125 research outputs found

    Homecare Robotic Systems for Healthcare 4.0: Visions and Enabling Technologies

    Get PDF
    Powered by the technologies that have originated from manufacturing, the fourth revolution of healthcare technologies is happening (Healthcare 4.0). As an example of such revolution, new generation homecare robotic systems (HRS) based on the cyber-physical systems (CPS) with higher speed and more intelligent execution are emerging. In this article, the new visions and features of the CPS-based HRS are proposed. The latest progress in related enabling technologies is reviewed, including artificial intelligence, sensing fundamentals, materials and machines, cloud computing and communication, as well as motion capture and mapping. Finally, the future perspectives of the CPS-based HRS and the technical challenges faced in each technical area are discussed

    Explainable post-occupancy evaluation using a humanoid robot

    Get PDF
    The paper proposes a new methodological approach for evaluating the comfort condition using the concept of explainable post occupancy to make the user aware of the environmental state in which (s)he works. Such an approach was implemented on a humanoid robot with social capabilities that aims to enforce human engagement to follow recommendations. The humanoid robot helps the user to position the sensors correctly to acquire environmental measures corresponding to the temperature, humidity, noise level, and illuminance. The distribution of the last parameter due to its high variability is also retrieved by the simulation software Dialux. Using the post occupancy evaluation method, the robot also proposes a questionnaire to the user for collecting his/her preferences and sensations. In the end, the robot explains to the user the difference between the suggested values by the technical standards and the real measures comparing the results with his/her preferences and perceptions. Finally, it provides a new classification into four clusters: True positive, true negative, false positive, and false negative. This study shows that the user is able to improve her/his condition based on the explanation given by the robot

    Motion and emotion estimation for robotic autism intervention.

    Get PDF
    Robots have recently emerged as a novel approach to treating autism spectrum disorder (ASD). A robot can be programmed to interact with children with ASD in order to reinforce positive social skills in a non-threatening environment. In prior work, robots were employed in interaction sessions with ASD children, but their sensory and learning abilities were limited, while a human therapist was heavily involved in “puppeteering” the robot. The objective of this work is to create the next-generation autism robot that includes several new interactive and decision-making capabilities that are not found in prior technology. Two of the main features that this robot would need to have is the ability to quantitatively estimate the patient’s motion performance and to correctly classify their emotions. This would allow for the potential diagnosis of autism and the ability to help autistic patients practice their skills. Therefore, in this thesis, we engineered components for a human-robot interaction system and confirmed them in experiments with the robots Baxter and Zeno, the sensors Empatica E4 and Kinect, and, finally, the open-source pose estimation software OpenPose. The Empatica E4 wristband is a wearable device that collects physiological measurements in real time from a test subject. Measurements were collected from ASD patients during human-robot interaction activities. Using this data and labels of attentiveness from a trained coder, a classifier was developed that provides a prediction of the patient’s level of engagement. The classifier outputs this prediction to a robot or supervising adult, allowing for decisions during intervention activities to keep the attention of the patient with autism. The CMU Perceptual Computing Lab’s OpenPose software package enables body, face, and hand tracking using an RGB camera (e.g., web camera) or an RGB-D camera (e.g., Microsoft Kinect). Integrating OpenPose with a robot allows the robot to collect information on user motion intent and perform motion imitation. In this work, we developed such a teleoperation interface with the Baxter robot. Finally, a novel algorithm, called Segment-based Online Dynamic Time Warping (SoDTW), and metric are proposed to help in the diagnosis of ASD. Social Robot Zeno, a childlike robot developed by Hanson Robotics, was used to test this algorithm and metric. Using the proposed algorithm, it is possible to classify a subject’s motion into different speeds or to use the resulting SoDTW score to evaluate the subject’s abilities

    Enabling Human-Robot Collaboration via Holistic Human Perception and Partner-Aware Control

    Get PDF
    As robotic technology advances, the barriers to the coexistence of humans and robots are slowly coming down. Application domains like elderly care, collaborative manufacturing, collaborative manipulation, etc., are considered the need of the hour, and progress in robotics holds the potential to address many societal challenges. The future socio-technical systems constitute of blended workforce with a symbiotic relationship between human and robot partners working collaboratively. This thesis attempts to address some of the research challenges in enabling human-robot collaboration. In particular, the challenge of a holistic perception of a human partner to continuously communicate his intentions and needs in real-time to a robot partner is crucial for the successful realization of a collaborative task. Towards that end, we present a holistic human perception framework for real-time monitoring of whole-body human motion and dynamics. On the other hand, the challenge of leveraging assistance from a human partner will lead to improved human-robot collaboration. In this direction, we attempt at methodically defining what constitutes assistance from a human partner and propose partner-aware robot control strategies to endow robots with the capacity to meaningfully engage in a collaborative task

    Socially Assistive Robots for Older Adults and People with Autism: An Overview

    Get PDF
    Over one billion people in the world suffer from some form of disability. Nevertheless, according to the World Health Organization, people with disabilities are particularly vulnerable to deficiencies in services, such as health care, rehabilitation, support, and assistance. In this sense, recent technological developments can mitigate these deficiencies, offering less-expensive assistive systems to meet users’ needs. This paper reviews and summarizes the research efforts toward the development of these kinds of systems, focusing on two social groups: older adults and children with autism.This research was funded by the Spanish Government TIN2016-76515-R grant for the COMBAHO project, supported with Feder funds. It has also been supported by Spanish grants for PhD studies ACIF/2017/243 and FPU16/00887

    Psychophysiological analysis of a pedagogical agent and robotic peer for individuals with autism spectrum disorders.

    Get PDF
    Autism spectrum disorder (ASD) is a neurodevelopmental disorder characterized by ongoing problems in social interaction and communication, and engagement in repetitive behaviors. According to Centers for Disease Control and Prevention, an estimated 1 in 68 children in the United States has ASD. Mounting evidence shows that many of these individuals display an interest in social interaction with computers and robots and, in general, feel comfortable spending time in such environments. It is known that the subtlety and unpredictability of people’s social behavior are intimidating and confusing for many individuals with ASD. Computerized learning environments and robots, however, prepare a predictable, dependable, and less complicated environment, where the interaction complexity can be adjusted so as to account for these individuals’ needs. The first phase of this dissertation presents an artificial-intelligence-based tutoring system which uses an interactive computer character as a pedagogical agent (PA) that simulates a human tutor teaching sight word reading to individuals with ASD. This phase examines the efficacy of an instructional package comprised of an autonomous pedagogical agent, automatic speech recognition, and an evidence-based instructional procedure referred to as constant time delay (CTD). A concurrent multiple-baseline across-participants design is used to evaluate the efficacy of intervention. Additionally, post-treatment probes are conducted to assess maintenance and generalization. The results suggest that all three participants acquired and maintained new sight words and demonstrated generalized responding. The second phase of this dissertation describes the augmentation of the tutoring system developed in the first phase with an autonomous humanoid robot which serves the instructional role of a peer for the student. In this tutoring paradigm, the robot adopts a peer metaphor, where its function is to act as a peer. With the introduction of the robotic peer (RP), the traditional dyadic interaction in tutoring systems is augmented to a novel triadic interaction in order to enhance the social richness of the tutoring system, and to facilitate learning through peer observation. This phase evaluates the feasibility and effects of using PA-delivered sight word instruction, based on a CTD procedure, within a small-group arrangement including a student with ASD and the robotic peer. A multiple-probe design across word sets, replicated across three participants, is used to evaluate the efficacy of intervention. The findings illustrate that all three participants acquired, maintained, and generalized all the words targeted for instruction. Furthermore, they learned a high percentage (94.44% on average) of the non-target words exclusively instructed to the RP. The data show that not only did the participants learn nontargeted words by observing the instruction to the RP but they also acquired their target words more efficiently and with less errors by the addition of an observational component to the direct instruction. The third and fourth phases of this dissertation focus on physiology-based modeling of the participants’ affective experiences during naturalistic interaction with the developed tutoring system. While computers and robots have begun to co-exist with humans and cooperatively share various tasks; they are still deficient in interpreting and responding to humans as emotional beings. Wearable biosensors that can be used for computerized emotion recognition offer great potential for addressing this issue. The third phase presents a Bluetooth-enabled eyewear – EmotiGO – for unobtrusive acquisition of a set of physiological signals, i.e., skin conductivity, photoplethysmography, and skin temperature, which can be used as autonomic readouts of emotions. EmotiGO is unobtrusive and sufficiently lightweight to be worn comfortably without interfering with the users’ usual activities. This phase presents the architecture of the device and results from testing that verify its effectiveness against an FDA-approved system for physiological measurement. The fourth and final phase attempts to model the students’ engagement levels using their physiological signals collected with EmotiGO during naturalistic interaction with the tutoring system developed in the second phase. Several physiological indices are extracted from each of the signals. The students’ engagement levels during the interaction with the tutoring system are rated by two trained coders using the video recordings of the instructional sessions. Supervised pattern recognition algorithms are subsequently used to map the physiological indices to the engagement scores. The results indicate that the trained models are successful at classifying participants’ engagement levels with the mean classification accuracy of 86.50%. These models are an important step toward an intelligent tutoring system that can dynamically adapt its pedagogical strategies to the affective needs of learners with ASD

    Using Variable Natural Environment Brain-Computer Interface Stimuli for Real-time Humanoid Robot Navigation

    Full text link
    This paper addresses the challenge of humanoid robot teleoperation in a natural indoor environment via a Brain-Computer Interface (BCI). We leverage deep Convolutional Neural Network (CNN) based image and signal understanding to facilitate both real-time bject detection and dry-Electroencephalography (EEG) based human cortical brain bio-signals decoding. We employ recent advances in dry-EEG technology to stream and collect the cortical waveforms from subjects while they fixate on variable Steady State Visual Evoked Potential (SSVEP) stimuli generated directly from the environment the robot is navigating. To these ends, we propose the use of novel variable BCI stimuli by utilising the real-time video streamed via the on-board robot camera as visual input for SSVEP, where the CNN detected natural scene objects are altered and flickered with differing frequencies (10Hz, 12Hz and 15Hz). These stimuli are not akin to traditional stimuli - as both the dimensions of the flicker regions and their on-screen position changes depending on the scene objects detected. On-screen object selection via such a dry-EEG enabled SSVEP methodology, facilitates the on-line decoding of human cortical brain signals, via a specialised secondary CNN, directly into teleoperation robot commands (approach object, move in a specific direction: right, left or back). This SSVEP decoding model is trained via a priori offline experimental data in which very similar visual input is present for all subjects. The resulting classification demonstrates high performance with mean accuracy of 85% for the real-time robot navigation experiment across multiple test subjects.Comment: Accepted as a full paper at the 2019 International Conference on Robotics and Automation (ICRA

    A social robot connected with chatGPT to improve cognitive functioning in ASD subjects

    Get PDF
    Neurodevelopmental Disorders (NDDs) represent a significant healthcare and economic burden for families and society. Technology, including AI and digital technologies, offers potential solutions for the assessment, monitoring, and treatment of NDDs. However, further research is needed to determine the effectiveness, feasibility, and acceptability of these technologies in NDDs, and to address the challenges associated with their implementation. In this work, we present the application of social robotics using a Pepper robot connected to the OpenAI system (Chat-GPT) for real-time dialogue initiation with the robot. After describing the general architecture of the system, we present two possible simulated interaction scenarios of a subject with Autism Spectrum Disorder in two different situations. Limitations and future implementations are also provided to provide an overview of the potential developments of interconnected systems that could greatly contribute to technological advancements for Neurodevelopmental Disorders (NDD)

    Designing Human-Centered Collective Intelligence

    Get PDF
    Human-Centered Collective Intelligence (HCCI) is an emergent research area that seeks to bring together major research areas like machine learning, statistical modeling, information retrieval, market research, and software engineering to address challenges pertaining to deriving intelligent insights and solutions through the collaboration of several intelligent sensors, devices and data sources. An archetypal contextual CI scenario might be concerned with deriving affect-driven intelligence through multimodal emotion detection sources in a bid to determine the likability of one movie trailer over another. On the other hand, the key tenets to designing robust and evolutionary software and infrastructure architecture models to address cross-cutting quality concerns is of keen interest in the “Cloud” age of today. Some of the key quality concerns of interest in CI scenarios span the gamut of security and privacy, scalability, performance, fault-tolerance, and reliability. I present recent advances in CI system design with a focus on highlighting optimal solutions for the aforementioned cross-cutting concerns. I also describe a number of design challenges and a framework that I have determined to be critical to designing CI systems. With inspiration from machine learning, computational advertising, ubiquitous computing, and sociable robotics, this literature incorporates theories and concepts from various viewpoints to empower the collective intelligence engine, ZOEI, to discover affective state and emotional intent across multiple mediums. The discerned affective state is used in recommender systems among others to support content personalization. I dive into the design of optimal architectures that allow humans and intelligent systems to work collectively to solve complex problems. I present an evaluation of various studies that leverage the ZOEI framework to design collective intelligence
    • …
    corecore