151,235 research outputs found

    Ocean acidification in the aftermath of the Marinoan glaciation

    Get PDF
    Boron isotope patterns preserved in cap carbonates deposited in the aftermath of the younger Cryogenian (Marinoan, ca. 635 Ma) glaciation confirm a temporary ocean acidification event on the continental margin of the southern Congo craton, Namibia. To test the significance of this acidification event and reconstruct Earth’s global seawater pH states at the Cryogenian-Ediacaran transition, we present a new boron isotope data set recorded in cap carbonates deposited on the Yangtze Platform in south China and on the Karatau microcontinent in Kazakhstan. Our compiled δ11B data reveal similar ocean pH patterns for all investigated cratons and confirm the presence of a global and synchronous ocean acidification event during the Marinoan deglacial period, compatible with elevated postglacial pCO2 concentrations. Differences in the details of the ocean acidification event point to regional distinctions in the buffering capacity of Ediacaran seawater

    Heathland Restoration Techniques: Ecological Consequences for Plant-Soil and Plant-Animal Interactions

    Get PDF
    We compare the soil and plant community development during heathland restoration on improved farmland when achieved through soil stripping with that achieved through soil acidification. We also test the potential for toxic metals to be made more available to plant and animal species as a result of these treatments. Acidification with elemental sulphur was found to be more effective than soil stripping for establishing an ericaceous sward despite the high levels of phosphate still present within the soil.However, both soil acidification and soil stripping were found to have the potential to increase the availability of potentially toxic metals. Acidification increased uptake of both aluminium and zinc in two common plant species Agrostis capillaris and Rumex acetosella and decreased the abundance of surface active spiders. The potential consequences for composition of restored heathland communities and for functioning of food chains are discussed

    Reducing Acidification: The Benefits of Increased Nature Quality. Investigating the Possibilities of the Contingent Valuation Method

    Get PDF
    In order to complete cost benefit analyses of acidification policies, an attempt was made to monetarize the benefits of increased nature quality. So far, several benefits of acidification abatement, such as reduced health risks, had been determined, but the benefits of increased nature quality were lacking, although nature is actually one of the most important reasons for abating acidification in the Netherlands. This study shows that CVM can be used to estimate two specific benefits of increased nature quality due to acidification abatement: the non-use value and the recreational perception value. For other benefits, other valuation methods are needed. This study also shows that CVM is not suited for specifying benefits of different acidification scenarios, which differ little in physical effects on ecosystems. If abatement scenarios are rather extreme, it may be possible to differentiate benefits per scenario. A CVM questionnaire was designed to determine the difference between the welfare generation of healthy ecosystems not suffering from acidification and unhealthy ecosystems affected by acidification. A striking result of the pre test was that all respondents were familiar with the environmental theme of acidification. The results of the pre test suggest that the benefits of nature may be quite large and that they should therefore not be overlooked.Acidification, Biodiversity, Economic value, Nature, CVM, Non use value

    DEVELOPING, MODELLING AND MAPPING OF CRITICAL LOADS AND THEIR INPUT DATA STATUS REPORT ON THE CALL FOR EUROPEAN CRITICAL LOADS ON ACIDIFICATION AND EUTROPHICATION

    Get PDF
    Programme (ICP) on the Modelling and Mapping of Critical Levels and Loads and Air Pollution Effects, Risks and Trends, with the assistance of the secretaria

    Early pH Changes in Musculoskeletal Tissues upon Injury-Aerobic Catabolic Pathway Activity Linked to Inter-Individual Differences in Local pH

    Get PDF
    Local pH is stated to acidify after bone fracture. However, the time course and degree of acidification remain unknown. Whether the acidification pattern within a fracture hematoma is applicable to adjacent muscle hematoma or is exclusive to this regenerative tissue has not been studied to date. Thus, in this study, we aimed to unravel the extent and pattern of acidification in vivo during the early phase post musculoskeletal injury. Local pH changes after fracture and muscle trauma were measured simultaneously in two pre-clinical animal models (sheep/rats) immediately after and up to 48 h post injury. The rat fracture hematoma was further analyzed histologically and metabolomically. In vivo pH measurements in bone and muscle hematoma revealed a local acidification in both animal models, yielding mean pH values in rats of 6.69 and 6.89, with pronounced intra- and inter-individual differences. The metabolomic analysis of the hematomas indicated a link between reduction in tricarboxylic acid cycle activity and pH, thus, metabolic activity within the injured tissues could be causative for the different pH values. The significant acidification within the early musculoskeletal hematoma could enable the employment of the pH for novel, sought-after treatments that allow for spatially and temporally controlled drug release

    Leaky vessels as a potential source of stromal acidification in tumours

    Get PDF
    Malignant tumours are characterised by higher rates of acid production and a lower extracellular pH than normal tissues. Previous mathematical modelling has indicated that the tumour-derived production of acid leads to a gradient of low pH in the interior of the tumour extending to a normal pH in the peritumoural tissue. This paper uses mathematical modelling to examine the potential of leaky vessels as an additional source of stromal acidification in tumours. We explore whether and to what extent increasing vascular permeability in vessels can lead to the breakdown of the acid gradient from the core of the tumour to the normal tissue, and a progressive acidification of the peritumoural stroma. We compare our mathematical simulations to experimental results found in vivo with a tumour implanted in the mammary fat pad of a mouse in a window chamber construct. We find that leaky vasculature can cause a net acidification of the normal tissue away from the tumour boundary, though not a progressive acidification over time as seen in the experiments. Only through progressively increasing the leakiness can the model qualitatively reproduce the experimental results. Furthermore, the extent of the acidification predicted by the mathematical model is less than as seen in the window chamber, indicating that although vessel leakiness might be acting as a source of acid, it is not the only factor contributing to this phenomenon. Nevertheless, tumour destruction of vasculature could result in enhanced stromal acidification and invasion, hence current therapies aimed at buffering tumour pH should also examine the possibility of preventing vessel disruption

    Ocean Acidification

    Get PDF
    The purpose of the lessons is to teach about ocean acidification, its causes and impacts on marine life especially zooplankton, an essential part of marine food webs. Included in the materials is background information on ocean acidification. There are four different activities included in this document. To do all four you should plan on at least two 45 minute periods. The activities define and explain the process of acidification as well as its impacts on shelled organism. The materials can be adapted and used for grades 5-6 and adding more indepth information makes it suitable for middle and high school students. Educational levels: Middle school, High school

    Short-term growth and biomechanical responses of the temperate seagrass Cymodocea nodosa to CO2 enrichment

    Get PDF
    Seagrasses are often regarded as climate change 'winners' because they exhibit higher rates of photosynthesis, carbon fixation and growth when exposed to increasing levels of ocean acidification. However, questions remain whether such growth enhancement compromises the biomechanical properties of the plants, altering their vulnerability to structural damage and leaf loss. Here, we investigated the short-term (6 wk) effects of decreasing pH by CO2 enrichment on the growth, morphology and leaf-breaking force of the temperate seagrass Cymodocea nodosa. We found that the plant biomass balance under levels of acidification representative of short-term climate change projections (pH 8.04) was positive and led to an increase in leaf abundance in the shoots. However, we also found that plant biomass balance was negative under levels of acidification experienced presently (pH 8.29) and those projected over the long-term (pH 7.82). Leaf morphology (mean leaf length, thickness and width) was invariant across our imposed acidification gradient, although leaves were slightly stronger under [CO2] representative of short-term climate change. Taken together, these findings indicate that a subtle increase in growth and mechanical resistance of C. nodosa is likely to occur following short-to medium-term changes in ocean chemistry, but that these positive effects are unlikely to be maintained over the longer term. Our study emphasises the need to account for the interdependencies between environmental conditions and variations in multiple aspects of the structure and functioning of seagrass communities when considering the likely consequences of climate change.Mobility Fellowships Programme of the EuroMarine Consortium (European Commission Seventh Framework Programme) [FP7-ENV-2010.2.2.1-3]; Foundation of Science and Technology of Portugal [SFRH/BPD/119344/2016, PTDC/MAR-EST/3223/2014]; Natural Environment Research Council (NERC) through the UK Ocean Acidification Research Programme (UKOARP) [NE/H017445/1]info:eu-repo/semantics/publishedVersio

    Skeletal trade-offs in coralline algae in response to ocean acidification

    Get PDF
    Ocean acidification is changing the marine environment, with potentially serious consequences for many organisms. Much of our understanding of ocean acidification effects comes from laboratory experiments, which demonstrate physiological responses over relatively short timescales. Observational studies and, more recently, experimental studies in natural systems suggest that ocean acidification will alter the structure of seaweed communities. Here, we provide a mechanistic understanding of altered competitive dynamics among a group of seaweeds, the crustose coralline algae (CCA). We compare CCA from historical experiments (1981-1997) with specimens from recent, identical experiments (2012) to describe morphological changes over this time period, which coincides with acidification of seawater in the Northeastern Pacific. Traditionally thick species decreased in thickness by a factor of 2.0-2.3, but did not experience a change in internal skeletal metrics. In contrast, traditionally thin species remained approximately the same thickness but reduced their total carbonate tissue by making thinner inter-filament cell walls. These changes represent alternative mechanisms for the reduction of calcium carbonate production in CCA and suggest energetic trade-offs related to the cost of building and maintaining a calcium carbonate skeleton as pH declines. Our classification of stress response by morphological type may be generalizable to CCA at other sites, as well as to other calcifying organisms with species-specific differences in morphological types

    NOAA Ocean Acidification June Teacher Workshops in South Florida (stipends provided)

    Get PDF
    NOAA Coral Reef Conservation Program cordially invites teachers in the south Florida area to attend a one-day workshop on ocean acidification, introducing our new OA Data-in-the-Classroom NODE module. Teachers will learn to use real data from NOAA to teach ocean acidification and how it affects coral reefs and other marine calcifiers, using integrated scalable lesson plans associated with this module. Workshop will include demos and multimedia to use in your classroom, a background science presentation on ocean acidification, and a walk-through of the five scalable lesson plans and data exercises that are part of this Data-in-the-Classroom project. Teachers will receive 75stipendforworkshopparticipationand75 stipend for workshop participation and 25 stipend after follow up survey. Teachers will also receive additional educational materials on coral reefs and ocean acidification, including posters, OA teachers guide, and multimedia DVDs. Limited seating: Participants will receive confirmation email once their registration is processed.
    corecore