
Forward Analysis of Depth-Bounded Processes

Thomas Wies, Damien Zufferey, and Thomas A. Henzinger

IST Austria (Institute of Science and Technology Austria)

Abstract. Depth-bounded processes form the most expressive known fragment
of the π-calculus for which interesting verification problems are still decidable.
In this paper we develop an adequate domain of limits for the well-structured
transition systems that are induced by depth-bounded processes. An immediate
consequence of our result is that there exists a forward algorithm that decides
the covering problem for this class. Unlike backward algorithms, the forward al-
gorithm terminates even if the depth of the process is not known a priori. More
importantly, our result suggests a whole spectrum of forward algorithms that en-
able the effective verification of a large class of mobile systems.

1 Introduction

We are interested in the verification of π-calculus processes [21,22], i.e., message pass-
ing systems that admit unbounded creation of processes and name mobility. We can
think of a configuration of such a system as a graph [14, 20]. The vertices of the graph
are the processes labelled by their current local state. Edges between processes indi-
cate whether the respective processes share a channel, i.e., whether they are able to
communicate with each other.

The most expressive known fragment of the π-calculus for which interesting veri-
fication problems are still decidable is the class of depth-bounded processes [18]. In-
tuitively, in a depth-bounded process there is a bound on the length of all simple paths
in all reachable configuration graphs (the graphs may contain cycles). A typical exam-
ple of a depth-bounded process is a server-client architecture where a server answers
requests of clients and where each client only knows the name of the server but not the
names of other clients. Both the number of simultaneously active clients as well as the
number of pending requests for the server can be unbounded.

In this paper we are concerned with the covering problem for depth-bounded pro-
cesses. Intuitively, the covering problem asks whether a system can reach a configura-
tion that contains some process that is in a local error state. A decision procedure for
the covering problem therefore enables the automated verification of an interesting class
of safety properties. Meyer showed in [18] that depth-bounded processes admit well-
structured transition systems (WSTS) [1, 9, 12]. This implies that the covering problem
for depth-bounded processes of known depth can be decided using a standard backward
algorithm for WSTSs. The question whether the covering problem is decidable for the
entire class of depth-bounded processes was open.

We present the first forward algorithm for this problem. Unlike backward algo-
rithms, our algorithm terminates even if the bound of the system is not known a priori.
We thus show that the covering problem is decidable for the entire class. Our algorithm
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is an instance of the expand, enlarge, and check algorithm schema for WSTSs that ex-
hibit a so-called adequate domain of limits (ADL) [10, 13]. An adequate domain of
limits for the well-quasi-ordering of a WSTS provides an effective representation of all
downward-closed sets of configurations, i.e., ADLs are the key for ensuring termination
of forward analyses of WSTSs. Our main technical contribution is the development of
an adequate domain of limits for depth-bounded processes. For this purpose we show
that downward-closed sets of configurations in depth-bounded processes are character-
ized by finite unions of regular languages of unranked trees.

Besides our theoretical interest in forward analysis of π-calculus processes there are
also practical considerations that make forward algorithms more appealing than their
backward counterparts. A backward analysis needs to consider all possible unifications
between names that may enable processes to synchronize. A forward analysis instead
knows which names are equal and which are not. In practice, the search space of a
forward analysis is therefore often significantly smaller than the search space of a back-
ward analysis. We give an example that demonstrates this phenomenon in Section 3.
While the forward algorithm that we consider in this paper is mainly of theoretical in-
terest, our adequate domain of limits suggests a whole spectrum of forward algorithms
that enable the effective verification of a large class of mobile systems. This spectrum
ranges from acceleration-based algorithms in the style of Karp-Miller [8, 11, 15] to ap-
proximation algorithms based on abstract interpretation [6].

Further related work. Depth-bounded processes are semantically defined in terms of
reachable configurations. While checking depth-boundedness is in general undecidable,
many fragments of the π-calculus that are defined syntactically [2,7] or in terms of type
systems [4, 25, 26] are subsumed by depth-bounded processes. Our result carries over
to these fragments. Further related work can be found in the context of graph rewriting
systems. Bauer and Wilhelm [3] developed an overapproximating shape analysis for
graph rewriting systems whose reachable configurations have a star-like shape. Such
systems are bounded in the length of the acyclic paths. Our result naturally generalizes
to such systems and promises complete algorithms for their verification.

2 Preliminaries

We first fix the syntax and semantics of our version of the π-calculus and briefly re-
call depth-bounded processes, well-quasi-orderings, better-quasi-orderings, and well-
structured transition systems.

2.1 The π-Calculus and Depth-Bounded Processes

We consider systems of recursive equations in the polyadic π-calculus that have a spe-
cific normal form inspired by Amadio and Meyssonnier [2].

Assume a countable infinite set of names with typical elements x, y and a countable
infinite set of process identifiers with typical elementsA,B. We assume that each name
and identifier has an associated arity in N. We denote by x a (possibly empty) vector
over names and denote by [x/y] a substitution on names.
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Process terms P are recursively composed of the unit process 0, parameterized pro-
cess identifiers A(x), and the standard operations of parallel composition P1 | P2,
external choice π1.P1 +π2.P2, and name restriction (νx)P . Hereby, a prefix π is either
an input prefix of the form x(y) or an output prefix of the form x(y). All parameter vec-
tors occuring in process terms must respect the arities of names and identifiers. We call
the terms of the formA(x) threads. We write Π in order to denote indexed parallel com-
position and Σ for indexed external choice. We further write (νx) for (νx1) . . . (νxn)
where x = x1, . . . , xn. An occurrence of a name x in a process term P is called free
if it is not below a (νx) or an input prefix y(x). We denote by fn(P ) the set of all free
occurring names in P . We say that P is closed if fn(P ) = ∅. We denote by P ≡ Q the
usual structural congruence relation on process terms, i.e., P is syntactically equal to
Q up to renaming and reordering of restricted names, scope extrusion, elimination of
units, and associativity and commutativity of parallel composition and external choice.

A configuration is a closed process term of the following form

(νx)( Π
i∈I

Ai(xi))

A process P is a pair (I, E) where I is an initial configuration and E is a finite
set of parametric equations A(x) = P such that (1) every process identifier in P and
I is defined by exactly one equation in E and (2) fn(P ) ⊆ {x}. We assume that all
equations in E have the following normal form:

A(x) = Σ
i∈I

πi.(νxi)( Π
j∈Ji

Aj(xj))

Operational semantics. Given a process P = (I, E), we define a transition relation→E
on configurations that captures the usual π-calculus reduction rules as follows. Let P
and Q be configurations then we have P →E Q if and only if the following conditions
hold:

1. P ≡ (νu)(A(v) | B(w) | P ′),
2. the defining equation of A in E is of the form A(x) = x(x′).(νx′′)(M) +M ′,
3. the defining equation of B in E is of the form B(y) = y(y′).(νy′′)(N) +N ′,
4. σ = [v/x,w/x′, zA/x

′′,w/y, zB/y
′′] where z = zA, zB are fresh names,

5. σ(x) = σ(y),
6. Q ≡ (νu, z)(σ(M) | σ(N) | P ′).

We denote by →∗E the reflexive transitive closure of the relation →E . We say that a
configuration P is reachable in process P if and only if I →∗E P . Finally, we denote by
Reach(P) the set of all reachable configurations of process P .

Depth-Bounded Processes. We now recall the definition of the class of depth-bounded
processes [18]. The nesting of restrictions nestν of a process term is measured recur-
sively as follows nestν(0) = nestν(A(x)) = nestν(P1 + P2) = 0, nestν((νx)P ) =
1+nestν(P ), and nestν(P1 | P2) = max {nestν(P1),nestν(P2)}. The depth of a pro-
cess term P is the minimal nesting of restrictions of process terms in the congruence
class of P :

depth(P ) = min {nestν(Q) | Q ≡ P } .
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Definition 1 (Depth-Boundedness). A set of configurations C is called depth-bounded
if there is kD ∈ N such that depth(P ) ≤ kD for all P ∈ C. A process P is called
depth-bounded if its set of reachable configurations Reach(P) is depth-bounded.

Example 2. The following equations describe a simple client-server system where a
server can spawn clients and answer their requests. The server is given by process iden-
tifier Server(x, y). The channel x is used for communication with clients. The channel
y is used to trigger creation of new clients.

Server(x, y) = (x(z).Answer(z) | Server(x, y))
+ (y().(νu)(Client(u, x) | Answer(u) | New(y) | Server(x, y)))

Client(u, x) = u().(Client(u, x) | Request(x, u))
Answer(u) = u().0 New(y) = y().0 Request(x, u) = x(u).0

If the initial configuration is given by (νx, y)(New(y) | Server(x, y)) then the depth
of all reachable configurations is bounded by 2.

2.2 WQOs, BQOs, and WSTSs

We briefly recall the relevant theory of well-quasi-orderings, better-quasi-orderings [23],
and well-structured transition systems [1, 9, 12].

Well-quasi-ordering. A pair (X,≤) of a set X and a binary relation ≤ on X is called
well-quasi-ordered set (wqo) if and only if (1) ≤ is a quasi-ordering (i.e., reflexive and
transitive) and (2) any infinite sequence x0, x1, x2, . . . of elements from X contains
an increasing pair xi ≤ xj with i < j. A nonempty set Y ⊆ X is called directed if
for any x, y ∈ Y there exists z ∈ Y with x, y ≤ z. A set Y ⊆ X is called upward-
closed if for any pair x, y such that x ∈ Y and y ≥ x implies y ∈ Y . Similarly, Y
is called downward-closed if for any pair x, y such that x ∈ Y and y ≤ x implies
y ∈ Y . The upward-closure of Y ⊆ X is defined as ↑ Y = {x | ∃y ∈ Y. x ≥ y }.
Correspondingly, we denote by ↓ Y the downward-closure of Y . We extend the ordering
≤ to an ordering ≤ on subsets of X as expected: for Y1, Y2 ⊆ X , we have Y1 ≤ Y2 iff
for all y1 ∈ Y1 there exists y2 ∈ Y2 if y1 ≤ y2. For Y ⊆ X we call Y ′ ⊆ X large in
Y iff Y ≤ Y ′. Conversely, we call Y ′ small in Y if Y ′ ≤ Y . A subset Y ⊆ X of X is
called irreducible if for any Y1, Y2 ⊆ X , Y ≤ Y1 ∪ Y2 implies Y ≤ Y1 or Y ≤ Y2.

Better-quasi-orderings. Let ≤ be a quasi-ordering on a set X then define the quasi-
ordering ≤1 on subsets of X as follows: for Y1, Y2 ⊆ X , we have Y1 ≤1 Y2 iff there
exists an injection φ : Y1 → Y2 such that for all y1 ∈ Y1, y1 ≤ φ(y1). We are inter-
ested in wqo sets (X,≤) whose powerset is again a wqo with respect to ≤1. For this
purpose we consider Nash-William’s better-quasi-orderings [23]. Better-quasi-ordered
(bqo) sets are particular well-behaved wqo sets. Unlike general well-quasi-orderings,
bqo sets are closed under the powerset construction. The formal definition of better-
quasi-orderings is rather technical and not required for understanding this paper. We
therefore refer to [23] for the actual definition. We only state the properties of bqo sets
that we will use in our proofs.
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Proposition 3. Let (X,≤) be a bqo then

1. (X,≤) is a wqo,
2. (2X ,≤1) is a bqo,
3. every Y ⊆ X is a bqo with respect to the restriction of ≤ to Y .

Properties 1 and 2 are proved in [23]. Property 3 immediately follows from the
definition of bqo sets.

Well-structured transition system. A well-structured transition systems (WSTS) is a
transition system T = (S, s0,→,≤) where S is a set of configurations, s0 ∈ S an initial
configuration,→⊆ S × S a transition relation, and ≤ ⊆ S × S a relation satisfying the
following two conditions: (well-quasi-ordering) ≤ is a well-quasi-ordering on S; and
(compatibility) ≤ is upward compatible with respect to →, i.e., for all s1, s2, t1 such
that s1 ≤ t1 and s1 → s2, there exists t2 such that t1 →∗ t2 and s2 ≤ t2.

Definition 4 (Covering Problem). Given a WSTS (S, s0,→,≤) and a configuration
t ∈ S, the covering problem asks whether there exists a configuration t′ ∈ S such that
s0 →∗ t′ and t ≤ t′.

3 The Covering Problem for Depth-Bounded Processes

We define the following natural quasi-ordering ≤ on configurations of processes: let
P ≡ (νx)P ′ and Q be configurations then P ≤ Q if and only if Q ≡ (νx)(P ′ | R) for
some process term R. Meyer [18] proved that depth-bounded sets of configurations are
well-quasi-ordered by ≤. Thus, a depth-bounded process P = (I, E) induces a well-
structured transition systems (Reach(P), I,→E ,≤). We are interested in the covering
problem for these WSTSs.

Forward vs. backward algorithms. The standard algorithm for deciding the covering
problem for a WSTS is a backward algorithm that works as follows. Starting from
the configuration t that is to be covered one computes the set of backward-reachable
configurations of the upward closure of t and then checks whether this set contains
the initial configuration. The well-quasi-ordering ensures that the backward analysis
terminates.

In the WSTS (Reach(P), I,→E ,≤) that is induced by a depth-bounded process
P we implicitly restrict the transition relation→E to the forward-reachable configura-
tions Reach(P). The predecessor configurations with respect to this restricted transition
relation are not effectively computable, i.e., the backward algorithm is not applicable
to this WSTS. On the other hand, predecessor configurations for the unrestricted tran-
sition relation are effectively computable, but the induced set of backward-reachable
configurations is in general not depth-bounded (and thus not well-quasi-ordered by ≤).
A backward algorithm can only be effectively applied to the WSTS (C(k), I,→E ,≤).
Here C(k) is the set of all configurations of depth k and k is the maximal depth of con-
figurations in Reach(P), i.e., Reach(P) ⊆ C(k). Since k must be known in advance,
Meyer’s result only implies that the covering problem is decidable for depth-bounded
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processes of known depth. We will show that there exists a forward algorithm that over-
comes this limitation.

Besides the theoretical deficiency of backward algorithms there is also a practical
reason why forward algorithms are more attractive. We explain this with an example.

Example 5. Consider the parameterized process P(n) for n ∈ N that is given by the
initial configuration I(n):

(νx, z, y, y1, . . . , yn)(Buffern(x, z, y1, . . . , yn) | Env(z, x, y))

and the equations E(n):

Buffer0(x, z) = x(y).Buffer1(x, z, y)
Buffer i(x, z, y1, . . . , yi) = x(y).Buffer i+1(x, z, y1, . . . , yi, y)

+ z(y1).Buffer i−1(x, z, y2, . . . , yi) for 0 < i < n

Buffern(x, z, y1, . . . , yn) = z(y1).Buffern−1(x, z, y2, . . . , yn)
Env(z, x, y) = x(y).(νu)(Env(z, x, u)) + z(u).Env(z, x, u)

The process P(n) models a finite FIFO buffer that stores data sent by the environment
in a queue of maximal length n. The queue is modeled using the parameter lists of the
process identifiers Buffer i.

Suppose we want to check that the configuration P ≡ (νx, z)(Buffer0(x, z)) is
coverable in P(n). The number of representatives for the set of configurations that are
backward-reachable from the upward-closure of P grows exponential in n. The reason
is that in one of the continuations of the choices that define Buffer i(x, z, y1, . . . , yi)
the parameter y1 does not occur. A backward algorithm that computes the predecessors
for the execution of this choice has no knowledge about the name that the parameter y1
denotes. It has to guess whether it is a fresh name or whether it is equal to one of the
other names appearing in the continuation. On the other hand, a forward algorithm al-
ways knows which name the parameter y1 denotes. Therefore, the set of representatives
for the configurations that are forward reachable from I(n) grows only linear in n. It
is this phenomenon that makes forward algorithms more appealing for the analysis of
π-calculus processes.

4 An Adequate Domain of Limits

Most forward algorithms for solving the covering problem of WSTSs compute the
cover, i.e., the downward-closure of the forward-reachable configurations and then
check whether this set contains the configuration to be covered. In order to effectively
compute the cover, one needs to find a completion of the wqo set that contains all the
limits of downward-closed sets. The canonical example is the completion for the well-
quasi-ordering on markings of Petri nets. It is given by vectors over the set Nω of natural
numbers extended with the limit ordinal ω. This completion is the basis for the Karp-
Miller algorithm [15] that computes the covering tree of a Petri net. The notion of an
adequate domain of limits [10, 13] formalizes the completions of wqo sets.
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An adequate domain of limits (ADL) [13] for a well-quasi-ordered set (X,≤) is
a tuple (Y,v, γ) where Y is a set disjoint from X; (L1) the map γ : Y ∪ X → 2X

is such that γ(z) is downward-closed for all z ∈ X ∪ Y , and γ(x) =↓ {x} for all
x ∈ X; (L2) there is a limit point > ∈ Y such that γ(>) = X; (L3) z v z′ if and
only if γ(z) ⊆ γ(z′); and (L4) for any downward-closed set D of X , there is a finite
subset E ⊆ Y ∪ X such that γ(E) = D, where γ is extended to sets as expected:
γ(E) =

⋃
z∈E γ(z). A weak adequate domain of limits (WADL) [10] for (X,≤) is a

tuple (Y,v, γ) satisfying (L1),(L3), and (L4). Note that any weak adequate domain of
limits can be extended to an adequate domain of limits.

4.1 Limit Configurations

We now describe a weak adequate domain of limits for depth-bounded configurations.
In order to finitely represent the limits of infinite downward-closed sets we need to
be able to express that certain subterms in a configuration can be replicated arbitrarily
often. A natural solution to this problem is to extend configurations with the repli-
cation operator ! that is used as a recursion primitive in alternative definitions of the
π-calculus [21,22]. Instead of using replication to express recursion, we use it to effec-
tively represent infinite sets of configurations.

A limit configuration E is constructed recursively from process identifiers A(x),
parallel compositionE1 | E2, name restriction (νx)E and replication !E. We extend the
congruence relation ≡ from configurations to limit configurations by adding the axiom
!E ≡ (E | !E). We carry over the definitions of the transition relations of processes
and the quasi-ordering ≤ from configurations to limit configurations by replacing the
congruence relation in the definitions with the extended congruence relation. We then
define the denotation γ(E) of a limit configurationE as its downward-closure restricted
to non-limit configurations:

γ(E) = {P | P configuration and P ≤ E }

The quasi-ordering v on limit configurations that is required for the adequate domain
of limits is defined by condition (L3).

Example 6. Consider again the client-server process presented in Example 2. The fol-
lowing limit configuration denotes the cover of this process:

(νx)((νy)(New(y) | Server(x, y))
| !(νz)(Client(z, x) | Answer(z))
| !(νz)(Client(z, x) | Request(x, z)))

We now state the main technical result of this paper. Given a finite set of process
identifiers PI , we denote by C(PI , k) the set of all configurations over PI that have
depth at most k. We further denote by L(PI , k) the set of all limit configurations over
PI whose elements denote sets of k-bounded configurations such that L(PI , k) itself
does not contain the configurations in C(PI , k).

Theorem 7. Let k ∈ N and let PI be a finite set of process identifiers. Then (L(PI , k),v
, γ) is a weak adequate domain of limits for the well-quasi-ordered set (C(PI , k),≤).

In the remainder of this section we prove Theorem 7.
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4.2 Tree Encoding of Depth-Bounded Configurations

We first relate depth-bounded configurations with graphs of bounded tree-depth, which
in turn can be encoded into trees of bounded height. The construction is similar to
the one used in [18]. However, we prove that the tree encodings of depth-bounded
configurations are not just well-quasi-ordered, but in fact better-quasi-ordered.

Communication topology. We use standard notation for (undirected) graphs. A labelled
graph over a finite set of labels L is a tuple (G, lv, le) where G is a graph, lv : V (G)→
L is a vertex labelling function, and le : V (E)→ L is an edge labelling function.

Let P = (I, E) be a process. Let further n be the maximal arity of all vectors of
names occurring in I and E , and let A be the set of all process identifiers occurring
in I, E . Define the set of labels L def= 2{0,...,n} ∪ A ∪ {•} where • is distinct from all
process identifiers. Let P be a configuration of process P of the form

(νx)(Πj∈JAj(xj))

where x = x1, . . . , xm, and the index sets {1..m}, and J are disjoint. The function ct
maps P to a labelled graph over L as follows: the graph consists of vertices correspond-
ing to threads and names occurring in the configuration. Each thread vertex is labelled
by the process identifier of the corresponding thread in the configuration. There are
edges between thread vertices and name vertices indicating that one of the names in the
parameter vector of the thread is the name associated with that name vertex. Formally,
ct(P ) is a graph ((V,E), lv, le) where

– V is a union of disjoint sets of vertices {vj}j∈J and {v1, . . . , vm},
– E = { {vj , vi} | j ∈ J ∧ 1 ≤ i ≤ m ∧ xjr = xi for some 1 ≤ r ≤ n },

– lv(vk) =

{
Ak if k ∈ J
• otherwise,

– le({vj , vi}) = { r | j ∈ J ∧ 1 ≤ i ≤ m ∧ xjr = xi }.

We call ct(P ) the communication topology of configuration P .

Tree-depth. We relate depth-bounded sets of configurations to sets of graphs of bounded
tree-depth [24]. A path π in a graphG is a sequence v1, . . . , vn of vertices in V (G) that
are consecutively connected by edges in E(G). We say that π connects vertices v1 and
vn. We call π simple path if for all 1 ≤ i < j ≤ n, vi 6= vj . A tree T is a graph
such that every pair of distinct vertices in T is connected by exactly one path and this
path is simple. A rooted tree is a tree with a dedicated root vertex. A rooted forest is
a disjoint union of rooted trees. The height of a vertex v in a rooted forest F , denoted
height(F, v), is the number of vertices on the path from the root (of the tree to which v
belongs) to v. The height of F is the maximal height of the vertices in F . Let v, w be
vertices of F and let T be the tree in F to which w belongs. The vertex v is an ancestor
of vertex w in F , denoted v � w, if v belongs to the path connecting w and the root
of T . The closure clos(F ) of a rooted forest F is the graph consisting of the vertices
of F and the edge set { {v, w} | v � w, v 6= w }. The tree-depth td(G) of a graph G
is the minimum height of all rooted forests F such that G ⊆ clos(F ). The tree-depth
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of a labelled graph is the tree-depth of the enclosed graph. Finally, we say that a set of
graphs G has bounded tree-depth if there exists k ∈ N such that all graphs G ∈ G have
tree-depth at most k.

Proposition 8. A set of configurations C is depth-bounded iff its communication topolo-
gies ct(C) have bounded tree-depth.

The proof of Proposition 8 uses Meyer’s characterization of sets of depth-bounded
configurations in terms of sets of graphs that are bounded in the length of the simple
paths [18, Theorem 1]. One can easily show that a set of graphs is bounded in the length
of the simple paths if and only if it has bounded tree-depth.

We now relate the ordering on configurations P ≤ Q with an ordering on the un-
derlying communication topologies. Given two labelled graphs G1 and G2, we say G1

is (isomorphic to) a subgraph of G2, written G1 ↪→ G2, iff there exists an injective
label-preserving homomorphism from G1 to G2.

Lemma 9. Let P and Q be configurations. Then P ≤ Q iff ct(P ) ↪→ ct(Q).

Tree encoding. A labelled rooted tree over a finite set of labels L is a pair (T, l) where
T is a rooted tree and l : V (T )→ L a vertex labelling function. We extend the relation
↪→ to rooted labelled trees, as expected, and we say that a tree T1 is a subtree of tree T2

whenever T1 ↪→ T2 holds. In the following, we fix a finite set of labels L. Let Lk be the
set of all isomorphism classes of labelled graphs G over labels L ∪ (L × {1..k}) such
that G has at most k vertices. Clearly, since L is finite, Lk is finite.

Given a labelled graph G over labels L that has tree-depth at most k, we can con-
struct a labelled rooted tree (T, l) over the set of labels Lk from G as follows. First,
let F be a rooted forest of minimal height whose closure contains the graph induced
by G. The rooted tree T is constructed from the forest F by extending F with a fresh
root vertex r that has edges to all the roots of the trees in F . The labelling function l
is defined as follows. Let v ∈ V (T ) be a vertex in T . If v = r then l(r) is the empty
graph. Otherwise v is a vertex in F (and thus in G). Let P be the subgraph of G that
is induced by the vertices on the path from v to the root (of the tree in F to which v
belongs). Now construct a graph Ph from P by adding to the label of each vertex of
P its height in F . Then l(v) is the isomorphism class of Ph. Since G has tree-depth
at most k, Ph ∈ Lk. Thus, l is well-defined. Let Treesk be the function mapping a
labelled graph G of tree-depth at most k to the set of all labelled rooted trees over Lk
that can be constructed from G as described above. We denote by rng(Treesk) the set
of labelled trees

⋃
{Treesk(G) | G labelled graph over L with td(G) ≤ k }.

Lemma 10. Let k ∈ N and T1, T2 be trees in rng(Treesk). If T1 is a subtree of T2 then
G1 ↪→ G2 for all G1, G2 with T1 ∈ Treesk(G1) and T2 ∈ Treesk(G2).

Let T be a rooted tree and x, y ∈ V (T ) two vertices. The infimum of x and y,
denoted x inf y, is the vertex z ∈ V (T ) with the greatest height such that z � x and
z � y. Given rooted trees T1 and T2, a function ϕ is an inf-preserving embedding from
T1 into T2 iff (1) ϕ : V (T1) → V (T2) is injective, and (2) for all x, y ∈ V (T1),
ϕ(x inf y) = ϕ(x) inf ϕ(y). An embedding between two rooted labelled trees over the
same set of labels is label-preserving iff it maps vertices to vertices with the same label.



10 Thomas Wies, Damien Zufferey, and Thomas A. Henzinger

Clearly, if a tree is a subtree of another tree then there exists an inf and label pre-
serving embedding between these trees. For trees that result from the tree encoding of
configurations the converse holds, too. Vertices of different height in such trees have al-
ways different labels. Thus, an inf and label-preserving embedding between such trees
also preserves antecedence of vertices.

Lemma 11. Let k ∈ N and T1, T2 be trees in rng(Treesk). Then the following two
properties are equivalent:

1. there exists an inf and label-preserving embedding from T1 to T2;
2. T1 is a subtree of T2.

Laver [16] proved a variation of Kruskal’s tree theorem for trees labelled by a
bqo set, namely that countable rooted trees labelled by a bqo set are a bqo under inf-
preserving embedding. Similar to Friedman’s special case of Kruskal’s tree theorem,
we get the special case of Laver’s theorem that rooted trees labelled by a finite set of
labels are better-quasi-ordered by inf and label-preserving embedding. Thus, together
with Lemma 10 we get the following proposition.

Proposition 12. For any k ∈ N, (rng(Treesk), ↪→) is a bqo set.

4.3 Limit Configurations as Ideal Completions

Finkel and Goubault-Larrecq [10] characterize the minimal candidates for the WADLs
of a wqo setX in terms of its ideal completion. This means that the set of all downward-
closed directed subsets of X forms a WADL for X . We use this observation to prove
that limit configurations form WADLs for depth-bounded configurations.

Proposition 13. The directed downward-closed sets of depth-bounded configurations
are exactly the denotations of limit configurations.

By [10, Proposition 3.3] the above proposition implies Theorem 7. In our proof of
Proposition 13 we characterize the tree encodings of downward-closed sets of configu-
rations in terms of the languages of hedge automata [5, Chapter 8].

Hedge automata. A (nondeterministic) finite hedge automaton A over a finite alphabet
Σ is a tuple (Q,Σ,Qf , ∆) where Q is a finite set of states, Qf ⊆ Q is a set of final
states, and ∆ is a finite set of transition rules of the following form:

a(R)→ q

where a ∈ Σ, q ∈ Q, and R ⊆ Q∗ is a regular language over Q. These languages R
occuring in the transition rules are called horizontal languages.

A run of A on a rooted labelled tree T with vertex label function l : V (T ) → Σ
is a vertex label function r : V (T ) → Q such that for each vertex v ∈ V (T ) with
a = l(v) and q = r(v) there is a transition rule a(R) → q with r(v1) . . . r(vn) ∈ R
where v1, . . . , vn are the immediate successors of v in T . In particular, to apply a rule
to a leaf, the empty word ε has to be in the horizontal language of the rule R.

A rooted labelled tree T is accepted by A if there is a run r of A on T such that
r labels the root of T by a final state. The language L(A) of A is the set of all rooted
labelled trees over Σ that are accepted by A.
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Finite partitions of well-quasi-ordered sets. In order to characterize the horizontal lan-
guages of the constructed hedge automaton we will define equivalence classes on the
vertices of the individual levels of the tree encodings. For this purpose, the following
definition will be useful. Let (X,≤) be a well-quasi-ordered set. We call a partition
P ⊆ 2X of X an infinite chain partition if and only if (1) P is finite and (2) for all
Y ∈ P , either Y is a singleton or Y contains an infinite chain C such that Y ≤ C.

Proposition 14. If (X,≤) is a countable well-quasi-ordered set then there exists an
infinite chain partition of X .

In order to prove Proposition 13, we first prove that every directed downward-closed
set of depth-bounded configurations is the denotation of a limit configuration.

Lemma 15. Let D be a downward-closed set of configurations then there exists a limit
configuration E such that D = γ(E).

For proving the lemma, let D = (Pi)i∈N be a downward-closed directed family of
configurations and let k be the maximal tree-depth of the graphs in ct(D). Choose
some Q0 ∈ D whose communication topology has tree-depth k. Using Q0 construct
an ascending chain D′ = (Qi)i∈N as follows: for each i ∈ N choose Qi ∈ D such
that Pi ≤ Qi and Qi−1 ≤ Qi. Such Qi exists for each i ∈ N since D is directed and,
by induction, Qi−1 ∈ D. Then by construction (1) D = ↓D′ and (2) all elements in
D′ have tree-depth k. Let (Gi)i∈N be the family of labelled graphs Gi = ct(Qi). Now
for each i ∈ N choose a tree Ti ∈ Treesk(Gi) such that the family T = (Ti)i∈N is an
ascending chain with respect to the subtree relation. Such a family exists because the
Gi are ordered by subgraph isomorphism and all Gi have the same tree-depth. Without
loss of generality we assume that the vertex sets of all trees Ti are pairwise disjoint.

Let V =
⋃
i∈N V (Ti), E =

⋃
i∈N E(Ti), and let l be the union of all the vertex

labelling functions of the labelled trees Ti. The height of the vertices in the trees Ti
range from 1 to k+1. For a vertex v ∈ V of height h > 1 we denote by parent(v) ∈ V
the parent of v in the tree Ti to which v belongs. Similarly, for a vertex v ∈ V we denote
by Children(v) the set of all vertices that are direct successors of v in the tree to which
v belongs. We extend the functions parent to sets of vertices, as expected. Furthermore,
let T (v) be the subtree rooted in v of the tree Ti with v ∈ V (Ti). For all 1 ≤ h ≤ k+1,
let Vh be the set of all vertices in V that have height h. For all h we extend the relation
↪→ from labelled rooted trees to vertices in Vh as expected: for all v, w ∈ Vh, v ↪→ w
iff T (v) ↪→ T (w). From Proposition 12 and Property 3 of Proposition 3 follows that
for all h, (Vh, ↪→) is a bqo.

We will now construct a finite hedge automatonA from the family of trees T whose
language is both small and large in T . For this purpose we define an equivalence relation
on each Vh that partitions Vh into finitely many equivalence classes. These equivalence
classes serve as the states of the automaton.

For each i ∈ N fix some injective label-preserving homomorphism φi : V (Ti) →
V (Ti+1) and denote by φ[i,j] the composition φj−1 ◦ · · · ◦ φi if j > i and the identify
function id if j = i. Then define an equivalence relation ∼ on V as follows: for all
vi ∈ V (Ti) and vj ∈ V (Tj)

vi ∼ vj iff
i ≤ j and φ[i,j](vi) = vj or
i ≥ j and φ[j,i](vj) = vi
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A = (Q,Σ,Qf ,∆)

Q = { } Qf = { }Σ = {a, b, c}

∆ = { c(ε) → , c(ε) → , b( ) → , b( +) → , a( ) → }

Fig. 1. A chain of labelled trees with the equivalence classes under the relations 'h and the
constructed hedge automaton

Now, recursively define an equivalence relation 'h on Vh for each 1 ≤ h ≤ k + 1
as follows: for h = 1 we simply have v '1 w for all v, w ∈ V1. In order to define 'h
for h > 1 we need some intermediate definitions. Given an equivalence class U in the
quotient of Vh−1 wrt. 'h−1, let Children(U) be the set of equivalence classes ṽ in the
quotient Vh/∼ such that some v ∈ ṽ has a parent in U . Since (Vh, ↪→) is a bqo, and
Children(U) ⊆ 2Vh , it follows from Proposition 3 that (Children(U), ↪→1) is also a
bqo and thus a wqo. Furthermore, Children(U) is countable. Thus, by Proposition 14
there exists an infinite chain partition of Children(U). For each U , choose one such
infinite chain partition P(U) of Children(U). Then for v, w ∈ Vh we define: v 'h w
iff there exists U ∈ Vh−1/'h−1 such that (1) parent(v), parent(w) ∈ U and (2) there
is P ∈ P(U) such that v, w ∈

⋃
P .

We can easily prove by induction on h that each 'h is indeed an equivalence re-
lation on Vh and that each 'h partitions Vh into finitely many equivalence classes.
Furthermore, using the definition of infinite chain partitions one can easily prove the
following properties.

Lemma 16. Let U ∈ Vh/'h
then

1. all v ∈ U have the same label,
2. U is directed with respect to ↪→,
3. if h = 1 then U contains exactly the root vertices of all the trees Ti,
4. if h > 1 then parent(U) ⊆ U ′ for some U ′ ∈ Vh−1/'h−1 and

(a) either all vertices in U ′ have at most one child in U or
(b) every v ∈ U is contained in a proper infinite chain C ⊆ U and for every finite

subset V ⊆ U there exists v′ ∈ U ′ such that V ↪→1 Children(v′) ∩ U .

Now let ' be the union of all the relations 'h. Then ' is an equivalence relation
on V that partitions V into finitely many equivalence classes. For an equivalence class
U ∈ V/', letC(U) be the set of all equivalence classes that contain children of vertices
in U . Furthermore, let l(U) be the unique label of all vertices in U , and letm(U) denote
1 if every parent of a vertex v ∈ U has at most one child in U and, otherwise, let m(U)
denote the symbol +. Now define the hedge automaton A = (Q,Σ,Qf , ∆) where:
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– Q = V/',
– Σ = Lk,
– Qf = V1/',
– ∆ consists of transition rules of the following form for each U ∈ V/'
• l(U)(Um(U1)

1 · · ·Um(Un)
n )→ U if C(U) = {U1, . . . , Un}

• l(U)(ε)→ U if C(U) = ∅.

Figure 1 depicts a chain of trees and the constructed automatonA. The equivalence
classes in the quotient V/ ' are highlighted in the trees.

Using Lemma 16 we can now prove that the language accepted by A is both small
and large in T .

Lemma 17. L(A) is small in T , i.e., ∀T ∈ L(A)∃i ∈ N : T ↪→ Ti.

Lemma 18. L(A) is large in T , i.e., ∀i ∈ N∃T ∈ L(A) : Ti ↪→ T .

Note that by construction of A the tree encoding operation can be reversed on
the trees in L(A). Let DA be the corresponding set of configurations. From Lem-
mas 17,18,10, and 9 follows thatD = ↓D′ = ↓DA. FromAwe can now easily construct
a limit configurationE whose denotation is the downward closure ofDA. It follows that
D = ↓DA = γ(E) which proves Lemma 15.

Lemma 19. For any limit configuration E, γ(E) is a downward-closed directed set.

Clearly γ(E) is downward-closed. For proving that γ(E) is directed, we can again
construct a hedge automaton A from E, such that the tree encoding operation can be
reversed on all trees accepted by A and the downward-closure of the resulting config-
urations DA coincides with γ(E). Using a simple pumping argument for the language
L(A) we can show that for every two trees T1, T2 ∈ L(A) there exists a tree T ∈ L(A)
such that T1 ↪→ T and T2 ↪→ T . It follows that DA is directed and thus γ(E).

5 Forward Analysis of Depth-Bounded Processes

The expand, enlarge, and check (EEC) algorithm of Geeraerts et al. [13] is a forward
algorithm that decides the covering problem for effective WSTSs with appropriate ade-
quate domain of limits.

A WSTS (X,x0,→,≤) and an adequate domain of limits (Y,v, γ) for the wqo
(X,≤) are effective if the following conditions are satisfied: (E1) X and Y are recur-
sively enumerable; (E2) for any x1, x2 ∈ X , one can decide whether x1 → x2; (E3)
for any z ∈ X ∪ Y and for any finite subset Z ⊆ X ∪ Y , one can decide whether
Post(γ(z)) ⊆ γ(Z); and (E4) for any finite subsets Z1, Z2 ⊆ X ∪ Y , one can decide
whether γ(Z1) ⊆ γ(Z2).

We argue that the WSTS induced by a depth-bounded process together with its
WADL of limit configurations are effective. The conditions (E1) and (E2) are clearly
satisfied. Also given a limit configuration z we can compute a finite set of limit configu-
rations denoting Post(γ(z)). Note further that Proposition 13 implies that for any finite
subsets Z1, Z2 ⊆ L(PI , k), γ(Z1) ⊆ γ(Z2) holds if and only if for all z1 ∈ Z1 there
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exists z2 ∈ Z2 such that γ(z1) ⊆ γ(z2). The inclusion problem γ(z1) ⊆ γ(z2) can
be reduced to the language inclusion problem for deterministic hedge automata, which
is decidable. For this purpose, one computes deterministic hedge automata from the
finitely many tree encodings of the configurations of z1 and z2 and then checks whether
the language of some automaton of z1 is included in the language of some automaton
of z2. Thus conditions (E3) and (E4) are also satisfied.

Finally, let us explain why the EEC algorithm terminates on depth-bounded systems
even if the bound of the system is not known a priori. The idea of the algorithm is to
simultaneously enumerate two infinite increasing chains. The first chain X0 ⊆ X1 . . .
is a sequence of finite subsets of X that contains all reachable configurations of the
analyzed system. The second chain Y0 ⊆ Y1 ⊆ . . . is a sequence of finite subsets
of Y that contains all limits Y . In each iteration i the algorithm computes an under
and an over-approximation of the analyzed system for the current pair (Xi, Yi) of el-
ements in the chain. These approximations are such that the under-approximation is
guaranteed to detect that t can be covered if Xi contains a path to a covering state. The
over-approximation is guaranteed to detect that t cannot be covered if Yi can express
↓ Post∗(↓ s0) and this set does not cover t. The conditions on the chains ensure that
one of the two conditions eventually holds for some i ∈ N.

For deciding the covering problem of depth-bounded systems we can now simply
enumerate the sets C(PI ) =

⋃
k∈N C(PI , k) and L(PI ) =

⋃
k∈N L(PI , k). Then in

each iteration of the EEC algorithm the pair (Xi, Yi) is contained in some limit do-
main C(PI , k),L(PI , k)) and the conditions on the chains for termination of the EEC
algorithm are still satisfied.

Theorem 20. The covering problem for depth-bounded processes is decidable.

Complexity. Depth-bounded processes subsume Petri nets [19]. This implies an expo-
nential space lower bound on the complexity of the covering problem for depth-bounded
processes [17]. The exact complexity is open.

6 Conclusion

At the dawn of cloud computing and processors that put an enormous number of cores at
disposal of the programmer, message passing concurrency is gaining more and more im-
portance. Many typical use cases of message passing such as client-server and consumer-
producer communication with an unbounded number of clients/producers, and master-
worker load balancing, can be modeled by depth-bounded processes. The covering
problem plays a central role in the automated verification of the correctness of mes-
sage passing systems. We prepared the ground for a spectrum of forward algorithms
that solve the covering problem for depth-bounded processes. The exploitation of our
result for the development of practical forward algorithms for this class of systems is
our primary goal for future research.
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A Additional Proofs

Proposition 14. If (X,≤) is a countable well-quasi-ordered set then there exists an
infinite chain partition of X .

Proof. We can construct an infinite chain partition P of X recursively using the fol-
lowing procedure: according to [?, Theorem 5], X can be partitioned into finitely many
irreducible subsets Y1, . . . , Yn. By [?, Proposition 3], for each 1 ≤ i ≤ n, Yi con-
tains a chain Ci with Yi ≤ Ci. For each 1 ≤ i ≤ n, check if Yi contains an infi-
nite chain with this property. If it does then add Yi to P . Otherwise pick one finite
chain Ci with Yi ≤ Ci. Since Ci is finite it contains a greatest element yi. Then let
Zi = { y ∈ Yi | yi ≤ y } be the set of elements in Yi that are equivalent to yi wrt. the
quasi-ordering ≤. Since Yi contains no infinite chains that are large in Yi, the set Zi is
finite. Then add all singletons {z} with z ∈ Zi to P and recursively apply the above
procedure on the well-quasi-ordered set (Yi − Zi,≤). Clearly, if this procedure termi-
nates then the resulting set P is an infinite chain partition of X . Thus, assume that the
procedure does not terminate. Then the algorithm constructs a strictly decreasing infi-
nite sequence Y1 ⊇ Y2 ⊇ . . . of subsets of Y with Yi − Yi+1 > Yi+1 − Yi+2 for all
i ∈ N. Define Xi = Yi − Yi+1 then each Xi is nonempty, i.e., we can choose xi ∈ Xi

for each i ∈ N such that we get an infinite descending chain x1 > x2 > . . . of elements
in X . This contradicts the fact that ≤ is well-founded. �

Lemma 17. L(A) is small in T , i.e., ∀T ∈ L(A)∃i ∈ N : T ↪→ Ti.

Proof. For proving the lemma, let TU be a tree labelled by Lk and r a run of A on TU .
We show by induction on the height of TU that if r(w) = U for the root w of TU then
there exists v ∈ U such that TU ↪→ T (v).

If h = 1 then TU consists of a single root vertex w that is a leaf. Then the transition
rule in ∆ used to label w in r is of the form l(U)(ε) → U . Thus, by construction of A
all trees T (v) for vertices v ∈ U consist of the single leaf vertex v labeled by l(U), i.e.,
TU ↪→ T (v) for all v ∈ U .

If h > 1 then the transition rule in ∆ used to label w must have the form

l(U)(Um1
1 · · ·Umn

n )→ U

with C(U) = {U1, . . . , Un} and mi = m(Ui) for all 1 ≤ i ≤ n. Let

T1,1, . . . , T1,r1 , . . . , Tn,1, . . . , Tn,rn

be the subtrees of TU rooted at the children of w such that r labels the root of each tree
Ti,j by Ui. These trees have height h − 1 and r is a run of A on each of these trees.
Thus, by induction hypothesis there exist vertices

v1,1, . . . , v1,r1 ∈ U1 . . . vn,1, . . . , vn,rn ∈ Un

with Ti,j ↪→ T (vi,j) for all 1 ≤ i ≤ n, 1 ≤ j ≤ ri. If two vertices vi,j and vi′,j′
coincide then we must have i = i′. Thus, ri > 1 and m(Ui) = +, i.e., by construction
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of A, there are vertices in U that have more than one child in Ui. Then Ui satisfies
property 4.(b) of Lemma 16, i.e., Ui contains a proper infinite chain C with vi,j ∈ C.
Hence, we can choose two vertices v′i,j , v

′
i′,j′ ∈ C that are (1) distinct, (2) disjoint from

all other vi,j , and (3) satisfy Ti,j ↪→ T (v′i,j) and Ti,j ↪→ T (v′i′,j′). Therefore, without
loss of generality assume that all the vi,j are distinct. Now for any 1 ≤ i ≤ n we can
find vi ∈ U such that

{vi,1, . . . , vi,ri
} ↪→1 Children(vi) ∩ Ui

Namely, if ri = 1 then vi = parent(vi,1) and if ri > 1 then such vi exists by property
4.(b). Now, using the fact thatU is directed we can inductively construct an upper bound
v ∈ U of all the vi with respect to the wqo ↪→. Then we have by construction:

{v1,1, . . . , v1,r1 , . . . , vn,1, . . . , vn,rn
} ↪→1 Children(v)

We conclude that Children(w) ↪→1 Children(v) and l(v) = l(U), i.e., TU ↪→ T (v),
which concludes the induction proof. �


