
p ()
URL: http://www.elsevier.nl/locate/entcs/volume51.html 14 pages

An Abstract Module Concept for Graph
Transformation Systems 1

Marta Simeoni
2

Dipartimento di Informatica, Universit�a `C�a Foscari' di Venezia

Abstract

Graph transformation systems are a well known formal speci�cation technique that

support the rule based speci�cation of the dynamic behaviour of systems. Recently,

many speci�cation languages for graph transformation systems have been devel-

oped, and modularization techniques are then needed in order to deal with large

and complex graph transformation speci�cations, to enhance the reuse of speci�-

cations, and to hide implementation details. In this paper we present an abstract

categorical approach to modularization of graph transformation systems. Modules

are called cat{modules and de�ned over a generic category cat of graph transfor-

mation speci�cations and morphisms. We describe the main characteristics and

properties of cat{modules, their interconnection operations, namely union, compo-

sition and re�nement of modules, and some compatibility properties between such

operations.

1 Introduction

Graph grammars and graph transformation systems are well known rule based

mechanisms for the manipulation of graphs and graphical structures. Graph

grammars usually specify graph languages, while graph transformation sys-

tems typically describe dynamically evolving systems where graphs are states

and graph transformations are state transitions.

In recent years many speci�cation languages for graph grammars and graph

transformation systems have been developed. For example the PROgramming

with Graph REwriting Systems { PROGRES { (see [17]) and the Algebraic

Graph Grammar (AGG) system (see [7]). Modularization techniques are thus

needed for dealing with large and complex graph transformation speci�cations,

to enhance the reuse of speci�cations and to hide implementation details.

1 This work has been supported by the EEC TMR network GETGRATS (General Theory

of Graph Transformation Systems). The complete investigation on this subject is the result

of a collaboration with Martin Gro�e{Rhode, Dirk Janssens and Francesco Parisi Presicce
2 Email:simeoni@dsi.unive.it

c2002 Published by Elsevier Science B. V. Open access under CC BY-NC-ND license.

mailto:simeoni@dsi.unive.it
http://creativecommons.org/licenses/by-nc-nd/3.0/

Simeoni

There are already various proposals about this topic. The �rst one has been

introduced in [3], but more worked out approaches are the PROGRES pack-

ages (see [16]), the GRACE graph transformation units and modules (see

[10,11]) and the DIEGO modules (see [18]). All these three approaches to

modularization of graph transformation systems full�l the basic requirements

for modules, that means, they support implementation hiding and use relation

for modules (i.e. the possibility to specify how a module can use the features

exported by another module).

What is missing in the PROGRES, GRACE and DIEGO approaches is a for-

mal abstract theory on modularization, with concrete results concerning both

the compatibility properties between the modules interconnection operations,

and the preservation of behaviour of the module components. The latter is a

main requirement to be satis�ed by graph transformation speci�cations, since

they describe the dynamical behaviour of systems. For modules, it means that

the semantical requirements speci�ed in the export (resp. import) interface,

have to be preserved in the body component.

In this paper we present an abstract categorical approach to modularization of

graph transformation systems, which has been introduced in [15] and instanti-

ated for both Local Action Systems (see [9]) and typed graph transformation

systems over the Double Pushout approach (see [2]).

The abstract module concept is inspired by the algebraic speci�cation mod-

ules introduced in [6]. Modules are de�ned over a generic category cat of

graph transformation speci�cations and morphisms, and they are called cat{

modules.

A cat{module has three components: an import interface, an export interface

and a body. The interfaces describe the relations to other cat{modules. More

precisely, the export interface speci�es the features o�ered by the module to

other modules or the environment, the import interface speci�es the parts that

are required from other modules, and can be used in the body to implement

the features to be exported.

Each component is a graph transformation system speci�cation which con-

sists of a set of graph transformation rules that de�ne its basic steps. The

interconnections between the module components are modeled by morphisms

of graph transformation speci�cations.

Guided by the analogous interconnection operations for algebraic speci�cation

modules, we de�ne the union, composition and re�nement of modules. The

composition realizes a use relation between modules, while the re�nement real-

izes a kind of inheritance relation. We prove compatibility properties between

the proposed operations: an important one is the compatibility of composition

with respect to re�nement of modules.

cat{modules are introduced and formalized independently of any particular

approach on graph transformation and by pointing out all the categorical re-

quirements to be ful�lled by any instantiation of cat{modules over a concrete

2

Simeoni

framework. The advantage of this abstract formalization is that we obtain

a general approach to modularization with concrete but still general results,

like the de�nition and the compatibility properties of the interconnection op-

erations for cat{modules. Moreover, the instantiation of cat{modules over

a concrete approach follows automatically by providing formal proofs to the

generic categorical requirements stated for cat{modules.

The paper is organized as follows. The main characteristics and properties

of cat{modules are described and formalized in Section 2, while the inter-

connection operations for cat{modules, and their compatibility properties are

presented in Section 3. Section 4 provides some concluding remarks.

2 cat{modules

In this section we introduce an abstract notion of module for graph transfor-

mation systems, inspired by the algebraic speci�cation modules (see [6]).

Graph transformation systems are speci�ed by a set of rule names and a map-

ping associating to each name the underlying graph transformation rule. More

precisely we consider speci�cations having rules typed over a speci�c type sys-

tem, modeled, for instance, by an alphabet for node and/or edge labels, or a

type graph in the sense of [1]. Since we are interested in de�ning modules in

a categorical setting, we suppose that a generic category cat of graph trans-

formation speci�cations and morphisms can be de�ned. Hence, we de�ne the

abstract modules over cat, and call them cat{modules. In what follows we

describe their main characteristics and properties, and point out the categor-

ical requirements to be ful�lled by any instantiation of cat{modules over a

concrete framework.

A cat{module has three components: an import interface, an export interface

and a body. Each of the three components is a graph transformation speci-

�cation. Hence, rules are not only present in the body component, but also

in the interfaces and this means that, unlike the programming language mod-

ules, beside the names of the imported and exported features it is possible to

specify also their behaviour.

We proceed now with a stepwise description of the role and meaning of the

cat{module components and their interconnections.

Import interface

The import interface speci�es the features provided by other modules and

used in the body component to implement new features.

Modules with an empty import interface are the basic building blocks in the

bottom-up development of a modular system. Beside the bottom-up tech-

nique, however, cat{modules allow also a top{down development of modular

systems. In fact, the features to be imported from other modules are speci�ed

not only by their names but also by rules describing their behaviour. This

3

Simeoni

allows their concrete implementation by other modules to be postponed, and

realizes a mechanism supporting generic imports.

Furthermore, since the concrete modules which provide the imported features

are not explicitly referenced, any module realizing the same behaviour can be

used. An advantage of this importing mechanism is that it makes a selective

import of features possible. In general, this is not allowed in the case of pro-

gramming language modules, where all the exported features of the modules

speci�ed in the import interface have to be imported.

Export interface

The export interface speci�es the features realized by the module and o�ered to

the external environment. Again, the exported features are not only speci�ed

by their names, but also by rules describing their behaviour: in this case, the

rules specify the pre- and postconditions of their implementation.

The export interface is the only visible component of the module from the

outside environment, i.e the export rules typed over the export type system

are the only accessible resources. This means that the implementation details

of the exported rules are hidden inside the module.

Body

The body of a cat{module contains all the local and imported rules needed

to implement the exported features. The idea for supporting implementation,

is that each exported feature is realized by a suitable combination of rules of

the body.

The type system of the export interface is intended to be a subtype of the

body type system: in this way the body can use private types not visible from

the external environment, i.e. data hiding is supported. Also the type system

of the import interface is usually a subtype of the body type system: in this

way the local rules can use additional types w.r.t the imported ones.

The three components of a cat{module have to be related in such a way that

both the imported features are embedded into the body (so that the body can

use them) and the exported features are implemented using rules of the body

(i.e. local rules and imported ones). That means, two kinds of relations have

to be established: one between the export interface and the body and another

one between the import interface and the body. Both of them have to relate

�rst the type systems of the two components and then their rules.

Import{body relation

The task of the import{body relation in a cat{module is to include the im-

ported rules into the body, so that the body can use them for implementing

the exported rules: we model it by an injective plain morphism.

4

Simeoni

A plain morphism relates the source type system with the target one and

establishes a one{to{one correspondence between rules: it associates to each

rule of the source speci�cation a single rule of the target one, in such a way that

the translation of the source rule over the target type system yields exactly the

associated target rule. We require the following property for plain morphisms:

Requirement: Speci�cations and plain morphisms de�ne a category which

is closed under pushouts.

Export{body relation

The formalization of the export{body relation is quite involved because each

rule of the export interface has to be associated with its implementation via

rules of the body: it is modeled by a re�nement morphism.

We use re�nements to support the implementation task. Re�nements are the

basic steps in the development of complex system speci�cations. Starting

from an abstract description of the system's behaviour, stepwise re�nements

yield more and more concrete speci�cations, that should �nally be directly

implementable on a machine.

A re�nement of a more abstract speci�cation by a more concrete one is given by

associating with each rule of the more abstract speci�cation a combination of

rules of the more concrete speci�cation, in such a way that the composed rule

(i.e. the rule resulting from the combination) coincides with the translation

of the abstract rule over the �ner type system.

As explained before, the export type system is intended to be a subtype of the

body type system: by modeling the export{body relation through re�nements

we realize both data and implementation hiding because both the internal

types and the internal steps of the body are not visible by the module users

(they can only access the module via the export interface).

Any plain morphism can be embedded into a re�nement morphism associat-

ing each abstract rule with just one concrete rule. The �rst requirement for

speci�cations and re�nement morphisms is the following one:

Requirement: Speci�cations and re�nement morphisms de�ne a category

which has, as a subcategory, the category of speci�cations and plain mor-

phisms.

Moreover, we require the following pushout with inclusions property for re-

�nement morphisms, needed for de�ning the composition operation between

cat{modules in the next section.

Requirement: The category of speci�cations and re�nement morphisms is

closed under pushouts, if one of the morphisms is an injective plain mor-

phism. The induced morphisms are again a re�nement and an injective

plain morphism (i.e the injective plain morphism is preserved).

Having described the components of a cat{module and their interconnections,

5

Simeoni

we can concretely formalize a cat{module as follows.

De�nition 2.1 [cat{Module] A cat{module MOD = (IMP
m

! BOD
r

 EXP)

is given by speci�cations IMP , BOD, and EXP , an injective plain morphism

m : IMP ! BOD, and a re�nement r : EXP ! BOD . It can be visualized

by:

EXP

r

��
IMP

m ��BOD

Fig. 1 shows an example of a module exporting two rules p and u which are

implemented (re�ned) in the body component by a suitable combinination of

rules w; q; s and s; k; r, respectively. The idea is that the re�nement morphism

speci�es how the body rules have to be combined in order to implement the

corresponding rules of the export interface. The module imports a rule t,

which is included into the body component via a plain morphism mapping t

to q.

p

s
qt

w k
r

u
EXE

IMP

BOD

Fig. 1. A module

Since plain morphisms are just particular cases of re�nement morphisms, both

the components and the morphisms of a cat{module can be modeled in the

category of speci�cations and re�nement morphisms. Hence, the generic cat-

egory cat is exactly the category of speci�cations and re�nement morphisms.

Semantics

The semantics of a cat{module is given by the semantics of its three compo-

nents, related by the mappings induced by the speci�cation morphisms. The

existence of such induced mappings, however, have to be explicitely required.

Requirement: Speci�cation morphisms induce mappings on the semantics.

Since the export interface is the only component of a cat{module visible from

the outside environment, it follows that only the export interface semantics is

visible.

6

Simeoni

We have already pointed out that cat{modules allow a generic import of the

features realized by other modules, and used for implementing the exported

features. Generic import makes it possible to consider each module as a self

contained entity with fully de�ned semantics. Hence, the semantics of a mod-

ular system can be de�ned from the semantics of its module components. This

kind of compositional semantics is not allowed in programming language mod-

ules, where the semantics of a module is only de�ned if all modules required

at the import interface are actually imported.

Preservation of behaviour property

The main property we require to graph transformation speci�cations and mor-

phisms, in order to suitably model the dynamical behaviour of systems is the

following preservation of behaviour property :

Requirement: The dynamical behaviour of a graph transformation speci�-

cation has to be preserved along plain and re�nement morphisms.

This property is particularly important for the export{body morphism of cat{

modules: since the export interface is the only component of the module visible

from the outside environment, the preservation of the export semantics along

the re�nement de�nes a correctness criterion for the implemented features.

We conclude this section by describing the basic ways to relate cat{modules,

which are the basic for de�ning the interconnection operations, in the next

section.

cat{modules can be related via cat{module morphisms, consisting of a triple

of plain morphisms, compatible with their internal module connections.

De�nition 2.2 [cat{module morphism] LetMOD = (IMP
m

! BOD
r

 EXP)

and MOD
0 = (IMP

0 m
0

! BOD
0 r

0

 EXP
0) be cat{modules. A cat{module mor-

phism mod : MOD ! MOD
0 is a triple (mod I : IMP ! IMP

0
;modB :

BOD ! BOD
0
;modE : EXP ! EXP

0) of plain morphisms such that the

following are commuting diagrams in cat.

IMP

modI

��
=

m ��BOD

modB

��

BOD

modB

��
=

EXP
r��

modE

��
IMP

0

m
0

��
BOD

0
BOD

0
EXP

0

r
0

��

Having de�ned cat{modules and cat{modules morphisms, we can prove the

following proposition:

Proposition 2.3 [15] cat{modules and cat{module morphisms form a cate-

gory called MOD.

Another useful relation between cat{modules is the submodule relation: a

cat{module MOD is a submodule of another module MOD
0 if there exists a

7

Simeoni

cat{module morphism mod = (mod I ;modB;modE) : MOD ! MOD
0 such

that the plain morphism modB between the body components keeps imported

rules and local ones separated: this condition ensures that the rules in the two

components have the same role.

De�nition 2.4 [Submodule] Let MOD = (IMP
m

! BOD
r

 EXP) and

MOD
0 = (IMP

0 m
0

! BOD
0 r

0

 EXP
0) be two cat{modules. MOD is a submodule

of MOD
0 if there exists a cat{module morphism mod = (mod I ;modB;modE) :

MOD ! MOD
0 such that modB : BOD ! BOD

0 maps imported rules into

imported rules and local rules into local rules. The morphism mod is called a

submodule morphism.

We use the submodule relation for de�ning the union of cat{modules, in the

next section. However, in order to be able to de�ne such operation, the fol-

lowing property have to be required:

Requirement: Pushouts in the category of speci�cations and plain mor-

phisms are preserved in the category of speci�cations and re�nement mor-

phisms.

Having this property, we can prove that the categoryMOD has pushouts w.r.t

the submodule relation (which is the basis for de�ning the union operation).

Proposition 2.5 [15] MOD has pushouts w.r.t submodules.

In this section we have described the components and interconnections of

cat{modules, their semantics, and their basic properties. Moreover, we have

introduced the basic relations between cat{modules. On this basis, we de�ne

in the next section some possible interconnection operations for cat{modules.

3 An Algebra of cat{modules

Modules have been introduced as structuring means for the development of

complex speci�cations. Hence, beside the de�nition of a module concept for

graph transformation systems it is important to de�ne also interconnection

operations for modules.

Guided by the operations for algebraic speci�cation modules (see [6]), we

introduce analogous operations for cat{modules, namely union, composition

and module re�nement. Due to the categorical approach, the connections

between modules are modeled by morphisms and the results of operations are

speci�ed abstractly by their universal properties.

3.1 Union of cat{modules

The union of two cat{modules MOD
1
and MOD

2
is de�ned w.r.t. an explic-

itly de�ned common submoduleMOD
0
, where the submodule relationship has

been introduced in de�nition 2.4. This allows to control explicitly which items

8

Simeoni

of MOD
1
and MOD

2
are to be considered as shared and which ones as local,

independently of the names chosen locally. In this way items from MOD
1
and

MOD
2
are identi�ed in the union if and only if they are images of one corre-

sponding item in MOD
0
, whose embedding into MOD

1
and MOD

2
makes the

identi�cations explicit. More concretely, the union MOD
1
�MOD0

MOD
2
can

be obtained by taking �rst the disjoint union of the corresponding components

of MOD
1
and MOD

2
and then identifying the parts in common contained in

MOD
0
.

De�nition 3.1 Let MOD
1
and MOD

2
be two cat{modules and let MOD

0

be a submodule of both MOD
1
and MOD

2
via the submodule morphisms

mod
1
: MOD

0
! MOD

1
and mod

2
: MOD

0
! MOD

2
. The union MOD

3
=

MOD
1
�MOD0

MOD
2
of MOD

1
and MOD

2
w.r.t. MOD

0
, mod

1
and mod

2
, is

given by a pushout of MOD
0
, mod

1
and mod

2
in MOD.

MOD
0

������������

������������

p:oMOD
1

���
�

�
�

� MOD
2

��� �
�

�
�

MOD
3

The existence of pushouts in MOD w.r.t submodules is stated in proposition

2.5.

The union operation is specially useful when it is used in combination with the

composition operation described below: in that case, it allows the importing

of features realized by di�erent modules.

Finally, the following facts can be proved using only standard properties of

the involved categories. For their complete proofs we refer to [12] where they

are proved for algebraic speci�cation modules.

Proposition 3.2 (i) Compatibility of union and submodule relation: MOD
1

and MOD
2
are submodules of MOD

1
�MOD0

MOD
2

(it follows from proposition 2.5 and standard properties of pushouts);

(ii) Associativity of union: if MOD
0
is a submodule of MOD

1
and MOD

2
,

and MOD
3
is a submodule of MOD

2
and MOD

4
, then

(MOD
1
�MOD0

MOD
2
) �MOD3

MOD
4

�= MOD
1
�MOD0

(MOD
2
�MOD3

MOD
4
).

3.2 Composition of cat{modules

The composition operation realizes a use relation for cat{modules: a module

MOD = (IMP
m

! BOD
r

 EXP) can use another module MOD
0 = (IMP

0 m

!

BOD
0 r

 EXP
0) if the import interface of the �rst one can be related with

the export interface of the second one via a plain morphism, called interface

9

Simeoni

morphism, between the import interface of MOD and the export interface of

MOD
0, h : IMP ! EXP

0
:

The new module resulting from the composition of MOD and MOD
0 has the

import interface of MOD
0, the export interface of MOD and a body imple-

menting the features of both MOD and MOD
0. The basic categorical require-

ment for de�ning this operation is the pushout with inclusions property for

the category cat, which allows the construction of the composed body.

De�nition 3.3 Let MOD = (IMP
m

! BOD
r

 EXP) and MOD
0 = (IMP

0 m
0

!

BOD
0 r

0

 EXP
0) be two cat{modules and let h : IMP ! EXP

0 be a plain
morphism, called the interface morphism. The compositionMOD

00 = MOD
0
Æh

MOD is de�ned by MOD
00 = (IMP

00 m
�
Æm

0 ��
BOD

00 EXP
00)r

�
Ær�� where:

IMP
00 = IMP

0, EXP 00 = EXP and BOD
00 is a pushout object (and m

� and r
�

are the induced morphisms) of the following diagram in cat.

EXP

r

��
IMP

m ��

h

��
p:o:

BOD

r
�

���
�
�
�
�
�
�

EXP 0

r
0

��
IMP 0 m

0 ��BOD 0 m
� ����� BOD 00

Note that the interface morphism h can be just the identity morphism h = id ,

i.e. the composition operation is always de�ned. In fact, we can recover the

h 6= id case by using the intermediate cat{module (EXP 0 id ��
EXP

0 IMP)h��

and composing it with the given modules.

The composition and union operations can be used in combination, in order

to realize the importing of features from di�erent modules: if a module MOD

needs to import features realized by two di�erent modules MOD
1
and MOD

2
,

it is suÆcient to perform �rst the union of MOD
1
and MOD

2
, and then the

composition of the resulting module with MOD .

As for the union operation, the following basic properties of composition can

be deduced immediately from their universal properties, as shown explicitly

in [6] for algebraic speci�cation modules.

Proposition 3.4 (i) Associativity of composition: (MOD
00
Æh1 MOD

0) Æh2
MOD �= MOD

00
Æh1 (MOD

0
Æh2 MOD) due to standard properties of com-

10

Simeoni

position of pushouts.

EXP

r

��
IMP

m ��

h1

��

BOD

���
�
�
�
�
�
�

��

EXP 0

r
0

��
IMP 0 m

0 ��

h2

��

BOD 0 ������

�� ���
�
�
�
�
�
�

EXP 00

r
00

��
IMP 00 m

00 ��BOD 00 ����������� �� ��
BOD 000

(ii) Compatibility of composition and submodule: if MOD
1
is a submodule of

MOD
3
and MOD

2
is a submodule of MOD

4
then (MOD

1
Æh1 MOD

2
) is

a submodule of (MOD
3
Æh3 MOD

4
), with h

1
and h

3
interface morphisms

form MOD
1
to MOD

2
and from MOD

3
to MOD

4
, respectively.

(iii) Symmetric Distributivity of union and composition: let MOD
0
be a sub-

module of MOD
1
, MOD

2
and MOD

0

0
a submodule of MOD

0

1
, MOD

0

2
. Let

hi : MOD i ! MOD
0

i
, i = 0; 1; 2 be interface morphisms such that h

0
is

the restriction of h
1
and h

2
. Then

(MOD
1
�MOD0

MOD
2
) Æh1�h0h2 (MOD

0

1
�MOD

0

0
MOD

0

2
) �=

(MOD
1
Æh1 MOD

0

1
)�MOD0Æh0

MOD
0

0
(MOD

2
Æh2 MOD

0

2
).

3.3 Re�nement of cat{modules

The re�nement relation between single speci�cations can be extended com-

ponentwise to cat{modules. We say that a cat{module is re�ned by another

one if there exist three re�nement morphisms between their corresponding

components that are compatible with the internal module connections.

There are no special requirements for de�ning this operation: it realizes a sort

of inheritance relation for cat{modules.

De�nition 3.5 Let MOD = (IMP
m

! BOD
r

 EXP) and MOD
0 = (IMP

0 m
0

!

BOD
0 r

0

 EXP
0) be two cat{modules. A cat{module re�nement rMOD =

(rI; rB; rE) : MOD ! MOD
0 is a triple of re�nements rI : IMP ! IMP

0,

rB : BOD ! BOD
0 and rE : IMP ! EXP

0 such that the following diagrams

commute in cat.

IMP

=

m ��

rI

��

BOD

rB

��

EXP
r
0��

rE

��
IMP

0 m
0 ��
BOD

0

=

EXP
0r

0��

11

Simeoni

Note that cat{module morphisms as de�ned in 2.2 are particular cases of

cat{module re�nements.

Note moreover that each component of the re�ned module can contain \local

rules" which do not depend from the rules of the more abstract module, i.e the

re�ned module can be specialized with features not visible from the abstract

one.

We conclude this section by showing two compatibility properties of cat{

module re�nements w.r.t the union and composition of cat{modules. To this

end, analogously to the category MOD we de�ne the category MOD-Ref

of cat{modules and cat{module re�nements and prove that it is closed under

pushouts, if one of the involved morphisms is just an injective cat{module

morphism (which follows directly from the pushout with inclusion property).

Proposition 3.6 [15] Any pair (rMOD : MOD
0
! MOD

1
;mod : MOD

0
!

MOD
2
) consisting of a cat{module re�nement rMOD and an injective cat{

module morphism mod has pushouts in MOD-Ref.

The compatibility properties of cat{module re�nements w.r.t. the union or

composition of cat{modules are based on the following compatibility condi-

tion:

De�nition 3.7 Let m : MOD
0
! MOD

1
be a submodule morphism and

rmod0 : MOD
0
! MOD

0

0
be a cat{module re�nement. A cat{module re�ne-

ment rmod1 : MOD
1
! MOD

0

1
is compatible with m and rmod1 if there exists a

submodule morphism m
0 : MOD

0

0
! MOD

0

1
such that the following diagram

commutes:

MOD
0

m ��

r
mod0

��

MOD
1

r
mod1

��
MOD

0

0 m
0

��MOD
0

1

Having this de�nition, we can prove the following properties:

Proposition 3.8 [15] The union of cat{module re�nements is the cat{module

re�nement of the union. The composition of cat{module re�nements is the

cat{module re�nement of the composition.

4 Concluding remarks

In this paper we have presented an abstract categorical approach to modular-

ization of graph transformation systems. Two concrete instantiations of this

approach have been investigated in [15]: the �rst one for typed graph trans-

formation systems over the double pushout approach, and the second one for

local action systems.

cat{modules are inspired by the algebraic speci�cation modules. There is,

however, a main conceptual di�erence between the two speci�cation formalisms:

12

Simeoni

graph transformation system speci�cations are used for formally specifying dy-

namically evolving systems. Hence, it is important to preserve the dynamical

behaviours of systems. Such dynamical aspect is not present in algebraic spec-

i�cations since each of them speci�es an algebra (initial semantics) or a class

of algebras (loose semantics), that model only the static functional view of

the components.

The relationships and di�erences between cat{modules and other modulariza-

tion approaches to graph transformation need also to be discussed. However,

due to space limitation, we refer to [15] for a detailed presentation of the main

approaches and their comparison w.r.t. cat{modules.

The ideas for future work are concerned with both the development of other

instantiations of cat{modules, and the extension of the re�nement relation. In

the �rst case we are interested in intantiating cat{modules for any formalism

satisfying the required properties (for example graph transformations in the

Single Pushout approach, Algebra Rewriting, Petri nets). In the second case,

we are interested in extending the re�nement relation for modeling case dis-

tinctions, like if{then{else and case constructs, and iteration. A �rst attempt

in this direction can be found in [8], where some extensions of re�nements are

discussed for modules of typed graph transformation systems over the double

pushout approach.

References

[1] A. Corradini, U. Montanari, and F. Rossi "Graph processes" Special issue of

Fundamenta Informaticae, Vol. 26(3,4) pp. 241{266 (1996)

[2] A. Corradini, U. Montanari, F. Rossi, H. Ehrig, R. Heckel, M. L�owe "Algebraic

approaches to graph transformation part I: Basic concepts and double pushout

approach" In [14], pp. 163{246

[3] H. Ehrig, G. Engels "Pragmatic and Semantic Aspects of a Module Concept for

Graph Transformation Systems" Proc. 5th International Workshop on Graph

Grammars and their application to Computer Science, Williamsburg'94, LNCS

1073, pp. 137{154 (1996)

[4] H. Ehrig, G. Engels H.-J. Kreowski, G. Rozenberg, ed. "Handbook of Graph

Grammars and Computing by Graph Transformation, Volume 2: Applications,

Languages and Tools" World Scienti�c (1999)

[5] H. Ehrig, H.J. Kreowsky, U. Montanari, G. Rozenberg, ed. "Handbook of Graph

Grammars and Computing by Graph Transformations, Volume 3: Concurrency,

Parallelism, and Distribution" World Scienti�c (1999)

[6] H. Ehrig, B. Mahr "Fundamentals of Algebraic Speci�cations 2: Module

Speci�cations and Constraints" EATCS Monographs on Theoretical Computer

Science Vol. 21 Springer Verlag, Berlin (1990)

13

Simeoni

[7] C. Ermel, M. Rudolf, G. Taentzer "The AGG approach: Language and

Environment" in [4], pp. 487{546 (1999)

[8] M. Gro�e{Rhode, F. Parisi Presicce, M. Simeoni "Formal Software Speci�cation

with Re�nements and Modules of Typed Graph Transformation Systems"

Journal of Computer and System Sciences, to appear.

[9] D. Janssens "Actor Grammars and Local Actions" In [5], pp.57{106 (1999)

[10] H-J. Kreowski, S. Kuske "On the Interleaving Semantics of Transformation

Units { A Step into GRACE", LNCS 1073, pp. 89{106 (1996)

[11] H-J. Kreowski, S. Kuske "Graph Transformation Units and Modules" In [4],

pp. 607{638

[12] F. Parisi Presicce "Inner and Mutual Compatibility of operations on module

speci�cations" Technical Report 86-06 TU Berlin (1986)

[13] F. Parisi Presicce "Transformation of Graph Grammars", LNCS 1073, pp. 428{

442 (1996)

[14] G. Rozenberg, ed. "Handbook of Graph Grammars and Computing by Graph

Transformations, Volume 1: Foundations" World Scienti�c (1998)

[15] M. Simeoni "A Categorical Approach to Modularization of Graph

Transformation Systems using Re�nements" PhD Thesis, Universit�a La

Sapienza di Roma (2000)

[16] A. Sch�urr, A. Winter "UML Packages for PROgrammed Graph REwriting

Systems" Proc. 6th international Workshop on Theory and Application of Graph

Transformation (TAGT'98), Paderborn, LNCS 1764, pp. 396{409 (1999)

[17] A. Sch�urr, A. Winter, A. Z�undorf "The PROGRES approach: Language and

Environment" in [4], pp. 547{668 (1999)

[18] G. Taentzer, A. Sch�urr "DIEGO, another step towards a module

concept for graph transformation systems" Proc. Graph Rewriting and

Communication, SEGRAGRA'95 Electronic Notes of TCS, Vol. 2, (1995)

http://www.elsevier.nl/locate/entcs/volume2.html

14

