74,018 research outputs found

    Solar Sources of Interplanetary Magnetic Clouds Leading to Helicity Prediction

    Full text link
    This study identifies the solar origins of magnetic clouds that are observed at 1 AU and predicts the helical handedness of these clouds from the solar surface magnetic fields. We started with the magnetic clouds listed by the Magnetic Field Investigation (MFI) team supporting NASA's WIND spacecraft in what is known as the MFI table and worked backwards in time to identify solar events that produced these clouds. Our methods utilize magnetograms from the Helioseismic and Magnetic Imager (HMI) instrument on the Solar Dynamics Observatory (SDO) spacecraft so that we could only analyze MFI entries after the beginning of 2011. This start date and the end date of the MFI table gave us 37 cases to study. Of these we were able to associate only eight surface events with clouds detected by WIND at 1 AU. We developed a simple algorithm for predicting the cloud helicity which gave the correct handedness in all eight cases. The algorithm is based on the conceptual model that an ejected flux tube has two magnetic origination points at the positions of the strongest radial magnetic field regions of opposite polarity near the places where the ejected arches end at the solar surface. We were unable to find events for the remaining 29 cases: lack of a halo or partial halo CME in an appropriate time window, lack of magnetic and/or filament activity in the proper part of the solar disk, or the event was too far from disk center. The occurrence of a flare was not a requirement for making the identification but in fact flares, often weak, did occur for seven of the eight cases.Comment: 18 pages, 8 figures, 2 table

    Mapping the Design Criterion Framework for Museum Exhibition Design Project

    Get PDF
    Currently, museums are struggling to develop and present their expertise by focusing on the interactive relationship with museum visitors. In order to meet the needs of museum exhibitions, an efficient and workable design process is of primary importance in order to work to develop high quality museum exhibitions. It would be advantageous to generate a design method which allows designers and curators to undertake design work in the context of museum exhibition project. Based on an empirical analysis, this paper suggests that a systematic transformation develops specific aspects of detailed design to carry out its principle, and that the implementation of these aspects can be viewed as a process of organizational criteria of museum exhibition design projects. The paper is concerned with design process in organizations seeking to act systematic criteria in the design activity on the application of museum exhibition project development in complex theories. In particular, this study is developed to address the following objectives: a) To identify the characteristics and concepts of the design activity as they relate to museum exhibition design; b) To contribute to a more complete understanding of design process by developing guidelines for adoption in projects. c) To establish the benefits of the application of design guide theory to the practice of museum exhibition design; Keywords: Museum Exhibition; Design Criteria; Design Process</p

    Freeform User Interfaces for Graphical Computing

    Get PDF
    報告番号: 甲15222 ; 学位授与年月日: 2000-03-29 ; 学位の種別: 課程博士 ; 学位の種類: 博士(工学) ; 学位記番号: 博工第4717号 ; 研究科・専攻: 工学系研究科情報工学専

    A survey of visual preprocessing and shape representation techniques

    Get PDF
    Many recent theories and methods proposed for visual preprocessing and shape representation are summarized. The survey brings together research from the fields of biology, psychology, computer science, electrical engineering, and most recently, neural networks. It was motivated by the need to preprocess images for a sparse distributed memory (SDM), but the techniques presented may also prove useful for applying other associative memories to visual pattern recognition. The material of this survey is divided into three sections: an overview of biological visual processing; methods of preprocessing (extracting parts of shape, texture, motion, and depth); and shape representation and recognition (form invariance, primitives and structural descriptions, and theories of attention)

    Solar filament eruptions and their physical role in triggering Coronal Mass Ejections

    Full text link
    Solar filament eruptions play a crucial role in triggering coronal mass ejections (CMEs). More than 80 % of eruptions lead to a CME. This correlation has been studied extensively during the past solar cycles and the last long solar minimum. The statistics made on events occurring during the rising phase of the new solar cycle 24 is in agreement with this finding. Both filaments and CMEs have been related to twisted magnetic fields. Therefore, nearly all the MHD CME models include a twisted flux tube, called a flux rope. Either the flux rope is present long before the eruption, or it is built up by reconnection of a sheared arcade from the beginning of the eruption. In order to initiate eruptions, different mechanisms have been proposed: new emergence of flux, and/or dispersion of the external magnetic field, and/or reconnection of field lines below or above the flux rope. These mechanisms reduce the downward magnetic tension and favor the rise of the flux rope. Another mechanism is the kink instability when the configuration is twisted too much. In this paper we open a forum of discussions revisiting observational and theoretical papers to understand which mechanisms trigger the eruption. We conclude that all the above quoted mechanisms could bring the flux rope to an unstable state. However, the most efficient mechanism for CMEs is the loss-of-equilibrium or torus instability, when the flux rope has reached an unstable threshold determined by a decay index of the external magnetic field.Comment: 23 pages, 13 figures, revie
    corecore