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The analytical results obtained show that with a small network the results are near-

optimal. However, results for large networks have yet to be uncovered.

Decision thresholds for distributed detection using MOPT is introduced in [34],

where probability of error and energy consumption are the objectives. In this case,

WSNs applications, such as flood detection and military monitoring, develop more

events per time unit [27]. A trade-off index is introduced and coefficients are tuned

to produce better probability of error. Asymptotic analysis of transmission energy

and delay is introduced in [73]. All these studies optimize two objectives at a time

but fail to relate the objectives to each other and miss the understanding of the

encountered complexity.

Chen et al. introduce hybrid geographic routing (HGR) [74]. HGR is a routing

algorithm that combines both distance and direction-based strategies in one cost

function. The cost function is used in order to find the trade-off between energy

consumption and end-to-end delay. In HGR, packet delivery decisions are made lo-

cally and the state of a node is independent of the number of nodes in the network.

However, each node must calculate its distance and direction to each other node in

addition to deciding the weighting factor of the cost function. All these calculations

are complex for the sensor node’s capability. Also, deciding the weighting factor is

not an easy task and requires a lot of feedback among nodes.

Most up-to-date research on MOPT has focused on finding the optimal solution. A

spectrum allocation optimization is used to maximize fairness and spectrum utiliza-

tion in [75]. A MOPT function compromising between probability of error and en-

ergy consumption is introduced in [76]. A distributed decision scheme that achieves

minimum reporting delay with the power consumption constraint is shown in [77].

Some other QoS-supported routing algorithms are found in [78]. All these QoS sup-

ported algorithms require a large computational power that can quickly deplete a
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portable battery. Moreover, they are not able to accommodate different kinds of

nodes.

Several WSNs applications are discussed in [80] that highlight the need for the

Table 2.1: The routing algorithms classification

Algorithm Category Examples

Energy-Efficient algorithms LEACH [3], EEHCA [2], HPAR [43],
FAR [44], PEGASIS [4].

Location-Aware algorithms GAF [8], GEAR [9], GEDIR [54], GeRaF [79],
GOAFR [55], LAR [50], PAGER [11].

Delay-Efficient algorithms TTDD [58], TEEN [57], SPIN [6], SPEED [5],
EARQ [59], HEED [46].

MOPT algorithms Cross layer [31,32,65], DEAP [70], HGR [74].

joint optimization of energy and delay. Energy optimization has been a salient con-

cern for minimizing energy consumption and must be carried out without violating

the data delivery constraint. Delay optimization is a substantial objective where

fast-delivery of traffic is desired such as health care monitoring.

A solution that optimizes the design objectives is required where all considered con-

straints are satisfied. The conversion of the various objectives into a single one is

done using either the weighted sum method or ǫ-constraint method [81]. The ob-

tained solution reflects a trade-off between the objectives.

A single-objective function can be optimized by the ǫ-constraint method by repre-

senting all other objectives as constraints. Although this simple paradigm usually

helps to achieve an acceptable result, multiple runs are required to achieve the opti-

mal Pareto Front (PF). The PF is defined as the collection of all potential solutions,

therefore, it is hard to obtain the best solution focusing on one objective without

encountering at least one poor objective. There are a number of drawbacks associ-

ated with this method as the found solution will depend along the relative values

of the weights specified. A non-dominated solution is the one which none of the

26



objective functions can be improved in value without degrading some of the other

objective values. Moreover, non-dominated solutions cannot be differentiated by

this method. Only the convex part of the PF solution can be found, because the

change in the formulation includes a linearization, which indicates the susceptibility

of the results to the PF shape.

Existing research focuses on energy consumption and delay minimization in order

to get a faster, energy-efficient delivery of the data [17]. Although some works on

energy and delay minimization are introduced in [32, 65, 74], they fail to account

for the necessities of the designer into account. Optimization results need to be

detailed to specify the route for forwarding traffic between nodes. The algorithm

should run within a linear time to match the sensor node’s computation capability.

Furthermore, the solution should achieve lower delay than the boundaries imposed

by the WSNs application.

A cost function, including energy and delay, is optimized while delivering data to

the sink. An energy and delay trade-off presents the constrained optimization prob-

lem formulation to satisfy the description of the WSNs. Optimization should meet

the QoS requirements and maintain the lowest energy consumption. In addition,

optimization should be scalable to large-scale network.

In [65], Madan and Lall introduce a cross-layer algorithm that operates on the

lowest layers of the open system interconnection (OSI) communication model. A

distributed algorithm is presented in order to maximize the network lifetime. A

theoretical formulation of optimal performance is also introduced, but lacks the

practical implementation to match the available computational power or the node

facilities. In [32], the authors optimize the link schedule and the flow rate, as well

as transmit power. They then extend their work to include the network lifetime

maximization.
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HGR algorithm is introduced in [74] which combines distance and direction-based

methods in a composite equation for route selection. HGR enhances routing to be

energy-efficient and matches delay requirements. Packet routing selection is locally

made in HGR where each node is independent from others in the network. There-

fore, each sensor node should calculate the distance and direction parameters as

well as select the designated weighting factor. Only routing is decided since no flow

assignment is determined. All the overall HGR calculations are above the limit of

the sensor node’s capabilities. Moreover, the weighting factor choice is difficult as

the feedback between nodes is needed. A trade-off between packet timeliness and

energy efficiency is demonstrated in [66] as authors presented a cross-layer policy

for routing algorithm and transmission power allocation.

All optimization formulation problems presented in the reviewed literature fail to

take the WSNs designers’ perspective into account. An optimal weighting factor is

still missing for a multi-objective solution. The perfect balance of objective weights

indicates the influence of a change in one objective on the other. To achieve effi-

cient energy minimization, a cooperation between layers is presented in [33] where

the physical and medium access control functions are coordinated. Network con-

nectivity and coverage optimization find solutions above a certain threshold. The

cross-layer algorithms are complicated and pressure the sensor node’s limited re-

sources, resulting in NP-hardness [33].

To escape NP-hardness, a sub-optimal algorithm is introduced in [67] that attempts

to have an energy-efficient communication which employs the greedy approach based

on some heuristics. Framework using utility maximization is introduced in [68] to

enhance the WSNs functionality. None of the works discussed so far try to find an

equation for fitting a curve on the PF curve in order to offer a series of solutions.

Several studies have investigated combining energy consumption with other objec-
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tives in WSNs, such as [60, 63, 64, 69]. A MOPT problem with energy and delay

objectives is considered in [60]. Robustness is the probability of success for a mes-

sage arrival at its destination within the acceptable delay and the hop count limit.

Energy, delay, and robustness are the considered objectives in [60] in order to find a

Pareto optimal set for the relay selection problem. An additional MOPT problem is

presented in [63] where optimization is considered for the geometry of the network

and transmit energy.

An iterative algorithm is introduced in [64] for optimizing the routing based on

the network lifetime upper bound for certain networks. Their distributed method

complexity is bound by O(N4) where N is the number of nodes. In [69], to achieve

the target delay, the sensor node’s duty cycle is dynamically adjusted according to

the network conditions. A two-objective expression is introduced to find the PF

possible solution. However, the authors fail to show the effect of each objective on

the other.

WSNs real-time applications such as military monitoring and flood detection are

developing more events per time unit [27]. Due to the increased number of events,

works such as [34] focuses on energy consumption and error probability are the

two objectives optimized using distributed detection where decision thresholds are

found. Coefficients are tuned, and a trade-off indicator is introduced to lower prob-

ability of error results. The authors in [73] then present an analysis of transmission

energy and delay using an asymptotic method. All studies reviewed optimize two

objectives simultaneously, on the other hand, authors do not investigate the relation-

ship between the two objectives. Furthermore, they fail to evaluate the encountered

complexity.

One of the existing algorithms shown in [44] uses maximum lifetime routing (MLR)

algorithm, which optimizes the flow transmission through a cost function built based
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on the energy level in both the sender and receiver. MLR distributes energy con-

sumption fairly before each node reports its residual energy level and decides the

routes that would optimize their overall performance. Other existing algorithms

take network conditions such as environmental design parameters into considera-

tion.

In [70], a routing algorithm is introduced for heterogeneous WSNs which is taking

energy and delay into consideration, but no MOPT formulation is given. A solu-

tion to the sensor deployment problem presented in [82], which generates a set of

Pareto optimal solutions within a limited run-time. This solution is based on a

MOGA implementation, however, [71] presents the best solution in terms of ful-

filling the objective. In-network aggregation delay optimization introduced in [72]

demonstrates that the analytical results obtained are near-optimal for a small net-

work size. However, the literature has not yet covered large-scale networks.

Recent research on MOPT focusing on the PF curve can be found in [75–77]. Spec-

trum allocation optimization is presented in [75] to maximize spectrum utilization

and fairness. Energy consumption and the probability of error are formulated as

a MOPT function in [76]. Lastly, a distributed algorithm shown in [77] achieves

minimum delay in reporting data under the energy consumption constraint.

In location-based routing, sensor nodes are addressed by their positions. The

distance is estimated between neighbouring nodes on the basis of received signal

strength indicator (RSSI). By exchanging such RSSI information between neigh-

bours, neighbouring nodes can obtain their relative coordinates. Instead of that, the

node’s location may be available directly using a low power GPS receiver equipped

with the nodes [7]. Location-based routing requires lower computational complexity

and smaller memory size because they save no redundant data much like flat-based

routing demonstrated in [6].
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Unlike hierarchical routing shown in [2, 3, 5, 32, 44, 58, 65, 83]. The purpose of these

algorithms is to compute a flow that minimizes the energy consumption as in [32],

maximizes the lifetime of a network as in [3,44,65] and minimizes the average delay

as in [5,58]. Most of the existing algorithms factor in the distances among the sensor

nodes when determining the next hop to find the route to forward data towards its

destination.

The routing algorithm needs to be energy-efficient, QoS-aware and preferably dis-

tributed. Node capability must be taken into consideration and should accommo-

date different application requirements [18]. When more parameters are added to

the cost function of the routing algorithm, the routing decision becomes too com-

plex for the sensor node. Finding a suitable routing algorithm that is application-

independent is still an open research topic [18].

Using the node’s location information, the routing algorithm limits data flooding in

the network. Such nodes become aware of their neighbours’ location by exchanging

information obtained from the GPS module embedded in some sensor nodes or by

using a localization method. Location information leads to faster discovery with

lower traffic flowing through the network [51].

FAR algorithm is introduced in [44] and associates a cost value to each link according

to the following function:

costij = (et
ij)

π1E−π2

i E∆
π3

i + (er
ji)

π1E−π2

j E∆
π3

j , (2.1)

where et
ij, er

ji is the transmission and reception energy consumption on link i − j,

respectively; Ei, Ej is the residual energy of node i and j, respectively; E∆i, E∆j

represents the initial energy of node i and j, respectively; (π1, π2, π3) are the ar-

bitrary exponents which are employed to modify the weighting of each parameter
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in the associated mapping. FA has the best performance at π1 = 1 regardless of

the values assigned to both π2 and π3. FAR with π1 = 1 achieves better perfor-

mance compared with other combinations of the exponent vector [44, 84], however,

the memory requirement for most techniques is excessive [7]. FAR achieves a near-

optimal network lifetime, however, the embedded computational complexity is high.

FA decreases the data flooding instead of picking out the best route to the sink yet

it gives lower QoS metrics than traditional algorithms such as AODV algorithm

presented in [45].

Location-based routing is surveyed in [7]. Moreover, path selection using the angular

directionality is presented in [36]. The approach in [36] uses the node’s coordinates

to decide how to forward the data to other nodes. That algorithm calculates the

deviation angle between the sensor node and the sink. The calculated angle is com-

pared with predefined threshold values, and the decision of either forwarding data

to a one of the neighbouring nodes or sent to the sink directly is made by the node.

Angle directionality is employed in order to send the data on a route as close to the

direct communication.

2.4 Existing Work for SHM Using WSNs

In WSNs for SHM, nodes are deployed in selected locations to gather data reflect-

ing the structural state. To guarantee the the effectiveness of the WSNs, the sensor

node placement is required to be energy-efficient and with high information quality.

Recently, the sensor placement optimization for WSNs for SHM has been studied

in [27,43,64,85–91].

In [43], Li et al. design an algorithm to find the optimal locations for sensor nodes,

taking both network connectivity and civil engineering requirements such as cover-
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age of critical locations in the structure into consideration. Sensor placement ensures

the optimization of the Fisher information matrix (FIM) for the placement location

indicator quality and energy consumption.Fisher information essentially describes

the amount of information data provide about an unknown parameter.

Sensor node placement algorithm using the effective independence method (SPEM)

is a placement algorithm based on sorting sensor locations according to the FIM

results. SPEM excludes the nodes with the least contribution. The authors in [27]

introduce a power-aware sensor placement algorithm using the effective indepen-

dence method (p-SPEM) algorithm for the placement optimization. The algorithm

is based on a local search between all possible locations selected by SPEM. p-SPEM

takes the following inputs: a vibration pattern of the structure called the mode

shape, the number of candidate locations (M) given by the civil engineering place-

ment criteria, the number of sensor nodes to be placed (N) and the assumptions

related to the routing. The p-SPEM algorithm outputs the set of the selected sensor

nodes out from the set of candidate locations. The output set is chosen to optimize

FIM and satisfy the constraints.

The authors in [27] show that the placement optimization problem is NP-hard.

They use a heuristic iterative algorithm that decouples the structure monitoring

and network requirements. The complexity of the placement algorithm is reduced

from O(NM) to O(N4M) by using this heuristic technique. In [88], the authors

develop a benchmark for SPEM in MATLAB. This benchmark implements the sen-

sor placement algorithm for SHM, while SPEM in [88] used both synthetic and real

data models for evaluation.

The authors in [91] find the minimum number of sensors required to reconstruct the

mode shapes for SHM. They investigate the optimal placement of accelerometer sen-

sors to achieve acceptable FIM for a structure. The resulting sensor node placement
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algorithm is used in conjunction with the extension of Shannon’s theorem to the

spatial domain. The steps for sensor placement are as follows: First, the algorithm

selects the highest mode shape to be measured. Then, it estimates the wavelength

for that mode and place a sensor node for each value of the mode shape. Lastly, it

places two additional sensors within half the wavelength span, with each sensor at

one-sixth of the wavelength spacing from each node.

The authors in [86] present an evaluation of sensor placement for WSNs that use

large amounts of prior information. The placement algorithm of the selected nodes

gives minimum energy consumption and maximum sensing coverage while captur-

ing most of the available information. The energy efficiency, sensing coverage and

operational lifetime of WSNs are improved in [86], but the algorithm is impractical

for real structures as it has high computational complexity. The authors in [87] in-

troduce an energy-efficient placement algorithm based on GAs, which has sufficient

coverage. The two objectives in [87] take sensor coverage and system lifetime into

consideration. The simulation results indicate an improvement in performance in

terms of coverage and system lifetime. However, an extremely vast increase in the

number of generations in GAs is needed.

An added objective in [85] includes fault tolerance in sensor placement optimiza-

tion. The authors take a heterogeneous WSNs for SHM that has three types of

nodes. These types of nodes are resource-rich nodes, resource-constrained nodes,

and redundant nodes. Furthermore, the algorithm in [85] adds these nodes to en-

able the fault tolerance ability of the network. They present a three-phase sensor

placement (TPSP) approach to obtain the sensor node positions. Phase 1 looks

for a near-optimal location for resource-rich nodes. Phase 2 finds the optimal lo-

cation for resource-constrained nodes while ensuring connectivity. Phase 3 places

redundant nodes to mitigate a sensor failure situation. The optimization of the
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placement in [85] aims at achieving the following objectives: satisfying the network-

ing demands, maintaining reliable and low-complex placement, and reducing the

chance of failures in WSNs.

The authors in [90] consider a sensor placement algorithm based on GAs to optimize

the SHM for bridge constructions. They present an algorithm for maximizing the

system lifetime by employing network coding in sensor placement optimization for

linear network topologies to match the structure type. When sensors are placed

along the length of the bridge, optimization aims at minimizing the failure in the

link connectivity and maximizing the lifetime of the network. Both packet relay

and network coding are key factors for routing collected data packets between two

sink nodes positioned at each end of the bridge. The mathematical analysis in [90]

shows that their algorithm saves energy, prolongs the system lifetime and removes

bottlenecks in the networks. While work in [90] is useful, it lacks numerical results

to support their claims.

In [64], Zussman et al. study energy-efficient routing in emergency sensor networks

by using an iterative algorithm. Their objective is to maximize the network lifetime

and the flow bounded by the possible node’s data rate. Their algorithm complexity

is O(N4), where N is the number of nodes in the network. This work shows the

need for a low complexity heuristic algorithm to deal with the special characteristics

of WSNs.

In [89], the authors formulate the sensor placement optimization problem with the

following objectives to be optimized: coverage, energy consumption, and connectiv-

ity. The conversion of multiple objectives into a single objective uses the decom-

position approach. The authors then compare the performance of their algorithm

with other evolutionary algorithms.

Building WSNs for SHM requires an optimal placement of sensor nodes as well as
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efficient routing. All placement algorithms in the studied literature perform rout-

ing after selecting the sensor node locations. These approaches do not guarantee

the optimality of the entire solution in terms of achieving the optimization prob-

lem objectives such as minimizing energy consumption and maximizing information

quality.
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Chapter 3

Joint Routing and Flow

Assignment Hybrid Geographical

Routing in Wireless Sensor

Networks

3.1 Abstract

Energy optimization represents the main goal in wireless sensor networks design

where a typical sensor node has usually operates by making use of battery with

limited-capacity. The sensor’s collected data has to be delivered within a specific

delay limit which shows the need of delay optimization. The joint optimization of

the energy consumption and delay for a conventional wireless sensor networks is

presented. In this problem, the following points are presented: First, we introduce

a joint multi-objective optimization formulation for both energy and delay for most

sensor nodes in various applications. Second, we present the Karush-Kuhn-Tucker
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analysis to demonstrate the optimal solution for each formulation. Third, based on

the multi-objective optimization formulation, we introduce a method for determin-

ing the knee on the Pareto front curve, which meets the network designer interest

for focusing on more practical solutions. Lastly, we calculate the optimal weighting

factor for both objectives which allows the network designer balance their mutual

interaction between the two objectives. This technique helps network designers in-

crease the simplification of the design process. A joint routing and flow assignment

hybrid geographical routing is proposed. In the proposed algorithm, we use the pro-

gressive distance and angle directionality to choose the best route and determine the

optimal flow which is considered a novel distributed algorithm. A near-optimal flow

for diverse network sizes is achieved by the proposed algorithm under the evaluated

network metrics. Hence, the implementation of the proposed algorithm is suitable

for the limited-resource sensor node due to the reduced complexity. Several network

metrics will be evaluated; the simulation will be conducted to complement and to

extend the results.

3.2 Introduction

Energy optimization is an essential design goal in WSNs, as sensor nodes are

equipped with a limited-capacity battery. The data gathered from the sensing

field needs to be delivered within an acceptable delay limit which highlights the

necessity of delay optimization. In this chapter, we make the following contribu-

tions: First, we introduce a joint MOPT formulation for both energy and delay

for monitoring and tracking applications. Second, we present the Karush-Kuhn-

Tucker (KKT) analysis to demonstrate the optimal solution for each formulation.

Third, based on the MOPT formulation, we introduce the development and testing
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of knee determination on the PF curve, which meets the network designer interest

for resilience while limitings the design solutions. Lastly, we calculate the optimal

weighting factor for both objectives, and the proposed trade-off allows the WSN de-

signer various solutions for their mutual interaction. This technique helps network

designers to simplify the design process. A novel distributed algorithm called joint

routing and flow assignment hybrid geographical routing (JFA-HGR) is proposed

that uses the progressive distance and angle directionality to choose the best route

and determine the optimal flow. The proposed algorithm achieves near-optimal

flow for diverse network sizes for different metrics. Hence, the proposed algorithm

implementation is possible along the sensor node due to the reduced complexity.

The simulation conducted complements and extends the results, allowing several

network metrics to be evaluated.

Optimization plays a significant role in the WSNs design. In the optimization pro-

cedure, multiple and equally opposing objectives must be met. MOPT finds the

optimal solution from a set of possible solutions that optimize all objectives. How-

ever, all possible solutions may be needed by the WSN designer at the same time.

MOPT is more difficult to solve compared to single objective optimization, therefore,

the MOPT problem is converted into a single objective problem using the weighted

sum method [1]. A weighting factor attached to each objective can indicate the

preferences of the network designer before merging them into a unified expression

that can be solved by an optimization method applying only a single-objective.

PF is the collection of all potential solutions, therefore the best solution focusing

on one objective is impossible to obtain without encountering at least one poor ob-

jective. These reviewed works overlook the knee on the PF is which the designer’s

area of interest that makes the movement in one objective produce a reduction on

the other objective. As a result, we introduce an extension to finding knee on the
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PF for the joint optimization of energy and delay in WSN.

Hybrid geographic routing (HGR) algorithm is introduced in [2] which combines dis-

tance and direction-based methods in a composite equation for route selection. A

heuristic algorithm is introduced to compute the best routes employing the node’s

coordinates to minimize energy consumption and delay with low computational

complexity. FA algorithm is introduced in [3]. To overcome the exorbitant memory

requirement problem of previous algorithms, several algorithms try to minimize the

energy consumption. In this chapter, a location-based routing algorithm that em-

ploys a criterion using the angle of deviation for forwarding data is proposed.

Energy is optimized with a delay constraint and delay is minimized under an initial

energy constraint. Both found solutions do not guarantee the optimality of the en-

ergy and delay together. In this chapter, the following contributions are introduced:

• We formulate a joint optimization of energy and delay for WSNs.

• We find the generated PF from MOPT that jointly optimizes both the energy

and delay.

• We calculate the knee region on the fitted PF curve where the optimal solutions

exist. However, the weighting factor given to each component in the MOPT is

unknown.

• We develop a technique for finding the optimal weighting factor. Thereafter,

the weighting factor is found to help the network designer choose the optimal

solution.

• We propose a heuristic algorithm for jointly providing the flow assignment and

routing as an extension based on an existing algorithm introduced in [2].

The rest of this chapter is arranged as the following: the problem description and the

system model, as well as the energy, delay and joint MOPT models, are presented in
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Section 3.3; the proposed algorithms are explained in Section 3.4; simulation results

for energy, delay and joint MOPT model are presented in Section 3.5; finally, The

conclusion of the chapter is found in Section 3.6.

3.3 Problem Description and System Model

In WSNs, the main goal is to deliver traffic to the sink in an optimized fashion

with low delay, using limited available energy. Sensor nodes are usually equipped

with nonchargeable batteries and deployed in limited access environments. These

limitations contribute to the problem of energy optimization, a common design

concern in WSNs [32].

In our work, energy consumption is reduced by data flow minimization in each link

while the node’s information generation rate is satisfied. This should be done with

the capacity constraint taken into consideration as it imposes limited capacity links

all around the network.

The selection of a route depends on the traffic flow at any given time in the link.

Formulation of the link delay is modeled so that the delay increases proportionally

with the flow passing at this link. The data flow is divided among different network

links in the optimization problem to balance the flow between links and reduce delay

efficiently. Hence, a joint of energy consumption and network delay optimization is

proposed.

3.3.1 Model Assumptions

The WSNs model used in [8] is based on the following assumptions:

• There are N sensor nodes, which are uniformly distributed within the area of
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interest.

• One or more source nodes exist with only one sink node whereby the source

nodes generate data flow destined for the sink.

• The remaining nodes act as intermediary nodes that generate no more traffic.

• Sensor nodes are stationary with equal capabilities regarding communication

and signal processing.

• Sensor nodes are battery-powered, which means they are energy constrained.

• Their initial energy is fixed and power control is enabled so they can adapt

their transmission power to the distance of the next hop.

3.3.2 Energy Model

The notations used here are much like those found in [37] include the following:

the link set IL consists of many links from a source i to a destination j represented

by a link (i − j) ∈ IL. qij is the capacity for the link (i − j), which indicates the

upper limit of the number of packets that can be transferred through that link per

time unit. In the network, a sensor node can act either as a source or intermediary

router passing traffic to the next hop or the sink, where traffic is delivered. A path

is the group of consecutive links meeting with the source-destination pair. There

are up to k possible paths for each l − l′ pair. The number of all paths is defined in

Pl−l′ where (l − l′) ∈ IL. The average traffic going through a link is measured at a

packet per second and is represented by the flow. Therefore, the flow xk indicates

the amount of flow for a particular path k.

The total data traffic generated by the node l for a given (l − l′) pair, which is used

by the node l′, is represented by bl−l′ . Routing decision is defined as determining a

route from l to l′ to allocate the traffic to each path linking the pair. A(l−l′)k
is the
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path indicator for the l − l′ pair which is shown as follows:

A(l−l′)k
=















1 if k ∈ Pl−l′ ,

0 otherwise,
(3.1)

where Pl−l′ is the set of all the paths for l − l′ pair. The flow equality constraint is

given as:

Ax = b, (3.2)

where the path incidence matrix is A ∈ IRm×n, x is the flow matrix and b is the

information generation rate. Meanwhile, the link incidence matrix C contains the

elements such as (cij)k which is given by:

(cij)k =















1 if k ∈ Fij,

0 otherwise,
(3.3)

where Fij is defined as the set of paths that include link (i, j). The flow through the

link is the sum of all flows passing through that link. The flow constraint is given

in matrix form as follows:

Y = Cx, (3.4)

where Y is the matrix representing the flow in each path.

To send a number of data packets between nodes, one of the nodes needs to ex-

pend energy. Energy will also be consumed when the node receives data packets

from other nodes. The energy consumed through transmission is a function of the

separating distance between the two nodes and the amount of the data to be sent.

In terms of reception, the energy is a function of the data flow, since the distance

does not play any role on the receiver side. Let yij be the flow in a link i − j

where Er(yji) is the reception energy function. The transmission energy function is
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Et(yij). Et(yij), is a function of the distance between the source and the sink. The

total energy consumed through a link i − j is E(yij) and is given by the following:

E(yij) = Et(yij) + Er(yji)

= (ǫt + ǫampd2
ij)yij + ǫryji, (3.5)

where ǫamp is the transmit amplifier coefficient, since radio parameters ǫt and ǫr are

the energy consumption coefficients per second per bit for transmitter and receiver,

respectively. The total energy per node is given by

Etotal(x) = 1T
NEi(x), (3.6)

where 1N is the sum vector of size 1 ∗ N having all N elements equal to one, Ei(x)

is the total energy consumption for node i. The main use of this sum vector is to

find the sum of the elements in Ei(x).

The energy optimization formulation is expressed as follows:

Minimize
x

Etotal(x)

Subject to :

(c1) : Ax = b,

(c2) : Cx ≤ Q,

(c3) : Etotal(x) ≤ E∆,

(c4) : Ψ(x) ≤ Dmax,

(c5) : x ≥ 0. (3.7)
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The optimization problem’s constraints address traffic, capacity, delay and flow.

The formulation has the following constraints: (c1) imposes that the total traffic

from each node is equal to the data sources generation rate b in all nodes, (c2)

guarantees that the flow rate for each link should not exceed the upper limit of the

link capacity Q, (c3) ensures that the consumed energy is lower than the initial

energy E∆ of each node, (c4) imposes that the delay, Ψ(x) presented in Eq. (3.8),

is less than the maximum delay limit set by user and application requirements for

the whole network Dmax, and (c5) ensures that the flow rate is always positive.

3.3.3 Delay Model

In the WSNs design process, delay becomes an important objective for applications

such as fire detection and tsunami alert [32] where traffic needs to be reported with

minimum delay. The source node delay consists of the following components: the

data acquisition sensing time, the processing time, the transmission time, the wait-

ing time in the queue for the received data and the propagation time, which is the

time taken to cross the physical media and is deeply dependent on the character-

istics of the link. In addition, for a wireless media, the propagation time depends

on the source-destination distance. Compared to the other components the prop-

agation delay is negligible as the encountered distance between nodes in WSNs is

commonly short. In this chapter, the transmission time and queuing time are the

only components considered to represent the end-to-end delay as they are the most

dominating ones. The delay will increase as the traffic on the link approaches the

magnitude of the capacity. When this occurs, the link qualifies as congested.

The delay can be determined by the defining level of congestion in each link such as

the method used in the M/M/1 queuing model as in [37]. The optimization problem
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can be formulated when the delay is defined as a convex function [37]. Suppose link

(i − j) has a capacity of qij such that the expected flow in the link, xij is bounded

by the assigned capacity. The delay will be longer when the traffic reaches link

capacity and the link becomes congested. The flow through a link divided by the

link maximum capacity is assumed to be proxy to the average delay experienced by

all the packets in the network. The network’s total delay is the sum of all delays

measured across all links. In any given path, the delay is assumed to be summable

over the traversed links to obtain an overall delay value expressed as:

Ψ(x) =
∑

i,j φ(xij)

=
∑

i,j
cijxij

(qij−cijxij)
+ σcijxij, (3.8)

where φ(xij) is a result of the queue at the sending end of the link. σcijxij is the

sum of the processing delay through the link. The constrained optimization problem

formulation of the delay is given as follows:

Minimize
x

Ψ(x)

Subject to : (c1) to (c5). (3.9)

The problem solvability relies on having a high enough capacity for the network

links. The objective function shown in Eq. (3.9), is convex since it is a weighted

sum of linear functions. Also, it is convex due to being differentiable on x [38]. The

proof of convexity of the delay component is performed by checking if the Hessian

is positive semi-definite. The Hessian of the delay component is given as follows:

H = 2xij(qij − xij)
−3 + xij(qij − xij)

−2. (3.10)
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Although the delay function is nonlinear on x, its Hessian is a positive, semi-definite

for all values of x > 0, which still makes the objective function convex as shown

in [37].

3.3.4 Multi-Objective Optimization (MOPT) Model

MOPT model provides trade-offs among energy consumption and an end-to-end

delay. The joint energy and delay optimization problem is represented as follows:

Minimize
x

Etotal(x)

Minimize
x

Ψ(x)

Subject to : (c1) to (c5). (3.11)

In this model, there are two objectives optimized. The first objective is the energy

minimization intended to exploit of the node’s battery efficiently while the second

objective is the delay minimization for fast delivery of the data. These two objec-

tives are opposing each other and each objective is assigned a weight based on its

importance.

3.4 The Proposed Algorithms

In this section, we list the proposed algorithms first, the KKT optimality condition in

Section 3.4.1. Second, the MOGA algorithm is used to find a near-optimal solution

in Section 3.4.2 and finally a heuristic algorithm based on HGR is presented in

Section 3.4.3.
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3.4.1 Karush-Kuhn-Tucker (KKT) Analysis

In the addressed energy minimization problem under a delay constraint, the La-

grangian multipliers for the objective function for energy are as follows:

Le(x, Γ, λ) = (ǫrC
T x+

(ǫt + ǫampd)Cx)+

Γ1(Ax − b) + λ1(Cx − Q)+

λ2(ǫrC
T x+

(ǫt + ǫampd)Cx − E∆)+

λ3(Ψx − Dmax), (3.12)

where Ψx represents the maximum overall delay for any given path in the network.

Based on the Lagrangian function, the equations of the associated multipliers is as
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follows:

∂Le(x, Γ, λ)

∂x
= ǫrC

T +

(ǫt + ǫampd)C+

Γ1A + λ1C+

λ2(ǫrC
T +

(ǫt + ǫampd)C)

+λ3Ψ
′

x
= 0

∂Le(x, Γ, λ)

∂Γ1

= Ax − b = 0

∂Le(x, Γ, λ)

∂λ1

= Cx − Q = 0

∂Le(x, Γ, λ)

∂λ2

= ǫrC
T x+

+(ǫt+

ǫampd)Cx

−E∆ = 0

∂Le(x, Γ, λ)

∂λ3

= Ψx − Dmax = 0, (3.13)

where Ψ′

x
is the first derivative of the delay component with respect to x.

In the case of ~x as a vector of two variables, the x1, x2 are the data flow on each link.

Similarly, let a11, a12, a21, a22 represent whether a link exists or not between nodes.

In addition, b1, b2 are the information generation rates for each source. Meanwhile,

c11, c12, c21, c22 represent links in each path. The values q1, q2 are the capacity for

each link. When the system of equations is solved on the element level, the optimal

flow for minimizing energy ~x∗

e is as follows: In the addressed delay minimization

problem under an energy constraint, the Lagrangian multipliers for the objective
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function of delay with the energy constraint are as follows:

Ld(x, Γ, λ) = Ψx + Γ1(Ax − b) + λ1(Cx − Q)

+λ2(ǫrC
T x + (ǫt + ǫampd)Cx

−E∆) + λ3(Ψx − Dmax). (3.14)

The equation of the associated Lagrangian is as follows:

∂Ld(x, Γ, λ)

∂x
= Ψ′

x

+Γ1A

+λ1C

+λ2(ǫrC
T

+ǫtC

+ǫampCd)

+λ3Ψ
′

x
= 0

∂Ld(x, Γ, λ)

∂Γ1

= Ax − b = 0

∂Ld(x, Γ, λ)

∂λ1

= Cx − Q = 0

∂Ld(x, Γ, λ)

∂λ2

= ǫrC
T x+

(ǫt+

ǫampd)Cx

−E∆ = 0

∂Ld(x, Γ, λ)

∂λ3

= Ψx − Dmax = 0. (3.15)
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Solving the system of equations for a small-scale results in finding the values of the

optimal solution x∗

d with the unknown variables ~x∗

d, Γ1, λ1, λ2, λ3.

The Lagrangian multipliers of the joint energy and delay minimization problem

under its constraint using MOPT with the weighted sum method for the energy

and delay objective function are as follows:

Le,d(x, Γ, λ) = ωΨx + (1 − ω)(ǫrC
T x +

(ǫt + ǫampd)Cx) +

Γ1(Ax − b) +

λ1(Cx − Q) +

λ2(ǫrC
T x +

(ǫt + ǫampd)Cx − E∆) +

λ3(Ψx − Dmax). (3.16)
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The equations of the associated Lagrangian is as follows:

∂Le,d(x, Γ, λ)

∂x
= ωΨ′

x
+

(1 − ω)(ǫrC
T x+

(ǫt + ǫampd)Cx)+

Γ1A + λ1C+

λ2(ǫrC
T +

ǫtC+

ǫampCd)+

λ3Ψ
′

x
= 0

∂Le,d(x, Γ, λ)

∂Γ1

= Ax − b = 0

∂Le,d(x, Γ, λ)

∂λ1

= Cx − Q = 0

∂Le,d(x, Γ, λ)

∂λ2

= ǫrC
T x+

(ǫt + ǫampd)Cx

−E∆ = 0

∂Le,d(x, Γ, λ)

∂λ3

= Ψx − Dmax = 0. (3.17)

From the previous equations, ~x∗

e+d, Γ1, λ1, λ2, λ3 can be found, therefore, optimal

flow for minimizing both energy and delay can be calculated.

3.4.2 Multi-objective Optimization Using Genetic Algo-

rithms (MOGA)

The optimal solution found numerically in the previous section is too complex for

the sensor node capability; therefore, a simpler sub-optimal approach is needed. In
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the following, MOGA is used as an ace of the heuristic approach for obtaining a

sub-optimal result. MOGA is an efficient heuristic search technique, which starts

with a population of available chromosomes. Each chromosome represents a solution

for the specified problem. Each solution is evaluated through the fitness function to

demonstrate the solution’s suitability. Two solutions are selected according to their

fitness values to generate a newer offspring solution through the crossover operation.

The generated solutions share some features taken from each selected solution.

A closed form solution is difficult to achieve even for WSNs on a large-scale, never-

theless, the study of the mathematical paradigm is necessary to read the following

physical parameters: the information generation rate for each node, the initial en-

ergy, the delay limit, and the capacity attributed to each link. These parameters

clarify the convexity of the problem.

After the new formulation that jointly minimize the energy and delay through the

multi-objective optimization, a sub-optimal solution based on artificial intelligence

approach of MOGA is introduced. MOGA is compared to the MOPT-based routing

and flow assignment using the optimality conditions of KKT. The solution with the

lowest fitness is less likely to be selected.

A population of potential solutions is produced by the selection of the best solution

from the current generation. The selection process is repeated until the stopping cri-

teria are reached. With the proper tuning of the MOGA parameters, the population

will converge to a near-optimal solution of the current problem [39]. MOGA is an

optimization tool explained in [1] that solves MOPT problems. This is an attractive

tool because of its ability to search partially ordered search space for several alter-

native trade-offs. Additionally, MOGA can track several solutions simultaneously

via its population.
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3.4.3 The Proposed Joint Flow Assignment- Hybrid Geo-

graphical Routing (JFA-HGR) Algorithm

The communication among nodes is determined after the optimization problem has

been formalized. While the optimized solution taken from different solvers minimizes

the energy and delay, a full practical routing algorithm is still needed to choose the

next hop and decide the flow in each link. In this chapter, a novel, location-based

routing algorithm is proposed that minimizes the energy consumption and delay

with reduced complexity and increased network lifetime.

HGR [2] uses the following equation to decide the best route:

ρi = α(µi/rc)
2 + (1 − α)(1 − |θi|/90)2,

α ∈ [0, 1], (3.18)

where ρi is the route preference for node i, θi is the deviation angle from the direct

path, µi is the progressive distance towards the sink, rc is the transmission range,

and α is the weighting factor in the route selection composite metric. To decide the

flow amount on a specific link the following equation is used

xij = ηi[(θtotal − θi)/θtotal], (3.19)

where xij is the flow going through the link i − j, ηi is the information generation

rate of node i. θtotal is the sum of all angles for nodes inside the arc of |θi| ≤ θth,

let ρmax be the maximum route preference and θth is the threshold angle, whereas,

ρmax and θth be the design parameters.

Contrasting with other algorithms, the HGR algorithm employs angle directionality

with the node’s coordinates of the sensor nodes that calculate the best route with
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the lowest computational complexity. The sensor network has many-to-one traffic

patterns, which means many of the sources forward their traffic to the sink node.

We propose a joint flow assignment - hybrid geographical routing (JFA-HGR) al-

gorithm. The routing decision is based on location information collected from the

neighbouring nodes and the sink. The proposed routing algorithm avoids the route

discovery, establishment, and maintenance phases that take place in other routing

algorithms.

A new joint flow assignment based on HGR is proposed. Algorithm 1 demonstrates

the JFA-HGR pseudo-code. The proposed algorithm fits into the many-to-one traffic

pattern of WSNs with its consideration of the sink direction, where θi is embedded

inside the node that contains the forwarding decision. The node can then make de-

cisions for itself based on the location information of its neighbours. In addition to

the routing, the flow assignment is determined to optimize the network objectives.

Algorithm 1 Joint Flow Assignment- Hybrid Geographical Routing (JFA-
HGR)

1: Inputs N is the number of nodes and node locations.
2: Compute ρi by Eq. (3.18) for N sensors.
3: while true do
4: Compute flow assignment xij on link i − j according to Eq. (3.19);
5: if ρi ≤ ρmax then
6: Calculate the total energy consumption Etotal.
7: else Calculate the best routes Break
8: end if
9: end while

10: Outputs The selected route and the flow assigned xij for each link.

3.5 Numerical Results

This section elaborates on how the optimization results are obtained in Section

3.5.1. MOGA results are presented in Section 3.5.2. In Section 3.5.3 introduction
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to the simulation environment and its configuration. In this section, simulation

results that evaluate the proposed algorithm are shown. With the platform used in

the simulation is explained and metrics are calculated. Performance of each metrics

is analyzed in a separate section with the detailed discussion of these results.

3.5.1 Optimization Results

In this section, we demonstrate the optimization environment, energy results, delay

results and MOPT results. We implement all these algorithms to find optimal

location-based routing algorithms: energy results, delay results and MOPT results

where both energy and delay are combined to generate MOPT results. MOPT

is executed and compared to existing routing algorithms, and thus, the optimal

solution found under the given settings.

Optimization Environment

The simulation experiments are implemented in MATLAB on the Windows XP

operating system running on a IBM computer with an Intel Xeon processor and a

2 GB memory. Test cases are available for 5, 7, 16, 20, 30, and 50 node networks.

The network area is 100 m × 100 m. All source nodes have 6 Mbps information

generation rate as in [40]. In all case studies, the link capacity is set to be 10 Mb at

maximum. Initial energy in each node varies from 1 to 100 joules. The acceptable

delay is limited to 20 msec up to 400 msec. Both the energy coefficient ǫt and ǫr are

equal to 50 nJ/bit and ǫamp is equal to 100 pJ/bit/m2accordingto1001[29].
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Energy Results

The energy results listed in columns 1 to 4 in Table 3.1 are generated under an upper delay

bound, which is the maximum acceptable delay assigned. The energy for different network

sizes is determined using the constrained optimization toolbox in MATLAB, which runs

using the interior point method algorithm [41].

The performance of the network is calculated in terms of energy consumption under

different delay limits. Results show the metrics for the amount of energy required to

achieve lower delay limits for different network sizes. To address larger networks, they

need to be simulated to obtain the required energy. The run-time is also recorded for

each network case study to judge the optimization complexity.

As shown in Table 3.1, the energy efficiency is higher with lower delay limits. Energy

supplied is set to 100 J which corresponds to a higher required energy beyond the available

one. This makes the solution with these restrictions infeasible for the parameters given.

The acceptable maximum delay bound is set to 20, 32, 100, 200, and 400 msec, which are

the acceptable delay limits for highly interactive applications such as voice applications

[42].

Delay Results

The delay results listed in columns 5 to 7 in Table 3.1 show the average end-to-end delay

to investigate additional available energy effects on performance. The performance of the

network case study is characterized under an upper energy bound. This bound represents

the initial energy stored in each node in the network.

The delay for different network sizes is determined using the fmincon function in MATLAB

[43]. As expected, the run-time increases as the size of the network increases. The

analytical results in Section 3.3.3 are useful to provide an approximation of the effect of
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Table 3.1: Energy and delay optimization for several node case studies using Pareto front
curve

Number Delay upper Energy Run-time Energy Upper Delay Run-Time Energy Delay Run-Time
of nodes Bound (msec) (J) (sec) Bound (J) (msec) (sec) (J) (msec) (sec)

Five Dmax= 20 1456 79.97 E∆= 1 112 79.97 2.2 103.5 105.22
Dmax= 32 300 82.46 E∆= 10 108 128.46 2.3 103.0 105.22
Dmax= 100 77 85.19 E∆= 20 108 85.19 2.4 102.5 105.22
Dmax= 200 39 86.00 E∆= 50 108 85.00 2.8 102.0 105.22
Dmax= 400 5.6 88.48 E∆= 100 101 88.48 3.6 101.5 105.22

Seven Dmax= 20 1734 551.32 E∆= 1 114.7 537.71 1.6 111 668.15
Dmax= 32 380 537.71 E∆= 10 112.6 551.32 2.0 104.0 668.15
Dmax= 100 120 469.37 E∆= 20 110.6 469.37 2.2 102.0 668.15
Dmax= 200 50 437.27 E∆= 50 109.6 437.27 2.4 101.0 668.15
Dmax= 400 10.7 368.15 E∆= 100 105.6 668.15 3.2 100.0 668.15

Sixteen Dmax= 20 1872 1399.61 E∆= 1 100.6 1399.61 1.7 112.5 1399.61
Dmax= 32 430 1399.61 E∆= 10 100.4 1399.61 1.9 106.0 1399.61
Dmax= 100 150 1399.61 E∆= 20 100.2 1399.61 2.2 102.5 1399.61
Dmax= 200 65 1399.61 E∆= 50 100.1 1399.61 2.4 101.3 1399.61
Dmax= 400 15.4 1399.61 E∆= 100 98.4 1399.61 2.8 100.5 1399.61

Twenty Dmax= 20 1980 1737.32 E∆= 1 135 1737.32 1.9 135 1737.32
Dmax= 32 500 1737.32 E∆= 10 134 1737.32 2.9 134 1737.32
Dmax= 100 175 1737.32 E∆= 20 133 1737.32 3.4 133 1737.32
Dmax= 200 80 1737.32 E∆= 50 132 1737.32 5.7 132 1737.32
Dmax= 400 21 1737.32 E∆= 100 130 1737.32 6.9 130 1737.32

Thirty Dmax= 20 2194 2955.62 E∆= 1 154.3 2955.62 3.1 154.3 3139.34
Dmax= 32 616 2955.62 E∆= 10 154 2955.62 3.5 154.0 3139.34
Dmax= 100 189 2955.62 E∆= 20 153 2955.62 5.2 152.3 3139.34
Dmax= 200 90 2955.62 E∆= 50 152 2955.62 6.7 152.0 3139.34
Dmax= 400 24 2955.62 E∆= 100 150.8 2955.62 8.4 150.8 3139.34

Fifty Dmax= 20 2353 82078.62 E∆= 1 228.6 82078.62 99.9000 228.6 82078.62
Dmax= 32 782 82078.62 E∆= 10 228 82078.62 99.9001 228.6 82078.62
Dmax= 100 230 82078.62 E∆= 20 227.8 82078.62 99.9010 228.6 82078.62
Dmax= 200 135 82078.62 E∆= 50 225.7 82078.62 99.9016 228.6 82078.62
Dmax= 400 71 82078.62 E∆= 100 220.7 82078.62 99.9020 228.6 82078.62
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different network parameters on delay. Simulation results provide more understanding of

this effect for large-scale simulations. Table 3.1 results show the delay for different case

studies under the energy bound of 1, 10, 20, 50, and 100 joules. As the energy upper

bound increases the run-time increases. This means that more solutions will be available

in the search space, which makes the delay minimized to lower values.

MOPT Results

Network energy consumption is minimized under a delay constraint as shown in Section

3.5.1. The delay is reduced under an energy constraint outlined in Section 3.5.1. We

combine both energy and delay into a single objective function. Both objectives to be

minimized simultaneously using the weighted sum method.

The PF is useful in WSNs design to focus attention on a set of efficient solutions. Network

designers can make trade-offs with these solutions in the knee rather than consider the full

set of all possible solutions. The MOPT simulation results presented in the next section

show how the knee is selected for different network sizes.

To evaluate the relationship between energy consumption and delay, a network with a

different number of nodes is simulated. The PF curve is found to be an exponential curve,

which represents the relationship between the two objectives. Using the PF curve, the

knee is selected based on a small change in energy, which reflects a substantial reduction

in delay and vice versa. The Pareto-optimal is calculated to find the minimum possible

energy for a given delay while the optimal trade-off curve defines the knee. The knee for

the network design is the region where energy-delay pairs are between the starting pair

(Esp, Dsp) and the ending pair (End, Dnd).

For a given network topology, the network energy-delay region consists of all the achievable

pairs under the assumptions of that network model. The energy-delay region is a convex

set. The energy-delay points (Esp, Dsp) and (End, Dnd) are contained within this knee
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region. The gain of energy efficiency is more significant in the knee than other parts of

the PF curve.

Both energy and delay for different network sizes are determined using MATLAB with the

MOGA optimization toolbox (gamultiobj). The possible solution is represented by circles

and the fitted curve for the PF is represented by a solid line. The knee is represented by

arrows pointing to the knee start and knee end with the associated weighting factor.

In this section, the PF is determined for different network sizes, and then, a fitted curve

is found for each case. The fitted curve follows the exponential equation in the following:

ζ = αeβχ + γ, where ζ is the objective shown on the vertical axis as a function of χ. The

objective is shown on the horizontal axis in addition to α, β, γ is the coefficients of the

exponential equation.

Knee Determination Results

For the five-node case study, one source, four possible paths, and seven links are consid-

ered as in [44]. The energy and delay are calculated for the case study, and the PF is

shown in Fig. 3.1. The increases in energy consumption have no more reduction in delay

outside the knee as shown in Fig. 3.1. The simulation results match the analytical results

found in Section 3.4.1. Coefficients shown with the minimum and maximum limits for

the exponential fitted curve for the five-node case study are as follows (with 95% confi-

dence bounds): α = 3.896e+004 (-2.675e+004, 1.047e+005), β = -0.006176 (-0.006857,

-0.005495), and γ = 0.1048 ( 0.1037, 0.106).

The knee is the points between the (2.2 J ,111 ms ) and (3.6 J ,101.5 ms) pairs. The fitted

equation is used to regenerate the PF curve. To verify the work, the five-node network

case study is solved by hand. Both analysis and simulation results match. Similarly, the

fitted equations are calculated for the different network case studies.

The end-to-end delay, on link congestion for different values of energy consumption, is
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shown in Fig. 3.2. A seven-node case study network with two source nodes, six possible

paths, and thirteen links is considered. The energy consumption reduction is more signif-

icant in the knee because a slight change in delay produces a large change in the energy

consumption. The gain in energy efficiency is more significant in the region of the (1.6 J ,

111 ms) and (3.2 J , 100 ms) pair as shown in Fig. 3.2.

In Fig. 3.3, a sixteen-node case study network with two source nodes, six possible paths,

and twenty-three links is studied. The gain in energy reduction is more significant in the

knee, which happens in the region of the (1.7 J , 112.5 ms) and (2.8 J , 100.5 ms) pair as

demonstrated in Fig. 3.3.

Results of MOPT are presented within the PF where the PF is shown according to the

operating conditions. Also, the results of MOPT formulations are listed in columns 8 to

10 in Table 3.1. For the twenty-node network case study, only one source node, seven

possible paths, and twenty-three variables are considered. Nodes are located on a grid

line where each line has two nodes. Lines are equally separated where the length of the

field is set to 100. For the thirty-node network case study, four source nodes, nine possible

paths, and thirty-five variables are considered. Nodes are located on five grid lines with

five nodes on each line. Similarly, lines are equally separated in the field. All pairs are

generated from one run for the optimization function. The number of variables considered

increase as the run-time increases exponentially. The results show a set of solutions in

the knee where both delay and energy are minimized.

The run-time result is approximately two days for a network size of fifty-node. Due to its

long run-time, only one MOPT model run is held. Also for twenty-node and thirty-node

case studies, run-time makes plotting the fitted PF curve difficult.

As shown, the MOPT generates solutions in the knee where more reduction is accom-

plished with little increases in the other parameters. This range corresponds to the area

of interest for network designers. This finding is important because instead of selecting
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from the 137 possible solutions on the curve, only 20 solutions exist in the selected region.

The knee achieves a speed-up of 85% less than the full PF. Speed-up helps the network

designers produce better solutions in reasonable time. The behaviour of the PF is differ-

ent outside the knee where an increase in the delay limit will not significantly reduce the

energy consumption.

The knee of the achievable energy-delay pair is found using a PF curve generated from

the MOPT solver. The weighting factor for each objective is determined by the weighted

sum method. A calculated weighting factor shows a tendency for energy to affect the

path selection more than the delay. The objective function values are compared with the

energy and delay values.
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Fig. 3.1: Pareto front for the five-node case.

3.5.2 MOGA Results

Mathematical solutions are obtained for WSNs with a number of nodes between 5 and 50

in the network. The initial energy E∆ is set to 1 J while the maximum delay is set to 1.8

seconds as in [2]. For our MOGA implementation, GA operators are selected such that
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Fig. 3.2: Pareto front for the seven-node case.
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Fig. 3.3: Pareto front for the sixteen-node case.
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the crossover probability is equal to 0.8, and the mutation probability is 0.2. Meanwhile,

the population size is 300, and the upper limit number of generations is chosen to be 300.

We also simulate the HGR algorithm [2] for comparison purposes. The sub-optimal energy

results for different network sizes are determined by the MOGA solver. The results related

to the delay for different network sizes for the studied methods are decided to utilize the

network simulator fed by the optimal flow rates calculated in each instance. The network

simulator is used for calculating the metrics under these flows.

The energy, and the delay are shown for different weighting factors ω in Fig. 3.4 and Fig.

3.5, respectively. The optimal solution given in these figures is generated from Eq. (3.11).

The energy is obtained using the Newton-Raphson method applying the optimal weighting

factor ω∗. The optimization results from [8] and MOPT with ω = 0.5 is presented.

Fig. 3.4 shows the energy consumption versus ω. The results related to the energy show

how the energy consumption, under each ω, affects the performance. It is evident that

MOGA achieves 40% saving in the energy consumption compared to that of the HGR

algorithm at ω close to one. MOGA is getting two times savings compared to HGR at

ω equals to half. Results are significantly lower for various ω not only for the optimal

solution, but also for a sub-optimal solution obtained by MOGA than HGR [2].

Fig. 3.5 shows the average end-to-end delay versus the different weighting factors. MOGA

results are 25% lower than HGR results at ω equals to zero. The results show that MOGA

has slightly higher energy consumption than that of the optimal solution and MOGA,

particularly at the small N .

A trade-off between the energy and the delay is obtained when both, the energy and the

delay, are combined in a single objective function. The combined objective function allows

both objectives to be minimized simultaneously. Fig. 3.6 shows the energy consumption

versus the number of nodes. For the optimal solution, the energy consumption is 15% of

that of the HGR algorithm while the energy consumption of MOGA is 50% of that of the
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HGR algorithm at N = 50.

Fig. 3.7 depicts the delay versus the number of nodes. The results show that delay

of MOGA is longer than that of the optimal one because the GA get trapped at local

optimum solutions. Furthermore, the gap between MOGA and the HGR increases as the

number of nodes increases because of the parallelism of GA in finding the solution.
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Fig. 3.4: Energy consumption versus the weighting factor.

3.5.3 Simulation Results

The network traffic simulator (OMNeT++) [45] is used for the algorithms simulation

which is developed by C language. The parameters used in the simulation is presented

in Table 3.2 and are listed as follows: a number of nodes, N , are placed at random in a

network area. Nodes are assumed to be stationary, and since the only sink exists in the

network area, nodes start with an energy of 2.5 J. We have evaluated and analyzed the

performance of JFA-HGR with the OMNeT++ network simulator [45]. The node density

is maintained constant to evaluate the scalability of the algorithms in a better way.
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Fig. 3.5: Average delay versus the weighting factor.
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Fig. 3.6: Energy consumption versus the number of nodes.
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Fig. 3.7: Average delay versus the number of nodes.

Table 3.2: The simulation parameters

Parameter Value used

Simulation Time 1 hour

Network Dimension 100 m × 100 m

Number of Nodes 10, 20, 30, 40, 50

Propagation model Two-ray

Radio Frequency 2.4 GHz

Radio Bandwidth 1 Mbps

Routing Algorithms AODV, FA, JFA-HGR, HGR, MLR

MAC Algorithm CSMA/CD (802.11)
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Simulation Metrics

The evaluation of performance of routing algorithms can be considered under the following

metrics: end-to-end delay, jitter, throughput, hop count and network lifetime. The delay

is the sum of the time taken to reach the destination averaged over all number of nodes

in the network. Jitter, the variation in delay, is often used as a metric of the variability

over time of the packet delay across a network. A network with a constant delay has

no variation or jitter. Packet jitter is expressed as an average of the deviation from the

average network delay. Throughput is measured in bits per second, which determines how

many bits are successfully received by the sink node. The number of visited nodes in the

path from the source node to the sink is defined as the hop count. The lower number of

hops, the better the algorithm.

An alternative performance metric is the network lifetime. The definition of the term

network lifetime for WSNs varies. Chang [3] defines the network lifetime as the time

until the first node depletes its battery that makes the rest of the network inaccessible.

However, lifetime is defined as the time until a number of data sources cannot reach the

sink [29]. We adopt Chang’s definition that is the time until the first node depletes its

battery. As the results show, battery depletion is often not directly proportional to the

total energy consumption, however, the definition is still a good metric for the evaluation

of WSNs and used for the characterization of the system performance. The two definitions

of the node lifetime and the network lifetime are listed below, respectively:

Definition 1: the lifetime of node i for a given flow [3] is defined by Ti as follows:

Ti =
E∆

∑

i,j∈N

ǫrcjixji + (ǫt + ǫampd2
ij)cijxij

. (3.20)
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Definition 2: the network lifetime for a given flow is defined as the time until the first

battery drains out [3]. The lifetime of the network T is the minimum lifetime over all

nodes and is given as follows:

T = min
i∈N

Ti ∀i ∈ N. (3.21)

In the following sections, the performance of the five routing algorithms studied is shown.

Starting from the ad-hoc on-demand distance vector (AODV) [35] algorithm that tends

to approach the destination in a minimum number of hops, then FA the algorithm that

get the residuals energy level from neighbours and choose paths that extend the life-

time to near optimal values. Finally, the proposed algorithm, JFA-HGR, is shown that

compromise between previously mentioned algorithms.

Network Lifetime

In Fig. 3.8, the network lifetime is simulated versus N . Results show that network lifetime

decreases as the number of nodes is increased for different case studies and AODV has the

lowest lifetime. At N = 10, FA has the highest lifetime at five times the network lifetime

achieved using AODV. At N = 50, FA lasts four times the AODV lifetime.

The increase in network lifetime is because of the division of flow over all paths. It has a

longer lifetime as the load is balanced among all nodes. For JFA-HGR, the lifetime is 20%

less than the FA. However, it has a diminishing loss when other metrics are considered.

The results in Fig. 3.8 show a trend where that the network lifetime decreases by a

noticeable margin when increasing the number of nodes. The margin, then starts to level

for N ≥ 30. The network lifetime is shown in Fig. 3.8 for the proposed algorithm is

acceptable to most of the applications in sensor networks.
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Fig. 3.8: Network lifetime versus the number of nodes.

Energy Consumption

The initial energy in the sensor node forces a limitation to the communication of the node.

Unless the node uses its limited resource efficiently, all its functionality will be stopped.

The data also needs to satisfy delay requirements. JFA-HGR outperforms AODV and

FA in overall metrics. Therefore, the JFA-HGR is a preferred solution for routing under

limited energy constraints and delay requirements. In Fig. 3.9, the energy consumption

is shown for the algorithms in study.

Delay

In Fig. 3.10, the average end-to-end delay is simulated versus a number of nodes. The

five chosen routing algorithms - AODV, FA, HGR, MLR, and JFA-HGR - are used in this

simulation. AODV has the lowest average delay of 7 milliseconds, and it increases as a

number of nodes increases. FA has the highest delay at more than five times the delay

of AODV for this case. It also goes to three times the AODV delay on average. The

delay for FA is around half of the maximum value of the cases evaluated. This happened
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Fig. 3.9: Energy consumption versus the number of nodes.

because of the FA tendency to divide the traffic among paths to conserve the balance.

The increase in delay is because of the flow division over all paths. The increase in delay

offers a longer lifetime as the load is balanced among all nodes. However, it also leads

to higher delays as it will not choose the shortest path. For JFA-HGR, the delay is 60%

less than the FA, which is a good improvement for such an important metric that is often

required in many applications.

In Fig. 3.10, AODV has the lowest delay, and it increases with the number of nodes. FA

has the highest delay with more than four times the delay of AODV with the ten-node

case. It also doubles the AODV delay on average. The delay for FA varies up to three

times the AODV value of the thirty-node case. For JFA-HGR, the delay is 50% less

than the FA for N = 10. Also, for fifty-node, it is 30% of the average delay. JFA-HGR

produces short delay closer to AODV with a higher lifetime closer to FA values.

The results in Fig. 3.10 show the delay encountered by the HGR and JFA-HGR algorithms

with a certain trend. The trend suggests that for the several network sizes, the delay is

monotonically increasing as the network size increases. The grounds behind the trend of
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the graph are that large network size makes the number of sensor nodes in WSNs and,

therefore, the effects of interference are reduced. It can as well be determined from Fig.

3.10 that the delay is higher when the routing is done very often.

For JFA-HGR, the delay also increases when the number of nodes increases. This is

because the large network size means more available routes. Nevertheless, due to reasons

that the HGR does not look at the flow assignment and allows any selection of nodes, the

delay of JFA-HGR be less than those of HGR when network sizes are coming near the

maximum number of nodes.
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Fig. 3.10: End-to-end delay versus the number of nodes.

Jitter

In Fig. 3.11, the average jitter is simulated versus N . Results show that FA has the

highest jitter, having more than six times the AODV jitter (the lowest jitter) on average.

The jitter for FA varies reaching half the maximum value at N = 50. While the jitter is

still eight times the lowest value of AODV.

The increase in jitter is because of the division of the flow over all paths. It gives longer
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lifetime as the load is balanced among all nodes, but also leads to higher delays facing

the traffic as it will not choose the shortest path. It results in higher jitter at N = 10.

For JFA-HGR, the jitter is 76% less than the FA, which is a good improvement for an

important metric affecting many applications.

FA has the highest jitter at more than three times the jitter of AODV with ten-node. It

also goes to one and a half times the AODV jitter on the fifty-node. The jitter for FA

varies to two times the AODV value with thirty-node. For JFA-HGR, the delay is 60%

less than the FA with ten-node. For fifty-node, the delay is 20% on the fifty-node. Results

show that there is a real improvement for an important metric for JFA-HGR over FA.

JFA-HGR offers a low jitter that is closer to one offered by AODV even though it has a

large lifetime that is closer to the one provided by FA.
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Fig. 3.11: Jitter versus the number of nodes.

Throughput

In Fig. 3.12, the average throughput is simulated versus N . AODV has the lowest

throughput, and FA has the highest throughput with more than 5 bits per second more
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than the throughput of AODV at N = 20. It also reaches 2.5 bits per second on average.

The throughput for FA is 5 bits per second lower than the maximum value at N = 50.

Its average is still higher than the largest value offered by AODV.

While AODV has the lowest throughput increasing the number of nodes. However, FA

has the highest throughput, even more, throughput than AODV with ten-node. It offers

2 bits per second more than the AODV throughput with fifty-node. The throughput for

FA is similar to the throughput for AODV with the thirty-node values. For JFA-HGR,

the throughput is less than that for FA with ten-node. Also, with fifty-node, it is similar

to AODV.

Fig. 3.12 illustrates the cumulative number of packets, delivered within a certain time

after sending. We observe that our JFA-HGR algorithm can deliver nearly 6 bits per

second within WSNs. We have evaluated our proposed algorithm and it’s shown to be

better than HGR by 53%. These results indicate that JFA-HGR can deliver data. We

measure the throughput by using traffic traces generated by a routing algorithm of the

packets to the final destination. MLR and FA algorithm shows poor performance because

the location-based routing has to update the lookup tables every interval to make the

routing decision.

Hop Count

In Fig. 3.13, the hop count is simulated versus a different number of nodes. AODV has

the lowest hop count increasing the number of nodes. While FA has the highest hop

count, even more, hop count than AODV with the ten-node case, JFA-HGR offers 1 to 2

hops less than the FA. Hop count is shown in Fig. 3.13 for the algorithms in the study.

The principle of hop count in WSNs is important, as the number of nodes can be large

and leads to higher delays suffered.
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Fig. 3.12: Throughput versus the number of nodes.
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Fig. 3.13: Hop count versus the number of nodes
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Complexity

In Fig. 3.14, the run-time is calculated versus N . The simulation uses five routing

algorithms MLR, AODV, FA, HGR as well as JFA-HGR. JFA-HGR has the lowest run-

time that increases with the number of nodes. While FA and optimal have the highest

run-time, JFA-HGR offers 20% run-time savings less than the FA. This makes JFA-HGR

a preferred solution regarding the longevity of the sensor nodes.

The novelty of the proposed algorithm stems from their complexity in the order of O(N),

whereas the complexity of the latest routing algorithm found in [7] is O(N2log(2N)). The

reduced complexity makes the proposed algorithm appropriate for large-scale networks.
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Fig. 3.14: Run-time versus the number of nodes

Discussion

Results are conducted using OMNeT++ network simulator [45]. Simulation studies are

also delivered to complement and extend the results, allowing metrics such as average

end-to-end delay and throughput to be judged. The strength of the proposed routing
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algorithm is examined using these metrics. In conclusion, JFA-HGR is a novel algorithm

that achieves a balance between cost of the delivery and revenue from this delivery.

Results show that there is a significant improvement for that important metric for JFA-

HGR over FA. JFA-HGR offers a similar throughput closer to that offered by FA with a

lower delay and a jitter close to that of AODV. The simulation results are summarized as

follows: FA has the longest network lifetime while AODV has the lowest delay and jitter.

JFA-HGR presents a trade-off between the two with an acceptable near-optimal lifetime

and a low delay. Also, JFA-HGR offers a lower jitter value with a high throughput to

evaluate accurately.

The increase in throughput is because of the division of the flow over all paths. It pro-

duces a longer lifetime as the load is balanced among all nodes, but it also leads to a

higher throughput facing the traffic as it will not choose the shortest path. It results

in a higher throughput for a different network size. For JFA-HGR, the throughput is 5

bits per second less than the FA, which is a good improvement for an important metric

affecting many applications.

The implementation of the five routing algorithms studied is shown to be starting from the

AODV. The data tend to approach the sink node in the minimal number of hops. With

FA, the routing algorithm receives information about residual energy from its neighbours

and chooses routes that generate network lifetime to near-optimal values. Finally, the

proposed algorithm, JFA-HGR, is proven to compromise between previously mentioned

algorithms.

The loss in the network lifetime of JFA-HGR and its throughput are diminished with the

gain in delay and jitter over FA. FA requires a large amount of information to be passed

to the nodes to make routing decisions. This required information for FA complicates the

routing operation. Even it can be prohibitive for the sensor node capabilities regarding

computational power and retention demands. This makes the demand for a more sim-
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plified routing algorithm that meets the practical parameters of sensor nodes. JFA-HGR

is the routing algorithm that matched the sensor node capability and gave near-optimal

network lifetime. In fact, it made a low delay and jitter values close to AODV.

A novel distributed routing algorithm, JFA-HGR, is proposed that forwards data based on

location information with the objective of minimizing the complexity and maximizing the

network lifetime. The proposed algorithm uses the angular directionality to choose the

best path. The proposed algorithm achieves optimal flow in different cases with an aver-

age percentage of 80%. The run-time for the proposed algorithm is found to be five times

lower than introduced by FA as shown in various studies. Hence, the reduced complexity

makes the proposed algorithm implementation amenable to current sensor capabilities,

which are planned to fit in large-scale networks.

Simulation results show that the JFA-HGR algorithm produces a near-optimal network

lifetime. The computations needed for the proposed algorithm are simple and can be held

in sensor nodes with its restricted computational power. Simulation results show that

when compared with JFA-HGR has a higher throughput, lower jitter, and low end-to-end

delay. Particularly for large-scale networks, JFA-HGR achieves 25% higher throughput

than HGR, with 20% lower jitter. This denotes that JFA-HGR has better scalability than

HGR.

3.6 Conclusion

The contributions of this chapter are as follows:

(a) The MOPT problem of energy and delay is formulated for WSNs using convex

formulations. A proper solver for the given formulation is chosen. Solutions

from the solver are found and the results from the designated solver are com-

pared with the existing results. The performance of the obtained results is

91



analyzed to show the efficiency of the formulation for WSNs.

(b) A routing algorithm for WSNs inspired by the MOPT formulation is proposed.

The proposed heuristic algorithm should have these features: first, it should

maximize the minimum network lifetime; second, it should match the applica-

tion constraint imposed by the battery capacity; lastly, it should achieve short

period of delay. The evaluation of the proposed routing algorithm for WSNs

is completed using network metrics. Results will show the performance of the

proposed algorithm under different scenarios in terms of network metrics. En-

ergy and delay optimization is formulated for WSNs as a MOPT problem. A

reduced complexity for the given problem formulation is presented in order to

cope with the node limited resources.

(c) A comparison of the proposed routing algorithms for each one of the three

systems is performed using the chosen metrics. The comparison is done versus

existing routing algorithms such as AODV, FAR and HGR. Not only the differ-

ent heuristics approaches are compared, but also the optimal and sub-optimal

mathematical results are compared.
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Chapter 4

Joint Optimal Placement,

Routing, and Flow Assignment in

Wireless Sensor Networks for

Structural Health Monitoring

4.1 Abstract

In this chapter, joint optimization of sensor placement, routing, and flow assignment

is introduced and solved using mixed-integer programming modelling. Sensor node

placement optimization has a significant role in wireless sensor networks, especially

in structural health monitoring. Since sensor node placement affects the routing,

optimization should be done for the node placement and routing jointly. Existing

work optimizes the node placement and routing separately (by performing routing

after carrying out the node placement). However, this approach does not guaran-

tee the optimality of the overall solution. Finding an optimal solution for this joint
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problem is too complex. Hence, a near-optimal solution is obtained using genetic al-

gorithms with reduced complexity. Moreover, a heuristic algorithm for joint routing

and flow assignment with placement is proposed using the effective independence

model, which optimizes the information quality and energy consumption for efficient

communication. Last but not least, the results are presented in a nine-floor building

to compare the three proposed algorithms with the heuristic algorithm introduced.

The numerical results show the efficiency of the proposed algorithms and the trade-

off between the effectiveness and complexity. After we have addressed this problem

using a single objective to minimize the energy consumption, we consider another

approach to solving the designated problem.

4.2 Introduction

Several applications, such as surveillance, tracking, and monitoring, use WSNs.

SHM is one of the applications of WSNs, which are used in critical infrastructure

and different buildings [2]. The importance of SHM is not only in preventing eco-

nomic losses but also for avoiding catastrophic failures and loss of human lives.

SHM using WSNs has the potential to become the most efficient solution compared

to traditional wired sensor networks motivated by their simplicity of installation,

ability to be applied to an existing construction and low maintenance costs [3].

Numerous challenges for resource constrained WSNs arise when used in SHM. These

challenges facing WSNs for SHM are listed as: the high amount of the generated

data, synchronization among nodes, and efficient routing especially for large-scale

networks. The recent advances in sensing and telecommunication technology helped

the WSNs for SHM to be more effective. Based on this feature, the availability and

the reliability of the data are guaranteed. To ensure that the data is accurate,
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WSNs should be able to transfer huge amounts of data in order to increase the

safety. Hence, WSNs for SHM can provide an early warning for forthcoming struc-

tural risks [4]. WSNs are considered the best candidate of stable structures for

future SHM systems because of the attributes mentioned above [5].

In WSNs for SHM, sensor nodes are placed in strategic locations that can capture

the structure response (in terms of vibrations) due to external effects such as the

wind or dynamic loads. The sensor node placement process is defined as the se-

lection of the best location to collect information about the structure’s state, while

routing is described as finding the sequence of the links to be used from the source

node to the destination node. As routing is affected heavily by the node locations;

therefore, the optimization of sensor node placement and its corresponding routing

will be essential for energy-efficient communication and long-lasting structures.

This work aims to maximize the information quality and minimize the energy con-

sumption with the joint placement and routing optimization. The contributions of

this chapter are summarized in the following points:

(a) We propose a novel formulation that jointly optimizes the placement and the

routing. The optimal result is found using integer programming that satisfies

both civil engineering and networking constraints.

(b) We find a heuristic solution using evolutionary GAs. We propose a sensor

deployment and routing algorithm based on GAs that efficiently deals with

the sensor placement optimization problem and achieves near-optimal energy

consumption and information quality for communication between sensor nodes.

(c) We propose a joint routing and placement algorithm using the effective in-

dependence model (JR-SPEM) as a heuristic algorithm. The novel heuristic

SPEM-based placement and routing algorithm achieves a low-complexity near-
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optimal solution. JR-SPEM selects the near-optimal path route based on Dijk-

stra’s algorithm, a well-known algorithm used for computing the shortest path

in a network, fed with the cost objective function.

(d) We evaluate the efficiency of the proposed algorithms. Results show that these

algorithms significantly reduce the total energy consumption of the deployed

sensors and improve the information quality. The complexity of all algorithms

in the study is found and compared to the traditional placement algorithm.

The proposed algorithms achieve a consolidated placement and routing in an

efficient way.

The reminder of the chapter develops as follows: Section 4.3 presents the system

model and the new formulation of the sensor placement and routing optimization

problem. Section 4.4 demonstrates a GA-based approach for finding a heuristic

solution. Section 4.5 describes the proposed heuristic algorithm based on SPEM

for the sensor placement and routing optimization in SHM. Section 4.6 provides

the numerical results of the proposed algorithms. Finally, Section 4.7 concludes the

chapter work.

4.3 System Model

The sensor node placement problem is the process of selecting N locations out of

the total M potential locations given by the civil engineering model. The sensor

placement problem in SHM is formulated as finding a location indicator set S =

{s1, s2, . . . , sM}, where si is a binary indicator that is equal to one if location i is

selected and zero otherwise. Each element in matrix x represents the number of flows

that use a particular link. For instance, if x12 = 3 this means that there are 3 flows
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that use the link from node 1 to node 2. It should be noted that matrix x reflects the

selected route of each flow from all sensor nodes to the sink. The decision variables

for the mathematical model are the following: si is a binary indicator where the

location is selected si ∈ {0, 1}, ∀i, xij is a non-negative integer variable that shows

how many times link i − j is utilized by all flows, xij ∈ {0, 1, . . . , N}, ∀i, j, i and j

are sensor node indices such that i, j ∈ {0, 1, . . . , M} and i 6= j, and s0 is the sink

node indicator where all traffic needs to be delivered.

The maximization of the ratio between the information quality and total energy

consumption is the objective of the sensor node placement optimization in this work.

The information quality is a function of the measured vibrations represented by the

mode shape, where a mode shape is a distinct pattern of vibration executed by a

structure at a particular frequency; basically different mode shapes are associated

with different frequencies. The mode shape matrix Φ is given by:

Φ =

















δ11 δ12 . . . δ1k . . . δ1K

. . . . . . . . . . . . . . . . . .

δM1 δM2 . . . δMk . . . δMK

















, (4.1)

where Φ conveys the individual contribution of all sensors. δMk is the measured

vibrations collected by the Mth sensor for the kth mode shape, where k is the

order of the mode shape for all sensors and K is the total number of mode shapes.

However, each column of the matrix in Eq. (5.1), φk, is the kth order mode shape

for all sensors and is represented as follows:

φk = [δ1k, δ2k, . . . , δjk, . . . , δMk]T , (4.2)
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while each row of the matrix in Eq. (5.1), φj, represents all mode shapes measured

by the jth sensor and is given as follows:

φj = [δj1 , δj2 , . . . , δjk , . . . , δjK ]. (4.3)

The FIM determinant |Q(S)| [1] is given as follows:

|Q(S)| = det[(Φ)TR−1Φ], (4.4)

where R is the covariance matrix representing the noise in the mode shape mea-

surements. Let Ψ correspond to the normalized sensor information quality and is

defined as follows:

Ψ = |Q(S)|/|Qmax(S)|, (4.5)

where |Q(S)| is the FIM determinant for a set of selected sensor nodes and |Qmax(S)|

is the FIM determinant when all sensor nodes are selected. Q(S)=Qmax(S) when

S equals all one vector

The minimization of the total energy consumption is an important part in the sensor

node optimization process. The calculation of the total energy consumption, the

denominator of the objective function, begins by finding the Euclidean distance

between two nodes. dij is the Euclidean distance between sensor node i and sensor

node j is given as follows:

dij =
√

(cu(i) − cu(j))2 + (cv(i) − cv(j))2, ∀i, j, (4.6)

where c(i) = (cu(i), cv(i)) is the Cartesian coordinate of a sensor node i in a two-

dimensional plane. C = {c(1), c(2), . . . , c(M)} is the coordinates matrix of the M

candidate nodes.
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In this chapter, we maximize ratio of the information quality per unit energy. The

total energy consumption includes the transmission and reception energy. Let et(ij)

be the transmission energy consumption on link i − j that is defined as follows:

et(ij) = (ǫt + ǫampdα
ij)n

bxijsisj, ∀i, j, (4.7)

where nb is the number of bits per packet and α is the path loss exponent. The

radio parameter ǫamp, and ǫt are the transmitter amplifier cost and the energy cost

for transmission, respectively as in [15]. xij, which is an element in matrix x, is

defined as the number of routes where the link i− j is used. Let Et(i) be the energy

consumed during the transmission by each sensor node i. The transmission energy

is calculated as follows:

Et(i) =
M
∑

j=0

et(ij). (4.8)

The reception energy er(ji) at sensor node i when it receives from node j is given

as follows

er(ji) = ǫrn
bxjisisj, ∀i, j, (4.9)

where ǫr is the energy coefficient for the reception. Er(i) is the total reception

energy consumption of node i and is calculated as follows:

Er(i) =
M
∑

j=1

er(ji). (4.10)

The total energy consumed during the transmission and the reception in sensor node

i is given by:

E(i) = Et(i) + Er(i). (4.11)

106



Let Etotal(S, x) be the total energy consumption by all nodes which is given as

follows:

Etotal(S, x) =
M
∑

i=1

E(i). (4.12)

The ratio between the information quality and the total energy consumption is

represented by ℧ and can be defined as follows:

℧ = |Q(S)|/Etotal(S, x), (4.13)

where the ratio ℧ physically determines how much information can be collected per

energy unit from one sensor or a combination of many sensors. When the objective

function is presented with the ratio ℧, the decision variables in this formulation are

the location indicator S and the link utilization matrix x.
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4.3.1 Case I: Basic Case without Flow Assignment

The joint routing and placement optimization problem is formulated as follows:

Maximize
S,x

|Q(S)|/Etotal(S, x)

Subject to :

(c1) dijI(xij > 0) ≤ rc,

∀i, j, i 6= j,

(c2) E(i) ≤ Einit, ∀i,

(c3)
M
∑

i=1

si = N,

(c4) sj +
M
∑

i=1

xij =
M
∑

i=0

xji,

∀j, j 6= 0, j 6= i,

(c5)
M
∑

i=1

xij ≤ sj(N − 1),

∀j, j 6= 0, j 6= i,

(c6)
M
∑

i=1

xi0 = N,

(c7)
M
∑

j=0

xij ≤ siN,

∀i, i 6= 0, i 6= j,

(c8) x0i = 0, ∀i. (4.14)

The formulation has the following constraints: (c1) guarantees the node connectivity

by ensuring that the distance, dij, between any two nodes does not exceed the

maximum transmission range rc, I(xij > 0) is a binary indicator whether link i − j
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is used at least once, i.e., xij, is greater than zero, (c2) ensures that the consumed

energy does not exceed the initial energy, Einit, stored in each node, (c3) imposes

that the number of selected nodes must be equal to N , (c4) enforces that the number

of input links to a sensor node plus the sensor node generated traffic is equal to the

number of output links (excluding the sink), (c5) ensures that a sensor node (e.g.

node j) does not receive more than (N − 1) flows (the upper limit (N − 1) will

happen if node j receives from all other nodes in the network), (c6) imposes that

the N flows are sent to the sink node because all N flows must terminate at node

0 (sink node), (c7) ensures that every node does not send more than N flows. For

instance, the maximum number of flows that node j has to send will happen if node

j receives (N − 1) flows (if node j receives the flows of all other nodes), then node j

has to send its own flow plus (N − 1) received flows (which is equal to N flows) to

the sink. Finally, (c8) guarantees that the sink node is not generating any traffic.

4.3.2 Case II: Basic Case with Flow Assignment

Case II considers the flow assignment where xij takes a rational value between zero

and N . This means that the traffic generated at node i can be split among different

links.

Flow assignment is needed to avoid overloading the links in the network. The

fundamental goal of flow assignment is to decide the flow rate that balances the

load among all links. In the previous sections, the data from a source node to the

destination node are sent to a single, minimum cost path between them. This model

is impractical as only one path between every source and destination pair is utilized

even if many paths exist with the same or nearly same cost.

Case II may be reasonable in types of networks where few alternative routes exist
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and have a large difference in the link cost. This case may also be used to identify

the path the data travels to avoid overloading certain links.

Fig. 4.1 and 4.2 show the idea of the flow assignment and how it affects the number

of links used and how traffic is divided between the available links. In Fig. 4.1, node

1 sends all of its traffic to the next node, node 6. Meanwhile, the traffic from node

1, when the flow assignment constraint imposed, is divided among the three various

paths as shown in Fig. 4.2. The mathematical formulation remains the same with

the exception that xij can take rational values as mentioned above.

Fig. 4.1: Case I: Basic case without flow assignment.

4.4 Sensor Placement and Routing Using Genetic

Algorithms

Mixed-integer programming (MIP) is used to determine the optimal solution of the

aforementioned formulation. MIP is employed to solve the optimization problem for-

mulated in Section 4.3. The MIP method may include a large number of variables

that can take a large amount of processing time and computing power. Moreover,
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Fig. 4.2: Case II: Basic case with flow assignment.

the optimal solution can be found in a reasonable time for the relatively small sizes

of the WSNs. The optimal solution has a high complexity that is bounded by

O(NM + M2) which is further explained in Subsection 4.6.4. To reduce the asso-

ciated complexity, a simpler heuristic approach is needed. The formulation of the

optimization problem is found to be an NP-hard problem as demonstrated in [1].

Placement is represented by a binary variable which makes it easily represented in

GAs. Therefore, this problem is a good candidate to be solved using evolutionary

algorithms such as GAs.

GAs are well-known approaches for solving optimization problems because of their

capability to check partially ordered search space for various trade-offs as demon-

strated in [17]. Furthermore, GAs evaluate several solutions simultaneously and find

the near-optimal solution by combining efficient solutions. After the optimization

problem is formulated as shown in Eq. (4.14), GAs are employed using the previous

formulation as an objective function to find a near-optimal solution with a reduced

complexity. Since the sensor placement and routing is a critical problem in SHM,

GAs are used to place nodes and find routes to maximize the information quality
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and minimize the total energy consumption.

A solution of the optimization problem is called a chromosome. The chromosome

is represented by a list of variables called genes [17]. If the gene value is 1, then the

corresponding sensor node is placed. If no sensor node is placed, the gene value is

0. A chromosome’s size should be equal to the number of possible locations plus

the number of possible links as shown in Fig. 4.3. The genes representing link

utilization xij are not binary (but rather integer variables in the rang [0, N ]).

GAs create a number of solutions randomly to form an initial population, and then

the fittest survived solutions move on to the next generation. The generated solu-

tions share some features taken from each possible solution. A new population of

generated solutions is produced by the selection of the best solutions for the current

generation and then performing crossover between them to produce the next gener-

ation. Mutation is also used to introduce some randomness to the new generation

creation. The process of generation and selection is repeated until the stopping

criteria are reached. The population will converge to a near-optimal solution when

the GAs parameters, such as the crossover rate, are properly tuned as shown in [17].

In our GAs implementation, the chromosome represents a solution that has a max-

Fig. 4.3: Solution representation in GAs with the placement and routing included.

imum of M sensors. Meanwhile, the possible links can be M(M − 1) links, so the

number of variables will be M2. Roulette-wheel selection is used in which the chro-

mosome that has a large fitness function value has a higher probability to survive to
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the next generation over others. During the crossover operation, the chromosomes

are recombined resulting in two new child chromosomes to be appended to the next

generation population. The probability of crossover is equal to pc. Increasing this

value may improve performance, which leads to increasing the crossover occurrence.

In this chapter, the single point crossover operator is used. After selecting the chro-

mosomes, GAs generate random numbers to select where to split the chromosome

into two parts to then be recombined. Lastly, the mutation operator flips some

of the genes of the chromosome. Similar to the crossover operator, increasing this

probability will increase the mutation occurrence. A mutation probability of pm is

taken in order to make our GAs search visit the corners of the search space to check

for isolated solutions.

The calculation of the ℧ ratio used in Eq. (4.14) measures the chromosome fit-

ness or performance. As a part of its task, the GAs try to find the largest fitness

function value in order to get near-optimal placement and routing. GAs then check

for the best chromosome found in the population. A larger fitness function value

means a higher upper-limit information quality and minimum energy consumption.

Nevertheless, after the number of runs is larger than or equal to M2 multiplied by

the number of variables, the variations in GAs results will be low. Consequently,

GAs are terminated immediately after a specified number of generations is reached

or the stopping criterion occurs.
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4.5 Sensor Placement and Routing Using Enhanced

SPEM-based Heuristic Approaches

In this Section, the details of the SPEM, p-SPEM, and JR-SPEM methodologies

are explored. SPEM is a traditional sensor placement algorithm introduced in [6],

later, modified to be power-aware with a reduced complexity in p-SPEM [1]. We

propose JR-SPEM, a practical, heuristic algorithm, to improve the SPEM placement

algorithm [1] by jointly performing placement and routing. The description of SPEM

and JR-SPEM algorithm is given in subsections 4.5.1 and 4.5.2, respectively.

4.5.1 SPEM Algorithm Description

SPEM algorithm is a sensor placement that calculates the determinant of the FIM,

based on the structure mode shape measurements [5]. The p-SPEM algorithm solves

the sensor placement optimization problem based on a local search between all pos-

sible locations among all candidate locations selected by SPEM.

The pseudo-code of the SPEM algorithm [1] is given in Algorithm 2. The input to

SPEM is M potential locations selected by civil engineers. SPEM then selects a

set of N locations for the sensor placement (line 2). The algorithm computes the

normalized sensor information quality, Ψ, in the pseudo-code (line 3). Then, SPEM

sorts the set of the sensor node location indicators (line 4) and removes the element

with the least contributions (line 5). The algorithm iterates to find the best location

indicators (lines 2 - 6). The output of SPEM algorithm is the location indicator set

S (line 7). The above steps of pseudo-code of SPEM are summarized as shown in

Algorithm 2.

For brevity, only SPEM pseudo-code is presented without the details of the energy
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Algorithm 2 SPEM Algorithm [6]

1: Inputs M is the number of candidate locations, and N is the number of sensor nodes
used for the effective placement.

2: for i = 1 : 1 : M − N do
3: Compute, Ψ, the normalized sensor information quality.
4: Sort S according to Ψ.
5: Removes the element with the least contribution in Ψ.
6: end for
7: Outputs The set of location indicator S of the selected sensor N locations out from

M total candidate location.

estimation algorithm (e-Estimator) and local search (l-Search) algorithm. These

two modules are both explained in the p-SPEM version found in [1]. Finding the

location indicator S and choosing data routes is also an NP-hard problem [1]. The

data routing is solved in a separate module based on values found by e-Estimator al-

gorithm, an algorithm that estimates the energy consumption for each sensor node,

using the chosen routing model. The shortest path routing model is used to decide

how to route the data. Euclidean distance is chosen in this routing model as a

metric for making the routing decisions.

The p-SPEM algorithm calls the SPEM algorithm in order to achieve the place-

ment optimization of the sensor nodes. After calling SPEM, the p-SPEM algorithm

attempts to maximize the objective function given by the determinant of the FIM,

with M possible sensor locations and N required number of nodes. The output S

is the best location indicator for the sensor placement that gives the highest fitness

value. The objective is improved iteratively by replacing the sensors with the least

contribution to the |Q(S)|. The iteration proceeds until no further improvement is

observed in the objective function. The l-Search algorithm is used to find the best

nodes to be inserted into the S to optimize the objective function. In each iteration,

all sensors try the neighbour within a specific distance to determine if any of them

can improve the placement metrics. If no improvement is found, then the iteration
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stops.

4.5.2 Joint Routing SPEM (JR-SPEM) Algorithm Descrip-

tion

Considering the problem formulation above, a novel, heuristic SPEM-based place-

ment and routing algorithm is proposed to achieve a feasible solution. JR-SPEM

selects the near-optimal path route based on Dijkstra’s algorithm, a well-known

algorithm used for computing the shortest path in a network, fed with the cost

objective function (line 6).

The JR-SPEM placement and routing algorithm is applied to find the best sensor

node location and to find a route from each selected sensor node to the sink with

its designated flow. As shown in Algorithm 2, JR-SPEM algorithm calls SPEM

with all candidate locations (line 2) and SPEM chooses the best N sensor locations

according to the objective function in the formulation (by calculating ℧initial in line

3). The best route for improving the performance is found in an iterative way. To

improve the objective, the sensor with the least contribution to the determinant of

the FIM is replaced in S (line 8). Then, the algorithm searches the other previously

removed sensors in Stemp (line 9), and the temporary sensor location indicators, to

improve the ratio ℧ by comparing it to ℧max (lines 11 - 14). The iterations (lines

5 - 15) proceed until no further improvement can be observed. The output is the

best N locations according to the routing model (line 16).

116



Algorithm 3 Joint Routing Sensor Placement (JR-SPEM)

1: Inputs M is the number of candidate locations, and N is the number of chosen sensor
nodes for the placement.

2: Compute the sensor location indicators set S by SPEM().
3: Calculate ℧initial for the N nodes selected by SPEM().
4: Set ℧max = ℧initial

5: while true do
6: Find x through Dijkstra Algorithm.
7: Sort locations in S with the ratio ℧.
8: Remove the sensor node with the lowest ratio in S.
9: Add another randomly chosen sensor node to create Stemp set.

10: Calculate the ratio ℧temp for the Stemp set.
11: if ℧temp ≥ ℧max then
12: Update the sensor location indicators set S.
13: else Skip the sensor node Break
14: end if
15: end while
16: Outputs The selected N sensor location indicators S with the highest metric ℧max,

and the link indicator matrix x.

4.6 Numerical Results

In this section, we evaluate the performance of the optimal algorithm, GA-based

algorithm, and the JR-SPEM algorithm of different N for a nine-floor building. Per-

formance metrics include the total energy consumption Etotal(S, x), the information

quality |Q(S)| and the normalized information quality to the total energy consump-

tion ratio ℧norm. For comparison, p-SPEM and JR-SPEM placement algorithms

are evaluated.

The general algebraic modeling system (GAMS) [?] is used for modeling the problem

and the BARON solver [?] is employed for finding the MIP solution.
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4.6.1 Performance Parameters

Table 4.1 lists the parameters used in the numerical results with their associated

values. The initial energy Einit is chosen to be 1500 mAhr as in [15], and the number

of bits per packet nb is equal to 2 Kb [1]. The transmission range rc is set to be 30

m [20]. The path loss exponent α is chosen to be 2 as in [15], the radio parameters

are selected as in [15] where the transmission energy cost is ǫt, the reception energy

cost ǫr, and the power amplifier energy cost ǫamp are chosen to be equal to 50 nJ/bit,

50 nJ/bit, 1 nJ/bit/m2, respectively [15]. The building’s height is considered to be

a 30 m × 20 m as shown in Fig. 4.4. A two-dimensional plane is assumed with

its sink node located at (20, 0) with a floor height of 3.33 m. GAs parameters are

chosen as follows: the crossover probability is 0.8 and the mutation probability is

0.1.

Assume all sensor nodes have the same transmission range and that sensor node

candidate locations are one location in each floor on the nine-floor building. More-

over, the results are shown for 3-8 sensors chosen from the nine candidate locations

in the nine-floor building. A sensor node has the node coordinates of its neighbours.

4.6.2 Performance Metrics

The three metrics used for measuring the proposed algorithms’ performance are the

total energy consumption Etotal(S, x), the information quality |Q(S)| and the ratio

℧norm. The normalized information quality (NIQ) is the metric for the amount of

information collected by the sensor node. NIQ is calculated by Eq. (5.3) for the

selected sensor node location indicators and then normalized by dividing the result

by the maximum information quality. The last metric used is the NIQ to the total
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Table 4.1: Parameter values used in the numerical results

Symbol Description Value

Einit The initial energy 1500 mAhr [20]

nb The number of bits per packet 2 Kb [1]

rc The maximum transmission range 30 m [20]

α The path loss exponent 2 [15]

ǫamp The power amplifier energy cost 1 nJ/bit/m2 [15]

ǫr The reception energy cost 50 nJ/bit [15]

ǫt The transmission energy cost 50 nJ/bit [15]

pc The crossover probability 0.8 [17]

pm The mutation probability 0.1 [17]

Fig. 4.4: The nine-floor building of length L = 30 m and the sink node is located at
(20,0).

energy consumption ratio, ℧norm. The normalized ℧norm ratio is calculated as the

ratio between the NIQ and the normalized energy (found by dividing the energy
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value by the maximum energy consumption).

4.6.3 Performance Evaluation

Case I: Numerical results for basic case without flow assignment

Results are generated for three different algorithms: the optimal algorithm using

MIP optimization, GAs, and JR-SPEM. All proposed algorithms are then compared

with the p-SPEM presented in [1]. The performance of the proposed algorithm is

presented based on the above formulation in order to evaluate the performance of

the algorithms for different values of N . The results for the basic case which is

based on the formulation in Eq. (4.14) are shown in Fig. 4.5 to Fig. 4.7.

Fig. 4.5 summarizes NIQ results for the four considered algorithms under different

values of N . As expected, NIQ increases as more sensors are added to collect in-

formation from various points in the structure. Using MIP, NIQ values for N = 5

and N = 7 are about 22% and 48%, respectively. The NIQ achieved using GAs for

the same N are about 22% and 45%, respectively, whereas the values for JR-SPEM

are about 19% and 38%, respectively, and the NIQ achieved using p-SPEM for the

same N are about 15% and 25%, respectively. The NIQ improvement occurred with

JR-SPEM against the p-SPEM is due to the increased focus on NIQ and efficient

routing when performing the local search. The JR-SPEM has more than 10%, 40%,

and 80% improvement in the NIQ for N = 6, 7 and 8, respectively. Results demon-

strate that the JR-SPEM can increase the NIQ significantly over p-SPEM for N = 5

to N = 9.

Fig. 4.6 depicts that the energy consumption increases with an increase in the num-

ber of nodes. In fact, when N increases there are two conflicting factors that affect

the energy consumption. In the first one, as N increases we add more nodes, flows
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and packet transmission. Hence, the energy consumption increases. However, in the

second factor, as N increases more nodes become available so we can make the links

shorter and also nodes find more and better routes (with less energy consumption)

to send their packets to the destination. For instance, in Fig. 4.4 when N = 8 all

nodes are selected except node 1. Thus, node 2 sends its traffic (and traffic from

some other nodes) to the sink (node 0) using link 2-0. When N increases to 9, one

more flow is added (due to adding a node at location 1), which increases the energy

consumption (first factor). However, node 2 can send its own traffic (and traffic

from some other nodes) to node 1 which, in turn, forwards it to the sink. The use of

shorter links (2-1 and 1-0), rather than link 2-0, causes significant reduction in the

energy consumption (second factor) since the transmission power is adjusted based

on the links distance according to Eq. (7). Due to these two conflicting factors,

sometimes increasing N leads to energy consumption increase and other times it

leads to energy consumption decrease depending on the dominating factor.

In Fig. 4.6, we summarize the results of all the algorithms in study for different N .

We observe that the energy consumption increases as the number of sensor nodes

increases. This rise in the energy consumption is a consequence of the node en-

ergy budget increasing with the traffic. Fig. 4.6 results indicate that the solutions

obtained by the optimal and GA-based algorithms perform efficiently. About 25%

energy consumption savings exist for the optimal and GAs solutions over JR-SPEM

and p-SPEM for N = 6. JR-SPEM performs well with more than 27% of the energy

saving over p-SPEM for N = 5. It is also evident that p-SPEM consumes higher

energy over all algorithms.

Fig. 4.7 presents the ℧norm ratio for the four algorithms. With the increase of

N , the ratio ℧norm increases for all algorithms. The optimal algorithm always

achieves the best ratio, and GAs achieve a higher performance about 70% better
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than the p-SPEM algorithm. Results show that the JR-SPEM can achieve about

50% improvement in the normalized ratio compared to that of the p-SPEM when

the network size is increased above N = 8. However, compared to p-SPEM, the

ratio for the optimal, GAs and JR-SPEM are still higher. The JR-SPEM ratio is

higher due to the failure of p-SPEM to balance the load among the sensor nodes,

which leads to a smaller ratio.

From Fig. 4.5 to Fig. 4.7, we can make the following observations: First, the op-

timal algorithm is outperforming the other algorithms, followed by the GAs, then

JR-SPEM and finally p-SPEM. The second observation is that as the number of

selected nodes increases, the JR-SPEM solution achieves higher ratio than the p-

SPEM due to the efficient joint of the routing with the placement rather than local

search and energy estimation in p-SPEM.
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Fig. 4.5: Normalized information quality for optimal, GA-based and SPEM-based heuris-
tic algorithms in a nine-floor building using the system model for Case I.
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Fig. 4.6: Total energy consumption for optimal, GA-based and SPEM-based heuristic
algorithms in a nine-floor building using the system model for Case I.
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Fig. 4.7: The ℧norm ratio for optimal, GA-based and SPEM-based heuristic algorithms
in a nine-floor building using the system model for Case I.
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Case II: Numerical results for basic case with flow assignment

NIQ increases as the number of the nodes in the network increases for several algo-

rithms as shown in Fig. 4.8. The increase occurs because of the higher number of

nodes placed in positions that results in a higher quality of information collected by

the sensors. For most of the network sizes, the JR-SPEM is proven to have a greater

rate of improvement in the NIQ for different N . However, for N = 5 to 9, JR-SPEM

results are always higher than p-SPEM, which demonstrates the dominance of JR-

SPEM algorithm in collecting information. The optimal algorithm outperforms all

other algorithms under high N values while GAs performance is also better than

p-SPEM for different N as demonstrated in Fig. 4.8. The optimal solution obtained

using MIP exceeds the p-SPEM solution.

Fig. 4.9 exhibits a comparison of the energy consumption for the four placement

algorithms with flow assignment. The optimal algorithm achieves the lowest en-

ergy consumption for all N values, Moreover, GAs and JR-SPEM are the same for

N = 8. In Case II, the JR-SPEM energy consumption results save around 2% to

11% compared to p-SPEM. Meanwhile, p-SPEM energy consumption is higher than

the optimal and GAs but close to JR-SPEM for N = 4. Results also indicate that

JR-SPEM does not perform well compared to the optimal, as an additional 25% of

the energy is consumed for N = 8. In Case II, JR-SPEM performs well with more

than 6% of energy saving over p-SPEM for N = 5. However, p-SPEM achieves poor

results compared to the other algorithms.

Analyzing this difference in energy consumption helps discover the nature of p-

SPEM and JR-SPEM, which affects the amount of data transmission in the net-

work. The energy consumption increases when increasing the number of nodes due

to a higher amount of traffic flowing through the network. For Case II compared to

Case I results, low energy consumption is achieved for all the proposed algorithms
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with higher N values.

For the demonstration of the effect of the flow assignment on the normalized ratio,

Fig. 4.10 plots the ratio ℧norm versus N for the four algorithms. The optimal solu-

tion achieves the highest ratio while JR-SPEM achieves almost the same GAs result

when compared to p-SPEM. The trend in results occurs because p-SPEM is unable

to balance the energy consumption among nodes to avoid the rapid depletion of the

node’s battery.

Case II has more energy consumption for all N . Under the same set of inputs, Case

II results show that the energy consumption of the selected nodes is higher in Case

II over Case I due to the use of more routes. In Case II, the normalized ratio still

rises with the number of nodes. The optimal algorithm achieves an increase in the

normalized ratio due to the efficient distribution of the flows over all possible routes.

The reason the energy consumption for JR-SPEM is higher than the corresponding

p-SPEM is because the data stream is split among different paths in an efficient

way.
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Fig. 4.8: Normalized information quality for optimal, GA-based and SPEM-based heuris-
tic algorithms in a nine-floor building using the system model for Case II.
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Fig. 4.9: Total energy consumption for optimal, GA-based and SPEM-based heuristic
algorithms in a nine-floor building using the system model for Case II.
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Fig. 4.10: The ℧norm ratio for optimal, GA-based and SPEM-based heuristic algorithms
in a nine-floor building using the system model for Case II.
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4.6.4 Complexity of the Algorithms in Study

In this section, we characterize the complexity of the placement and the routing

and their combined algorithm. It has been shown in [1] that the complexity of the

SPEM algorithm is given by O(N4M). The following analysis shows the complexity

for these five algorithms in the study, but it is approximated for the nearest order

for the sake of simplicity.

Routing, as demonstrated in [1], is determined inside the p-SPEM after a candi-

date set S is selected. Next, the corresponding energy consumption is estimated for

the chosen set of nodes. An energy estimation algorithm is called iteratively three

times inside the local search algorithm in the p-SPEM as shown in [1], which gives

a higher complexity bound by O(N4M). The embedded complexity in [1] shows

the shortcomings in their routing approach. Due to the limitations of p-SPEM,

the JR-SPEM is considered to be better than other sensor placement approaches

because the placement and routing are merged together into one module to improve

the ℧norm.

Moreover, the p-SPEM algorithm finds a suitable placement, then it employs the

e-Estimator algorithm to calculate the energy consumption. Estimating the energy

consumption is not efficient when a greater number of nodes are used due to its

complexity. Although, p-SPEM finds balanced solutions in a polynomial time. The

p-SPEM computational complexity is even quite high where the complexity bound

is O(N4M) [1]. To address these concerns, a JR-SPEM heuristic algorithm has a

complexity of O(NM2), calculated based on the complexity of its sub-modules, is

used to find an energy-efficient and high information quality placement solution.

Table 4.2 reflects the complexity of the algorithms studied in this work. The com-

plexity of the placement algorithm and routing algorithms are shown in the table

both separately and with their summation together. An approximated complexity
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of both the placement and routing is also shown for the five algorithms in study.

The total complexity of the proposed algorithms consists of the inherent complexity

of the placement and routing. This is shown in [1], where the high complexity is

bound by O(N4M). Unlike p-SPEM, the placement and routing in JR-SPEM are

merged together into one module to improve the ratio ℧norm. The complexity of

the SPEM placement used in [1] is O(NM). The complexity of the modified local

search and routing presented in [1] is bound by O(N4M + M2). The complexity

of the routing using the optimal algorithm is O(NM) for M possible locations as

shown in [22] and [23]. However, as there are M2 possible links from the solution

representation. The complexity of the routing using this work’s GAs implemen-

tation is O(M6) because the complexity of GAs is the cubic order of the building

block [?] of either the placement or the routing. The complexity of the routing using

Dijkstra’s algorithm, which is used in works involving JR-SPEM, is O(NM2). A

modified version of the Dijkstra’s algorithm is introduced in [24] and used in this

work. Embedding the routing inside the algorithm leads to reduced complexity in

JR-SPEM compared to all approaches used for finding the best solution in previous

work [1].

In Fig. 4.11, the histogram of the running time for the algorithms in study is shown

versus N . The optimal algorithm has the highest running time for N greater than

5, while the GAs-based solution has the same complexity for all N due to its fixed

number of variables for chromosome representation. Considering the SPEM-based

heuristic algorithms, the JR-SPEM has a shorter running time compared to the

p-SPEM. This histogram shows the efficiency of the JR-SPEM as a placement and

routing algorithm with shorter running time than its competitors.
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Table 4.2: Complexity of the algorithms in study

Algorithm Optimal GA-Based JR-SPEM p-SPEM SPEM

Placement O(NM) O(M3) O(NM2) O(NM + N4M) O(N(M − N))

Routing O(M2) O((M2)3) O(M2) O(M2) O(N2)

Placement O(NM O(M3) O(NM2 O(NM + N4M O(N(M − N)

Routing +M2) +(M2)3 +M2) +M2) +N2)

Approximation O(NM) O(M6) O(NM2) O(N4M) O(NM)
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Fig. 4.11: The histogram of the running time for the algorithms in study versus number
of nodes.
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4.7 Conclusion

This chapter presents a novel joint formulation that optimizes placement, routing

and flow assignment. In addition to the optimal solution obtained from the afore-

mentioned formulation, a low-complexity, near-optimal, GA-based solution, that

achieves promising results, is presented. Furthermore, a heuristic solution, JR-

SPEM, is developed and found to give close results to the optimal algorithm. The

JR-SPEM algorithm is introduced to improve SPEM and p-SPEM by jointly op-

timizing the placement and routing. Metrics such as the information quality, the

total energy consumption, and their normalized ratio are determined for each algo-

rithm. The numerical results are evaluated for a nine-floor building to analyze the

performance of the proposed algorithms. The numerical results show the efficiency

of the proposed algorithms and demonstrate trade-off between the efficiency and

complexity.

In the next chapter, we will focus on the proposal of a multi-objective algorithm

for placement and routing of WSNs for SHM. Moreover, we will consider different

cases, including the limited capacity of links and the node-disjoint routing.
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Chapter 5

Node Placement in WSNs for

SHM with Multi-Objective

Optimization

5.1 Abstract

Node placement is one of the most significant factors that affect the performance of

wireless sensor networks (WSNs), especially for structural health monitoring (SHM).

Optimal node placement tries to find the best sensor node locations that optimize

an objective function (e.g., energy consumption or information quality) taking the

networking requirements and other constraints into account. In [1], we have ad-

dressed this problem using a single objective to minimize the energy consumption.

In this chapter, we revisit the placement problem in WSNs for SHM by using multi-

objective optimization for minimizing the energy consumption and maximizing the

information quality simultaneously. Furthermore, in this chapter, we take into con-

sideration some constraints that were not taken into account in [1]. This includes
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the maximum capacity per link and the node-disjoint routing. While maximum

capacity constraint is essential to guarantee the packet delivery over WSN links,

node-disjoint routing is important to achieve load balancing and longer WSN life-

time. We propose algorithms for joint placement, routing and flow assignments

using multi-objective optimization with/without link capacity constraints and node-

disjoint routing. Results show the superiority of the proposed algorithms compared

with existing algorithms in the literature.

5.2 Introduction

Structural health monitoring (SHM) is an emerging application where many objec-

tives need to be met in the lively fields of critical infrastructure and construction

monitoring. SHM can facilitate the monitoring of the state of the building through

the deployment of many sensor nodes. The task of SHM is essential not only for

prevention of financial losses, but also for catastrophic failures avoidance and no-

tably human lives loss.

Wireless sensor networks (WSNs) have become the most efficient solution for SHM

(compared to traditional wired sensor networks) due to their simplicity of installa-

tion, ability to be applied to an existing structure and low maintenance costs [2].

However, WSNs for SHM face various challenges such as the energy consumption,

network scalability for large structures, and data accuracy.

In SHM, the structural ambient vibrations is measured using accelerometer sensors.

Then, the vibration signals are used to calculate the mode shapes which are used

to detect the structure damage and determine its location. Node placement deals

with determining the best locations for sensor deployment across the structure. The

inputs to the placement algorithm are the mode shape that is a vibration pattern of

136



the structure, the number of M candidate locations given by the civil engineering ex-

perts, the number of sensor nodes placed (N) besides the assumptions related to the

routing. The placement algorithm outputs the set of the selected locations that en-

sures the highest information quality which is measured by the Fisher information

matrix (FIM). Basically, Fisher information describes the amount of information

data provide about an unknown parameter.

In [1], we have addressed this problem using a single objective to minimize the en-

ergy consumption. This work aims to execute the sensor node optimization with

the joint placement, routing and flow assignment optimization using multi-objective

optimization and with new constraints. The flow assignment defines an efficient

splitting of data traffic on multiple disjoint paths. Node-disjoint routing implies

that no two different paths pass through the same sensor node in the network at

a time. Routing with node-disjoint paths disjoint routing is used mainly for load

balancing and it has important feature in WSNs where collision between the packets

passing the same node should be avoided. The upper bound on the maximum per-

link capacity of a WSN is limiting the amount of traffic to be transferred through

a certain link under given constraints. The main contributions of this chapter are

the following:

(a) We formulate the joint placement, routing and flow assignment problem as

a multi-objective optimization. This formulation is used to show the trade-

off between the different objectives, namely the energy consumption and the

information quality.

(b) We introduce maximum capacity constraint for each link. This is more realistic

case and helps to guarantee the packet delivery in all links.

(c) We consider node-disjoint routing to achieve load balancing and longer WSN
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lifetime.

The rest of the chapter is organized as follows: Section 5.3 outlines some related

work on WSNs for SHM. Section 5.4 formulates the system model and the sensor

placement and routing optimization problem under various constraints. Section

5.5 demonstrates the proposed approach for finding a heuristic solution using an

evolutionary algorithm. Section 5.6 evaluates the proposed algorithms via numerical

results. Finally, Section 5.7 concludes the work in this chapter.

5.3 Related Work

Sensor placement is an integral function for all SHM applications, where sensor

nodes are positioned at locations with the architectural importance from a civil en-

gineering point of view. Hence, optimization of sensor placement is crucial to lead to

energy-efficient communication. Previous works [3–11] study the sensor placement

optimization for WSNs for SHM.

In [3], the authors offer a benchmark developed in MATLAB for sensor placement

algorithm using the effective independence method (SPEM) that implements the

sensor placement algorithm for SHM. In this case, SPEM uses both synthetic and

real data examples for evaluation.

The authors in [4] propose a method to find optimal locations for the sensor nodes

taking into consideration both civil engineering requirements such as coverage of

critical locations in the structure as well as communication requirements such as

network connectivity. Sensor placement optimization in SHM introduced in [5] en-

sures the optimization of an objective function, which depends on the FIM, the

location placement indicator, and the energy consumption. Moreover, the authors

in [5] introduce a power-aware sensor placement algorithm using the effective inde-
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pendence method (p-SPEM) algorithm to solve the sensor placement optimization

problem. This algorithm is designed to reduce the overall energy consumption to

prolong the battery life for sensor nodes. Locations selected by p-SPEM are based

on a local search between all possible locations among all candidates.

The authors in [6] present a sensor placement for WSNs that uses huge amounts of

prior information about the sensor nodes. The objectives of the proposed placement

algorithm are the minimum energy consumption and maximum sensing coverage

while capturing most of the available information. This placement algorithm also

improves energy-efficiency, sensing coverage and operational lifetime of WSNs. This

algorithm, however, requires many calculations, which makes it impractical for real

structures due to its complicated computational complexity.

The authors in [7] introduce an energy-efficient placement algorithm with acceptable

coverage based on genetic algorithms (GA). The two objectives taken into consid-

eration are the sensing coverage and the network lifetime. The numerical results

show an improvement in the performance. However, a vast increase in the number

of generations in GA is needed, which increases the search time.

Fault tolerance is additionally used as an objective for the sensor placement opti-

mization problem for WSNs for SHM as shown in [8]. The authors select a het-

erogeneous network consisting of three groups of sensor nodes, resource-rich nodes,

resource-constrained nodes, and redundant nodes. The three node groups are then

placed to allow the fault tolerance in the network. The authors also present an ap-

proach named three-phase sensor placement (TPSP) to help in placing these three

groups efficiently to obtain the node positions. The three phases of TPSP are em-

ployed as follows: First, a near-optimal location is found for resource-rich nodes.

Second, the optimal location is chosen for resource-constrained nodes, whereas con-

nectivity is guaranteed. Finally, redundant nodes are placed to alleviate the sensor
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failure. The placement optimization targets to satisfy the networking demands and

lower the chance of failures in WSNs and consequently maintain reliability and low-

complexity placement.

The authors in [9] study sensor placement optimization for SHM of bridge construc-

tions. They present a method for maximizing the system lifetime and employ net-

work coding in sensor placement optimization for linear network topologies to match

the structure type. Bridges, for example, can have sensors placed along its length.

Optimization aims to downplay the link connectivity problems and maximize the

lifetime of the network. Both packet relay and network coding are considered for

routing collected data packets towards two sink nodes positioned at both ends of

the bridge. The mathematical analysis in [9] shows that their method saves energy,

prolongs the system lifetime and eliminates bottlenecks in the networks. The work

in [9], however, lacks comprehensive numerical results and experimental work to

support authors’ claims.

In [10], the authors formulate the sensor placement optimization problem with the

following objectives to be optimized: coverage, energy consumption, and connectiv-

ity. A decomposition approach used for converting the multi-objective into a single

objective. The performance of their algorithm is compared with other evolutionary

algorithms.

Energy-efficient routing is introduced in [11] for emergency sensor networks by us-

ing an iterative algorithm. The objective is the optimization of the network lifetime

where the flow bounded by the node’s data rate. Also, the derivation of bounds on

the network lifetime is introduced. The development of optimal algorithms, which

can be implemented in a distributed manner, is presented. This work shows the need

for a low-complexity algorithm to deal with the special characteristics of WSNs.
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5.4 System Model

The node placement problem is defined as the process of selecting N locations out of

M , the total number of candidate locations decided by the civil engineering experts.

The sensor node placement problem for SHM is formulated as finding the optimal

binary location indicator set S = {s1, s2, . . . , sM}. Each node generates a certain

flow every cycle which we call it a flow rate. By the flow rate, we mean the packet

stream of each node at fixed time in one cycle. xij is a non-negative integer indicator

that shows how many times link i−j is used by flows generated by all placed nodes,

xij ∈ {0, 1, . . . , N}, ∀i, j, i and j are node indices such that i, j ∈ {0, 1, . . . , M} and

i 6= j. The notations in this work are listed in Table 5.2.

First objective: Maximizing the information quality.

The mode shape is represented by a function of the measured vibrations. The

mode shape Φ is given by:

Φ =

















δ11 δ12 . . . δ1k . . . δ1K

. . . . . . . . . . . . . . . . . .

δM1 δM2 . . . δMk . . . δMK

















, (5.1)

where Φ imparts the sensor node contribution to the measurement data matrix, k

is the order mode shape for all sensors, and K is the total number of mode shapes.

Each row of the matrix in Eq. (5.1) represents the mode shape measured by a

specific sensor node. Each column of the matrix in Eq. (5.1) represents a particular
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Table 5.1: Notations used in this work.

Symbol Description

M The number of all candidate locations.

N The number of sensor locations selected.

S The set of location indicator.

Φ The mode shape matrix.

φj The mode shape measured by the jth sensor.

φk The kth order mode shape for all sensors.

Q The Fisher information matrix.

x The matrix that shows the number of flows per link.

xij The link indicator from node i to node j.

Γ The normalized sensor information quality (NIQ).

R The covariance matrix.

E(i) The total energy consumed during the transmission

and the reception in node i.

Einit The initial energy in the sensor node.

nb The number of bits per packet.

rc The maximum transmission distance.

C The coordinates matrix.

et(ij) The transmission energy on link i − j.

er(ji) The reception energy on link j − i.

Et(i) The total transmission energy consumed by node i.

Er(i) The total reception energy consumed by node i.

Etotal(S, x) The total energy consumption by all nodes.

dij The distance between node i and node j.

si The link indicator for node i.

sj The link indicator for node j.

Cl The capacity of the link.

Stemp The temporary sensor location indicators set.

δMk The measured vibrations collected by the Mth sensor

representing the kth the mode shape.
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Table 5.2: Notations used in this work [Continued].

Symbol Description

α The path loss exponent.

ǫr The reception energy cost per data unit.

ǫt The transmission energy cost per data unit.

ǫamp The power amplifier energy cost per data unit per m2.

ω The weighting factor of the objective function.

℧ The information quality to

the total energy consumption ratio.

℧norm The normalized information quality

to the total energy consumption ratio.

mode shape for all sensors. The FIM determinant |Q(S)| [5] is given as follows:

|Q(S)| = det[(Φ)TR−1Φ], (5.2)

where R is the covariance matrix of the noise in the mode shape measurements. Let

Γ correspond to the normalized sensor information quality (NIQ) which is defined

as follows:

Γ = |Q(S)|/|Qmax(S)|, (5.3)

where |Q(S)| is the FIM determinant for a set of selected sensor nodes and |Qmax(S)|

is the FIM determinant when all sensor nodes are selected.

Second objective: Minimizing the total energy consumption.

We minimize the total energy consumption of all nodes under predefined constraints.

This is done by minimizing the energy consumption in both transmission and recep-

tion. Let Etotal(S, x) be the total energy consumption by all nodes which is given
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as follows:

Etotal(S, x) =
∑M

j=0(ǫt + ǫampdα
ij)n

bxijsisj

+
∑M

j=1 ǫrn
bxjisisj, ∀i, j, (5.4)

where nb be the number of bits per packet, α is the path-loss exponent and dij is

the Euclidean distance between node i and node j. The radio parameter ǫamp and ǫt

are the transmitter amplifier cost and the energy cost for transmission, respectively

as demonstrated in [12], while ǫr is the energy cost for the reception.

5.4.1 Single objective function formulation

The ratio of the information quality to the total energy consumption, ℧, is given as

follows:

℧ = |Q(S)|/Etotal(S, x), (5.5)

where this ratio physically determines how much information can be collected per

energy unit from one sensor or a combination of many sensors. The ratio is used as

the objective function in [1, 5]; however, this objective does not show the possible

trade-offs between the two objectives. We use this case here as a reference case.

Case I: Basic Case Formulation without Node-disjoint Routing and Flow

Assignment

We formulate the optimization problem as an integer linear programming (ILP)

where all variables are either integers or binary variables. This formulation is intro-

duced with full details in [1] and it is mentioned here for the sake of comparison.

The decision variables in our formulation are the following: si is a binary indicator
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showing if this location is selected where si ∈ {0, 1}, ∀i, the link indicator matrix is

x. The joint placement and routing optimization problem is formulated as follows:

Maximize
S,x

|Q(S)|/Etotal(S, x)

Subject to :

(c1) dijI(xij > 0) ≤ rc,

∀i, j, i 6= j,

(c2) E(i) ≤ Einit, ∀i,

(c3)
M
∑

i=1

si = N,

(c4) sj +
M
∑

i=1

xij =
M
∑

i=0

xji,

∀j, j 6= 0, j 6= i,

(c5)
M
∑

i=1

xij ≤ sj(N − 1),

∀j, j 6= 0, j 6= i,

(c6)
M
∑

i=1

xi0 = N,

(c7)
M
∑

j=0

xij ≤ siN,

∀i, i 6= 0, i 6= j,

(c8) x0i = 0, ∀i. (5.6)

The above formulation has the following constraints: (c1) guarantees the node con-

nectivity by ensuring that the distance, dij, between any two nodes does not exceed

the allowable transmission range rc, where I(xij > 0) is a binary indicator whether

link i − j is used or not, i.e., xij, is greater than zero. (c2) ensures that the total
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energy consumption does not exceed the initial energy stored in each node Einit.

(c3) imposes that the total number of nodes selected by the placement algorithm

is equal to N . (c4) enforces that the number of input links to a sensor node plus

the sensor node generated traffic is equal to the number of output links (excluding

the sink). (c5) ensures a sensor node does not receive from a number of nodes more

than N − 1. (c6) imposes that the sink node, s0 is the sink node indicator where all

traffic needs to be delivered, does not receive more than N times. (c7) ensures that

a link is not used more than N times. Finally, (c8) guarantees that the sink node

does not generate any traffic.

Case II: Basic Case with Maximum Link Capacity Constraint

In this section, Case II imposes the maximum link capacity constraint. The formu-

lation for Case II will be as follows:

Maximize
S,x

|Q(S)|/Etotal(S, x).

Subject to : (c1) to (c8),

(c9) xij ≤ Cl,

∀i, i 6= 0, i 6= j, (5.7)

where Cl is a unit-less quantity which represents an upper limit for the link indica-

tor. Cl is the capacity of the link divided by the information generation rate of the

sensor node.

We introduce this new constraint to ensure the message integrity and the informa-

tion delivery. The sum of the flows through any link must not exceed its capacity

and this is ensured by the constraints in (c9). When the maximum link capacity

is enforced, then the packet error rate will be higher as there will be more packets
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dropped. The set of constraints in Eq. (5.7) ensure that the flow of packets on a

link does not exceed its capacity.

Case III: Basic Case with Node-disjoint Routing Constraint

Disjoint routing aims to achieve load balancing for all nodes in the network. When

considering the multi-path routing problem in WSNs for SHM, there are two primary

types of multi-paths: node-disjoint paths and link-disjoint paths. Node-disjoint

paths are defined as a set of paths, from a source node to a destination node where

no two paths share a common node, except for the source and destination. On the

other hand, a set of link-disjoint paths consists of a set of partially node-disjoint

paths intersecting at one or more common nodes.

In Fig. 5.1 and Fig. 5.4, a demonstrative example is shown to explain the effect

of both the node-disjoint routing and the flow assignment. On each link a number

indicates the flow rate on this link. It is an arbitrary number to clarify and explain

behind several cases starting from Case I to Case III. As shown in Fig. 5.1, an

intermediate node, such as sensor node 6, is also a source node that has its own

traffic. In the basic case without the node-disjoint routing nor flow assignment

constraints, sensor node 6 receives flows from three other nodes. On the other hand,

the basic case with the node-disjoint routing case allows, at most, one received flow

as shown in Fig. 5.2.

Traffic routing plays an important role when intermediate nodes are also used as

source nodes in SHM. Several algorithms have been used for finding both optimal

and heuristic paths applying node-disjoint routing in [13, 14]. Here, a modified

node-disjoint model is shown in Fig. 5.2 and Fig. 5.4 where all nodes are sources

that do not receive from more than one sensor node. Each sensor node generates

a unity traffic load routed through other nodes to the sink (node 0). In the basic
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Fig. 5.1: Basic case without node-disjoint routing and flow assignment.

case without node-disjoint routing case, shown in Fig. 5.3, sensor node 5 and 6

accept traffic from more than one sensor node, while the traffic from only one node

is allowed in the basic case with the node-disjoint routing as shown in Fig. 5.4. To

include the node-disjoint routing in the basic formulation, the problem is modified

as follows:

Maximize
S,x

|Q(S)|/Etotal(S, x).

Subject to : (c1) to (c4),

(c5)
M
∑

i=1

xij = Maximum
i

(xij)

i 6= j, i 6= 0, j 6= 0,

(c6) to (c9), (5.8)

where constraint (c5) is modified compared to that in Eq. (5.6) to reflect the node-

disjoint routing case. For every link going to a specific node, except for the sink

node, the constraint allows only one link.
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Fig. 5.2: Basic case with node-disjoint routing.

Fig. 5.3: Basic case with flow assignment.

Case IV: Basic Case with Flow Assignment and Node-disjoint Routing

Constraints

The flow assignment has a substantial benefit of balancing the load among all links

by deciding the current flow on each connection. When just one path is found

between every source and destination pair, this theoretical assumption is not prac-
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Fig. 5.4: Basic case with both node-disjoint and flow assignment.

tically utilized. The data are always sent on a distinct, least cost path from a source

node to the destination node as in the previous case. Nevertheless, in the event of

multi-path existence, flow assignment is required to avoid overloading the links in

this type of network.

Case IV may be more realistic in the kinds of networks where few alternative paths

exist and cause a large difference in the link cost. This example may also be em-

ployed to identify the path the data travels to avoid overloading individual links. In

Case IV, the flow assignment is applied in conjunction with the node-disjoint. This

case considers the variable xij takes a rational value between zero and N . Therefore,

the traffic from node i can be separated between different connections.

5.4.2 Multi-objective Function Formulation

The design of WSNs has multiple objectives and these objectives are usually conflict-

ing [15]. The primary design objective in WSNs is often to reduce energy consump-

tion, while in SHM, nodes placement is used to achieve an acceptable information
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quality. The proposed multi-objective approach considers both minimizing the en-

ergy consumption and maximizing the information quality as its objective function.

We formulate the placement and routing problem as a multi-objective problem with

two objectives, namely the information quality maximization and the total energy

consumption minimization. The two objectives are shown to be conflicting. There-

fore, the overall objective is to obtain a possible trade-off between these two objec-

tives.

Case V: Basic case with multi-objective optimization

We jointly optimize the two objective functions through joint placement and routing.

The formulation for joint placement and routing where the total energy consumption

and FIM determinant are optimized as follows:

Maximize
S

|Q(S)|,

Minimize
S,x

Etotal(S, x)

Subject to : (c1) to (c8). (5.9)

The first objective of this work is to maximize the information quality measured by

the the determinant of the FIM which serves as an indicator of the quality of the

sensed data. It is also serving as the civil engineering requirements in the SHM.

Maximization of this metric is required to identify the information quality of the sen-

sor, followed by the second objective, the total energy consumption minimization,

which represents a network requirement from the computer engineering perspective

and a design constraint requirement in the SHM.

We use the weighted sum method to turn the objective function into a single-

objective optimization problem where the weighting factors are assigned to each
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objective based on its relative importance [16]. The multi-objective model is used

for combining the two objective functions into a single one. The weighted sum

objective function can be rewritten as follows:

Minimize
S,x

ωEtotal(S, x) − (1 − ω)|Q(S)|

Subject to : (c1) to (c8). (5.10)

As listed in Table 5.3, we have covered six cases in this work. There are many other

cases that can be considered in the future work. Some possible combination for

these sub cases are mentioned below. Multi-objective function can be considered

with link capacity as one of the constraints in the problem and can be added as

another sub-case. The link capacity constraint can be imposed which limits the

possible routes and may affect the routing metrics. Another sub-case can consider

the modified node-disjoint routing and its associated constraint should be added.

With the weighted sum objective function presented in Eq. (5.10), the node-disjoint

routing and flow assignment can be imposed. The flow assignment constraint is

added to present the possibility of dividing the flow among the possible links. Multi-

objective function can be considered with link capacity as one of the constraints

in the problem. The link capacity constraint can be imposed which limits the

possible routes and may affect the routing metrics. Another sub-case can consider

the modified node-disjoint routing and its associated constraint should be added.

With the weighted sum objective function presented in Eq. (5.10), the node-disjoint

routing and flow assignment can be imposed. The flow assignment constraint is

added to present the possibility of dividing the flow among the possible links.
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Table 5.3: List of the cases used in the testing environment

Case No. Section No. Description

Case I Section 5.6.2 Case without node-disjoint routing

nor flow assignment

Case II Section 5.6.2 Case with the link capacity constraint imposed

Case III Section 5.6.2 Case with the node-disjoint routing

constraint imposed

Case IV Section 5.6.2 Case with the node-disjoint routing

and flow assignment constraint imposed

Case V Section 5.6.3 Case with multi-objective optimization

Case VI Section 5.6.3 Case with different weighting factors

5.5 Sensor Placement and Routing Using Multi-

Objective Genetic Algorithms

The optimization problem formulated in the previous section is solved using the ILP

techniques such as branch-and-bound. Unfortunately, finding a solution using this

approach has a high complexity and can take an enormous amount of processing

time. The formulation of the optimization problem is shown in the previous section

and is found to be an NP-hard problem [5]. The NP-hard problem with multi-

objective is a good candidate to be solved using an evolutionary algorithm such

as multi-objective genetic algorithms (MOGA). Therefore, a heuristic algorithm is

presented based on the MOGA approach to work out such models in a relatively ac-

ceptable run time for larger problem instances. After the formulation is introduced,

a practical, low complexity algorithm has to be used to match the resources-limited

sensor nodes as explained below. MOGA is an evolutionary algorithm that searches

a population of random solutions for the designated problem to find a heuristic so-

lution [17]. A fitness function is calculated for all the solutions to determine their
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suitability. The solutions with the highest fitness are more likely to be chosen to

generate a newer solution through the crossover.

MOGA is a well-known approach to solve optimization problems because of their

capability to check partially ordered search space for various trade-offs [17]. Further-

more, MOGA evaluates several solutions simultaneously and find the near-optimal

solution by combining efficient solutions. After the optimization problem is formu-

lated as shown in Eq. (5.6), MOGA is employed as a heuristic approach to optimize

the objective function with reduced complexity.

MOGA is an efficient search approach due to its parallel features in finding a near-

optimal solution [18]. The generated solutions share features taken from each pre-

vious solution since a novel population of generating solutions is produced by the

selection of the best from the current generation. The procedure of the selection

and new population generation are repeated until the stopping criteria is achieved.

With the proper tuning of the parameters of MOGA such as the crossover rate, the

algorithm will converge to a near-optimal solution [17].

Any single solution to a problem is called chromosome. A list of parameters rep-

resents the chromosome are called genes [17]. If the gene value is 1, then the

corresponding node is a node chosen to be placed. The size of a chromosome should

be equal to the number of possible locations M plus the possible links M(M − 1).

However, the number of chromosomes studied at each iteration are determined by

the population size parameter in which increasing the population size leads to in-

creasing the number of evaluated solutions.

A roulette wheel method is used to perform the selection operation in which the

chromosome that has a large fitness function value has a higher probability to sur-

vive to the next generation over others. In crossover operation, the chromosomes

are recombined resulting in two new child chromosomes to be appended to the next

154



generation population.

A single point crossover operator is used. MOGA generates a random number to

select where to split the chromosome into two parts to then be recombined. The

MOGA implementation used in this work has a probability of crossover equal to

pc. Lastly, the mutation operator flips some of the bits of the chromosome. Similar

to crossover operator, increasing this probability will increase the mutation occur-

rence. A mutation probability of pm is used in order to make the MOGA searches

visit the corners of the search space to check for unique and different solutions. The

chromosome can be inherited representing a solution has M sensors. Meanwhile,

the possible links can be M(M − 1) links, so the total number of variables will be

M2.

Measuring the fitness or performance of chromosomes is done by the calculation of

the weighted sum objective function used in Eq. (5.7). MOGA is terminated right

after a specified number of generations is reached. Nevertheless, after the number

of runs is greater than or equal to M2 times the number of variables, the variations

in MOGA results will be small.

5.6 Performance Evaluation

In this section, we evaluate the performance of the proposed algorithms through the

numerical results of different number of placed sensors N for a nine-floor structure.

These proposed algorithms include: optimal, GA and JR-SPEM. This is in addi-

tion to their multi-objective versions. The total energy consumption Etotal(S, x),

the information quality |Q(S)| and the normalized information quality to the total

energy consumption ratio ℧norm are the measured metrics. For comparison, we im-

plement p-SPEM and mop-SPEM placement algorithms, evaluate their performance
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and compare the system metrics for both of them.

5.6.1 Numerical Results Environment

The numerical results of different number of placed sensors N for a nine-floor struc-

ture evaluate the performance of the proposed algorithm. The general algebraic

modeling system (GAMS) [19] is used for modeling the problem. The branch-and-

reduce optimization navigator (BARON) solver [20] is employed for finding the

solution for ILP formulation.

The parameters used in the performance analysis are presented in Table 5.4. The

considered structure is a 30 m × 20 m with a floor height of 3.33 m. A two-

dimensional plane is assumed with a sink node located at (20, 0).

For the study, we assume all sensor nodes have identical transmission range and

Table 5.4: Parameter values used in the numerical results

Symbol Description Value

Einit The initial energy 1500 mAhr [21]

nb The number of bits per packet 2 Kb [5]

pc The crossover probability 0.8 [17]

pm The mutation probability 0.1 [17]

rc The maximum transmission range 30 m [21]

α The path loss exponent 2 [12]

ǫamp The power amplifier energy cost 1 nJ/bit/m2 [12]

ǫr The reception energy cost 50 nJ/bit [12]

ǫt The transmission energy cost 50 nJ/bit [12]

the candidate node locations are one on each floor in the nine-floor structure. The

numerical results choose 3 - 9 sensors out of the nine candidate locations in the nine-

floor structure and we assume that a sensor node is aware of the node coordinates
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of its neighbours.

5.6.2 Single Objective Case Results

Case I: Numerical results for basic case without node-disjoint routing nor

flow assignment

Results are generated for three different algorithms: the optimal algorithm using

MIP optimization, GAs, and JR-SPEM. All proposed algorithms are then compared

with the p-SPEM presented in [5]. The performance of the proposed algorithm is

presented based on the above formulation in order to evaluate the performance of

the algorithms for different values of N . The results for the basic case which is

based on the formulation in Eq. (5.6) are shown in Fig. 5.5 to Fig. 5.7.

Fig. 5.5 depicts that the energy consumption increases with an increase in the num-

ber of nodes. In fact, when N increases there are two conflicting factors that affect

the energy consumption. In the first one, as N increases we add more nodes, flows

and packet transmission. Hence, the energy consumption increases. However, in the

second factor, as N increases more nodes become available so we can make the links

shorter and also nodes find more and better routes (with less energy consumption)

to send their packets to the destination. Due to these two conflicting factors, some-

times increasing N leads to energy consumption increase and other times it leads

to energy consumption decrease depending on the dominating factor.

In Fig. 5.5, we summarize the results of all the algorithms in study for different N .

We observe that the energy consumption increases as the number of sensor nodes

increases. This rise in the energy consumption is a consequence of the node energy

budget increasing with the traffic. Fig. 5.6 summarizes NIQ results for the four

considered algorithms under different values of N . As expected, NIQ increases as
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more sensors are added to collect information from various points in the structure.

Fig. 5.7 presents the ℧norm ratio for the four algorithms. With the increase of N ,

the ratio ℧norm increases for all algorithms. The optimal algorithm always achieves

the best ratio, and GAs achieve a higher performance about 70% better than the

p-SPEM algorithm. However, compared to p-SPEM, the information quality to en-

ergy consumption ratio for the optimal, GAs and JR-SPEM are still higher. The

JR-SPEM ratio is higher due to the failure of p-SPEM to balance the load among

the sensor nodes, which leads to a smaller ratio. For the full details of the results

of Case I, refer to the full discussion in [1].

From Fig. 5.5 to Fig. 5.7, we can make the following observations: First, the op-

timal algorithm is outperforming the other algorithms, followed by the GAs, then

JR-SPEM and finally p-SPEM. The second observation is that as the number of

selected locations increases, the JR-SPEM solution achieves higher ratio than the

p-SPEM due to the efficient joint of the routing with the placement rather than

local search and energy estimation in p-SPEM.
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Fig. 5.5: Total energy consumption for optimal, GA-based and heuristic algorithms impos-
ing the maximum link capacity constraint in a nine-floor structure for Case I formulation.
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Fig. 5.6: Normalized information quality for optimal, GA-based and heuristic algorithms
imposing the maximum link capacity constraint in a nine-floor structure for Case I for-
mulation.

3 4 5 6 7 8 9
0

0.2

0.4

0.6

0.8

1

Number of Sensor Nodes (N)

|Q
(s

)|
/E

to
ta

l 

 

 

Optimal
GA
JR−SPEM
p−SPEM

Fig. 5.7: The ℧norm ratio for optimal, GA-based and heuristic algorithms imposing the
maximum link capacity constraint in a nine-floor structure for Case I formulation.
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Case II: Numerical results for the basic case with the link capacity con-

straint imposed

Fig. 5.8 to Fig. 5.10 demonstrate the performance of the algorithms used in Case

II under the maximum link capacity constraint. Performance is evaluated for the

metrics mentioned in Section 5.2 using different values of placed sensors N . This

work uses a maximum normalized link capacity of 5. At N = 8, the energy con-

sumption is higher than at N = 9 because at N = 8, sensor node 2 sends the data

of three nodes (nodes 2 - 4) directly to the sink. Data is sent to the sink in this case

because no sensor node is placed at location 1. At N = 9 sensor node 2 sends the

data of the same three nodes to sensor node 1, which in turn forwards the signals

of four nodes (1 - 4) to the sink.

The energy consumption is proportional to the square of the floor height multiplied

by the floor number and the number of flows from a sensor node to the next hop.

Detailed calculations of the energy consumption of these two scenarios (with N = 8

and 9) are given as follows. For a nine-floor structure of a height L, the floor height

is L/9. It is shown that for N = 8 p-SPEM achieves higher energy consumption

than that for N = 9. This is because an added 4 ∗ (L/9)2 flows resulting in an

increase in the energy consumption. However, due to the link capacity limit, there

is an extra amount of energy consumption of equal 32 ∗ (L/9)2 that is caused by the

increased travelling distance to the sink. The difference between these two compo-

nents achieves 5∗(L/9)2 energy saving that leads to lower total energy consumption

for N = 9.

Fig. 5.8 illustrates an increase in energy consumption when N increases from 5

to 8. When we compare results in Case II to results in Case I, it is found that

the energy consumption is higher due to a link capacity limitation imposed by the

maximum link constraint. The optimal and GA solutions consume 21% less energy
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compared to p-SPEM. However, JR-SPEM performs well with more than 17% of

energy saving over p-SPEM for N = 5.

Fig. 5.9 plots the NIQ for the four considered algorithms versus the number of

placed sensors N . As expected, as N increases NIQ improves. Additional sensors

help collect more information from various points in the structure and aids in achiev-

ing higher NIQ. As shown, JR-SPEM has an improved result compared to p-SPEM

as it is a joint placement algorithm where the focus is on energy consumption and

NIQ. The JR-SPEM has more improvement over p-SPEM in the NIQ for all N

values. However, JR-SPEM measurement has a higher NIQ than p-SPEM for N

between 5 to 9. A higher result demonstrates the ability of the JR-SPEM to select

the node locations efficiently.

Fig. 5.10 depicts the normalized information quality per unit energy ℧norm for the

four algorithms used. As N increases, ℧norm of all algorithms also increases. The

normalized ratio for JR-SPEM is higher compared to p-SPEM because p-SPEM

poorly balances energy consumption among nodes. The imbalance in energy con-

sumption results in early depletion of the node’s battery. The optimal algorithm is

obtained using ILP and surpasses the other heuristic algorithms while GA achieves

a result close to the heuristic solution based on JR-SPEM. The results of Case II

show similar trends to those found in the basic case, introduced in [1], with a slight

increase in the energy consumption as shown in Fig. 5.8. However, the optimization

process is not a pure energy minimization function.

Case II results in higher energy consumption for all values of N compared to the

basic case. JR-SPEM also has a higher normalized ratio for Case II due to the

restrained link capacity, which limits the possible routes. As mentioned at the be-

ginning of this section, p-SPEM shows the worst performance (for N = 8) because

of the missing node and limitations on the link capacity. The rise in the ratio is
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Fig. 5.8: Total energy consumption for optimal, GA-based and heuristic algorithms impos-
ing the maximum link capacity constraint in a nine-floor structure for Case II formulation.

not surprising as the number of nodes in Case II also increases. If the basic case

and Case II are compared, JR-SPEM achieves better results in Case II for a large

N due to the difference in the ratio. Another reason is that the routing energy con-

sumption for p-SPEM is higher than those for the optimal algorithm. The optimal

algorithm achieves a lower normalized ratio because of the limitation on the number

of possible routes.

The introduction of the link capacity limit results in higher energy consumption;

while the four studied algorithms achieve better information quality. Both trends

in energy consumption and information quality in Case II results in wider difference

in ratio values compared to results in Case I especially for a large number of nodes.
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Fig. 5.9: Normalized information quality for optimal, GA-based and heuristic algorithms
imposing the maximum link capacity constraint in a nine-floor structure for Case II for-
mulation.
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Fig. 5.10: The ℧norm ratio for optimal, GA-based and heuristic algorithms imposing the
maximum link capacity constraint in a nine-floor structure for Case II formulation.
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Case III: Numerical results for the basic case with the node-disjoint rout-

ing constraint imposed

As shown earlier in the chapter, when networking and civil requirements are taken

into consideration, the optimal placement algorithm can achieve the highest in-

formation quality to the total energy consumption ratio compared to the other

algorithms. The optimal algorithm achieves this by efficiently routing the number

of packets the sensor node generates or receives at each round. However, the effect

of the node-disjoint routing has not yet been studied.

Fig. 5.11 to Fig. 5.13 show the results of the four algorithms when node-disjoint

routing is employed. As more sensor nodes are added to the network, placement

becomes more significant. Fig. 5.11 illustrates the increase in energy consumption

when the number of nodes increases from N = 3 to N = 9. The increase occurs as

a consequence of energy consumption increasing with the traffic for the four place-

ment algorithms. Case III results also show that the optimal algorithm and GA

outperform p-SPEM. More than 40% of energy consumption is saved for both al-

gorithms at N = 6. The results for Case III show that the JR-SPEM can achieve

about one-third saving in energy consumption compared to that of the p-SPEM

when the network size is increased above N = 6. In Case III, JR-SPEM performs

well with more than 33% of energy saving over p-SPEM for N = 5. JR-SPEM has

higher energy saving compared to p-SPEM. This trend demonstrates the effect of

node-disjoint and load balancing for p-SPEM and JR-SPEM. In addition, the newly

added constraint in Eq. (5.8) affects the data traffic in the network and energy con-

sumption distribution in both algorithms.

Fig. 5.12 demonstrates the gain of the NIQ as the number of nodes increases. Fig.

5.12 also outlines the NIQ for the four considered algorithms under different network

sizes. The NIQ increases as N increases for all algorithms. The increase in the NIQ
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is due to a larger amount of information collected by the system as a result of the

increase in the number of nodes placed. Most of the network sizes show improve-

ment in energy consumption for the JR-SPEM as well as the NIQ. However, for

N = 5 to N = 9, the NIQ does not have any measurements higher than JR-SPEM,

which demonstrates that the JR-SPEM can increase the NIQ significantly.

The ratio ℧norm is plotted versus N in Fig. 5.13 for the four designated algorithms

in the study. Node-disjoint routing is assumed for each algorithm and affects the

solution metrics. The optimal solution achieves the highest ℧norm ratio, however,

JR-SPEM achieves a result close to the GA solution. The ratio of all algorithms

increases with the increase in N , hence, the optimal algorithm achieves the best

ratio. GA has better performance for different N values compared to p-SPEM,

nevertheless, JR-SPEM algorithm performs better than p-SPEM algorithms under

high N values. Since p-SPEM is unable to balance the energy consumption among

sensor nodes to avoid early energy depletion of the network.

A lower normalized ratio occurs at N = 7 for all algorithms due to a small increase

in the NIQ and large increase in the energy consumption. The increase is a result

of extra traffic and longer distances travelled. When node-disjoint routing is used,

N = 8 has higher energy consumption because of the extra distance the traffic needs

to travel due to the missing node.

Case III shows that the energy consumption is increased for all N compared with the

basic case. Despite the introduction of the node-disjoint routing the NIQ remains

unchanged. The results for p-SPEM in Case III results are worse than its results

for the basic case as the routing decision inside the node selection is not enabled as

in JR-SPEM when the node-disjoint is employed.

Node-disjoint routing results in a lower number of links in the network and better

load balancing among nodes. The downside of node-disjoint routing is that the links
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are loaded with higher flow, which requires more capacity to be allocated.

Energy consumption in Case III is lower than the corresponding values in Case I

for a small number of nodes. Meanwhile, for a large number of nodes, the energy

consumption is much higher those in Case I. When we evaluate case III versus Case

I then we notice the information quality is almost the same values for the studied

algorithms. Consequently, the ratio in Case III is much better for small N . As the

change in the energy consumption is the dominate component in this case.
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Fig. 5.11: Total energy consumption for optimal, GA-based and heuristic algorithms with
node-disjoint routing constraint imposed in a nine-floor structure for Case III formulation.

Case IV: Numerical results for the basic case with the node-disjoint rout-

ing and flow assignment constraint imposed

Fig. 5.14 illustrates that the energy consumption increases when the number of

nodes increases from N = 3 to N = 9. The increase occurs as a consequence of

energy consumption increasing with the traffic for the four placement algorithms.

However, further study is needed concerning the effect of the node-disjoint routing

when the flow assignment is applied as the flow can be split among links between
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Fig. 5.12: Normalized information quality for optimal, GA-based and heuristic algorithms
with node-disjoint routing constraint imposed in a nine-floor structure for Case III for-
mulation.
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Fig. 5.13: The ℧norm ratio for optimal, GA-based and heuristic algorithms with node-
disjoint routing constraint imposed in a nine-floor structure for Case III formulation.
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source and destination sensors.

The JR-SPEM in this case performs well with more than 40% energy saving over

p-SPEM for N = 6. Case IV results show that the optimal algorithm and GA out-

perform p-SPEM, while JR-SPEM has higher energy consumption but it achieves

energy consumption reduction compared to p-SPEM. This trend demonstrates the

effect of node-disjoint and load balancing for p-SPEM and JR-SPEM. Both algo-

rithms are affected by the new constraint added in terms of the amount of data

traffic in the network as well as energy consumption distribution.

The NIQ in Case IV remains unchanged despite the introduction of node-disjoint

routing. The lack of change appears to have no effect on the ratio as it is generally

low for JR-SPEM. Similar to Case III, Case IV also shows that sensor node en-

ergy consumption is increased for all N compared with the results of the basic case

explained in [1]. Regarding p-SPEM, Case IV also does not have the routing deci-

sion in the node selection enabled as opposed to JR-SPEM when the node-disjoint

and flow assignment are employed. The results, therefore, are worse than those in

the reference case. A small increase in the NIQ and a large increase in the energy

consumption causes a lower normalized ratio at N = 7 for all algorithms in study.

When node-disjoint routing and flow assignment are used, N = 8 has higher energy

consumption as the missing node requires traffic to travel a longer distance. The

normalized ratio goes over unity for N = 6 and N = 8 because the results are

normalized to the energy consumption at N = 9.

The gain of the NIQ with the increase in the number of nodes is illustrated in Fig.

5.15. Respecting the JR-SPEM algorithm, the NIQ increases as N increases due to

a larger collection of information by the system caused by an increase in the num-

ber of placed nodes. Energy consumption for the JR-SPEM as well as the NIQ is

improved for all N , however, the NIQ has no measurements higher than JR-SPEM
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for N = 5 to N = 9. Node-disjoint routing affects the solution metrics when used

for all algorithms in study. Although the optimal solution is better than JR-SPEM,

JR-SPEM is still a good option because of the low complexity. JR-SPEM and the

GA solution achieve similar results, however, the optimal solution achieves the high-

est ℧norm ratio.

Fig. 5.16 illustrates the ℧norm ratio for the four designated algorithms in the study.

On the grounds that p-SPEM is unable to balance the energy consumption among

sensor nodes to avoid early energy depletion of the network, no significant perfor-

mance difference is noticed between JR-SPEM and p-SPEM when N is low.

In conclusion, the results for Case IV show that the JR-SPEM algorithm can pro-

vide close results for the normalized ratio as the optimal and GA results. Nev-

ertheless, for higher N , JR-SPEM outperforms the results of p-SPEM concerning

NIQ and energy consumption. Case IV employs the flow assignment constraint and

demonstrates that the optimal algorithm achieves the highest information quality

compared to the other algorithms.

Evaluating the results of Case IV compared to results in Case I, it is found that

the energy consumption is lower due to the split of the flows among possible paths.

Also, the results show a better information quality retrieved in this case compared

to the basic case in Case I. therefore, the ratio between the information quality and

energy consumption is better than their peers in Case I. This trend is most seen

for the optimal algorithm. Flow assignment improved the ratio and give superior

results versus similar ones in Case I.
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Fig. 5.14: Total energy consumption for optimal, GA-based and heuristic algorithms using
flow assignment in a nine-floor structure for Case IV formulation.

5.6.3 Multi-objective Case Results

The multi-objective approach is employed using the formulation in Eq. (5.10). The

results of the four algorithms are compared in different cases. Fig. 5.17 to Fig. 5.19

show the metrics for the MOJR-SPEM algorithm for the same structure used in the

previous section. Moreover, the multi-objective function can be used in the optimal

approach such as MOPT and MOGA. The results of the multi-objective algorithms

with the node-disjoint routing and link capacity constraints imposed are omitted

for brevity as they are following the same trend as their single-objective ones.

Case V: Numerical results for the basic case with multi-objective opti-

mization

Fig. 5.17 to Fig. 5.19 demonstrate the algorithms used in Case V employing the

multi-objective approach using different N . The results of Case V show similar ten-

dencies to those found in the previous cases, introduced in [1], with a better saving

in the energy consumption as recorded in Fig. 5.17. Results illustrate an increase
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Fig. 5.15: Normalized information quality for optimal, GA-based and heuristic algorithms
using flow assignment in a nine-floor structure for Case IV formulation.
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Fig. 5.16: The ℧norm ratio for optimal, GA-based and heuristic algorithms using flow
assignment in a nine-floor structure for Case IV formulation.
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in energy consumption when N increases from 5 to 8. The energy consumption

is higher due to more focus on energy consumption in the weighted sum objective

function. The MOPT consume 22% less energy compared to mop-SPEM. However,

MOGA performs well with more than 16% of energy saving over mop-SPEM for

N = 6. However, MOJR-SPEM achieves the same results as mop-SPEM at the

same case. It is evident that energy savings happen when the multi-objective ap-

proach is applied to algorithms in study.

The NIQ of the four algorithms are plotted in Fig. 5.18. MOJR-SPEM has an

improved result as it is a common placement algorithm where the focus is on energy

consumption and NIQ. The MOJR-SPEM has more than 40%, 13%, and 3% im-

provement over mop-SPEM in the NIQ for N = 4, 6 and 8, respectively. Meanwhile,

MOJR-SPEM measurement has a higher or equal NIQ than mop-SPEM for all N .

A higher result demonstrates the ability of the MOJR-SPEM to select the node

locations efficiently.

Fig. 5.18 indicates the increase in NIQ as the number of sensor nodes used for

taking measurements at each location increases. This is because the MOJR-SPEM

is a joint placement algorithm where both the energy consumption and the NIQ

are optimized simultaneously. For most of the network sizes, MOPT, MOGA, and

MOJR-SPEM, has more improvement in the NIQ over the mop-SPEM for ω = 0.5.

Yet, for mop-SPEM placement from N = 5 to N = 9, it does not take in any mea-

surements higher than MOJR-SPEM for ω = 0.5. This shows that the proposed

algorithm improves the NIQ significantly.

Fig. 5.19 depicts the ratio ℧norm for the four studied algorithms. As N increases,

the ratio ℧norm of all algorithms also increases, which implies that the optimal al-

gorithm should achieve the best proportion. Nevertheless, the normalized ratio for

MOJR-SPEM is still higher compared to mop-SPEM because the mop-SPEM has
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Fig. 5.17: Total energy consumption for MOPT, MOGA, MOJR-SPEM, and mop-SPEM
algorithms in a nine-floor structure for Case V formulation.

a low balanced energy consumption among nodes. The energy imbalance results in

the early depletion of the node’s battery. The MOPT solution surpasses the other

heuristic algorithms while MOGA achieves a result close to the analytical solution

based on MOJR-SPEM. The ratio ℧norm acts as a metric of how much information

is calculated per energy unit. The best solution achieves the highest ratio, and

MOJR-SPEM produces a higher result compared to their corresponding algorithms

with a single-objective solution.

Effect of Weighting Factor Results

The performance of a sensor placement solution is evaluated. Furthermore, results

obtained for the specified multi-objective method using different weighting factors

are compared and analyzed. All sensor nodes are assumed to have the same trans-

mission range and that sensor node potential locations are one location on each floor

on the nine-floor building. In the numerical results, the optimization chooses 3 - 9

sensors out of the nine candidate locations.
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Fig. 5.18: Normalized information quality for MOPT, MOGA, MOJR-SPEM, and mop-
SPEM algorithms in a nine-floor structure for Case V formulation.
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Fig. 5.19: The ℧norm ratio for MOPT, MOGA, MOJR-SPEM, and mop-SPEM algorithms
in a nine-floor structure for Case V formulation.
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Observing the above results, the multi-objective approaches indicate a better per-

formance compared to p-SPEM placement. The mop-SPEM is introduced with

ω = 0.5 to reflect the balanced interest in both objectives. Furthermore, MOPT

with ω = 0.9 is presented to reflect a focus on the energy consumption minimiza-

tion. On the other hand, MOPT with ω = 0.1 is shown to reflect the emphasis on

the information quality maximization in the network design phase. Fig. 5.20 shows

the comparison of the energy consumption for the available placement algorithms

for N = 3 to 9. A mop-SPEM algorithm is introduced where the objective func-

tion is a combination of the weighted sum of the two objectives in consideration.

mop-SPEM with ω = 0.5 achieves moderate results compared to p-SPEM. This

behaviour leads to determining the routing scheme of p-SPEM and mop-SPEM, as

well as the amount of transmitted data that consumes energy in the network.

Fig. 5.21 shows the increase in NIQ as the number of sensor nodes, placed and

used for collecting more information, increase in the network. The improvement

of the NIQ of mop-SPEM over the p-SPEM is due to the intensive focus on the

NIQ for ω = 0.1. The information quality to the total energy consumption ratio

acts as a metric of how much information can be collected by the sensor nodes per

energy unit. Fig. 5.22 shows this ratio for the mop-SPEM algorithms at different ω

compared with the single objective alternative. As more sensor nodes are added in

the network, our mop-SPEM placement solution achieves a significant improvement

in information quality. This leads to a better performance in all considered cases

compared to previous work in [5] on p-SPEM.

For the information quality to the total energy consumption ratio, mop-SPEM place-

ment generally shows an advantage over single objective p-SPEM. The performance

gain in terms of NIQ to total energy consumption ratio over the single path p-SPEM

varies under different network sizes. It is shown that the performance of p-SPEM
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easily degrades compared to that of mop-SPEM when N is small. Moreover, mop-

SPEM placement disparately behaves in NIQ with different N . As expected, the

mop-SPEM with ω = 0.1 attains the highest NIQ, whereas the p-SPEM achieves

the lowest one. This trend is also reflected in the ratio for different network size.

Observing the above results, the multi-objective approach indicates a better perfor-

mance than the p-SPEM algorithm.

Generally, multi-objective achieves better ratio for heuristic algorithms and results

in good balance for all algorithms. The effect of the weighting factor on the results

of the p-SPEM algorithm is studied. Small variations happened for these algorithms

as shown in the results.
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Fig. 5.20: Total energy consumption for p-SPEM and mop-SPEM algorithms with differ-
ent weighting factors in a nine-floor structure.

5.7 Conclusion

Unlike existing WSNs for SHM deployments that primarily focus on reducing data

communication among sensor nodes or on increasing the amount of retrieved infor-
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Fig. 5.21: Normalized information quality for p-SPEM and mop-SPEM algorithms with
different weighting factors in a nine-floor structure.
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Fig. 5.22: The ℧norm ratio for p-SPEM and mop-SPEM algorithms with different weight-
ing factors in a nine-floor structure.
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mation. Our proposed algorithms focus on the integration of both types of aspects

for WSNs for SHM with the link capacity and node-disjoint routing constraints im-

posed. Multi-objective optimization is used for sensor node placement and routing

due to the presence of trade-offs between the conflicting objectives of information

quality and energy consumption. Multi-objective algorithms, for optimal and heuris-

tic approaches, are employed to jointly optimize the placement, routing and flow

assignment for the SHM in a simplified way. The numerical results show that as a

whole, MOPT, MOGA, and MOJR-SPEM outperform mop-SPEM in terms of the

information quality to total energy consumption ratio. The numerical results held on

a nine-floor structure demonstrate the competence of the proposed multi-objective

algorithms.
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Chapter 6

Conclusion and Future Work

6.1 Introduction

A joint optimization is an approach that used to find solutions that match two objec-

tives. In this dissertation, we aim to minimize energy consumption and optimizes

another objective subject to several constraints, employing node-disjoint routing,

maximum link capacity and multi-objective optimization. In this chapter, we sum-

marize the contributions presented in this dissertation, draw main conclusions, and

discuss several potential extensions to our work. This chapter is organized as fol-

lows: summary of the thesis’ conclusions is explained in Section 6.2, the future work

is shown in Section 6.3.

6.2 Conclusions

The optimization problem of energy and delay in WSNs is tackled for SHM using

WSNs systems. The problem varies from one system to another, and the optimal
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solution is distinct in each system. To solve the optimization problem, three ap-

proaches are used: optimal solution found through KKT analysis, a sub-optimal

solution using MOGA, and finally a practical solution using the heuristic approach.

Optimization can be very cumbersome which shed the light on sub-optimal solu-

tions. The sub-optimal solutions reflect the system nature of each case. Heuristic

ones make the solution more practical to be implemented although the measured

network metrics are reduced; additionally, it enables increased flexibility in the de-

sign process. The designing process tends to be more complicated and costly with

the emergence of the scalability in recent SHM applications. Without the loss of

generality, a heuristic approach is proposed to achieve sound results. The network

metrics shrink is negligible compared to the reduced complexity.

The contributions of this dissertation are as follows:

(a) The problem of multi-objective energy and delay optimization is formulated

using convex formulations. An efficient solver of the formulation is chosen.

Solutions from the solver are found and the results from the chosen solver

are compared with the results from the preferred simulator. The results are

discussed to explain how the formulation works better for each application.

(b) A routing algorithm for WSNs, based on the proposed model formulation, is

proposed for WSNs. The proposed algorithm has three properties: first, it does

not go lower than an acceptable network lifetime; second, it has low overhead;

lastly, it has a low end-to-end delay, which can be set by a user or by an

application.

(c) The evaluation of the proposed routing algorithm for WSNs is completed using

chosen metrics. Results show that the proposed algorithm performs well under

different scenarios in terms of lifetime, delay, throughput, and hop count.
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(d) The comparison of the proposed routing algorithm and existing routing algo-

rithms is performed. The proposed algorithm is compared with two popular

algorithms: AODV and FA, which were chosen to represent a delay-efficient

and an energy-efficient algorithm, respectively. The detailed comparison for the

all considered metrics is presented. The evaluation of the proposed algorithms

shows its efficiency as a compromise between existing algorithms.

(e) A joint MOPT formulation for both energy and delay is introduced. KKT

analysis is done to make the optimal solution for each formulation. Second,

found by the simulation done for the MOPT formulation, computations are

completed for the PF curve. Third, the trade-off curve between energy and

delay is quantified. In this case, the knee is shown using an exponential fitted

PF curve. Lastly, we compute the optimal weighting factor for both objectives.

The evaluation and testing of knee determination on the PF curve is outlined,

which adapts to the network designer demand, yet limits WSN design solutions.

(f) The Newton - Raphson method is applied to solve the Lagrangian associated

system of equalities. The influence of the given expression using the energy

and delay is assessed. The sub-optimal solution is applied to bring down the

high computational complexity needed by the optimal algorithm. Moreover,

a sub-optimal solution obtained using MOGA that requires lower complexity.

The rise in energy expenditure and delay is minor compared with the immense

savings regarding the complexity.

(g) A novel, distributed routing algorithm, JFA-HGR, is proposed where data is

forwarded with the objective of maximizing the network lifetime while min-

imizing the encountered complexity. JFA-HGR uses the deviation angle to

find the best path. The run-time for JFA-HGR is found to be five times more

depressed than the run-time faced by FA as shown in the simulation studies.
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The proposed algorithm achieves near-optimal flow for different network sizes.

(h) A novel formulation that jointly optimizes the placement and the routing is

proposed. The optimal result is found using integer programming that satisfies

both civil engineering and networking constraints.

(i) A heuristic solution is found using evolutionary GAs. We propose a sensor

deployment and routing algorithm, which is based on GAs that efficiently deals

with the sensor placement optimization problem and that achieves near-optimal

energy consumption and information quality for communication between sensor

nodes.

(j) A joint routing and placement algorithm called JR-SPEM is proposed using

a heuristic algorithm. The proposed algorithm is novel heuristic SPEM-based

placement and routing algorithm that achieves a low-complexity near-optimal

solution. JR-SPEM selects the near-optimal path route based on Dijkstra’s

algorithm, a well-known algorithm used for computing the shortest path in a

network, fed with the cost objective function.

(k) The efficiency of the proposed algorithms is evaluated. Results show that these

algorithms significantly reduce the total energy consumption of the deployed

sensors and improve the information quality. The complexity of all algorithms

in the study is found and compared to the traditional placement algorithm.

The proposed algorithms achieve a consolidated placement and routing in an

efficient way.

(l) The joint placement, routing and flow assignment problem is formulated as a

multi-objective optimization. This formulation is used to show the trade-off

between the different objectives, namely the energy consumption and the infor-

mation quality. The maximum capacity constraint of each link is introduced.
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Node-disjoint routing is considered to achieve load balancing and longer WSN

lifetime.

6.3 Future Work

In this dissertation, we have presented a comprehensive review of existing routing

algorithms for WSNs. The main challenges, associated with optimal routing and

the design requirements of algorithms for WSNs, are discussed to provide an insight

into the optimization of placement and routing algorithms. An accurate classifica-

tion of the algorithms is given and the merits and disadvantages of the algorithms

are determined. Despite a large number of research activities and the rapid and

significant progress that is made in WSNs resources joint optimization in recent

years, several avenues for further research remain. The following research issues are

outlined for future investigation:

(a) The possibility of the heterogeneous sensor nodes used in WSNs needs to be

investigated. The nodes can be assumed similar in the power source and trans-

mission capabilities. Cases where high-end nodes with extra capabilities need

to be investigated. Additional battery can be placed on some sensor nodes

which will lead to a modified formulation and changes the optimization re-

sults.

(b) Future work will deal with the idea of the heterogeneity in WSN as well as

introducing the cases of identifying, which nodes should have transmit-only

capabilities and which nodes should have both transmit and receive capabil-

ities. Managing this capability can reduce the financial cost of the building

nodes in WSN and will keep the energy consumption within acceptable limits.
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(c) Different types of structures are to be considered such as high-rise building,

bridges or even large-scale machinery. The effect of the building structure needs

to be studied and results for this effect needs to be outlined. The analysis of

the energy-delay trade-offs can be extended to the case of mobile nodes. The

formulation from the previous chapters shows how the increase in the network

size can affect the optimization algorithm. The associated complexity with a

large number of nodes would be an effective extension of the research work.

(d) This thesis introduces MOPT formulation, but only energy and delay are con-

sidered. However, more objectives will be considered such as throughput and

reliability of the communication. Several scenarios need to be considered where,

at least, two paths need to exist between the source and sink nodes.

(e) The thesis studies the formulation of the energy and delay optimization prob-

lem and the solution found using MATLAB; however, several other solvers

can be used, such as NEOS server to advise new trade-offs that address this

problem. More killer applications of the proposed routing algorithms need to

be investigated. This would be beneficial in data collection and would help in

different smart environment aspects.

(f) Other possibilities exist when the placement algorithm allows for different types

of nodes. The power source of the sensor node is chosen to be a limited battery.

However, the energy model needs to be changed if the renewable energy is

presented. The optimization of the sensor node needs to be reconsidered. In the

renewable energy case, a process of charging and discharging is occurring over

short time intervals in the sensor node. The charging rate and the discharging

cycle affect the optimization and more investigation is needed.
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