12 research outputs found

    An Abstract Module Concept for Graph Transformation Systems

    Get PDF
    Graph transformation systems are a well known formal specification technique that support the rule based specification of the dynamic behaviour of systems. Recently, many specification languages for graph transformation systems have been developed, and modularization techniques are then needed in order to deal with large and complex graph transformation specifications, to enhance the reuse of specifications, and to hide implementation details. In this paper we present an abstract categorical approach to modularization of graph transformation systems. Modules are called cat–modules and defined over a generic category cat of graph transformation specifications and morphisms. We describe the main characteristics and properties of cat–modules, their interconnection operations, namely union, composition and refinement of modules, and some compatibility properties between such operations

    Visualization of Distributed Algorithms Based on Graph Relabelling Systems1 1This work has been supported by the European TMR research network GETGRATS, and by the “Conseil Régional d' Aquitane”.

    Get PDF
    AbstractIn this paper, we present a uniform approach to simulate and visualize distributed algorithms encoded by graph relabelling systems. In particular, we use the distributed applications of local relabelling rules to automatically display the execution of the whole distributed algorithm. We have developed a Java prototype tool for implementing and visualizing distributed algorithms. We illustrate the different aspects of our framework using various distributed algorithms including election and spanning trees

    LNCS

    Get PDF
    Depth-bounded processes form the most expressive known fragment of the π-calculus for which interesting verification problems are still decidable. In this paper we develop an adequate domain of limits for the well-structured transition systems that are induced by depth-bounded processes. An immediate consequence of our result is that there exists a forward algorithm that decides the covering problem for this class. Unlike backward algorithms, the forward algorithm terminates even if the depth of the process is not known a priori. More importantly, our result suggests a whole spectrum of forward algorithms that enable the effective verification of a large class of mobile systems

    Dynamic process creation in high-level Petri nets

    Get PDF

    Graph Tuple Transformation

    Get PDF
    Graph transformation units are rule-based devices to model and compute relations between initial and terminal graphs. In this paper, they are generalized to graph tuple transformation units that allow one to combine different kinds of graphs into tuples and to process the component graphs simultaneously and interrelated with each other. Moreover, one may choose some of the working components as inputs and some as outputs such that a graph tuple transformation unit computes a relation between input and output tuples of potentially different kinds of graphs rather than a binary relation on a single kind of graphs

    Decomposition and protocols in high-level Petri nets

    Get PDF

    IST Austria Thesis

    Get PDF
    Motivated by the analysis of highly dynamic message-passing systems, i.e. unbounded thread creation, mobility, etc. we present a framework for the analysis of depth-bounded systems. Depth-bounded systems are one of the most expressive known fragment of the π-calculus for which interesting verification problems are still decidable. Even though they are infinite state systems depth-bounded systems are well-structured, thus can be analyzed algorithmically. We give an interpretation of depth-bounded systems as graph-rewriting systems. This gives more flexibility and ease of use to apply depth-bounded systems to other type of systems like shared memory concurrency. First, we develop an adequate domain of limits for depth-bounded systems, a prerequisite for the effective representation of downward-closed sets. Downward-closed sets are needed by forward saturation-based algorithms to represent potentially infinite sets of states. Then, we present an abstract interpretation framework to compute the covering set of well-structured transition systems. Because, in general, the covering set is not computable, our abstraction over-approximates the actual covering set. Our abstraction captures the essence of acceleration based-algorithms while giving up enough precision to ensure convergence. We have implemented the analysis in the PICASSO tool and show that it is accurate in practice. Finally, we build some further analyses like termination using the covering set as starting point
    corecore