626,133 research outputs found

    Comparative Study of KNN, SVM and Decision Tree Algorithm for Student’s Performance Prediction

    Get PDF
    Students who are not-active will affect the number of students who graduate on time. Prevention of not-active students can be done by predicting student performance. The study was conducted by comparing the KNN, SVM, and Decision Tree algorithms to obtain the best predictive model. The model making process was carried out by the following steps: data collecting, pre-processing, model building, comparison of models, and evaluation. The results show that the SVM algorithm has the best accuracy in predicting with a precision value of 95%. The Decision Tree algorithm has a prediction accuracy of 93% and the KNN algorithm has a prediction accuracy value of 92%

    Survival prediction from clinico-genomic models - a comparative study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Survival prediction from high-dimensional genomic data is an active field in today's medical research. Most of the proposed prediction methods make use of genomic data alone without considering established clinical covariates that often are available and known to have predictive value. Recent studies suggest that combining clinical and genomic information may improve predictions, but there is a lack of systematic studies on the topic. Also, for the widely used Cox regression model, it is not obvious how to handle such combined models.</p> <p>Results</p> <p>We propose a way to combine classical clinical covariates with genomic data in a clinico-genomic prediction model based on the Cox regression model. The prediction model is obtained by a simultaneous use of both types of covariates, but applying dimension reduction only to the high-dimensional genomic variables. We describe how this can be done for seven well-known prediction methods: variable selection, unsupervised and supervised principal components regression and partial least squares regression, ridge regression, and the lasso. We further perform a systematic comparison of the performance of prediction models using clinical covariates only, genomic data only, or a combination of the two. The comparison is done using three survival data sets containing both clinical information and microarray gene expression data. Matlab code for the clinico-genomic prediction methods is available at <url>http://www.med.uio.no/imb/stat/bmms/software/clinico-genomic/</url>.</p> <p>Conclusions</p> <p>Based on our three data sets, the comparison shows that established clinical covariates will often lead to better predictions than what can be obtained from genomic data alone. In the cases where the genomic models are better than the clinical, ridge regression is used for dimension reduction. We also find that the clinico-genomic models tend to outperform the models based on only genomic data. Further, clinico-genomic models and the use of ridge regression gives for all three data sets better predictions than models based on the clinical covariates alone.</p

    The Cat Is On the Mat. Or Is It a Dog? Dynamic Competition in Perceptual Decision Making

    Get PDF
    Recent neurobiological findings suggest that the brain solves simple perceptual decision-making tasks by means of a dynamic competition in which evidence is accumulated in favor of the alternatives. However, it is unclear if and how the same process applies in more complex, real-world tasks, such as the categorization of ambiguous visual scenes and what elements are considered as evidence in this case. Furthermore, dynamic decision models typically consider evidence accumulation as a passive process disregarding the role of active perception strategies. In this paper, we adopt the principles of dynamic competition and active vision for the realization of a biologically- motivated computational model, which we test in a visual catego- rization task. Moreover, our system uses predictive power of the features as the main dimension for both evidence accumulation and the guidance of active vision. Comparison of human and synthetic data in a common experimental setup suggests that the proposed model captures essential aspects of how the brain solves perceptual ambiguities in time. Our results point to the importance of the proposed principles of dynamic competi- tion, parallel specification, and selection of multiple alternatives through prediction, as well as active guidance of perceptual strategies for perceptual decision-making and the resolution of perceptual ambiguities. These principles could apply to both the simple perceptual decision problems studied in neuroscience and the more complex ones addressed by vision research.Peer reviewe

    Exploring the Cloud Top Phase Partitioning in Different Cloud Types Using Active and Passive Satellite Sensors

    Get PDF
    One of the largest uncertainties in numerical weather prediction and climate models is the representation of mixed-phase clouds. With the aim of understanding how the supercooled liquid fraction (SLF) in clouds with temperature from -40∘^\circC to 0∘^\circC is related to temperature, geographical location, and cloud type, our analysis contains a comparison of four satellite-based datasets (one derived from active and three from passive satellite sensors), and focuses on SLF distribution near-globally, but also stratified by latitude and continental/maritime regions. Despite the warm bias in cloud top temperature of the passive sensor compared to the active sensor and the phase mismatch in collocated data, all datasets indicate, at the same height-level, an increase of SLF with cloud optical thickness, and generally larger SLF in the Southern Hemisphere than in the Northern Hemisphere (up to about 20\% difference), with the exception of continental low-level clouds, for which the opposite is true

    Exploring the Cloud Top Phase Partitioning in Different Cloud Types Using Active and Passive Satellite Sensors

    Get PDF
    One of the largest uncertainties in numerical weather prediction and climate models is the representation of mixed-phase clouds. With the aim of understanding how the supercooled liquid fraction (SLF) in clouds with temperature from -40∘^\circC to 0∘^\circC is related to temperature, geographical location, and cloud type, our analysis contains a comparison of four satellite-based datasets (one derived from active and three from passive satellite sensors), and focuses on SLF distribution near-globally, but also stratified by latitude and continental/maritime regions. Despite the warm bias in cloud top temperature of the passive sensor compared to the active sensor and the phase mismatch in collocated data, all datasets indicate, at the same height-level, an increase of SLF with cloud optical thickness, and generally larger SLF in the Southern Hemisphere than in the Northern Hemisphere (up to about 20\% difference), with the exception of continental low-level clouds, for which the opposite is true

    Computational Fluid Dynamics Investigation of Vortex Breakdown for a Delta Wing at High Angle of Attack

    Get PDF
    Using the commercially available FLUENT 3-D flow field solver, this research effort investigated vortex breakdown over a delta wing at high angle of attack (α) in preparation for investigation of active control of vortex breakdown using steady, along- core blowing. A flat delta-shaped half-wing with sharp leading edge and sweep angle of 60° was modeled at α=18° in a wind tunnel at Mach 0.04 and Reynolds number of 3.4 x 105. A hybrid (combination of structured and unstructured) numerical mesh was generated to accommodate blowing ports on the wing surface. Results for cases without and with along-core blowing included comparison of various turbulence models for predicting both flow field physics and quantitative flow characteristics, FLUENT turbulence models included Spalart-Allmaras (S-A), Renormalization Group k-ε, Reynolds Stress (RSM), and Large Eddy Simulation (LES), as well as comparison with laminar and inviscid models. Mesh independence was also investigated, and solutions were compared with experimentally determined results and theoretical prediction, These research results show that, excepting the LES model for which the computational mesh was insufficiently refined and which was not extensively investigated, none of the turbulence models above, as implemented with the given numerical grid, generated a solution which was suitably comparable to the experimental data. Much more work is required to find a suitable combination of numerical grid and turbulence model

    Marich: A Query-efficient Distributionally Equivalent Model Extraction Attack using Public Data

    Full text link
    We study black-box model stealing attacks where the attacker can query a machine learning model only through publicly available APIs. Specifically, our aim is to design a black-box model extraction attack that uses minimal number of queries to create an informative and distributionally equivalent replica of the target model. First, we define distributionally equivalent and max-information model extraction attacks. Then, we reduce both the attacks into a variational optimisation problem. The attacker solves this problem to select the most informative queries that simultaneously maximise the entropy and reduce the mismatch between the target and the stolen models. This leads us to an active sampling-based query selection algorithm, Marich. We evaluate Marich on different text and image data sets, and different models, including BERT and ResNet18. Marich is able to extract models that achieve 69−96%69-96\% of true model's accuracy and uses 1,070−6,9501,070 - 6,950 samples from the publicly available query datasets, which are different from the private training datasets. Models extracted by Marich yield prediction distributions, which are ∼2−4×\sim2-4\times closer to the target's distribution in comparison to the existing active sampling-based algorithms. The extracted models also lead to 85−95%85-95\% accuracy under membership inference attacks. Experimental results validate that Marich is query-efficient, and also capable of performing task-accurate, high-fidelity, and informative model extraction.Comment: Presented in the Privacy-Preserving AI (PPAI) workshop at AAAI 2023 as a spotlight tal

    CM-CASL: Comparison-based Performance Modeling of Software Systems via Collaborative Active and Semisupervised Learning

    Full text link
    Configuration tuning for large software systems is generally challenging due to the complex configuration space and expensive performance evaluation. Most existing approaches follow a two-phase process, first learning a regression-based performance prediction model on available samples and then searching for the configurations with satisfactory performance using the learned model. Such regression-based models often suffer from the scarcity of samples due to the enormous time and resources required to run a large software system with a specific configuration. Moreover, previous studies have shown that even a highly accurate regression-based model may fail to discern the relative merit between two configurations, whereas performance comparison is actually one fundamental strategy for configuration tuning. To address these issues, this paper proposes CM-CASL, a Comparison-based performance Modeling approach for software systems via Collaborative Active and Semisupervised Learning. CM-CASL learns a classification model that compares the performance of two given configurations, and enhances the samples through a collaborative labeling process by both human experts and classifiers using an integration of active and semisupervised learning. Experimental results demonstrate that CM-CASL outperforms two state-of-the-art performance modeling approaches in terms of both classification accuracy and rank accuracy, and thus provides a better performance model for the subsequent work of configuration tuning
    • …
    corecore