1,410 research outputs found

    Achieving ICS resilience and security through granular data flow management

    Get PDF
    Modern Industrial Control Systems (ICS) rely on enterprise to plant floor connectivity. Where the size, diversity, and therefore complexity of ICS increase, operational requirements, goals, and challenges defined by users across various sub-systems follow. Recent trends in Information Technology (IT) and Operational Technology (OT) convergence may cause operators to lose a comprehensive understanding of end-to-end data flow requirements. This presents a risk to system security and resilience. Sensors were once solely applied for operational process use, but now act as inputs supporting a diverse set of organisational requirements. If these are not fully understood, incomplete risk assessment, and inappropriate implementation of security controls could occur. In search of a solution, operators may turn to standards and guidelines. This paper reviews popular standards and guidelines, prior to the presentation of a case study and conceptual tool, highlighting the importance of data flows, critical data processing points, and system-to-user relationships. The proposed approach forms a basis for risk assessment and security control implementation, aiding the evolution of ICS security and resilience

    A framework for Operational Security Metrics Development for industrial control environment

    Get PDF
    Security metrics are very crucial towards providing insights when measuring security states and susceptibilities in industrial operational environments. Obtaining practical security metrics depend on effective security metrics development approaches. To be effective, a security metrics development framework should be scope-definitive, objective-oriented, reliable, simple, adaptable, and repeatable (SORSAR). A framework for Operational Security Metrics Development (OSMD) for industry control environments is presented, which combines concepts and characteristics from existing approaches. It also adds the new characteristic of adaptability. The OSMD framework is broken down into three phases of: target definition, objective definition, and metrics synthesis. A case study scenario is used to demonstrate an instance of how to implement and apply the proposed framework to demonstrate its usability and workability. Expert elicitation has also be used to consolidate the validity of the proposed framework. Both validation approaches have helped to show that the proposed framework can help create effective and efficient ICS-centric security metrics taxonomy that can be used to evaluate capabilities or vulnerabilities. The understanding from this can help enhance security assurance within industrial operational environments

    A framework for Operational Security Metrics Development for industrial control environment

    Get PDF
    Security metrics are very crucial towards providing insights when measuring security states and susceptibilities in industrial operational environments. Obtaining practical security metrics depend on effective security metrics development approaches. To be effective, a security metrics development framework should be scope-definitive, objective-oriented, reliable, simple, adaptable, and repeatable (SORSAR). A framework for Operational Security Metrics Development (OSMD) for industry control environments is presented, which combines concepts and characteristics from existing approaches. It also adds the new characteristic of adaptability. The OSMD framework is broken down into three phases of: target definition, objective definition, and metrics synthesis. A case study scenario is used to demonstrate an instance of how to implement and apply the proposed framework to demonstrate its usability and workability. Expert elicitation has also be used to consolidate the validity of the proposed framework. Both validation approaches have helped to show that the proposed framework can help create effective and efficient ICS-centric security metrics taxonomy that can be used to evaluate capabilities or vulnerabilities. The understanding from this can help enhance security assurance within industrial operational environments

    Cybersecurity for Manufacturers: Securing the Digitized and Connected Factory

    Full text link
    As manufacturing becomes increasingly digitized and data-driven, manufacturers will find themselves at serious risk. Although there has yet to be a major successful cyberattack on a U.S. manufacturing operation, threats continue to rise. The complexities of multi-organizational dependencies and data-management in modern supply chains mean that vulnerabilities are multiplying. There is widespread agreement among manufacturers, government agencies, cybersecurity firms, and leading academic computer science departments that U.S. industrial firms are doing too little to address these looming challenges. Unfortunately, manufacturers in general do not see themselves to be at particular risk. This lack of recognition of the threat may represent the greatest risk of cybersecurity failure for manufacturers. Public and private stakeholders must act before a significant attack on U.S. manufacturers provides a wake-up call. Cybersecurity for the manufacturing supply chain is a particularly serious need. Manufacturing supply chains are connected, integrated, and interdependent; security of the entire supply chain depends on security at the local factory level. Increasing digitization in manufacturing— especially with the rise of Digital Manufacturing, Smart Manufacturing, the Smart Factory, and Industry 4.0, combined with broader market trends such as the Internet of Things (IoT)— exponentially increases connectedness. At the same time, the diversity of manufacturers—from large, sophisticated corporations to small job shops—creates weakest-link vulnerabilities that can be addressed most effectively by public-private partnerships. Experts consulted in the development of this report called for more holistic thinking in industrial cybersecurity: improvements to technologies, management practices, workforce training, and learning processes that span units and supply chains. Solving the emerging security challenges will require commitment to continuous improvement, as well as investments in research and development (R&D) and threat-awareness initiatives. This holistic thinking should be applied across interoperating units and supply chains.National Science Foundation, Grant No. 1552534https://deepblue.lib.umich.edu/bitstream/2027.42/145442/1/MForesight_CybersecurityReport_Web.pd

    Industry 4.0—from Smart Factory to Cognitive Cyberphysical Production System and Cloud Manufacturing

    Get PDF
    This book focuses on recent developments in new industrial platforms, with Industry 4.0 on its way to becoming Industry 5.0. The book covers smart decision support systems for green and sustainable machining, microscale machining, cyber-physical production networks, and the optimization of assembly lines. The modern multiobjective algorithms and multicriteria decision-making methods are applied to various real-world industrial problems. The emerging problem of cybersecurity in advanced technologies is addressed as well

    Security risks in cyber physical systems—A systematic mapping study

    Get PDF
    The increased need for constant connectivity and complete automation of existing systems fuels the popularity of Cyber Physical Systems (CPS) worldwide. Increasingly more, these systems are subjected to cyber attacks. In recent years, many major cyber-attack incidents on CPS have been recorded and, in turn, have been raising concerns in their users' minds. Unlike in traditional IT systems, the complex architecture of CPS consisting of embedded systems integrated with the Internet of Things (IoT) requires rather extensive planning, implementation, and monitoring of security requirements. One crucial step to planning, implementing, and monitoring of these requirements in CPS is the integration of the risk management process in the CPS development life cycle. Existing studies do not clearly portray the extent of damage that the unattended security issues in CPS can cause or have caused, in the incidents recorded. An overview of the possible risk management techniques that could be integrated into the development and maintenance of CPS contributing to improving its security level in its actual environment is missing. In this paper, we are set out to highlight the security requirements and issues specific to CPS that are discussed in scientific literature and to identify the state-of-the-art risk management processes adopted to identify, monitor, and control those security issues in CPS. For that, we conducted a systematic mapping study on the data collected from 312 papers published between 2000 and 2020, focused on the security requirements, challenges, and the risk management processes of CPS. Our work aims to form an overview of the security requirements and risks in CPS today and of those published contributions that have been made until now, towards improving the reliability of CPS. The results of this mapping study reveal (i) integrity authentication and confidentiality as the most targeted security attributes in CPS, (ii) model-based techniques as the most used risk identification and assessment and management techniques in CPS, (iii) cyber-security as the most common security risk in CPS, (iv) the notion of “mitigation measures” based on the type of system and the underline internationally recognized standard being the most used risk mitigation technique in CPS, (v) smart grids being the most targeted systems by cyber-attacks and thus being the most explored domain in CPS literature, and (vi) one of the major limitations, according to the selected literature, concerns the use of the fault trees for fault representation, where there is a possibility of runtime system faults not being accounted for. Finally, the mapping study draws implications for practitioners and researchers based on the findings.</p

    Pains, Gains and PLCs:Ten Lessons from Building an Industrial Control Systems Testbed for Security Research

    Get PDF
    Recent years have seen a number of cyber attacks targeting Industrial Control Systems (ICSs). Reports detailing the findings from such attacks vary in detail. Hands-on experimental research is, therefore, required to better understand and explore security challenges in ICSs. However, real-world production systems are often off- limits due to the potential impact such research could have on operational processes and, in turn, safety. On the other hand, software-based simulations cannot always reflect all the potential device/system states due to over-simplified assumptions when modelling the hardware in question. As a result, laboratory-based ICS testbeds have become a key tool for research on ICS security. Development of such a testbed is a costly, labour- and time- intensive activity that must balance a range of design considerations, e.g., diversity of hardware and software platforms against scalability and complexity. Yet there is little coverage in existing literature on such design considerations, their implications and how to avoid typical pitfalls. Each group of researchers embarks on this journey from scratch, learning through a painful process of trial and error. In this paper we address this gap by reflecting on over 3 years of experience of building an extensive ICS testbed with a range of devices (e.g., PLCs, HMIs, RTUs) and software. We discuss the architecture of our testbed and reflect on our experience of addressing issues of diversity, scalability and complexity and design choices to manage trade-offs amongst these properties

    Orchestrating product provenance story:When IOTA ecosystem meets electronics supply chain space

    Get PDF
    "Trustworthy data" is the fuel for ensuring transparent traceability, precise decision-making, and cogent coordination in the supply chain (SC) space. However, the disparate data silos act as a trade barrier in orchestrating the provenance of product story starting from the transformation of raw materials into the circuit board to the assembling of electronic components into end products available on the store shelf for customers. Therefore, to bridge the fragmented siloed information across global supply chain partners, the diffusion of blockchain (BC) as one of the advanced distributed ledger technology (DLT) takeover the on-premise legacy systems. Nevertheless, the challenging constraints of blockchain including scalability, accessing off-line data, fee-less microtransactions and many more lead to the third wave of blockchain called IOTA. In this paper, we propose a framework for supporting provenance in the electronic supply chain (ECS) by using permissioned IOTA ledger. Realizing the crucial requirement of trustworthy data, we use Masked Authenticated Messaging (MAM) channel provided by IOTA that allows the SC players to procure distributed information while keeping confidential trade flows, tamper-proof data, and fine-grained accessibility rights. To identify operational disruption, we devise a transparent product ledger through transaction data and consignment information to keep track of the complete product journey at each intermediary step during SC processes. Furthermore, we evaluate the secure provenance data construction time for varying payload size.Comment: 47 pages, 18 figure
    • …
    corecore