9,265 research outputs found

    Affective games:a multimodal classification system

    Get PDF
    Affective gaming is a relatively new field of research that exploits human emotions to influence gameplay for an enhanced player experience. Changes in player’s psychology reflect on their behaviour and physiology, hence recognition of such variation is a core element in affective games. Complementary sources of affect offer more reliable recognition, especially in contexts where one modality is partial or unavailable. As a multimodal recognition system, affect-aware games are subject to the practical difficulties met by traditional trained classifiers. In addition, inherited game-related challenges in terms of data collection and performance arise while attempting to sustain an acceptable level of immersion. Most existing scenarios employ sensors that offer limited freedom of movement resulting in less realistic experiences. Recent advances now offer technology that allows players to communicate more freely and naturally with the game, and furthermore, control it without the use of input devices. However, the affective game industry is still in its infancy and definitely needs to catch up with the current life-like level of adaptation provided by graphics and animation

    Emotions in context: examining pervasive affective sensing systems, applications, and analyses

    Get PDF
    Pervasive sensing has opened up new opportunities for measuring our feelings and understanding our behavior by monitoring our affective states while mobile. This review paper surveys pervasive affect sensing by examining and considering three major elements of affective pervasive systems, namely; “sensing”, “analysis”, and “application”. Sensing investigates the different sensing modalities that are used in existing real-time affective applications, Analysis explores different approaches to emotion recognition and visualization based on different types of collected data, and Application investigates different leading areas of affective applications. For each of the three aspects, the paper includes an extensive survey of the literature and finally outlines some of challenges and future research opportunities of affective sensing in the context of pervasive computing

    Continuous Estimation of Emotions in Speech by Dynamic Cooperative Speaker Models

    Get PDF
    Automatic emotion recognition from speech has been recently focused on the prediction of time-continuous dimensions (e.g., arousal and valence) of spontaneous and realistic expressions of emotion, as found in real-life interactions. However, the automatic prediction of such emotions poses several challenges, such as the subjectivity found in the definition of a gold standard from a pool of raters and the issue of data scarcity in training models. In this work, we introduce a novel emotion recognition system, based on ensemble of single-speaker-regression-models (SSRMs). The estimation of emotion is provided by combining a subset of the initial pool of SSRMs selecting those that are most concordance among them. The proposed approach allows the addition or removal of speakers from the ensemble without the necessity to re-build the entire machine learning system. The simplicity of this aggregation strategy, coupled with the flexibility assured by the modular architecture, and the promising results obtained on the RECOLA database highlight the potential implications of the proposed method in a real-life scenario and in particular in WEB-based applications

    Emotional Prosody Measurement (EPM): A voice-based evaluation method for psychological therapy effectiveness

    Get PDF
    The voice embodies three sources of information: speech, the identity, and the emotional state of the speaker (i.e., emotional prosody). The latter feature is resembled by the variability of the F0 (also named fundamental frequency of pitch) (SD F0). To extract this feature, Emotional Prosody Measurement (EPM) was developed, which consists of 1) speech recording, 2) removal of speckle noise, 3) a Fourier Transform to extract the F0-signal, and 4) the determination of SD F0. After a pilot study in which six participants mimicked emotions by their voice, the core experiment was conducted to see whether EPM is successful. Twenty-five patients suffering from a panic disorder with agoraphobia participated. Two methods (storytelling and reliving) were used to trigger anxiety and were compared with comparable but more relaxed conditions. This resulted in a unique database of speech samples that was used to compare the EPM with the Subjective Unit of Distress to validate it as measure for anxiety/stress. The experimental manipulation of anxiety proved to be successful and EPM proved to be a successful evaluation method for psychological therapy effectiveness

    Speech-based recognition of self-reported and observed emotion in a dimensional space

    Get PDF
    The differences between self-reported and observed emotion have only marginally been investigated in the context of speech-based automatic emotion recognition. We address this issue by comparing self-reported emotion ratings to observed emotion ratings and look at how differences between these two types of ratings affect the development and performance of automatic emotion recognizers developed with these ratings. A dimensional approach to emotion modeling is adopted: the ratings are based on continuous arousal and valence scales. We describe the TNO-Gaming Corpus that contains spontaneous vocal and facial expressions elicited via a multiplayer videogame and that includes emotion annotations obtained via self-report and observation by outside observers. Comparisons show that there are discrepancies between self-reported and observed emotion ratings which are also reflected in the performance of the emotion recognizers developed. Using Support Vector Regression in combination with acoustic and textual features, recognizers of arousal and valence are developed that can predict points in a 2-dimensional arousal-valence space. The results of these recognizers show that the self-reported emotion is much harder to recognize than the observed emotion, and that averaging ratings from multiple observers improves performance

    Towards an artificial therapy assistant: Measuring excessive stress from speech

    Get PDF
    The measurement of (excessive) stress is still a challenging endeavor. Most tools rely on either introspection or expert opinion and are, therefore, often less reliable or a burden on the patient. An objective method could relieve these problems and, consequently, assist diagnostics. Speech was considered an excellent candidate for an objective, unobtrusive measure of emotion. True stress was successfully induced, using two storytelling\ud sessions performed by 25 patients suffering from a stress disorder. When reading either a happy or a sad story, different stress levels were reported using the Subjective Unit of Distress (SUD). A linear regression model consisting of the high-frequency energy, pitch, and zero crossings of the speech signal was able to explain 70% of the variance in the subjectively reported stress. The results demonstrate the feasibility of an objective measurement of stress in speech. As such, the foundation for an Artificial Therapeutic Agent is laid, capable of assisting therapists through an objective measurement of experienced stress
    corecore