186 research outputs found

    Contribution Ă  l'Ă©tude des liants dans les produits Ă  base de viande

    Get PDF
    Ce travail constitue une synthÚse et une explication des textes législatifs européens et français relatifs aux liants (ingrédients ou additifs alimentaires) dans les produits à base de viande. Il est développé la composition du dossier à mettre en place et la marche à suivre par les industriels pour utiliser un nouvel additif. L'auteur présente ensuite des définitions générales sur les liants qu'ils soient des émulsifiants ou des épaississants/gélifiants, ainsi que la description détaillée de ceux qui sont autorisés dans les produits à base de viande. Une attention particuliÚre a été portée sur la graine de caroube dont une étude histologique a été réalisée

    Valorisation fonctionnelle et antioxydante des Ă©pidermes de pommes Golden Delicious

    Get PDF
    Apples are considered beneficial to health, because of their content of phenolic compounds that confer the label "health food". Fruits and vegetables food processes generate byproducts that are considered worthless by industrial. However, given the volumes generated, they are rich sources of nutrients.One possible way of valorization of these byproducts is the reintroduction of food as ingredient, to propose fortified foods with functional molecules. To do this, two approaches have been explored: the use of apple peels powders to stabilize an emulsion and the extraction of phenolic compounds by supercritical CO2+ethanol. This work also discusses solutions to remedy the enzymatic browning, such as heat treatment and the addition of naturally rich fruit powders as anti-browning agents.Apples preparation phases are real transformation steps which it’s necessary to optimize and master to preserve all the antioxidant properties of fruits and vegetables byproducts. Our works also highlight more functional properties of apple peels as a stabilizing emulsions agent. The impact of extraction parameters was demonstrated by the exploration of several conditions such as the loaded weight, the grinding, the protocol as well as the temperature and composition of supercritical fluids.Les pommes sont considĂ©rĂ©es comme bĂ©nĂ©fiques pour la santĂ©, de part leur teneur en polyphĂ©nols qui leur confĂšrent l’étiquette "d’aliment santĂ©". Les procĂ©dĂ©s de transformation agroalimentaire des fruits et lĂ©gumes gĂ©nĂšrent des coproduits qui sont considĂ©rĂ©s comme sans valeur par les industriels. Or, au regard des volumes gĂ©nĂ©rĂ©s, ce sont des sources abondantes de nutriments.Une voie possible de valorisation de ces coproduits est la rĂ©introduction dans des produits alimentaires en tant qu’ingrĂ©dient, de façon Ă  proposer des aliments enrichis en molĂ©cules fonctionnelles. Pour ce faire, deux voies ont Ă©tĂ© explorĂ©es: l’utilisation de poudres d’épidermes de pommes pour stabiliser une Ă©mulsion et l’extraction des polyphĂ©nols au moyen de la technologie Ă  base de CO2 supercritique. Ce travail examine Ă©galement des solutions pour remĂ©dier au problĂšme de brunissement enzymatique, comme le traitement thermique et l’addition de poudres de fruits naturellement riches en agents antibrunissement.Les phases de prĂ©paration des pommes sont de rĂ©elles Ă©tapes de transformation qu’il faut optimiser et maĂźtriser afin de prĂ©server toutes les propriĂ©tĂ©s antioxydantes des coproduits vĂ©gĂ©taux. Nos travaux ont Ă©galement permis de mettre en Ă©vidence des propriĂ©tĂ©s plus fonctionnelles des pelures de pommes, comme agent stabilisant d’émulsions. L’impact des paramĂštres d’extraction a Ă©tĂ© mis en Ă©vidence par l’exploration de plusieurs conditions telles que la masse chargĂ©e, le broyage, le protocole ainsi que la tempĂ©rature et la composition du fluide extractant

    Influence de l'adsorption d'alginates sur les propriétés de membranes organiques d'ultra et de microfiltration

    Get PDF
    Les applications potentielles des cultures de microalgues et cyanobactĂ©ries en dĂ©pollution d'effluents dans des photobiorĂ©acteurs Ă  membrane souffrent de performances limitĂ©es par un colmatage de l'Ă©lĂ©ment filtrant dĂ» en grande partie aux exopolysaccharides sĂ©crĂ©tĂ©s par ces micro-organismes. Cette Ă©tude du laboratoire quantifie les effets de l'adsorption de ces polysaccharides sur des membranes organiques d'ultra et microfiltration tangentielle de matĂ©riaux et charges de surface diffĂ©rents. L'alginate de sodium est utilisĂ© comme adsorbat modĂšle. Les membranes propres sont d'abord testĂ©es par une mesure de flux Ă  l'eau pure, puis mises en contact avec une solution d'alginate durant un temps choisi. Le flux Ă  l'eau pure des membranes aprĂšs adsorption est ensuite Ă  nouveau mesurĂ©.La rĂ©duction relative du rayon de pore (ZEMAN, 1983) met en Ă©vidence l'effet de la mouillabilitĂ© et des charges superficielles. L'Ă©tude comparĂ©e de membranes d'ultra et microfiltration montre que cette rĂ©duction relative du rayon de pore augmente avec le seuil de coupure ou le diamĂštre de pore. L'effet de la concentration rĂ©vĂšle aussi que la rĂ©sistance hydraulique d'adsorption (MATTHIASSON, 1983) Ă  l'Ă©quilibre Ă©volue selon l'isotherme de LANGMUIR. Le modĂšle cinĂ©tique traduisant l'Ă©volution de la rĂ©sistance d'une membrane d'ultrafiltration proposĂ© par BAKLOUTI et al.(1984), amĂ©liorĂ© par AIMAR et al. (1988) puis discutĂ© par RUIZ-BEVIÁ et al. (1997), est complĂ©tĂ© par un nouvel exposant agissant sur le facteur temps.La comparaison des rĂ©sistances Ă  l'Ă©coulement de membranes de microfiltration avec celle d'une membrane d'ultrafiltration hydrophile neutre permet de dĂ©gager des critĂšres de choix pour l'optimisation du fonctionnement d'un photobiorĂ©acteur Ă  membrane utilisable en dĂ©pollution d'effluents.Potential applications of microalgae and cyanobacteria for treatment of wastewater effluents using membrane-photobioreactors suffer from limited performance due to fouling effects, mainly attributable to exocellular polysaccharides secreted by these micro-organisms. A membrane photobioreactor is defined as a process associating the culture of photosynthetic micro-organisms with a continuous separation by membrane filtration of the biomass and the water treated. The goal of the present laboratory-scale study was to quantify polysaccharide adsorption effects on organic membranes (ultra and microfiltration) characterised by different materials and surface charges. Sodium alginate was used as the "model adsorbate".Seven plane organic membranes were tested. The influence of membrane cut-off (or of pore diameters) as well as that of the material polyethersuphone (PES), polyacrylonitrile (PAN), polyvinilidene fluoride (PVDF) and of its properties (hydrophobicity, surface charges, 
) were assessed. The study consisted of two parts :1. the first part was concerned with the kinetics of alginate adsorption and the influence contact time and solute concentrations on the reduction of pore diameter (ZEMAN, 1983) or on the increase of hydraulic resistance (MATTHIASSON, 1983);2. the second part dealt with adsorption equilibrium (formulations of LANGMUIR and FREUNDLICH).The study constituted the first step of a research program aimed at developing membrane photobioreactors for the treatment of specific industrial effluents. The fluid used to test the membranes was quality II pure water (ISO 3696 norm). Tangential velocities were set to 2.5 m.s-1, corresponding to a Reynolds number of 2500. To represent exopolysaccharides, we used alginic acid at concentrations of 1, 10 and 50 g, neutralised with sodium hydroxide at pH 9. New (or clean) membranes were first characterised through pure water flux measurements. J0, the flux of pure water for a new membrane, was obtained (flowrate / unit of surface area), and then the membrane was kept in contact, for a definite duration, with the alginate solution. After adsorption and rinsing, the pure water flux was measured again. Ja, the pure water flux, was measured through the membrane after adsorption.Adsorption model at equilibrium:The effect of adsorption is quantified under the form of the relative pore size reduction as described by ZEMAN (1983) and included in the relation : ∆r / r=1 - (Ja / Jo)1/4. A variation of this quantification is that of the MATTHIASSON model (1983) applied to the pure water flux, based on DARCY's law expressing the relative value of the hydraulic resistance of the adsorbed layer Ra in relation to the intrinsic resistance of the membrane Rm : Ra / Rm=(Jo / Ja) - 1.To express adsorption phenomena at the solid/liquid interface of membranes, we used LANGMUIR's law together with MATTHIASSON's experimental observation (1983): the relative resistance Ra / Rm due to adsorbed compounds is proportional to the mass "x" of solute adsorbed per unit of membrane surface area, x=Kx.Ra. If one assumes that the mass m of a homogeneous plane membrane per unit of membrane surface area is proportional to its adsorbing surface area Ω per unit of membrane surface area (m=Km.Ω), and if one combines the flux equations expressed by DARCY's and POISEUILLE's laws, then the result is m=K'm.Rm in a homogeneous membrane. Substituting x and m in LANGMUIR's law results in the equilibrium model Rae / Rm=(Jo / Ja) - 1=a.c / (1 + bc) in which c=concentration of adsorbing solute; a and b are coefficients; and Rae is the resistance due to compounds adsorbed at equilibrium. Kinetic model: To show the evolution of membrane resistance with time, we suggest the introduction of an empirical exponent j over the time parameter in the AIMAR et al. model (1988).Results: The effect of changing the alginate concentration reveals that the hydraulic resistance of adsorption, at equilibrium, (MATTHIASSON, 1983) evolves according to LANGMUIR's isotherm. The relative decrease of pore radius ∆r / r in the presence of l g.l-1 of sodium alginate shows that a quasi-plateau is obtained after two hours using the most hydrophobic membrane. The curves ∆r / r=f (t) for five membranes made of different materials, monitored during the transition phase before the plateau with common 1 g.l-1 concentrations, reveal similar adsorption behaviour, characterised by the limiting common value ∆r / r=0.06 ± 0.005. However, the uncharged hydrophilic membrane PAN 3038 stands out owing to a much lower ∆r / r value of 0.09. This peculiar behaviour can also be observed in the influence of the alginate concentration: hydrophobic and charged hydrophilic membranes display a saturation effect with ∆r / r little affected by the increase of alginate concentration, whereas the uncharged hydrophilic membrane PAN 3038 displays a ∆r / r value three to six times lower with great sensitivity to concentration effects at concentrations below 10 g.l-1. The model Rae / Rm=(Jo / Ja) - 1=a.c / (1 + bc) is in agreement with the experimental results obtained with hydrophobic and hydrophilic membranes. The proposed kinetic model shows that time dependence of R (t) does not seem to be linked to the nature of membranes. However, compared with concentration, R (c) is very sensitive to the nature of membranes. A comparative study of ultra and microfiltration membranes shows that the reduction in ∆r / r values increases with molecular weight cut-off (or pore diameter).Criteria for the choice of membranes: A comparative study of three polyacrylonitrile membranes reveals that membrane 3038 PAN (neutral) displays a very interesting, peculiar behaviour: its adsorption, expressed by ∆r / r or Rae/(Rae+Rm) is four to six times weaker than that of the other two. The surface charge of membranes seems to influence the intensity of adsorption in a significant way. Wetability also has a strong influence on adsorption. The sum of resistances Rae + Rm of ultrafiltration membrane 3038 PAN is only four times as great as those of hydrophobic microfiltration membranes. Experimentation already showed that, in the presence of microparticles, interactions between the layer of adsorbed alginate and microparticles will increase the likelihood of fouling of microfiltration membranes, decreasing their resistance down to the level of very little adsorbing ultrafiltration membrane IRIS 3038 (ROSSIGNOL et al., 1999).A culture system of marine microalgae in a membrane photobioreactor using ultrafiltration membrane IRIS 3038 PAN displayed a stable permeation flux during 6 weeks and easy regeneration, which meant adsorption was almost nil. The ability of some microalgae to assimilate ammonia nitrogen, nitrates and phosphates contained in waste water with excellent efficiencies (e.g., Phormidium bohneri: SYLVESTRE et al., 1996) allows one to consider using membrane photobioreactors in the treatment of home or industrial effluents. Other microalgae such as Chlorella salina (GARNHAM et al., 1992) are capable of fixing large amounts of heavy metals (Co, Mn, Zn, etc
); grown in membrane photobioreactors, they could depollute industrial effluents

    Élimination des cations mĂ©talliques divalents : complexation par l'alginate de sodium et ultrafiltration

    Get PDF
    Depuis quelques années la pollution par les métaux lourds et devenue un problÚme important pour la protection de l'environnement et de nombreuses méthodes ont été développées pour éliminer les métaux toxiques présents dans l'eau.Parmi les différents procédés utilisés, la complexation-ultrafiltration est bien connue et de nombreuses études sur ce sujet sont décrites dans la littérature. Cependant, le choix de nouveaux macroligands hydrosolubles demeure important pour développer cette technologie.L'un des objectifs de ce travail était de montrer que dans ce procédé un biopolymÚre peut remplacer un macroligand de synthÚse. Les expériences ont été menées avec de l'alginate de sodium, polysaccharide extrait des algues brunes, et porteur de groupements carboxyliques et hydroxydes capables de complexer les cations.Notre étude se divise en trois parties. AprÚs avoir décrit, dans la premiÚre, le matériau et les méthodes utilisées, nous étudions dans la seconde les conditions de l'ultrafiltration (seuil de coupure, pression appliquée, pH, concentration ), avant de discuter dans la troisiÚme les résultats obtenus dans le traitement de solutions contenant Cd2+, Cu2+, Mn2+ and Pb2+.For some years past, pollution by heavy metals has become one of the main problems for environmental protection. A number of methods have been developed to remove toxic metals from water. Among the various processes used, complexation-ultrafiltration is well known and numerous studies on this subject are described in the literature. However, the choice of new water-soluble macroligands remains important for developing this technology.One aim of the present work was to prove that biopolymers can replace synthetic macroligands in the process. The experiments have been conducted with sodium alginate, a polysaccharide extracted from brown seaweeds and containing carboxylic and hydroxyl groups able to complex heavy cations. Filtration experiments were performed with a frontal system, equipped with a polysulfone membrane with a 20000 Daltons cut-off . The solutions studied were prepared by diluting in demineralized water either sodium alginate or "Titrisol Merck" for cations. Before filtration the two solutions were mixed and stirred for 20 min. The pH of the feed solutions was adjusted with HCl (or HNO3 for Pb) or NaOH and determined accurately using a calibrated probe.The molecular weight of sodium alginate was determined by liquid chromatography and the viscosity was measured with either a viscosimeter for low values or a capillary method for concentrated solutions. Cation concentrations were measured by atomic absorption spectrophotometryBoth permeate and retentate macroligands concentrations were estimated from measurements of total organic carbon (TOC). Following each experiment, chemical cleaning was performed by filtration of HCl, NaOH and water. This procedure was followed by demineralized water filtration, to ensure that the initial permeability was restored.In the first part of the work the ultrafiltration of sodium alginate solutions for different concentrations and various pressures was studied. Experimental results for macroligand retention, deduced from the TOC values, show a total rejection. All the curves, permeate flux versus time, present the same profile which indicates a significant concentration polarization. According to the obtained results we chose the value of 5 10-2 g L-1 for the ligand concentration and one bar for the applied pressure.In the second part of the study, the retention of cations (Cd2+, Cu2+, Mn2+ and Pb2+) was investigated. The observed results show that the removal rates are close to 100%. These values depend both on the total concentration of cation and on the pH value. The retention of cations is shown to depend strongly on pH: a variation of pH between 3 and 5 leads to changes in retention efficiency from 0 to 100%. This can be explained by the dissociation of alginic acid as a function of pH. For lower pH values the macroligand is in a molecular form and the metallic cation remains free; for higher values metal complexation is possible, increasing the rejection. If coordination number, rejection rate and pH are known, the various association constants can be determined using a graphical method. It can be seen from the results that the stability of the complexes formed decreases in the sequence Pb>Cu>Mn>Cd.In order to investigate the retention of these cations in a fresh water, the influence of calcium hardness was studied. The results indicate that cation removal decreases when the calcium concentration increases. This observation is an important restriction for fresh water treatment but does not affect the elimination of metals from a solution or an industrial waste containing cations

    Préparation de matériaux à base de graphÚne et leur application en catalyse

    Full text link
    [ES] Para abordar los desafĂ­os ambientales, la quĂ­mica y los procesos quĂ­micos deben ser mĂĄs sostenibles. Para ello, el desarrollo de nuevos catalizadores especialmente activos es de suma importancia. En catĂĄlisis heterogĂ©nea, el grafeno ha surgido recientemente como un excelente candidato desde que fue posible aislarlo a partir del grafito. Sus propiedades Ășnicas han despertado un gran interĂ©s para aplicarlo en varios campos, desde el refuerzo de matrices polimĂ©ricas hasta el desarrollo de materiales para catĂĄlisis. En catĂĄlisis, su uso como soporte catalĂ­tico o como carbocatalizador es todavĂ­a objeto de varios estudios. Con el objetivo de preparar catalizadores extremadamente activos en varias reacciones de quĂ­mica fina o de producciĂłn de hidrĂłgeno, nuestro trabajo de investigaciĂłn se ha centrado en el uso de materiales a base de grafeno como soportes catalĂ­ticos. Se consideraron diferentes aspectos: La funcionalizaciĂłn del grafeno; al ser un material de baja dimensionalidad, las propiedades del grafeno estĂĄn estrechamente relacionadas con la quĂ­mica de su superficie. Mediante la fosforilaciĂłn del Ăłxido de grafeno, hemos demostrado que la estabilidad tĂ©rmica y la estabilizaciĂłn de las nanopartĂ­culas metĂĄlicas mejoran significativamente. La combinaciĂłn de grafeno con otros materiales; Pequeñas nanopartĂ­culas de paladio estabilizadas sobre materiales porosos a base de Ăłxido de grafeno y quitosano han demostrado una excelente actividad para la deshidrogenaciĂłn del formiato de amonio. La estrategia de sĂ­ntesis adoptada para preparar el grafeno; La pirĂłlisis de pelĂ­culas de alginato de amonio y un precursor de rutenio (Ru) en diferentes atmĂłsferas permitiĂł la preparaciĂłn de nanopartĂ­culas de Ru soportadas en grafeno cuya orientaciĂłn depende de la atmĂłsfera de pirĂłlisis. Por lo tanto, fue posible una comparaciĂłn de la actividad catalĂ­tica de diferentes facetas cristalogrĂĄficas. Dopaje de grafeno; la presencia de diferentes heteroĂĄtomos en su estructura ha permitido una mejor estabilizaciĂłn de nanopartĂ­culas y clusters metĂĄlicos. Los materiales basados en nanopartĂ­culas de Ăłxido de cobre y grafenos dopados han demostrado poseer una excelente actividad catalĂ­tica en la sĂ­ntesis de nuevas molĂ©culas de interĂ©s farmacĂ©utico.[CA] Per a abordar els desafiaments ambientals, la quĂ­mica i els processos quĂ­mics han de ser mĂ©s sostenibles. Per a aixĂČ, el desenvolupament de nous catalitzadors especialment actius Ă©s de summa importĂ ncia. En catĂ lisi heterogĂšnia, el grafĂ© ha sorgit recentment com un excel·lent candidat des que va ser possible aĂŻllar-lo a partir del grafit. Les seues propietats Ășniques han despertat un gran interĂ©s per a aplicar-lo en diversos camps,des del reforç de matrius polimĂšriques fins al desenvolupament de materials per a catĂ lisis. En catĂ lisi, el seu Ășs com a suport catalĂ­tic o com carbocatalitzador Ă©s encara objecte de diversos estudis. Amb l'objectiu de preparar catalitzadors extremadament actius en diverses reaccions de quĂ­mica fina o de producciĂł d'hidrogen, el nostre treball de recerca s'ha centrat en l'Ășs de materials a base de grafĂ© com a suports catalĂ­tics. Es van considerar diferents aspectes: La funcionalitzaciĂł del grafĂ©; a l'Ă©sser un material de baixa dimensionalitat, les propietats del grafĂ© estan estretament relacionades amb la quĂ­mica de la seua superfĂ­cie. Mitjançant la fosforilaciĂł de l'ĂČxid de grafĂ©, hem demostrat que l'estabilitat tĂšrmica i l'estabilitzaciĂł de les nanopartĂ­cules metĂ l·liques milloren significativament. La combinaciĂł de grafĂ© amb altres materials; Xicotetes nanopartĂ­cules de pal·ladi estabilitzades sobre materials porosos a base d'ĂČxid de grafĂ© i quitosĂ  han demostrat una excel·lent activitat per a la deshidrogenaciĂł del formiat d'amoni. L'estratĂšgia de sĂ­ntesi adoptada per a preparar el grafĂ©; La pirĂČlisi de pel·lĂ­cules de alginat d'amoni i un precursor de ruteni (Ru) en diferents atmosferes va permetre la preparaciĂł de nanopartĂ­cules de Ru suportades en grafĂ©, l'orientaciĂł del qual depĂ©n de l'atmosfera de pirĂČlisi. Per tant, va ser possible una comparaciĂł de l'activitat catalĂ­tica de diferents facetes cristalÂżlogrĂ fiques. Dopatge de grafĂ©; la presĂšncia de diferents heteroĂ toms en la seua estructura ha permĂ©s una millor estabilitzaciĂł de nanopartĂ­cules i clĂșsters metĂ l·lics. Els materials basats en nanopartĂ­cules d'ĂČxid de coure i grafens dopats han demostrat posseir una excel·lent activitat catalĂ­tica en la sĂ­ntesi de noves molĂšcules d'interĂ©s farmacĂšutic.[EN] To address environmental challenges, chemistry and chemical processes need to be more sustainable. For this, developing new particularly active catalysts is of paramount importance. In heterogeneous catalysis, graphene has emerged as an excellent candidate since it was possible to isolate it from graphite. Its properties have aroused substantial interest, earning it applications in various fields spanning from the reinforcement of polymer matrices to the development of materials for catalysis. In catalysis, its use both as a catalytic support or as a carbocatalyst is still the subject of several studies. Aiming to prepare extremely active catalysts in various fine chemical reactions or hydrogen production, our research work has focused on the use of graphene-based materials as catalytic supports. Different aspects were considered: The functionalization of graphene; being a material of low dimensionality, the properties of graphene are intimately related to the chemistry of its surface. Through phosphorylation of graphene oxide, we have shown that the thermal stability and stabilization of metal nanoparticles are significantly improved. Combination of graphene with other materials; small palladium nanoparticles stabilized on porous materials based on graphene oxide and chitosan have demonstrated excellent activity for the dehydrogenation of ammonium formate. The synthetic strategy adopted to prepare graphene; pyrolysis of films of ammonium alginate and ruthenium precursor (Ru) in different atmospheres enabled the preparation of Ru nanoparticles supported on graphene whose orientation depends on the atmosphere of pyrolysis. Thus, a comparison of the catalytic activity of different crystallographic facets was possible. Doping of graphene; the presence of different heteroatoms in its structure has allowed a better stabilization of metal nanoparticles and clusters. Materials based on copper oxide nanoparticles and tridoped graphene have demonstrated an excellent catalytic activity in the synthesis of new molecules of pharmaceutical interest.Anouar, A. (2021). PrĂ©paration de matĂ©riaux Ă  base de graphĂšne et leur application en catalyse [Tesis doctoral]. Universitat PolitĂšcnica de ValĂšncia. https://doi.org/10.4995/Thesis/10251/164030TESI

    Review on the Removal of Metal Ions from Effluents Using Seaweeds, Alginate Derivatives and Other Sorbents

    Get PDF
    Biosorbents, especially those derived from seaweed (macroscopic algae) and alginate derivatives, exhibit high affinity for many metal ions. Because biosorbents are widely abundant (usually biodegradable) and less expensive than industrial synthetic adsorbents, they hold great potential for the removal of toxic metals from industrial effluents. Various studies have demonstrated the efficiency of living and non-living micro-organisms, such as bacteria, yeasts, moulds, micro-algae, cyanobacteria and biomass from water treatment sewage to remove metals from solution. Several types of organic and inorganic biomass have also been used as sorbent materials. In addition, by-products from the forestry industry, as well as agriculture waste and natural sorbents, have also been studied. This paper reviews and summarizes some key recent developments in these areas and it describes and discusses some specific applications of selected natural sorbents.Les biosorbants, particuliĂšrement ceux prĂ©parĂ©s Ă  partir des algues macroscopiques et des dĂ©rivĂ©s d’alginate, dĂ©montrent une trĂšs bonne capacitĂ© d’adsorption des ions mĂ©talliques toxiques. Ces biosorbants Ă©tant facilement disponibles (biodĂ©gradable) et moins coĂ»teux que les adsorbants (industriels) synthĂ©tiques, ils prĂ©sentent un grand potentiel d’utilisation pour l’enlĂšvement des mĂ©taux toxiques des effluents industriels. Les rĂ©cents dĂ©veloppements dans ce domaine ont Ă©tĂ© revus et font l’objet de la prĂ©sente synthĂšse. Des applications spĂ©cifiques sont dĂ©crites et discutĂ©es.Diverses technologies sont disponibles pour enlever les mĂ©taux des effluents industriels tels que la prĂ©cipitation (sous forme d’hydroxydes ou de sulfures), la coprĂ©cipitation, l’adsorption, l’extraction par solvant, la cĂ©mentation, l’électrodĂ©position, l’électrocoagulation, l’échange d’ions et les technologies de sĂ©paration membranaire. NĂ©anmoins, la plupart de ces techniques prĂ©sentent des coĂ»ts d’exploitation Ă©levĂ©s et, dans certains cas, sont limitĂ©es en terme de rendement d’élimination des mĂ©taux. Dans ce contexte, l’utilisation d’adsorbants naturels (dĂ©rivĂ©s de matiĂšre organique ou inorganique) constitue une alternative intĂ©ressante aux produits synthĂ©tiques. De nombreux articles ont d’ailleurs Ă©tĂ© publiĂ©s au cours des derniĂšres annĂ©es faisant Ă©tat de la performance d’une grande variĂ©tĂ© d’adsorbants naturels pour enlever les mĂ©taux des effluents.Plusieurs espĂšces d’algues marines ont aussi dĂ©montrĂ© des propriĂ©tĂ©s pour adsorber les mĂ©taux, mais les algues marines brunes, telles que Sargassum et Ascophyllum semblent avoir la plus grande capacitĂ© de rĂ©tention des mĂ©taux, Ă  cause de leur grande concentration en polysaccharides. L’intĂ©gritĂ© physique des algues est Ă©galement importante, ceci afin de prĂ©venir leur dĂ©sintĂ©gration pendant les processus d’adsorption. Afin d’amĂ©liorer la stabilitĂ© et les propriĂ©tĂ©s mĂ©caniques des algues fraĂźches, diverses mĂ©thodes ont Ă©tĂ© suggĂ©rĂ©es : i) greffage dans des polymĂšres synthĂ©tiques; ii) incorporation dans des matĂ©riaux inorganiques; iii) liaison sur un support adĂ©quat; et iv) sĂ©questration par un agent de liaison.L’acide alginique est un polymĂšre naturel se trouvant dans les algues brunes. Ce polymĂšre est extrait en traitant les algues avec une solution de carbonate de sodium, puis l’acide alginique est prĂ©cipitĂ©, ou converti en sel d’alginate de calcium. Lorsque l’acide alginique rĂ©agit avec des ions polyvalents, tel que le calcium, une sĂ©questration se produit procurant un gel d’alginate ayant des forces structurales significatives. L’alginate de calcium peut ĂȘtre prĂ©parĂ© sous plusieurs formes, telles que des billes, de la poudre, des membranes, des fibres ou des supports d’immobilisation cellulaire. Les billes sont particuliĂšrement intĂ©ressantes du point de vue de leur application et de leur rĂ©utilisation.L’utilisation des algues marines en tant que procĂ©dĂ© d’enlĂšvement des mĂ©taux doit tenir compte de plusieurs considĂ©rations techniques. Les systĂšmes de biosorption utilisent les biomasses sous forme solide en un procĂ©dĂ© conventionnel de contact solide-liquide et, dans certains cas, les systĂšmes comprennent plusieurs Ă©tapes de biosorption et de dĂ©sorption. L’effluent Ă  traiter peut entrer en contact avec la biomasse selon un procĂ©dĂ© en mode discontinu, semi-continu ou continu. Une fois saturĂ©s en mĂ©taux lourds, les adsorbants peuvent ĂȘtre disposĂ©s de façon sĂ©curitaire, ou ĂȘtre rĂ©utilisĂ©s aprĂšs Ă©lution des mĂ©taux. Dans ce cas, la plupart des mĂ©taux lourds (Cd, Co, Cu, Mn, Pb, Zn) peuvent ĂȘtre Ă©luĂ©s Ă  l’aide d’acides diluĂ©s (chlorhydrique, sulfurique, nitrique) ou de solutions salines concentrĂ©es. Certains mĂ©taux qui sont moins dĂ©pendants du pH d’adsorption (Au, Ag, Hg) ne peuvent ĂȘtre Ă©luĂ©s en utilisant un acide diluĂ©. Des solutions de thiourĂ©e ou de mercaptol peuvent ĂȘtre utilisĂ©es pour l’or et l’acĂ©tate de sodium pour la rĂ©cupĂ©ration de l’argent. La combustion des algues est Ă©galement possible, nĂ©anmoins, elle n’est envisageable que si l’adsorbant est peu dispendieux et grandement disponible.Plusieurs types de biomasses organiques ou inorganiques peuvent ĂȘtre utilisĂ©s comme matĂ©riaux adsorbants. Des Ă©tudes ont dĂ©montrĂ© l’efficacitĂ© des microorganismes vivants ou morts incluant les bactĂ©ries, les levures, les moisissures, les microalgues, les cyanobactĂ©ries et les biomasses issues du traitement des eaux usĂ©es (boues d’épuration). Les rejets de l’industrie forestiĂšre, incluant les sciures et les Ă©corces de bois riches en lignine et en tannins, ont Ă©tĂ© Ă©galement Ă©tudiĂ©s de façon intensive. Certaines plantes aquatiques (Ceratophyllum demersum, Lemna minor, Myriophyllum spicatum) ont Ă©galement Ă©tĂ© Ă©valuĂ©es pour leur capacitĂ© en phytofiltration et phytoassainissement. D’autres Ă©tudes ont Ă©tĂ© effectuĂ©es sur la performance de fixation des mĂ©taux de la chitine, cette derniĂšre Ă©tant un biopolymĂšre naturel trĂšs abondant, lequel est classĂ© second aprĂšs la cellulose en terme d’abondance. Ce biopolymĂšre se retrouve largement dans l’exosquelette des crustacĂ©s et des coquillages. Le chitosan est produit en effectuant la dĂ©-acĂ©tylation de la chitine en milieu alcalin. La mousse de tourbe, les dĂ©chets d’agriculture (rĂ©sidus de thĂ© et de cafĂ©, pelures de certains lĂ©gumes, Ă©cailles de noix, d’arachides, de cacao) et divers autres adsorbants de nature inorganique (sable, argile, oxyde, zĂ©olites) ont Ă©galement Ă©tĂ© Ă©tudiĂ©s pour la rĂ©cupĂ©ration des mĂ©taux en solution.D’un point de vue Ă©conomique, plusieurs mĂ©thodes existent pour traiter les eaux usĂ©es. La sĂ©lection d’une mĂ©thode dĂ©pend de plusieurs critĂšres, tels que la compatibilitĂ© avec les opĂ©rations existantes, les coĂ»ts d’exploitation, la flexibilitĂ© des procĂ©dĂ©s afin de pouvoir traiter des variations de charges hydrauliques et de concentrations de contaminants. La mĂ©thode doit ĂȘtre aussi fiable, robuste et simple d’utilisation. Dans certains cas, des Ă©conomies substantielles peuvent ĂȘtre rĂ©alisĂ©es en faisant appel Ă  l’adsorption des mĂ©taux sur des biomasses, comparativement aux procĂ©dĂ©s conventionnels, tel que la prĂ©cipitation des mĂ©taux
    • 

    corecore