296 research outputs found

    Securing cloud-based data analytics: A practical approach

    Get PDF
    The ubiquitous nature of computers is driving a massive increase in the amount of data generated by humans and machines. The shift to cloud technologies is a paradigm change that offers considerable financial and administrative gains in the effort to analyze these data. However, governmental and business institutions wanting to tap into these gains are concerned with security issues. The cloud presents new vulnerabilities and is dominated by new kinds of applications, which calls for new security solutions. In the direction of analyzing massive amounts of data, tools like MapReduce, Apache Storm, Dryad and higher-level scripting languages like Pig Latin and DryadLINQ have significantly improved corresponding tasks for software developers. The equally important aspect of securing computations performed by these tools and ensuring confidentiality of data has seen very little support emerge for programmers. In this dissertation, we present solutions to a. secure computations being run in the cloud by leveraging BFT replication coupled with fault isolation and b. secure data from being leaked by computing directly on encrypted data. For securing computations (a.), we leverage a combination of variable-degree clustering, approximated and offline output comparison, smart deployment, and separation of duty to achieve a parameterized tradeoff between fault tolerance and overhead in practice. We demonstrate the low overhead achieved with our solution when securing data-flow computations expressed in Apache Pig, and Hadoop. Our solution allows assured computation with less than 10 percent latency overhead as shown by our evaluation. For securing data (b.), we present novel data flow analyses and program transformations for Pig Latin and Apache Storm, that automatically enable the execution of corresponding scripts on encrypted data. We avoid fully homomorphic encryption because of its prohibitively high cost; instead, in some cases, we rely on a minimal set of operations performed by the client. We present the algorithms used for this translation, and empirically demonstrate the practical performance of our approach as well as improvements for programmers in terms of the effort required to preserve data confidentiality

    Exécutions de requêtes respectueuses de la vie privée par utilisation de composants matériels sécurisés

    Get PDF
    Current applications, from complex sensor systems (e.g. quantified self) to online e-markets acquire vast quantities of personal information which usually end-up on central servers. This massive amount of personal data, the new oil, represents an unprecedented potential for applications and business. However, centralizing and processing all one's data in a single server, where they are exposed to prying eyes, poses a major problem with regards to privacy concern.Conversely, decentralized architectures helping individuals keep full control of their data, but they complexify global treatments and queries, impeding the development of innovative services.In this thesis, we aim at reconciling individual's privacy on one side and global benefits for the community and business perspectives on the other side. It promotes the idea of pushing the security to secure hardware devices controlling the data at the place of their acquisition. Thanks to these tangible physical elements of trust, secure distributed querying protocols can reestablish the capacity to perform global computations, such as SQL aggregates, without revealing any sensitive information to central servers.This thesis studies the subset of SQL queries without external joins and shows how to secure their execution in the presence of honest-but-curious attackers. It also discusses how the resulting querying protocols can be integrated in a concrete decentralized architecture. Cost models and experiments on SQL/AA, our distributed prototype running on real tamper-resistant hardware, demonstrate that this approach can scale to nationwide applications.Les applications actuelles, des systèmes de capteurs complexes (par exemple auto quantifiée) aux applications de e-commerce, acquièrent de grandes quantités d'informations personnelles qui sont habituellement stockées sur des serveurs centraux. Cette quantité massive de données personnelles, considéré comme le nouveau pétrole, représente un important potentiel pour les applications et les entreprises. Cependant, la centralisation et le traitement de toutes les données sur un serveur unique, où elles sont exposées aux indiscrétions de son gestionnaire, posent un problème majeur en ce qui concerne la vie privée.Inversement, les architectures décentralisées aident les individus à conserver le plein de contrôle sur leurs données, toutefois leurs traitements en particulier le calcul de requêtes globales deviennent complexes.Dans cette thèse, nous visons à concilier la vie privée de l'individu et l'exploitation de ces données, qui présentent des avantages manifestes pour la communauté (comme des études statistiques) ou encore des perspectives d'affaires. Nous promouvons l'idée de sécuriser l'acquisition des données par l'utilisation de matériel sécurisé. Grâce à ces éléments matériels tangibles de confiance, sécuriser des protocoles d'interrogation distribués permet d'effectuer des calculs globaux, tels que les agrégats SQL, sans révéler d'informations sensibles à des serveurs centraux.Cette thèse étudie le sous-groupe de requêtes SQL sans jointures et montre comment sécuriser leur exécution en présence d'attaquants honnêtes-mais-curieux. Cette thèse explique également comment les protocoles d'interrogation qui en résultent peuvent être intégrés concrètement dans une architecture décentralisée. Nous démontrons que notre approche est viable et peut passer à l'échelle d'applications de la taille d'un pays par un modèle de coût et des expériences réelles sur notre prototype, SQL/AA

    Privacy-preserving data analytics in cloud computing

    Get PDF
    The evolution of digital content and rapid expansion of data sources has raised the need for streamlined monitoring, collection, storage and analysis of massive, heterogeneous data to extract useful knowledge and support decision-making mechanisms. In this context, cloud computing o↵ers extensive, cost-e↵ective and on demand computing resources that improve the quality of services for users and also help service providers (enterprises, governments and individuals). Service providers can avoid the expense of acquiring and maintaining IT resources while migrating data and remotely managing processes including aggregation, monitoring and analysis in cloud servers. However, privacy and security concerns of cloud computing services, especially in storing sensitive data (e.g. personal, healthcare and financial) are major challenges to the adoption of these services. To overcome such barriers, several privacy-preserving techniques have been developed to protect outsourced data in the cloud. Cryptography is a well-known mechanism that can ensure data confidentiality in the cloud. Traditional cryptography techniques have the ability to protect the data through encryption in cloud servers and data owners can retrieve and decrypt data for their processing purposes. However, in this case, cloud users can use the cloud resources for data storage but they cannot take full advantage of cloud-based processing services. This raises the need to develop advanced cryptosystems that can protect data privacy, both while in storage and in processing in the cloud. Homomorphic Encryption (HE) has gained attention recently because it can preserve the privacy of data while it is stored and processed in the cloud servers and data owners can retrieve and decrypt their processed data to their own secure side. Therefore, HE o↵ers an end-to-end security mechanism that is a preferable feature in cloud-based applications. In this thesis, we developed innovative privacy-preserving cloud-based models based on HE cryptosystems. This allowed us to build secure and advanced analytic models in various fields. We began by designing and implementing a secure analytic cloud-based model based on a lightweight HE cryptosystem. We used a private resident cloud entity, called ”privacy manager”, as an intermediate communication server between data owners and public cloud servers. The privacy manager handles analytical tasks that cannot be accomplished by the lightweight HE cryptosystem. This model is convenient for several application domains that require real-time responses. Data owners delegate their processing tasks to the privacy manager, which then helps to automate analysis tasks without the need to interact with data owners. We then developed a comprehensive, secure analytical model based on a Fully Homomorphic Encryption (FHE), that has more computational capability than the lightweight HE. Although FHE can automate analysis tasks and avoid the use of the privacy manager entity, it also leads to massive computational overhead. To overcome this issue, we took the advantage of the massive cloud resources by designing a MapReduce model that massively parallelises HE analytical tasks. Our parallelisation approach significantly speeds up the performance of analysis computations based on FHE. We then considered distributed analytic models where the data is generated from distributed heterogeneous sources such as healthcare and industrial sensors that are attached to people or installed in a distributed-based manner. We developed a secure distributed analytic model by re-designing several analytic algorithms (centroid-based and distribution-based clustering) to adapt them into a secure distributed-based models based on FHE. Our distributed analytic model was developed not only for distributed-based applications, but also it eliminates FHE overhead obstacle by achieving high efficiency in FHE computations. Furthermore, the distributed approach is scalable across three factors: analysis accuracy, execution time and the amount of resources used. This scalability feature enables users to consider the requirements of their analysis tasks based on these factors (e.g. users may have limited resources or time constrains to accomplish their analysis tasks). Finally, we designed and implemented two privacy-preserving real-time cloud-based applications to demonstrate the capabilities of HE cryptosystems, in terms of both efficiency and computational capabilities for applications that require timely and reliable delivery of services. First, we developed a secure cloud-based billing model for a sensor-enabled smart grid infrastructure by using lightweight HE. This model handled billing analysis tasks for individual users in a secure manner without the need to interact with any trusted parties. Second, we built a real-time secure health surveillance model for smarter health communities in the cloud. We developed a secure change detection model based on an exponential smoothing technique to predict future changes in health vital signs based on FHE. Moreover, we built an innovative technique to parallelise FHE computations which significantly reduces computational overhead

    Building the Hyperconnected Society- Internet of Things Research and Innovation Value Chains, Ecosystems and Markets

    Get PDF
    This book aims to provide a broad overview of various topics of Internet of Things (IoT), ranging from research, innovation and development priorities to enabling technologies, nanoelectronics, cyber-physical systems, architecture, interoperability and industrial applications. All this is happening in a global context, building towards intelligent, interconnected decision making as an essential driver for new growth and co-competition across a wider set of markets. It is intended to be a standalone book in a series that covers the Internet of Things activities of the IERC – Internet of Things European Research Cluster from research to technological innovation, validation and deployment.The book builds on the ideas put forward by the European Research Cluster on the Internet of Things Strategic Research and Innovation Agenda, and presents global views and state of the art results on the challenges facing the research, innovation, development and deployment of IoT in future years. The concept of IoT could disrupt consumer and industrial product markets generating new revenues and serving as a growth driver for semiconductor, networking equipment, and service provider end-markets globally. This will create new application and product end-markets, change the value chain of companies that creates the IoT technology and deploy it in various end sectors, while impacting the business models of semiconductor, software, device, communication and service provider stakeholders. The proliferation of intelligent devices at the edge of the network with the introduction of embedded software and app-driven hardware into manufactured devices, and the ability, through embedded software/hardware developments, to monetize those device functions and features by offering novel solutions, could generate completely new types of revenue streams. Intelligent and IoT devices leverage software, software licensing, entitlement management, and Internet connectivity in ways that address many of the societal challenges that we will face in the next decade

    Sofie: Smart Operating System For Internet Of Everything

    Get PDF
    The proliferation of Internet of Things and the success of rich cloud services have pushed the horizon of a new computing paradigm, Edge computing, which calls for processing the data at the edge of the network. Applications such as cloud offloading, smart home, and smart city are idea area for Edge computing to achieve better performance than cloud computing. Edge computing has the potential to address the concerns of response time requirement, battery life constraint, bandwidth cost saving, as well as data safety and privacy. However, there are still some challenges for applying Edge computing in our daily life. The missing of the specialized operating system for Edge computing is holding back the flourish of Edge computing applications. Service management, device management, component selection as well as data privacy and security is also not well supported yet in the current computing structure. To address the challenges for Edge computing systems and applications in these aspects, we have planned a series of empirical and theoretical research. We propose SOFIE: Smart Operating System For Internet Of Everything. SOFIE is the operating system specialized for Edge computing running on the Edge gateway. SOFIE could establish and maintain a reliable connection between cloud and Edge device to handle the data transportation between gateway and Edge devices; to provide service management and data management for Edge applications; to protect data privacy and security for Edge users; to guarantee the wellness of the Edge devices. Moreover, SOFIE also provide a naming mechanism to connect Edge device more efficiently. To solve the component selection problem in Edge computing paradigm, SOFIE also include our previous work, SURF, as a model to optimize the performance of the system. Finally, we deployed the design of SOFIE on an IoT/M2M system and support semantics with access control

    Advances in Information Security and Privacy

    Get PDF
    With the recent pandemic emergency, many people are spending their days in smart working and have increased their use of digital resources for both work and entertainment. The result is that the amount of digital information handled online is dramatically increased, and we can observe a significant increase in the number of attacks, breaches, and hacks. This Special Issue aims to establish the state of the art in protecting information by mitigating information risks. This objective is reached by presenting both surveys on specific topics and original approaches and solutions to specific problems. In total, 16 papers have been published in this Special Issue

    Post-Quantum Era Privacy Protection for Intelligent Infrastructures

    Get PDF
    As we move into a new decade, the global world of Intelligent Infrastructure (II) services integrated into the Internet of Things (IoT) are at the forefront of technological advancements. With billions of connected devices spanning continents through interconnected networks, security and privacy protection techniques for the emerging II services become a paramount concern. In this paper, an up-to-date privacy method mapping and relevant use cases are surveyed for II services. Particularly, we emphasize on post-quantum cryptography techniques that may (or must when quantum computers become a reality) be used in the future through concrete products, pilots, and projects. The topics presented in this paper are of utmost importance as (1) several recent regulations such as Europe's General Data Protection Regulation (GDPR) have given privacy a significant place in digital society, and (2) the increase of IoT/II applications and digital services with growing data collection capabilities are introducing new threats and risks on citizens' privacy. This in-depth survey begins with an overview of security and privacy threats in IoT/IIs. Next, we summarize some selected Privacy-Enhancing Technologies (PETs) suitable for privacy-concerned II services, and then map recent PET schemes based on post-quantum cryptographic primitives which are capable of withstanding quantum computing attacks. This paper also overviews how PETs can be deployed in practical use cases in the scope of IoT/IIs, and maps some current projects, pilots, and products that deal with PETs. A practical case study on the Internet of Vehicles (IoV) is presented to demonstrate how PETs can be applied in reality. Finally, we discuss the main challenges with respect to current PETs and highlight some future directions for developing their post-quantum counterparts

    Building the Hyperconnected Society- Internet of Things Research and Innovation Value Chains, Ecosystems and Markets

    Get PDF
    This book aims to provide a broad overview of various topics of Internet of Things (IoT), ranging from research, innovation and development priorities to enabling technologies, nanoelectronics, cyber-physical systems, architecture, interoperability and industrial applications. All this is happening in a global context, building towards intelligent, interconnected decision making as an essential driver for new growth and co-competition across a wider set of markets. It is intended to be a standalone book in a series that covers the Internet of Things activities of the IERC – Internet of Things European Research Cluster from research to technological innovation, validation and deployment.The book builds on the ideas put forward by the European Research Cluster on the Internet of Things Strategic Research and Innovation Agenda, and presents global views and state of the art results on the challenges facing the research, innovation, development and deployment of IoT in future years. The concept of IoT could disrupt consumer and industrial product markets generating new revenues and serving as a growth driver for semiconductor, networking equipment, and service provider end-markets globally. This will create new application and product end-markets, change the value chain of companies that creates the IoT technology and deploy it in various end sectors, while impacting the business models of semiconductor, software, device, communication and service provider stakeholders. The proliferation of intelligent devices at the edge of the network with the introduction of embedded software and app-driven hardware into manufactured devices, and the ability, through embedded software/hardware developments, to monetize those device functions and features by offering novel solutions, could generate completely new types of revenue streams. Intelligent and IoT devices leverage software, software licensing, entitlement management, and Internet connectivity in ways that address many of the societal challenges that we will face in the next decade
    • …
    corecore