
p ()
URL: http://www.elsevier.nl/locate/entcs/volume51.html 15 pages

Graph Relabelling Systems :
a Tool for Encoding, Proving, Studying and

Visualizing
Distributed Algorithms

M. Bauderon, Y. M�etivier, M. Mosbah, A. Sellami

LaBRI, UMR CNRS 5800

Universit�e Bordeaux I - E.N.S.E.I.R.B. - IUT

345, cours de la Lib�eration

33405 Talence, France

Yves.Metivier@labri.u-bordeaux.fr

1 Introduction

Graph relabelling systems and, more generally, local computations in graphs

are powerful models which provide general tools for encoding distributed al-

gorithms, for proving their correctness and for understanding their power.

Several such models have been de�ned by: Rosenstiehl et al. [30], Angluin

[1] and Yamashita and Kameda [16]. In [30] a synchronous model is considered,

where vertices represent (identical) deterministic �nite automata. The basic

computation step is to compute the next state of each processor according

to its state and the states of its neighbours. In [1] an asynchronous model

is considered. A basic computation step means that two adjacent vertices

exchange their labels and then compute new ones. In [16] an asynchronous

model is studied where a basic computation step means that a processor either

changes its state and sends a message or it receives a message.

Another common and general approach to concurrent computation is based

on processes and actions. Thereby, a process P0 can perform some action

A 2 fa1; : : : ; ang or create some new (child) processes P1; : : : ; Pm in each phase

of its life cycle. Such systems are usually described in terms of process algebra

or process logic [17], but graph grammars can be used for this purpose as well

[15]. This notion of concurrent computing is highly abstract with respect to

the underlying hardware, and highly dynamic with respect to the number of

processes involved. In our approach, the number of processes (processors) in

each model is �xed, but we have a topological notion of the network providing

the material basis of distributed computation. In fact, by identifying processes

with processors, our notion of distributed computation appears as a useful

special case of the actor notion of [15].

c2002 Published by Elsevier Science B. V.Open access under CC BY-NC-ND license.

http://creativecommons.org/licenses/by-nc-nd/3.0/

M. Bauderon, Y. Metivier, M. Mosbah, A. Sellami

Identifying graph nodes with processors and edges between the nodes as

communication links between processors is not the only possibility of describ-

ing distributed computation in terms of graph transformation systems. In the

approach of [28], on the contrary, the communication channels are regarded

as nodes and the processes as (hyper) edges. However, the purpose of [28]

is to de�ne formal semantics for concurrent programming languages, while

our purpose is to provide an experimental platform for observing the runtime

behaviour of distributed systems.

The purpose of [31] is similar to ours, namely: tool support for design and

examination of distributed software systems. Dealing with brokers, objects

and interfaces, their approaches less abstract and closer to software engineer-

ing than ours, which is mainly concerned with the abilities of basic distributed

algorithms. Also their notion of distributed graph transformation is di�erent:

in [31], a distributed graph represents distributed data and it is the graph

itself whose subgraphs are arbitrarily distributed over the network. In their

approach, computation is externally performed on the (passive) graph, while

our computation is performed in the (active) graph. Thus, their computations

are user-triggered, while ours are autonomous. Their graphs are highly het-

erogeneous while ours are highly homogeneous as we have only nodes of one

type, all of them running the same internal program.

In our work, we consider a network of processors with arbitrary topol-

ogy. It is represented as a connected, undirected graph where vertices denote

processors, and edges denote direct communication links. An algorithm is

encoded by means of local relabelings. Labels attached to vertices and edges

are modi�ed locally, that is on a subgraph of �xed radius k of the given graph,

according to certain rules depending on the subgraph only (k�local computa-

tions). The relabelling is performed until no more transformation is possible.

The corresponding con�guration is said to be in normal form.

The present contribution reects classical topics including basic properties

of local computations [20]. Among paradigms associated with local computa-

tions, we present the computation of a spanning tree, the election problem,

the recognition problem and the local detection of the termination problem.

Then we explain how we obtain an implementation and a visualization

of distributed algorithms described by means of local computations into an

asynchronous system with asynchronous message passing using randomized

algorithms.

2 Basic De�nitions, Notation and Examples

2.1 A First Example

Let us �rst illustrate graph relabelling systems by considering a simple dis-

tributed algorithm which computes a spanning tree of a network. Assume

that a unique given processor is in an \active" state (encoded by the label A),

2

M. Bauderon, Y. Metivier, M. Mosbah, A. Sellami

N N

A N

N N
0

0

00

0

0

0
-

(1)

N N

A A

N N
0

1

00

0

0

0
-

(2)

N N

A A

A N
0

1

00

1

0

0
-

(3)

N A

A A

A N
0

1

00

1

1

0

-

(4)

A A

A A

A N
0

1

10

1

1

0
-

(5)

A A

A A

A A
0

1

10

1

1

1

Fig. 1. Computation of a spanning tree.

all other processors being in some \neutral" state (label N) and that all links

are in some \passive" state (label 0). The tree initially contains the unique

active vertex. At any step of the computation, an active vertex may activate

one of its neutral neighbours and mark the corresponding link which gets the

new label 1. This computation stops as soon as all the processors have been

activated. The spanning tree is then obtained by considering all the links with

label 1. Fig. 1 describes a sample computation using this algorithm.

An elementary step in this computation may be depicted as a relabelling

step by means of the following relabelling rule R which describes the corre-

sponding label modi�cations:

R:
A 0 N A 1 A

-

An application of this relabelling rule on a given graph (or network) con-

sists in (i) �nding in the graph a subgraph isomorphic to the left-hand-side of

the rule (this subgraph is called the occurrence of the rule) and (ii) modifying

its labels according to the right-hand-side of the rule.

The relabelling sequence depicted in Fig. 1 illustrates a sequential compu-

tation since the relabelling steps are sequentially applied. A distributed view

of this computation can be obtained by considering that relabelling steps

concerning disjoint parts of the graph may be applied in any order, or even

concurrently (this is namely the case for the steps (2) and (3), or (4) and (5)

in Fig. 1).

2.2 De�nitions and Examples

For further details on material about discrete and combinatorial mathematics

see [29]. Unless otherwise stated, all the graphs considered in this paper are

�nite, undirected, without multiple edges, loopless and connected. For every

graph G we denote by V (G) its set of vertices and by E(G) its set of edges. If

G and G0 are two graphs, we say that G0 is a subgraph of G if V (G0) � V (G)

3

M. Bauderon, Y. Metivier, M. Mosbah, A. Sellami

and E(G0) � E(G). If X is a subset of V (G), the subgraph of G induced by

X has vertex set X and edge set the set of all edges whose both extremities

belong to X. A homomorphism of a graph G to a graph H is a mapping

' from V (G) to V (H) such that '(x)'(y) is an edge in H whenever xy is

an edge in G. We say that ' is an isomorphism if ' is bijective and '�1 is

also a homomorphism. In the following, a set of graphs which is closed under

isomorphism will be called a class of graphs.

Let L be a set whose elements are called labels. A L-labelled graph is a

pair (G; �) where G is a graph and � a mapping from V (G) [E(G) to L. If

(G; �) and (G0; �0) are two labelled graphs, we say that (G0; �0) is a (labelled)

subgraph of (G; �) if G0 is a subgraph of G and �0 is the restriction of �

to V (G0) [E(G0). We will denote by GL the set of all L-labelled graphs. An

isomorphism between two labelled graphs (G; �) and (H; �) is an isomorphism

' between G and H which preserves the labels, that is �(x) = �('(x)) for

every x in V (G) and �(xy) = �('(x)'(y)) for every xy in E(G). An occurrence

of (G; �) in (H; �) is an isomorphism ' between G and a subgraph (H 0; �0) of

(H; �). We will then write '(G; �) = (H 0; �0).

3 Local Computations in Graphs

One of the main characteristics of distributed algorithms is the locality of

the computation. Every computation step occurring on some processor only

depends on the local context of this processor. Graph relabelling systems and

more generally local computations satisfy the following constraints which seem

to be natural when describing distributed computations with a decentralized

control:

(C1) they do not change the underlying graph but only the labelling of its

components (edges and/or vertices), the �nal labelling being the result

of the computation,

(C2) they are local, that is, each relabelling step changes only a connected

subgraph of a �xed size in the underlying graph,

(C3) they are locally generated, that is, the application condition of the rela-

belling only depends on the local context of the relabelled subgraph.

Let G be a graph, x a vertex in V (G) and k some positive integer. We

denote by BG(x; k) the ball of radius k centered at x, that is the subgraph

of G induced by all vertices that are at distance at most k from x (recall

that the distance between two vertices is the length of a shortest path linking

these two vertices). A graph relabelling relation (over L) is a binary relation

R de�ned on the set of L-labelled graphs such that every pair in R is of

the form ((G; �); (G; �0)). Thus, two labelled graphs in relation only di�er

on their labelling function. We will write (G; �)R(G; �0) whenever the pair

((G; �); (G; �0)) is in R. A L-labelled graph (G; �) is said to be R-irreducible

if there exists no (G; �0) such that (G; �)R(G; �0). We will denote by R� the

4

M. Bauderon, Y. Metivier, M. Mosbah, A. Sellami

reexive and transitive closure of R and, for every L-labelled graph (G; �), by

IrredR(G; �) the set ofR-irreducible graphs (G; �0) such that (G; �)R�(G; �0).

We say that a graph relabelling relation R is k-local for some positive

integer k if for every pair ((G; �); (G; �0)) in R, there exists some vertex x in

V (G) such that � and �0 coincide on V (G)nV (BG(x; k))[E(G)nE(BG(x; k)).

Intuitively speaking, it means that � and �0 only di�er on a centered ball of

radius at most k. A graph relabelling relation is local if it is k-local for some

k. A graph relabelling relation R is k-locally generated if it can be computed

for any graph as soon as it is known on the set of graphs with diameter at

most 2k. More formally, if (G; �), (G0; �0), (H; �), (H 0; �0) are four labelled

graphs, BG(x; k) and BH(y; k) two isomorphic balls in G and H respectively

such that (i) � and �0 coincide on V (G) n V (BG(x; k)) [E(G) nE(BG(x; k)),

(ii) � and �0 coincide on V (H) n V (BH(y; k))[E(H) nE(BH(y; k)) and (iii)

� and � coincide respectively on BG(x; k) and BH(y; k) then (G; �)R(G0; �0)

if and only if (H; �)R(H 0; �0). A graph relabelling relation is locally generated

if it is k-locally generated for some k.

Graph relabelling systems (GRSs, PGRSs, FCGRSs) (see [19]) are thus

special cases of locally generated graph relabelling relations. One of the main

questions in that framework is \what can be computed by means of locally

generated graph relabelling relations ?". This question is obviously strongly

related to the general problem of characterizing those functions that can be

computed by distributed algorithms in an asynchronous way.

Coverings and quasi-coverings are fundamental tools to understand the

borderline between positive and negative results about distributed algorithms.

Coverings is a notion known from algebraic topology [22]. They have been

used for simulation [5] and for proving impossibility results on distributed

computing [1,11]. Quasi-coverings have been introduced in [24] to obtain

impossibility proofs for local detection of global termination. We can note

also that the Kronecker product of graphs is useful [1,8,6].

We say that a graph G is a covering of a graph H if there exists a surjec-

tive homomorphism from G onto H such that for every vertex v of V (G)

the restriction of to NG(v) is a bijection onto NH((v)). In particular,

f(u); (v)g 2 E(H) implies fu; vg 2 E(G). The covering is proper if G

and H are not isomorphic. It is called connected if G (and thus also H) is

connected. A graph G is called covering-minimal if every covering from G to

some H is a bijection.

The idea behind the notion of quasi-coverings is to enable the simulation of

local computations on a given graph in a restricted area of a larger graph, such

that the simulation can lead to false conclusion. The restricted area where

we can perform the simulation will shrink while the number of simulated step

increases (see [24]).

5

M. Bauderon, Y. Metivier, M. Mosbah, A. Sellami

4 Some Classical Problems

Among paradigms associated with local computations, we can cite the span-

ning tree computation, the termination detection problem, the election prob-

lem and the recognition problem.

Spanning Tree Computation

Computing a spanning tree is standard in the domain of distributed algo-

rithms. Trees are an essential structure in various communication protocols

(synchronization, deadlock resolution, information broadcasting). This prob-

lem is closely related to the election problem (see below). Depth-�rst search

trees are used for the construction of interval labeling schemes for compact

routing. Several examples of algorithms for computing spanning trees encoded

by local computations are given in [20].

The Termination Detection Problem

In an implicitly terminating algorithm, each execution is �nite and in the

last state of the execution each node has the correct result. However, the nodes

are not aware that their state is the last one in the execution. Termination is

said to be explicit in a process if that process is in a terminal con�guration

and its state is terminal. There were many proposals for termination detection

algorithms: such algorithms transform implicitly into explicitly terminating

algorithms. Several conditions were found to allow such algorithms and for

each of these conditions a speci�c algorithm was given (see [32]). These con-

ditions include: - A unique leader exists in the network [1], - The network

is known to be a tree [1], - The diameter of the network is known [33], -

The nodes have di�erent identi�cation numbers. These four conditions are

just special cases of one common criteria, namely that the local knowledge of

nodes prohibits the existance of quasi-coverings of unbounded depth: it is the

result presented in this part.

First we need some notation. Let R be a locally generated relabelling

relation (in this section we assume that R is a non-constant relation), let

(G; �) a labelled graph, we say that (G; �) is a terminal con�guration modulo

R if (G; �) is an R�normal form. Let I be a class of labelled graphs, terminal

con�gurations obtained from I are said to be locally characterized if there

exists a set F of labels such that for any (G; �) 2 I and for any (G; �0);

with (G; �)R�(G; �0); (G; �0) is a terminal con�guration if and only if there

exists a vertex v of (G; �0) having its label in F: In this case termination is

said to be explicit. If there exists no sets F of labels which enable the local

characterization of terminal con�gurations, termination is said to be implicit.

We study local computations such that terminations are explicit. In [27] it

has been proved :

Theorem 4.1 Let I be a class of connected labelled graphs. Suppose that

8(G; �) 2 I 9h(G;�) � 0 such that (G; �) has not quasi-coverings of size greater

than h(G;�) in I. Then any locally generated relabelling relation having an

6

M. Bauderon, Y. Metivier, M. Mosbah, A. Sellami

implicit termination may be transformed into a locally generated relabelling

relation having an explicit termination.

The Election Problem

The election problem is one of the paradigms of the theory of distributed

computing [32]. Considering a network of processors we say that a given

processor p has been elected when the network is in some global state such that

the processor p knows that it is the elected processor and all other processors

know that they are not. Using our terminology, it means that we get a labelling

of the graph in which a unique vertex has some distinguished label.

This problem may be considered under various assumptions [32]: the net-

work may be directed or not, the network may be anonymous (all vertices have

the same initial label) or not (every two distinct vertices have distinct initial

labels), all vertices, or some of them, may have some speci�c knowledge on

the network or not (such as the diameter of the network, the total number of

vertices or simply an upper bound of these parameters), etc. A general impos-

sibility result which summarize previous results has been obtained in [13]. In

[23] Mazurkiewicz gives an election algorithm for the family of graphs which

are minimal for the covering relation when we know the size; by combining

this result and the termination detection characterization we obtain a char-

acterization of families of graphs for which there exists an election algorithm:

Theorem 4.2 Let I be a class of connected labelled graphs. There exists

an election algorithm for I if and only if elements of I are minimal for the

covering relation and 8(G; �) 2 I 9h(G;�) � 0 such that (G; �) has not quasi-

coverings of size greater than h(G;�) in I.

The Recognition Problem

Let L be a set of labels. The problem addressed in this section can be

informally described as follows. Let F be some class of (labelled) graphs. We

will say that F can be locally recognized if there exists some graph relabelling

system (or, more generally, some locally generated graph relabelling relation)

such that starting from any uniformly labelled graph (G; �0) some �nal la-

belling can be reached that allows to decide whether G belongs to the class F

or not.

Several basic properties like regularity, completeness, or acyclicity can be

recognized by local computations without initial knowledge. On the other

hand, we cannot determine whether a graph is planar by local computations,

provided that the given graph is labelled in an uniform way without initial

knowledge [21,9]. However, the presence of a distinguished vertex allows to

gather information. In particular, it has been shown that it is possible to

detect a given minor in a graph with a distinguished vertex [7], hence also to

determine whether the graph is planar. A natural question is whether some

additional information encoded in the initial uniform labelling of a graph can

7

M. Bauderon, Y. Metivier, M. Mosbah, A. Sellami

help for deciding for example planarity. Results and main de�nitions are

from [12,21]. A labelled graph recognizer is a pair (R;K) where R is a graph

relabelling relation and K is a class of labelled graphs. A graph (G; �) is

recognized if IrredR(G; �) \ K 6= �.

We are interested in recognizing graphs which have a certain initial knowl-

edge encoded in the initial labelling. Let G be a graph and � a label in L.

Then �� is the uniform labelling on G with �, that is every vertex is labelled

by �.

De�nition 4.3 A graph recognizer with initial knowledge is a triple (R;K; �)

where (R;K) is a labelled graph recognizer, and � is a function which associates

with each graph G a label �(G) 2 L. The set of graphs recognized by (R;K; �)

is given as fG j (G;��(G)) is recognized by (R;K)g.

A recognizer (R;K; �) is said to be deterministic if, restricted to inputs

(G;��(G)); we have the following two properties:

� R is noetherian.

� Either Irred(G;��(G)) \ K = � or Irred(G;��(G)) � K.

We can now de�ne recognizable classes of graphs. A class F of graphs

is said to be (deterministically) recognizable with initial knowledge � if there

exists a locally generated (deterministic) graph recognizer (R;K; �) recognizing

exactly F .

We de�ne the relation �� by letting G �� G0 if: �(G) = �(G0) and there

exists a graph H such that G and G0 are coverings of H. Let �� denote the

reexive, transitive closure of ��. A class of graphs F will be said to be closed

under �� if for any graphs G and G0 such that G��G0, G is in F if and only

if G0 is in F . The following useful characterization has been obtained [12]:

Theorem 4.4 Let F be a class of graphs and � an initial knowledge. The

following statements are equivalent.

(i) F is locally recognizable with initial knowledge �.

(ii) F is closed under ��
and F is a recursive set.

Comparison with Logical Languages

In [18,21] the recognizable classes of graphs are compared to the classes of
graphs de�nable by logic formulas. In particular, it is proved that (determin-
istically or not) recognizable classes of graphs are not comparable with classes
of graphs de�nable by logic formulas expressed in �rst-order logic (FOL),
monadic second-order logic (MSOL) or second-order logic (SOL). The case
of the so-called 1-graphs, that is graphs having a distinguished vertex is also
considered. Table 1 gives some sample graph classes or 1-graph classes that
can or cannot be deterministically recognized.

8

M. Bauderon, Y. Metivier, M. Mosbah, A. Sellami

Table 1

Recognizable and not-recognizable graph classes

Graph properties Graphs 1-Graphs

FOL

exactly one `-labelled vertex No Yes

k-regular Yes Yes

MSOL

bipartite No Yes

k-colorable (k > 2) No ?

hamiltonian No Yes

acyclic Yes Yes

SOL

even number of vertices No Yes

5 Implementation

5.1 Randomized Local Elections

In [25,26] we propose and study randomized algorithms to implement dis-

tributed algorithms speci�ed by local computations. We recall that a star is a

complete bipartite graph K1;d; the vertex of degree d is called the centre of the

star while the other vertices are called the leaves of the star; K2 is the complete

graph with 2 vertices. We consider three kinds of local computations.

RV : in a computation step, the labels attached to vertices of K2 are modi�ed

according to some rules depending on the labels appearing on K2:

LC1 : in a computation step, the label attached to the centre of the star is

modi�ed according to some rules depending on the labels of the star, labels

of the leaves are not modi�ed.

LC2 : in a computation step, labels attached to the centre and to the leaves of

the star may be modi�ed according to some rules depending on the labels

of the star.

We consider systems with asynchronous message passing :

� a process sends a message to another processor by depositing the message

in the corresponding channel,

� there is no �xed upper bound on how long it takes for the message to be

delivered.

9

M. Bauderon, Y. Metivier, M. Mosbah, A. Sellami

Angluin [1] has proved that there is no deterministic algorithm to imple-

ment local synchronizations in an anonymous network that passes messages

asynchronously (see [32]). Thus we have no choice but to consider randomized

procedures. In this paper, we consider the following distributed randomized

procedures.

Implementation of RV: The implementation of RV is the rendezvous. We

consider the following distributed randomized procedure. The implementation

is partitioned into rounds; in each round each vertex v selects one of its neigh-

bours c(v) at random. There is a rendezvous between v and c(v) if c(v) = v;

we say that v and c(v) are synchronized. When v and c(v) are synchronized

there is an exchange of messages by v and c(v): This exchange allows the two

nodes to change their labels. Each message for the synchronization mechanism

will be a single bit :

Each vertex v repeats forever the following actions :

the vertex v selects one of its neighbours c(v) chosen at random;

the vertex v sends 1 to c(v);

the vertex v sends 0 to its neighbours di�erent from c(v);

the vertex v receives messages from all its neighbours.

(* There is a rendezvous between v and c(v) if v receives 1 from c(v);

in this case a computation step may be done. *)

Randomized Rendezvous

Implementation of LC1: Let LE1 the local election for implementing LC1;

it is partioned into rounds, and in each round, every processor v selects an

integer rand(v) randomly from the set f1; :::; Ng: The processor v sends to its

neighbours the value rand(v): The vertex v is elected in the star centered on

d and denoted Sv; if for each leave w of Sv : rand(v) > rand(w): In this case

a computation step on Sv is allowed : the centre collects labels of the leaves

and then changes its label.

Each vertex v repeats forever the following actions :

the vertex v selects an integer rand(v) chosen at random;

the vertex v sends rand(v) to its neighbours;

the vertex v receives integers from all its neighbours.

(* The vertex v is elected if rand(v) is strictly greater than integers received

by v; in this case a computation step may be done on Sv: *)

Randomized LE1�Elections.

Implementation of LC2: Let LE2 the local election for implementing LC2;

it is partioned into rounds, and in each round, every processor v selects an

integer rand(v) randomly from the set f1; :::; Ng:

The processor v sends to its neighbours the value rand(v): When it has

received from each neighbour an integer, it sends to each neighbour w the

max of the set of integers it has received from neighbours di�erent from w:

10

M. Bauderon, Y. Metivier, M. Mosbah, A. Sellami

The vertex v center of the star Sv is elected if rand(v) is strictly greater than

rand(w) for any vertex w of the ball centered on v of radius 2; In this case a

computation step may be done on Sv: During this computation step there is

a total exchange of labels by nodes of Sv; this exchange allows nodes of Sv to

change their labels.

Each vertex v repeats forever the following actions :

the vertex v selects an integer rand(v) chosen at random;

the vertex v sends rand(v) to its neighbours;

the vertex v receives messages from all its neighbours;

let Intw the max of the set of integers that v has received from vertices

di�erent from w;

the vertex v sends to each neighbour w Intw;

the vertex v receives integers from all its neighbours;

(* There is a LE2�election of v if rand(v) is strictly greater than all

integers received by v; in this case a computation step may be done on

Sv: *)

Randomized LE2�elections.

It has been proved in [25,26] that these three algorithms are Las Vegas algo-

rithms. In the following, we will introduce a tool that we have developed to

program the previous algorithms.

5.2 ViSiDiA: a Tool for the Visualization and Simulation of Distributed Al-

gorithms

ViSiDiA [3,2] has been developed in order to help in the design, the experimen-

tation, the validation and the visualization of distributed algorithms discribed

by relabelling systems. It allows the user to model a network, to implement

and to execute a relabelling system.

� Network construction:

A friendly Graphical User Interface to draw a graph which will model the

network. The user can add, delete, or select vertices, edges or subgraphs.

Visual attributes of vertices and edges such as labels, colors or shapes have

default values, but they can be easily customized, for instance to assign an

initial labelling to the vertices of the graph, such as a label A to a particular

vertex, and N to all other vertices.

� Relabelling system implementation:

The tool provides a library of high level primitives to program the corre-

sponding local computations[3]. The java code given in algorithm 1 shows

the implementation of the spanning tree example discussed in Section 2.

Detailed implementations and descriptions of these algorithms can be

found in [4,3]. Note that one has to choose �rst the type of local computa-

tion by choosing one of the three primitives: rendezVous(), starSynchro1(),

11

M. Bauderon, Y. Metivier, M. Mosbah, A. Sellami

Algorithm 1 Implementation of SPANNING-TREE

while (run) {

neighbour = rendezVous();

sendTo(neighbour,myLabel);

neighbourLabel=receiveFrom(neighbour);

if (myLabel == 'N') && (neighbourLabel == 'A'){

myLabel = 'A';

edge[neighbour]=1

}

breakSynchro();

}

and starSynchro2()), which correspond respectively to RV, LE1, and LE2

introduced above. More precisely, these primitives are programmed as fol-

lows:

� rendezVous(): a function that returns the neighbour with whom the syn-

chronization occurs.

� starSyncho1(): returns the center of the star during a star synchronization.

Only the center can update its attributes.

� starSynchro2(): returns the center of the star during a star synchroniza-

tion. The center and its neighbours can update their attributes.

� Execution:

After compiling the module implementing the relabelling system, the user

can execute it by pressing on appropriate buttons provided by the interface.

The system automatically creates and assigns to each vertex a java thread

which will run a copy (a clone) of the code implementing the relabelling

system. The user can observe the messages exchanged between vertices

(threads), and their states. In particular, label changes of vertices can be

seen on-line. The whole algorithm is animated in such a way that the

user can follow its execution. Moreover, the number of exchanged messages

is computed and displayed. This can be used to perform experiments on

particular distributed algorithms described within our framework.

Many distributed algorithms described by relabelling systems are already

implemented and can be directly animated[4]. These include the following :

� leader election in trees, in chordal graphs and in complete graphs,

� randomized Rendez-vous and randomized local elections,

� spanning tree in anonymous networks,

� spanning tree in non anonymous networks,

� Mazurkiewicz's universal graph reconstruction,

� Detection of stable properties.

An interesting advantage of our approach is that we only need to implement

local rewritings to code complicated distributed algorithms. Therefore, visual-

12

M. Bauderon, Y. Metivier, M. Mosbah, A. Sellami

izing the execution of these algorithms consists in animating distributed local

computations.

As an example, let us mention that an implementation of Mazurkiewicz's algo-

rithm based on Estelle speci�cation has been given in [10]. Our tool provides

a much easier and almost automatic way to implement it [4], as it can be

described within the general framework described in this paper.

References

[1] D. Angluin. Local and global properties in networks of processors. In

Proceedings of the 12th Symposium on theory of computing, pages 82{93, 1980.

[2] M. Bauderon, S. Gruner, Y. M�etivier, M. Mosbah, and A. Sellami. Visualization

of distributed algorithms based on labeled rewriting systems. In Second

International Workshop on Graph Transformation and Visual Modeling

Techniques, Crete, Greece, July 12-13, 2001.

[3] M. Bauderon, S. Gruner, and M. Mosbah. A new tool for the simulation and

visualization of distributed algorithms. Technical Report 1245-00, LaBRI, 2000.

Accepted in MFI'01, Toulouse, 21-23 May 2001.

[4] M. Bauderon, Y. M�etivier, M. Mosbah, and A. Sellami. From local

computations to asynchronous message passing systems. Technical report,

LaBRI, 2001. In preparation.

[5] H.-L. Bodlaender and J. van Leeuwen. Simulation of large networks on smaller

networks. Information and Control, 71:143{180, 1986.

[6] A. Bottreau and Y. M�etivier. The kronecker product and local computations

in graphs. In Colloquium on trees in algebra and programming, volume 1059 of

Lecture notes in computer science, pages 2{16. Spinger-Verlag, 1996.

[7] A. Bottreau and Y. M�etivier. Minor searching, normal forms of graph

relabelling : two applications based on enumerations by graph relabelling. In

Foundations of Software Science and Computation Structures, volume 1378 of

Lecture notes in computer science, pages 110{124. Spinger-Verlag, 1998.

[8] A. Bottreau and Y. M�etivier. Some remarks on the kronecker products of

graphs. Inform. Proc. letters, 68:55{61, 1998.

[9] B. Courcelle and Y. M�etivier. Coverings and minors : application to local

computations in graphs. Europ. J. Combinatorics, 15:127{138, 1994.

[10] P. Dembinski. Enumeration protocol in estelle: an exercise in stepwise

development. In A. Cavalli S. Budkowski and E. Najm, editors, Formal

description techniques and protocol speci�cation, testing and veri�cation, pages

147{161. Kluwer Academic Publishers, 1998.

[11] M. J. Fisher, N. A. Lynch, and M. Merritt. Easy impossibility proofs for

distributed consensus problems. Distrib. Comput., 1:26{29, 1986.

13

M. Bauderon, Y. Metivier, M. Mosbah, A. Sellami

[12] E. Godard and Y. M�etivier. A characterization of classes of graphs recognizable

by local computations with initial knowledge. Technical Report, LaBRI,

2001. Accepted In International Colloquium on structural information and

communication complexity 2001.

[13] E. Godard, Y. M�etivier, and A. Muscholl. The power of local computations

in graphs with initial knowledge. In Theory and applications of graph

transformations, volume 1764 of Lecture notes in computer science, pages 71{84.

Spinger-Verlag, 2000.

[14] H. Ehrig, H.-J. Kreowski, U. Montanari, and G. Rozenberg, editors. Handbook

of Graph Grammars and Computing by Graph Transformation, Vol. 3:

Concurrency, Parallelism, and Distribution. World Scienti�c, 1999.

[15] D. Janssens. Actor grammars and local actions. In H. Ehrig, G. Engels, H.-J.

Kreowski, and G. Rozenberg, editors, [14], chapter 2, pages 57{106.

[16] T. Kameda and M. Yamashita. Computing on anonymous networks: Part i -

characterizing the solvable cases. IEEE Transactions on parallel and distributed

systems, 7(1):69{89, 1996.

[17] M. Leuschel. Design and implementation of the high-level speci�cation language

csp(lp). In Proceedings of PADL'01, 3rd International Symposium on Practical

Aspects of Declarative Languages, Lecture notes in computer science, pages 14{

28. Springer-Verlag, October 2001.

[18] I. Litovsky and Y. M�etivier. Computing with graph rewriting systems with

priorities. Theoret. Comput. Sci., 115:191{224, 1993.

[19] I. Litovsky, Y. M�etivier, and E. Sopena. Di�erent local controls for graph

relabelling systems. Math. Syst. Theory, 28:41{65, 1995.

[20] I. Litovsky, Y. M�etivier, and E. Sopena. Graph relabelling systems and

distributed algorithms. In H. Ehrig, H.J. Kreowski, U. Montanari, and

G. Rozenberg, editors, Handbook of graph grammars and computing by graph

transformation, volume 3, pages 1{56. World Scienti�c, 1999.

[21] I. Litovsky, Y. M�etivier, and W. Zielonka. On the recognition of families of

graphs with local computations. Information and Computation, 118(1):110{

119, 1995.

[22] W. S. Massey. A basic course in algebraic topology. Springer-Verlag, 1991.

Graduate texts in mathematics.

[23] A. Mazurkiewicz. Distributed enumeration. Inf. Processing Letters, 61:233{

239, 1997.

[24] Y. M�etivier, A. Muscholl, and P.-A. Wacrenier. About the local detection of

termination of local computations in graphs. In International Colloquium on

structural information and communication complexity, pages 188{200, 1997.

14

M. Bauderon, Y. Metivier, M. Mosbah, A. Sellami

[25] Y. M�etivier, N. Saheb, and A. Zemmari. Randomized rendezvous. In

Mathematics and computer science : Algorithms, trees, combinatorics and

probabilities, Trends in mathematics, pages 183{194, 2000.

[26] Y. M�etivier, N. Saheb, and A. Zemmari. Randomized local elections :

probabilistic and eÆciency analysis. Technical report, LaBRI, en pr�eparation.

[27] Y. M�etivier and G. Tel. Termination detection and universal graph

reconstruction. In International Colloquium on structural information and

communication complexity, pages 237{251, 2000.

[28] U. Montanari, M. Pistore, and F. Rossi. In [14], chapter 4, pages 189{268.

[29] K. H. Rosen, editor. Handbook of discrete and combinatorial mathematics. CRC

Press, 2000.

[30] P. Rosenstiehl, J.-R. Fiksel, and A. Holliger. Intelligent graphs. In R. Read,

editor, Graph theory and computing, pages 219{265. Academic Press (New

York), 1972.

[31] G. Taentzer, M. Koch, I. Fischer, and V. Volle. Distributed graph

transformation with application to visual design of distributed systems. In

[14], chapter 5, pages 269{340.

[32] G. Tel. Introduction to distributed algorithms. Cambridge University Press,

2000.

[33] B. Szymanski Y. Shi and N. Prywes. Terminating iterative solutions of

simultaneous equations in distributed message passing systems. In 4th

International Conference on Distributed Computing Systems, pages 287{292,

1985.

15

