1,192 research outputs found

    On cost-effective reuse of components in the design of complex reconfigurable systems

    Get PDF
    Design strategies that benefit from the reuse of system components can reduce costs while maintaining or increasing dependability—we use the term dependability to tie together reliability and availability. D3H2 (aDaptive Dependable Design for systems with Homogeneous and Heterogeneous redundancies) is a methodology that supports the design of complex systems with a focus on reconfiguration and component reuse. D3H2 systematizes the identification of heterogeneous redundancies and optimizes the design of fault detection and reconfiguration mechanisms, by enabling the analysis of design alternatives with respect to dependability and cost. In this paper, we extend D3H2 for application to repairable systems. The method is extended with analysis capabilities allowing dependability assessment of complex reconfigurable systems. Analysed scenarios include time-dependencies between failure events and the corresponding reconfiguration actions. We demonstrate how D3H2 can support decisions about fault detection and reconfiguration that seek to improve dependability while reducing costs via application to a realistic railway case study

    On Modelling and Analysis of Dynamic Reconfiguration of Dependable Real-Time Systems

    Full text link
    This paper motivates the need for a formalism for the modelling and analysis of dynamic reconfiguration of dependable real-time systems. We present requirements that the formalism must meet, and use these to evaluate well established formalisms and two process algebras that we have been developing, namely, Webpi and CCSdp. A simple case study is developed to illustrate the modelling power of these two formalisms. The paper shows how Webpi and CCSdp represent a significant step forward in modelling adaptive and dependable real-time systems.Comment: Presented and published at DEPEND 201

    Putting Teeth into Open Architectures: Infrastructure for Reducing the Need for Retesting

    Get PDF
    Proceedings Paper (for Acquisition Research Program)The Navy is currently implementing the open-architecture framework for developing joint interoperable systems that adapt and exploit open-system design principles and architectures. This raises concerns about how to practically achieve dependability in software-intensive systems with many possible configurations when: 1) the actual configuration of the system is subject to frequent and possibly rapid change, and 2) the environment of typical reusable subsystems is variable and unpredictable. Our preliminary investigations indicate that current methods for achieving dependability in open architectures are insufficient. Conventional methods for testing are suited for stovepipe systems and depend strongly on the assumptions that the environment of a typical system is fixed and known in detail to the quality-assurance team at test and evaluation time. This paper outlines new approaches to quality assurance and testing that are better suited for providing affordable reliability in open architectures, and explains some of the additional technical features that an Open Architecture must have in order to become a Dependable Open Architecture.Naval Postgraduate School Acquisition Research ProgramApproved for public release; distribution is unlimited

    Application of the D3H2 Methodology for the Cost-Effective Design of Dependable Systems

    Get PDF
    The use of dedicated components as a means of achieving desirable levels of fault tolerancein a system may result in high costs. A cost effective way of restoring failed functions is to use heterogeneous redundancies: components that, besides performing their primary intended design function, can also restore compatible functions of other components. In this paper, we apply a novel design methodology called D3H2 (aDaptive Dependable Design for systems with Homogeneous and Heterogeneous redundancies) to assist in the systematic identification of heterogeneous redundancies, the design of hardware/software architectures including fault detection and reconfiguration, and the systematic dependability and cost assessments of the system. D3H2 integrates parameter uncertainty and criticality analyses to model inexact failure data in dependability assessment. The application to a railway case study is presented with a focus on analysing different reconfiguration strategies as well as types and levels of redundancies

    Context-aware adaptation in DySCAS

    Get PDF
    DySCAS is a dynamically self-configuring middleware for automotive control systems. The addition of autonomic, context-aware dynamic configuration to automotive control systems brings a potential for a wide range of benefits in terms of robustness, flexibility, upgrading etc. However, the automotive systems represent a particularly challenging domain for the deployment of autonomics concepts, having a combination of real-time performance constraints, severe resource limitations, safety-critical aspects and cost pressures. For these reasons current systems are statically configured. This paper describes the dynamic run-time configuration aspects of DySCAS and focuses on the extent to which context-aware adaptation has been achieved in DySCAS, and the ways in which the various design and implementation challenges are met

    Enhancing Real-time Embedded Image Processing Robustness on Reconfigurable Devices for Critical Applications

    Get PDF
    Nowadays, image processing is increasingly used in several application fields, such as biomedical, aerospace, or automotive. Within these fields, image processing is used to serve both non-critical and critical tasks. As example, in automotive, cameras are becoming key sensors in increasing car safety, driving assistance and driving comfort. They have been employed for infotainment (non-critical), as well as for some driver assistance tasks (critical), such as Forward Collision Avoidance, Intelligent Speed Control, or Pedestrian Detection. The complexity of these algorithms brings a challenge in real-time image processing systems, requiring high computing capacity, usually not available in processors for embedded systems. Hardware acceleration is therefore crucial, and devices such as Field Programmable Gate Arrays (FPGAs) best fit the growing demand of computational capabilities. These devices can assist embedded processors by significantly speeding-up computationally intensive software algorithms. Moreover, critical applications introduce strict requirements not only from the real-time constraints, but also from the device reliability and algorithm robustness points of view. Technology scaling is highlighting reliability problems related to aging phenomena, and to the increasing sensitivity of digital devices to external radiation events that can cause transient or even permanent faults. These faults can lead to wrong information processed or, in the worst case, to a dangerous system failure. In this context, the reconfigurable nature of FPGA devices can be exploited to increase the system reliability and robustness by leveraging Dynamic Partial Reconfiguration features. The research work presented in this thesis focuses on the development of techniques for implementing efficient and robust real-time embedded image processing hardware accelerators and systems for mission-critical applications. Three main challenges have been faced and will be discussed, along with proposed solutions, throughout the thesis: (i) achieving real-time performances, (ii) enhancing algorithm robustness, and (iii) increasing overall system's dependability. In order to ensure real-time performances, efficient FPGA-based hardware accelerators implementing selected image processing algorithms have been developed. Functionalities offered by the target technology, and algorithm's characteristics have been constantly taken into account while designing such accelerators, in order to efficiently tailor algorithm's operations to available hardware resources. On the other hand, the key idea for increasing image processing algorithms' robustness is to introduce self-adaptivity features at algorithm level, in order to maintain constant, or improve, the quality of results for a wide range of input conditions, that are not always fully predictable at design-time (e.g., noise level variations). This has been accomplished by measuring at run-time some characteristics of the input images, and then tuning the algorithm parameters based on such estimations. Dynamic reconfiguration features of modern reconfigurable FPGA have been extensively exploited in order to integrate run-time adaptivity into the designed hardware accelerators. Tools and methodologies have been also developed in order to increase the overall system dependability during reconfiguration processes, thus providing safe run-time adaptation mechanisms. In addition, taking into account the target technology and the environments in which the developed hardware accelerators and systems may be employed, dependability issues have been analyzed, leading to the development of a platform for quickly assessing the reliability and characterizing the behavior of hardware accelerators implemented on reconfigurable FPGAs when they are affected by such faults

    A dependable anisotropic magnetoresistance sensor system for automotive applications

    Get PDF
    The increasing usage of electronic systems in automotive applications aims to enhance passenger safety as well as the performance of the cars. In modern vehicles, the mechanical and hydraulic systems traditionally used have been replaced by X-by-wire systems in which the functions are performed by electronic components. However, the components required should be reliable, have a high-performance, low-cost and capable of operating for a long time in a highly dependable manner despite the harsh operating conditions in automotive applications. Dependability represents the reliance that a user justifiably poses on the service offered by a system, being this especially important in safety-critical applications in which a failure can constitute a threat to people or the environment. An Anisotropic Magnetoresistance (AMR) sensor is a type of magnetic sensor often used for angle measurements in cars. This sensor is affected by performance degradation and catastrophic faults that in principle cause the sensor to stop working suddenly. Therefore, the sensor dependability should be improved in order to guarantee that it will satisfy the continuous increasing dependability as well as accuracy requirements demanded by automotive applications. This research proposes an AMR sensor system that includes a fault-tolerant approach to handle catastrophic faults and self-X properties to maintain the performance of the sensor during its lifetime. Additionally, an interface with the IEEE 1687 standard has been considered, so the sensor is able to communicate with other components of the system in which it is integrated
    • …
    corecore