
safety

Article

Application of the D3H2 Methodology for the
Cost-Effective Design of Dependable Systems †

Jose Ignacio Aizpurua 1,2 *, Eñaut Muxika 2, Yiannis Papadopoulos 3, Ferdinando Chiacchio 4

and Gabriele Manno 5

1 Department of Electronic & Electrical Engineering - Institute for Energy & Environment, University of
Strathclyde, 99 George Street, G1 1RD Glasgow, UK

2 Electronics and Computing Department, Mondragon University, Goiru Kalea 2, 20500 Arrasate, Spain;
emuxika@mondragon.edu

3 Department of Computer Science, University of Hull, Cottingham Road, HU6 7RX Hull, UK;
Y.I.Papadopoulos@hull.ac.uk

4 Department of Industrial Engineering, Universitá di Catania, Viale Andrea Doria 6, 95125 Catania, Italy;
chiacchio@dmi.unict.it

5 DNV GL, Strategic Research & Innovation, Veritasveien 1, 1363 Høvik, Norway;
Gabriele.Manno@dnvgl.com

* Correspondence: jose.aizpurua@strath.ac.uk; Tel.: +44-(0)141-444-7251
† This paper is an extended version of our paper published in Aizpurua, J.I.; Muxika, E.; Manno, G.;

Chiacchio, F. Heterogeneous Redundancy Analysis based on Component Dynamic Fault Trees. In
International Conference on Probabilistic Safety Assessment and Management (PSAM) 12, 2014.

Academic Editor: Raphael Grzebieta
Received: 14 August 2015; Accepted: 15 March 2016; Published: 25 March 2016

Abstract: The use of dedicated components as a means of achieving desirable levels of fault tolerance
in a system may result in high costs. A cost effective way of restoring failed functions is to use
heterogeneous redundancies: components that, besides performing their primary intended design
function, can also restore compatible functions of other components. In this paper, we apply a novel
design methodology called D3H2 (aDaptive Dependable Design for systems with Homogeneous and
Heterogeneous redundancies) to assist in the systematic identification of heterogeneous redundancies,
the design of hardware/software architectures including fault detection and reconfiguration, and the
systematic dependability and cost assessments of the system. D3H2 integrates parameter uncertainty
and criticality analyses to model inexact failure data in dependability assessment. The application to
a railway case study is presented with a focus on analysing different reconfiguration strategies as
well as types and levels of redundancies.

Keywords: heterogeneous redundancies; cost reduction; dependability assessment; criticality
analysis; uncertainty analysis

1. Introduction

Achieving high dependability via replication of components and the reduction of design costs are
typically conflicting goals [1]. Traditional design strategies to improve a system’s fault tolerance use
replication of hardware components that provide similar functions in redundancy configurations such
as Triple Modular Redundancy [2]. In general, replicated components mask component faults and
provide recovery capabilities when faults compromise the delivery of function; accordingly, they are
known as homogeneous redundancies.

One possible way of improving dependability whilst reducing economic costs is the optimal use
of hardware and software components that provide diverse functions [3,4]. In some scenarios, it is
possible to use heterogeneous redundancies consisting of components which, in addition to performing

Safety 2016, 2, 9; doi:10.3390/safety2020009 www.mdpi.com/journal/safety

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by eBiltegia

https://core.ac.uk/display/222823875?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.mdpi.com/journal/safety
http://www.mdpi.com
http://www.mdpi.com/journal/safety


Safety 2016, 2, 9 2 of 25

their primary intended design function, are also able to restore compatible functionalities of other
components. This is often the case in highly networked scenarios, i.e., systems where several replicas
of system functions are distributed across the physical structure and connected through a network.
For example, a train has replicated functions throughout its cars while a building has replicated
functions throughout its floors and rooms.

Figure 1 shows an example configuration of a single train car with its functions connected to
different communication networks. Each function enclosed within a rectangle has its own components
and this configuration is replicated for all the train cars.

Figure 1. Train car configuration: functions and communication interfaces.

For comfort functions, heterogeneous redundancies can be used freely, but for safety-critical
systems, it is necessary to evaluate the effect of heterogeneous redundancies on dependability. In this
paper, we focus precisely on this issue. System dependability is a term that encompasses a range of
attributes which include safety, reliability, availability, maintainability, and security [5]. We consider
safety and reliability while maintainability and security aspects are outside of the scope of this paper.
A common assumption made in dependability analysis is the ideal nature of health monitoring
mechanisms ([6–9]). This assumption may lead the designer to adopt optimistic decisions which may
prove to be inadequately safe. In this paper, we move away from this assumption to evaluate the
influence of imperfections of fault detection, reconfiguration and communication implementations on
system operation. We assume both hardware and software causes leading to omission, commission,
timing and value faults [5].

The analysis is facilitated by the recently proposed D3H2 (aDaptive Dependable Design for
systems with Homogeneous and Heterogeneous redundancies) methodology [3]. The aim of D3H2 is
to identify heterogeneous redundancies; create architectures to use redundancies; and evaluate the
influence of design decisions on dependability and cost. The approach provides the designer with
decision support in the choice among different types of redundancy and reconfiguration strategies. For
the dependability assessment, we use Component Dynamic Fault Trees (CDFTs)—a modular variation
of Dynamic Fault Trees which improves the readability of complex models [4]. In this paper, we extend
CDFTs with capabilities for criticality and uncertainty assessment to enable the improved evaluation
of the impact of components faults on the system and deal with non-exact failure data respectively.

In earlier work [4], we applied the methodology to a simple case study. In this paper, we extend
this work by: (a) applying the methodology to a safety-critical railway application; (b) moving beyond
the assumption of ideal health monitoring configurations to address imperfections; and (c) extending
the CDFT approach integrating uncertainty analysis and criticality assessment. In software controlled
systems, it is not easy to determine a specific failure rate value of software components. This extension
enables the specification of failure rate intervals instead of single values and can be used to evaluate
their effect on the system failure probability distribution. Throughout the paper, we assume that
components are non-repairable assets while diagnostics and maintenance strategies are beyond the
scope of this paper.



Safety 2016, 2, 9 3 of 25

The remainder of this paper is structured as follows. Section 2 overviews related work. Section 3
presents the D3H2 methodology, emphasizing dependability analysis and the new contributions of
this paper. Section 4 applies the D3H2 methodology to the door status control of a train car. Finally,
Section 5 draws conclusions and identifies further analyses.

2. Related Work

Heterogeneous redundancies can take many forms: design diversity [10], analytical
redundancies [11], or redundancies arising from overlapped system functions [3]. All these approaches
share a common design goal: the reuse of system components to provide a compatible functionality.
In our approach, we identify and exploit implicit diversity which may exist in an application to
provide improved fault tolerance and reduce costs. Detailed knowledge and mathematical formulation
of the system is needed to get analytical redundancy relations [11]. However, the complexity of
the mathematical formulation increases with the system size, and this has led us us to adopt a
function-based viewpoint with qualitative attributes, instead of a formal mathematical specification
approach (see also Subsection 3.2).

The evaluation of the influence of design decisions on system dependability and cost is an ongoing
research challenge. While many works have concentrated on addressing the influence of homogeneous
redundancies on system dependability and cost (e.g., [12–16]), approaches focusing on the evaluation
of heterogeneous redundancies are scarce.

Shelton and Koopman used functional alternatives to compensate for component failures and
assign utility values to system configurations evaluating their influence on the overall system
utility [6]. Wysocki and Debouk reused processing units to continue operating in the presence
of software component failures [7]. They perform availability and cost evaluations using Fault
Trees and Monte Carlo simulations. Methodological support for characterizing an adaptation model
while meeting availability-cost requirements was presented in [8]. For each system component, its
implicit redundancies and quality constraints are specified to determine compatible components.
System configuration probabilities are analysed using Component Fault Trees and Markov chains.

From the reviewed approaches, the following conclusions are emphasized (the reader is referred
to [9] for an extended discussion): the identification of heterogeneous redundancies is performed
as an ad hoc task relying on the designer’s creativity; the failure behaviour of health monitoring
implementations and heterogeneous redundancy concepts have not been addressed; and the
dependability assessment of heterogeneous redundancies and health monitoring implementations
requires an approach that accounts for time-dependent events.

Therefore, to exploit the potential of heterogeneous redundancies, we present a methodology
which integrates: (a) systematic identification of heterogeneous redundancies; (b) construction of
system architectures that include hardware, software and communication components and deploy
redundancies by means of fault detection and reconfiguration implementations; and (c) systematic
evaluation of the influence on dependability and cost of the designed system architectures.

3. D3H2 Methodology

D3H2 integrates the modelling and analysis activities as shown in Figure 2. Systems are specified
as a set of interacting hardware, software, and communication resources, including their interfaces
and provided functionality.

The main approaches integrated in the D3H2 methodology are listed below:

• The Functional Modelling Approach specifies the functional model including system functions, the
physical location in which these functions are performed, and a necessary list of resources to
develop these functions (see Subsection 3.1).

• The Compatibility Analysis identifies compatible implementations (i.e., redundancies) in the
functional model. To use these compatibilities, it may be necessary to aggregate additional



Safety 2016, 2, 9 4 of 25

resources and perform the allocation activity for the new elements. Subsequently, reconfiguration
strategies are defined including all implementations and their priorities (see Subsection 3.2).

• To use homogeneous and heterogeneous redundancies in highly networked scenarios, it is
necessary to extend the functional model with fault detection and reconfiguration functions.
To perform these functions, it also is necessary to allocate hardware/software (HW/SW) resources
to the system functions. Accordingly, the extended HW/SW architecture is designed via an
Extended Functional Modelling Approach (see Subsection 3.3).

• Finally, the Dependability Evaluation Modelling Approach predicts the dependability of the extended
HW/SW architecture. The dependability and cost analyses allow designers to decide on design
variants that achieve the best trade-offs between dependability and cost (see Subsection 3.4).

D3H2 Methodology

Figure 2. D3H2 methodology [3]: (a) Functional Modelling Approach; (b) Compatibility Analysis;
(c) Extended Functional Modelling Approach; (d) Dependability Evaluation Modelling Approach.

Finally, the extended HW/SW architecture needs to be evaluated to verify if the initial
requirements are met. If they are not satisfied there are two options: Option A takes the process
to an earlier activity and iterates from there while Option B moves the design process back to its starting
point so that design requirements are reconsidered. The reconsideration of design requirements from
Option B results in the redesign of the functional model.

3.1. Functional Modelling Approach

The objective of the Functional Modelling Approach is the procedural consideration of system
functions, resources, and the relations between them. The Functional Modelling Approach is inspired
from the Structured Analysis and Design Technique [17] and it has been designed to enable the
systematic identification of heterogeneous redundancies and extraction of reconfiguration strategies.

The Functional Modelling Approach specifies the functional operation of the system in a top-down
manner based on tokens—starting from a set of high-level functions (e.g., different train operations:
train operating properly, train stopped) tracing down to the necessary resources to perform these
functions (Figure 3).

A high level function consists of a set of Main Functions (MF), e.g., train operating
properly = {traction system OK, signalling system OK, braking system OK,. . . }. These main functions
are performed in possibly different Physical Locations (PLs), e.g., a single air conditioning control
implementation may span a whole train car or each car compartment in a train car may have its own
air conditioning control. Similarly, a main function consists of a set of subfunctions (SF), e.g., input,
control and output subfunctions. A subfunction may have multiple implementations (#) to carry out
the subfunction and these are ordered with respect to their priority. Each implementation requires a
set of hardware, software and communication resources.



Safety 2016, 2, 9 5 of 25

Figure 3. Functional Modelling Approach [18].

For simplicity, our token-based specification approach focuses on main functions and a first level
of decomposition from main functions to subfunctions. However, note that the Functional Modelling
Approach is extendible to N functional levels. The full specification of a subfunction’s implementation
of a generic main function is specified as follows:

Main Function.Physical Location.Subfunction.Implementation (1)

To define consistently the physical location of system functions, a physical location map is defined
for the physical structure. Figure 4 shows the physical location map of an hypothetical train, where
each car of the train is comprised of different compartments (ZoneA, ZoneB).

Figure 4. Physical location map.

Based on the specification defined in Equation (1), Table 1 displays functional model examples of
an existing railway train car, including typical main functions (Figure 1), their physical location within
the car (Figure 4), and the necessary set of subfunctions and resources. For instance, the Fire Protection
main function is performed in the compartment ZoneA of the Car1 in the train. It is comprised of fire
detection, fire protection control and alarm subfunctions, and the implementation of the fire detection
subfunction is comprised of a fire detection sensor and a PUFP processing unit (#1).

When designing a new system, the orientation of the Functional Modelling Approach focuses
from system main functions toward resources (top-down). This design strategy requires planning
and full understanding of the system so that an accurate overall picture of the system is obtained.
Nonetheless, the drawback of this perspective is that it increases the development time and sometimes
not everything is known at the beginning of a project (e.g., physical layout of the system). On the
contrary, when addressing the redesign of an already existing system, a bottom-up first step is needed
to obtain a functional model.



Safety 2016, 2, 9 6 of 25

Table 1. Example of functional models.

Main Function Physical Location Subfunction Resources #

Fire
Protection

Train. Car1. ZoneA

Fire Detection Fire Detector, PUFP 1

Fire Protection Control Fire Detection, PUFP, SWFP 2

Alarm Fire Protection Control, PUFP, Sprinkler 3

Passenger
Alarm
System

Train. Car1. ZoneA

Passenger Alarm Emergency Button, PUPAS 4

Process Alarm Passenger Alarm, PUPAS, SWPAS 5

Alarm Process Alarm, PUPAS, Siren 6

Passenger
Info.

System
Train. Car1. ZoneA

Current Position GPS, PUDriver 7

Process Information Current Position, PUDriver, SWPIS 8

Activate Message Process Information, PUPIS, Display,
Comm 9

Temperature
Control

Train. Car1. ZoneA
Temperature Measurement Temperature SensorA, PUTC_A 10

... ... 11

Train.Car1.ZoneB
Temperature Measurement Temperature SensorB, PUTC_B 12

... ... 13

FP: Fire Protection; PAS: Passenger Alarm System; PIS: Passenger Information System;
TC: Temperature Control.

3.2. Compatibility Analysis

The Compatibility Analysis identifies heterogeneous redundancies based on tokens.
Among system implementations defined in the functional model, there may exist two compatibility
cases. Natural compatibility emerges automatically from compatible implementations carrying out
the same subfunctions in compatible physical locations. Forced compatibility identifies available I/O
implementations located at compatible physical locations automatically, and then evaluates whether
they can fulfill additional subfunctions using engineering design knowledge.

We define compatible physical locations according to the location of subfunctions (Figure 4): (1) same
physical location; (2) adjacent physical locations ([Train].[Car1].ZoneA ↔ [Train].[Car1].ZoneB); or
(3) physical locations that span other PLs ([Train].[Car1].[ZoneA]→ [Train].[Car1].[ZoneA].Door).

Therefore, we identify matching subfunctions and compatible physical locations in the functional
model to determine if the analysed implementations are compatible or not. From Table 1, the following
heterogeneous redundancies are identified: alternative alarm signalling strategies #3↔#6 (natural
compatibility); contiguous compartment’s temperature sensor #10↔#12 (natural compatibility); and an
alternative alarm strategy using visual displays: #3→#9 and #6→#9 (forced compatibilities).

Reconfiguration strategies integrate the functional model with redundancies. They define all
possible realizations of the main function comprised of the necessary subfunctions and prioritized
implementations. The prioritization is based on the weighted sum of [3] functional degradation,
failure probability and cost of the implementation. The functional degradation depends on the relative
physical distance (applicable for heterogeneous redundancies arising from natural compatibilities).
For heterogeneous redundancies arising from forced compatibilities, the designer’s knowledge
is necessary.

As mentioned in Section 2, analytical redundancies and heterogeneous redundancies have the
same design objective. There are several approaches in the diagnostics and fault-tolerant control
community focused on identifying analytic redundancies systematically (e.g., see [11]). A number
of approaches in this area evaluate if it is possible to provide the same service with a combination
of remaining sensors, i.e., if there exists an alternative analytic equation, which uses different set of



Safety 2016, 2, 9 7 of 25

variables (resources) to provide the same service. The identification of redundancies focuses on the
relations among system equations and variables. That is, if there exists redundant information about
the system structure (i.e., if there are more equations than variables to be determined), there may also
exist alternative ways to define a variable.

The exhaustive characterization and mathematical formulation of complex systems is not trivial,
and, in some cases, it is infeasible. The identification of analytic redundancies is typically feasible
at a subsystem level, but the complexity of the mathematical formulation increases dramatically at
the system level. Additional complexity exists in highly networked scenarios where systems consist
of many subsystems, which are all interconnected through a communication network. In general,
the formal identification and categorisation of heterogeneous redundancies for complex systems is
a challenging task. This is pronounced in the case of non-evident redundancies raised from forced
compatibilities because there is no direct relationship between them.

3.3. Extended Functional Modelling Approach

The Extended Functional Modelling Approach augments the functional model by adding health
management functions and implementations; fault detection to detect the incorrect operation of an
implementation; and reconfiguration to recover from implementation failures. We have defined the
following mechanisms and protocols for fault detection and reconfiguration subfunctions:

• Fault detection (FD): each subfunction has an associated fault detection subfunction (FD_SF).
The FD_SF is located at the destination processing unit where the information of the source
processing unit is used to detect communication omission failures directly.

• Reconfiguration (R): each subfunction has its own reconfiguration subfunction (R_SF), which
receives fault detection (FD_SF) signals and sends reconfiguration signals to subfunction
implementations.

• Fault detection of the reconfiguration (FD_R): each reconfiguration implementation (R_SF) has its
own fault detection mechanism (FD_R_SF) implemented in keepalive configuration. Each R_SF
implementation sends keepalive signals to all their FD_R_SF implementations to indicate that it
is operating. In the absence of a keepalive signal during a time-slot, an R_SF implementation is
assumed to be failed. When this happens, the FD_R_SF implementation sends an activation signal
to the available R_SF implementation with the highest priority.

• Communication is considered at resource level.

There does not exist a uniquely valid solution when allocating health management
implementations (e.g., [19]). The adopted decisions predefine the behaviour of health management
mechanisms so that it is possible to design and evaluate extended HW/SW architectures systematically
(see [9] for further discussion).

Since fault detection and reconfiguration are subfunctions of a given main function, they are also
modelled using tokens (FD_SF, R_SF, FD_R_SF). Accordingly, it is possible to analyse alternative fault
detection and reconfiguration strategies (see Section 4, Figure 8 for an example).

Figure 5 describes the closed-loop operation of a system deployed in a highly networked scenario
including input, control and output subfunctions. The operation of the extended HW/SW architecture
is described for the output subfunction with redundancies. Overlapped rectangles describe alternative
implementations for the same subfunction.

Reconfiguration strategies are allocated at design-time in different processing units for the runtime
reconfiguration of implementations. Each unit needs a wrapper that ensures the interchangeability
between compatible implementations and a reconfiguration mechanism to redirect its information.
Furthermore, the units with FD_R_SF implementations require monitoring keepalive signals to control
the correct operation of the active R_SF implementation (see [4] for implementation details).



Safety 2016, 2, 9 8 of 25

Figure 5. Operation of the extended HW/SW architecture.

Depending on the allocation of each subfunction, the extended HW/SW architecture can deal
with multiple simultaneous subfunction failures. For instance, if the reconfiguration implementations
of subfunctions are distributed in different units, the independent and simultaneous reconfiguration
of system functions is possible—so long as the communication does not fail. However, if they are
allocated in the same processing unit, this would add bottlenecks to the design and could limit the
number of subfunctions that can be reconfigured simultaneously. All these design decisions are
evaluated with the Dependability Evaluation Modelling Approach in Subsection 3.4.

The adopted design decisions are dependent on the assumed failure model. However, it is
possible to include other fault-tolerance implementations such as roll-back strategies to recover from
reconfiguration failures instead of using keepalive implementations [5]. The adoption of this strategy
would require redesigning the extended HW/SW architecture and then analysing its effect on the
Dependability Evaluation Modelling Approach.

3.4. Dependability Evaluation Modelling Approach

The Dependability Evaluation Modelling Approach evaluates the dependability of extended
architectures through the systematic failure modelling of the system including all the possible failure
scenarios [4].

3.4.1. Preliminaries on Component Dynamic Fault Trees

In order to model the failure behaviour of the extended architectures, we need a dependability
analysis approach that integrates the following characteristics:

• Modular specification to improve clarity, maintainability, and traceability to the design architecture.
Embed the failure logic of a set of events or components and (re)use it where needed.

• Temporal logic to capture the system failure logic accounting for time-ordered events.
• Specification of any cumulative distribution function of failure events.
• Specification of repeated basic events, subsystems, or components.
• Specification of NOT gates to address the influence of functional events.

The integration of classical Fault Trees with a compositional specification has been addressed
in Component Fault Trees (CFT) [20]. HiP-HOPS (Hierarchically Performed Hazard Origin and
Propagation Studies) has a similar concept of compositional specification using annotations on the
design architecture that can be used not only for safety analysis but also for design optimisation and
requirements allocation [21].

Dynamic Fault Tree (DFT) approaches extended classical Fault Trees with temporal gates [22].
DFT implementations focus on simulation techniques to model failure events with any distribution
function (e.g., Radyban [23], RAATSS [24]) or transformations into other stochastic formalisms
(e.g, transformation into Generalised Stochastic Petri Nets [25]). Boolean Driven Markov Processes
(BDMP) combine mathematical properties of Markov processes with Fault Tree logic which result in



Safety 2016, 2, 9 9 of 25

a flexible dynamic specification logic [26]. However, the Markovian assumption may be limiting for
some systems.

There are also models that are both dynamic and compositional. Existing approaches such as
State-Event Fault Trees (SEFT) [27] and Generalized Fault Trees (GFT) [28] define a high-level modular
failure specification logic which must be transformed into a more fundamental dependability analysis
formalism. The transformation results in a flat state-based system model. For instance, SEFTs are
transformed into Deterministic and Stochastic Petri Nets [27] and GFTs are transformed into Stochastic
Well-Formed Nets [28].

The Component Dynamic Fault Tree (CDFT) is suitable for modelling extended HW/SW
architectures [4]. Figure 6 shows a CDFT example with repeated components (C2) and CDFT gates.
Each component (C1, C2) may have gates, basic events and/or other components as inputs. Each basic
event (BE1, . . . , BE6) is specified according to its cumulative distribution function and its failure rates.

C1

Out1 Out2

OR

III

Out1

OR

III

Out1

AND

Out
1

Out1

AND

Out1

OR

Out1 Out1

PAND

Out1

Out1 Out2

in1

C2

Figure 6. Component Dynamic Fault Tree example [4].

Inspired from the definition of Component Fault Trees [20], a CDFT is defined as follows [18]:

Definition 1. Component Dynamic Fault Tree: the Component Dynamic Fault Tree model, CDFT, is
a 4-tuple < N, G, SC, E > where:

• N is the set of Nodes, which are partitioned into a set of: internal events Nintern, input ports Nin
and output ports Nout; N = {Nintern, Nin, Nout}. For instance, for the CDFT model depicted
in Figure 6, considering C1: Nintern = {C1.BE1, C1.BE2}, Nin = {C1.in1, C1.in2, C1.in3, C1.in4},
Nout = {C1.Out1, C1.Out2}.

• G is the set of Gates, where each gate g ∈ G is described by: one output port g.out; one or more
input ports g.ini /i ∈ N ; a dynamic function which links inputs with outputs according to
static (AND, OR, KooN) and/or dynamic (PAND) Fault Tree gates. As displayed in Table 2,
the behaviour of the CDFT gates are defined according to its input events (A, B), which can be
extended to an arbitrary number of input events.

• SC is a set of Sub-Components, where each subcomponent sc ∈ SC is described by: one or
more output ports sc.outi; one or more input ports sc.ini; and a mapping to another CDFT
component’s failure logic. For instance, for the CDFT model depicted in Figure 6, SC=C2:
Nin = {C2.in1, C2.in2, C2.in3}, Nout = {C2.Out1}; mapping: C1.in1 → C2.in1; C1.in2 → C2.in2;
C1.in3 → C2.in3; C2.out1 → OR.in2; C2.out1 → AND.in1.

• E is a set of directed Edges E ⊆ ((Nintern ∪ Nin ∪ G.OUT ∪ SC.OUT) × (Nout ∪ G.IN ∪ SC.IN)),
where G.OUT is the set of all outputs of all gates; G.IN is the set of all inputs of all gates; SC.OUT is
the set of all outputs of all sub-components; and SC.IN is the set of all inputs of all sub-components.



Safety 2016, 2, 9 10 of 25

Table 2. Component Dynamic Fault Tree gates.

Gate Notation Gate Behaviour

Y=AND(A,B) If A fails and B fails, then Y fails
Y=OR(A,B) If A fails or B fails, then Y fails

Y=PAND(A,B) If A fails before the failure of B or at the same time, then Y fails
Y=NOT(A) If A doesn’t fail, then Y fails

For the quantitative evaluation of CDFTs, Monte Carlo simulations are performed on the system’s
failure evaluation algorithm in order to estimate the failure probability. Namely, for each execution,
first the random time to failure of basic events is calculated according to their cumulative distribution
function via the inverse transform sampling method [29]. Let F be a cumulative distribution function,
r be a random variable drawn from the uniform distribution r ∼ U([0, 1]), and TTF the time to failure
of the event. Then, the inverse sampling method applies the relation F−1(r) = TTF to draw the time
to failure according to the cumulative distribution function. Accordingly, a basic event has occurred
(i.e., signifies fault) when the TTF is smaller than the mission time. Connected gates and components
use this information to determine their outcome (see failure logic in Table 2). When a failure at the
output of a gate or component occurs, the failure time information is passed to the next gate/component
so that the system’s dynamic failure logic is tracked from basic events to system-level top-event. The
failure algorithm is executed a large number of times, and, from the law of big numbers, in the long
run, the failure probabilities of the system are calculated [29].

Equations in (2) define the failure evaluation algorithm for the model in Figure 6:

C2.Out1 = AND(OR(BE3, BE4), OR(BE4, BE5)),

C1.Out1 = OR(BE(λ1, ′exponential′), C2),

C1.Out2 = PAND(OR(BE(λ1, ′exponential′), C2), AND(C2, BE6, BE(λ2, ′exponential′))),

(2)

where the function BE(parameters, distribution) generates the corresponding failure data of basic events.
Note: C2.Out1 is simplified to C2 in the previous equations because C2 has a single output. For clarity
and conciseness, in the remainder of the paper we will use the CDFT equations to express the failure
logic of systems, instead of the graphical representation of CDFTs.

For the analysis of this paper the CDFT gates displayed in Figure 2 are sufficient. However, if
necessary, it is possible to implement other DFT gates [24], or parametrized variants of the CDFT
gates [30]. For instance, if we need to specify events occurring within a specific time interval in a specific
order, we can parametrize the PAND gate defining a time distance between events. The parametrized
PAND gate would be specified as: Y = pPAND(d, A, B), where d is the time distance between events A
and B. Y is true only if A fails before B and B fails within d time units after A.

While a basic event characterizes self-contained failure logic, a component encloses
any-complexity failure logic (with possibly multiple I/O dependencies) specified using basic events,
gates, and further subcomponents. CDFT makes it possible to embed in a component the dynamic
failure logic of a system and reuse it where needed addressing repeated components and basic events.

The implementation of CDFTs requires Monte Carlo simulations, which are time consuming
for complex applications that require high accuracy. In addition, basic events are assumed to be
non-repairable basic events. The extension of CDFT gates and basic events to address repairable
systems is straightforward. However, repairable CDFTs in particular, and repairable DFT in general [24]
are not able to evaluate repairable extended HW/SW architectures because logic gates and basic events
embed predefined repair logic within the gates. This logic makes it impossible to include alternative
reconfiguration strategies that arise in repairable systems (see Section 5).

CDFTs enable the specification of a specific failure rate which is valid if the exact failure
specifications are available. However, the determination of the failure rate of software components



Safety 2016, 2, 9 11 of 25

is not evident. Accordingly, we have extended CDFTs with the possibility to specify an interval of
possible failure rate values, thus allowing analysts and engineers to explore and understand their
influence on system failure behaviour (see Subsection 3.4.4).

3.4.2. Dependability Evaluation Modelling Approach: Concepts and Notation

The failure model of the extended HW/SW architecture includes the possible failure modes of its
implementations. A Fault detection implementation (FD_SF, FD_R_SF) fails in Omission (O) when it
does not detect a failure when it occurs and False Positive (FP) when it falsely detects a failure that has
not occurred. A Reconfiguration implementation (R_SF) fails in omission when it fails to reconfigure a
faulty implementation. Failure of subfunction implementations (SF) cover value and timing failures.

The failures of all system subfunction implementations (SF, FD_SF, R_SF, FD_R_SF) are defined
at the implementation level ([MF].[PL].[SF].[Impl] Failure) with respect to the failures of the
implementation’s resources. Accordingly, subfunction level failures are defined at the subfunction level
([MF].[PL].[SF] Failure) with respect to the combinations of implementation level failures. For brevity,
we will omit the generic common part ([MF].[PL]). Table 3 defines notations of failure and working
events according to their SF and failure modes.

Table 3. Notation of failure and working events.

Notation Failure Logic Notation Failure/Working Logic

FX X failure WX X working

FSF [SF] failure WSFi [SF].[Impli] working = NOT(FSFi)
FSFi [SF].[Impli] failure FR [R_SF] failure

FFD [FD_SF] failure FRi O [R_SF].[Impli] omission

FFD FP [FD_SF] false positive FFD_Ri FP [FD_{[R_SF].[Impli]}] false positive

FFDi [FD_SF].[Impli] failure FFD_Ri [FD_{[R_SF].[Impli]}] failure

FFDi O [FD_SF].[Impli] omission
FRi O/FP

[R_SF].[Impli] omission or
FP = OR(FRi O,FFD_Ri FP)FSFi FP

[SF].[Impli] failure or
FP = OR(FSFi ,FFD FP)

The failure specification of each resource is defined by sampling randomly the failure time
according to their cumulative distribution functions along the system lifetime. The methodology
supports any distribution function, but for the sake of simplicity and without losing the generality of
the approach, exponential failure distributions are assumed in this paper. The failure specification of
resources (FRes) is defined according to their failure rates (λRes). The failure of a SF’s ith implementation
([SF].[Impi] Failure) comprised of N resources is defined as:

FSFi = OR(FRes1 , FRes2 , . . . , FResN ). (3)

The same equation holds for FD_SF, R_SF, and FD_R_SF implementations.

3.4.3. Dependability Evaluation Modelling Approach: Analysis Algorithm

Dependability Evaluation Modelling Approach equations define compositionally combinations
of subfunction implementation failures that prevent the extended HW/SW architecture from performing
its intended subfunction (the failure of any subfunction necessary for a main function provokes the
immediate failure of a main function—hence, from this point onwards, we will only consider the
failure of a subfunction). Accordingly, the failure logic is kept clear for complex systems.



Safety 2016, 2, 9 12 of 25

The SF fails (FSF) when all implementations fail (FAll Impl.), an implementation fails
and reconfiguration does not happen (failure unresolved, FUnresolved), or input dependencies
fail (FDependencies):

FSF = OR(FAll Impl., FUnresolved, FDependencies). (4)

Assuming that we have NSF implementations of the subfunction, the FAll Impl. event happens
when each implementation fails or is detected as failed:

FAll Impl. = AND(FSF1 FP, . . . , FSFNSF FP). (5)

The failure unresolved (FUnresolved) occurs when the working implementation fails and either
the fault is not detected or the reconfiguration itself fails. For each implementation, there are
different failure unresolved events (FUnr. Impi ) because each implementation may have different
failure probabilities. Note that the failure of the last implementation cannot be solved:

FUnresolved = OR(FUnr. Imp1 , . . . , FUnr. ImpNSF -1). (6)

To define FUnr.Impi , let us introduce two new events. The first event occurs when the ith

implementation of the subfunction fails and the reconfiguration has failed but after successfully
reconfiguring the previous i-1 implementations (reconfiguration sequence failure, FR Seq.i ). Assuming
FSF1..i-1 FP = AND(FSF1 FP, . . . ,FSFi-1 FP) indicates the failure or false positive from 1 to i-1
implementations:

FR Seq.i
= PAND(FSF1..i-1 FP, FR, FSFi FP). (7)

The second event occurs when the ith implementation of the subfunction fails and the fault
detection of the subfunction has failed but after detecting correctly previous i-1 implementation
failures (fault detection sequence failure, FFD Seq.i ). Note that fault detection’s false positive and
omission failures are mutually exclusive:

FFD Seq.i = PAND(FSF1..i-1 , FFD, FSFi). (8)

Due to the characterization of time-ordered failures, Equations (7) and (8) can not be further
simplified. Accordingly, the ith implementation’s failure unresolved event (FUnr. Impi ) occurs when
either the fault detection sequence (FFD Seq.i ) fails or the reconfiguration sequence (FR Seq.i ) fails:

FUnr. Impi = OR(FFD Seq.i , FR Seq.i). (9)

Dependencies address Input (I) and Control (C) subfunctions influence control and Output (O)
subfunctions, respectively. Control subfunction failure directly impacts the output subfunction failure
(C→O); and the effect of input subfunction on control subfunction depends if the system is in Closed
Loop (C_CL) or Open Loop (C_OL) configuration:

FDependencies = OR(FDep. C_CL, FDep. C_OL). (10)

Assuming thatWC_X = OR(WC_X1 ,. . . ,WC_XNW
) means that all NW implementations of the C_X

subfunction are working, Equations in (11) describe the different input subfunctions that affect each
control configuration (I_CL→C_CL, I_OL→C_OL). FDep. C_OL may not happen because the OL control
generally does not have input dependencies:

FDep. C_CL = AND(WC_CL, F I_CL) FDep. C_OL = AND(WC_OL, F I_OL). (11)



Safety 2016, 2, 9 13 of 25

The reconfiguration failure is a special subfunction and thereforeFR is developed like Equation (4),
except that there are no additional dependencies:

FR = OR(FAll R Impl., FR Unresolved). (12)

FAll R Impl. indicates the failure of all reconfiguration implementations and FR Unresolved designates
the failure unresolved condition of the reconfiguration. Assuming M reconfiguration implementations:

FAll R Impl. = AND(FR1 O/FP, . . . ,FRM O/FP). (13)

FR Unresolved happens when M-1 FD_R_SF implementations fail:

FR Unresolved = AND(FFD_R1 , . . . ,FFD_RM-1). (14)

The false positive of the reconfiguration’s fault detection occurs when all FD_R_SF
implementations raise the false positive condition simultaneously. Although the system may operate
correctly when a false positive occurs, it has to assume that the information provided by the fault
detection is correct, since there is no mechanism to detect the incorrect operation of fault detection.
The fault detection failure FFD depends on the operation of the destination subfunction (SF_Dest),
because the FD implementation is located at the same PU. Hence, FSF_Dest influences directly FFD.

When the fault detection implementation fails, the change of SFDest’s implementation determines
its reconfiguration. We assume that the change of destination subfunction’s implementation activates
the corresponding fault detection implementation and the previous one is deactivated. Equation (15)
describes the FD_SF failure case when FD_SF has K implementations:

FFD = OR(FFD_Dest1 , . . . ,FFD_DestK ). (15)

As for the failure of the ith fault detection implementation (FFD_Desti ), it expresses the following
event: from 1 to i-1 implementations of the destination SF fail and reconfigure correctly (FSF_Dest1..i-1 ),
and then either the ith fault detection occurs or the implementation of the destination subfunction fails:

FFD_Desti = PAND(FSF_Dest1..i-1 , OR(FSF_Desti ,FFDi O)). (16)

As a result of the designed extended HW/SW architecture, there are dependencies in the system
that can cause cascading failures [5]. For instance, the failure of an input subfunction causes the failure
of the control subfunction, which, in turn, causes the failure of the output subfunction and therefore
main function (cf. Equation (10)). The same happens with health monitoring mechanisms (e.g., the
failure of the FD_R_SF causes the reconfiguration subfunction failure in Equation (12)). To deal with
these scenarios, the designer should include adequate levels of redundancies to improve the reliability
of dependent functions and reduce the probability of cascading failures.

3.4.4. Dependability Evaluation Modelling Approach: Uncertainty Analysis

Implementations operating in highly networked scenarios are typically software controlled
systems. For software components it is difficult to specify a specific failure rate value (e.g., see [31–33]).
Accordingly, we have extended the CDFT approach to integrate failure rate intervals and propagate its
inherent uncertainty based on second order failure probability concepts [34]. For simplicity and due
to the lack of knowledge of real failure data values, the stochastic distribution of variable probability
intervals is chosen to be uniform. Depending on the engineering knowledge of the failure specification,
it is possible to use more informative probabilistic laws. Figure 7 shows the overall evaluation process.

The following activities are involved in the analysis process:



Safety 2016, 2, 9 14 of 25

1. Monte Carlo sampling of the uncertain variables: from the failure rates of the uncertain variables,
a single failure rate value is chosen randomly within the specified failure rate interval according
to the uniform distribution. A randomly sampled failure rate is the outcome of this activity.

2. Monte Carlo sampling of the time to failure of uncertain variables and known variables from
their cumulative distribution function. A set of randomly sampled time to failure instants are the
outcome of this process.

3. With the updated values, the CDFT model is solved extracting counters of top-event failure
occurrences and critical event failure occurrences.

4. After N Monte Carlo trials, the CDFT model’s statistical results are gathered in a histogram which
illustrates and classifies the frequency of occurrence of the top event.

5. After M Monte Carlo trials, the process ends and the histogram is normalized.

Figure 7. Overall uncertainty analysis process.

To analyse CDFTs, the MatCarloRe tool has been extended [35]. The main drawback of this
approach is the time needed for the computation of Monte Carlo simulations (M×N iterations in
Figure 7). While there are other techniques that reduce this time (e.g., dynamic stopping criterion [36]),
for the purposes of this study, we opted for using Matlab’s parallel toolbox in order to perform parallel
tasks in several computers at a time.

4. D3H2 Application: Train Car Door Status Control

The Door Status Control is a safety-critical function that determines the safe operation of door
open/close actions without endangering passengers’ safety [18]. It has dependencies with other
systems of the train and the doors open/closure operations are controlled by the driver depending on
the status of the train, e.g., the doors must remain closed while the train is running.

Each door in the train has different sensors and control buttons for the passengers and the driver.
Figure 1 shows the Door Status Control configuration. There is one opening and one closing button
for the driver connected to the driver’s PU (PUDriver) and each door throughout the train has: one
opening button for passengers, one door speed sensor, one door open detection sensor, one door closed
detection sensor and one obstacle detection sensor. All these sensors, their controllers, and the door
control algorithm are located in the PU1.

In the train, there is a component called TCMS (Train Control and Monitoring System), which
controls and monitors different critical systems of the train such as traction and doors. This component
is homogeneously duplicated in two reliable PUs (PUTCMS) for safety purposes. The TCMS receives
information about the speed of the train and it will not allow the driver to open the doors while the
train is running. To this end, the TCMS sends an enable signal to the driver to inform the driver about
the safe operation of door opening or closing (Enable Door Driver—EDD). Using the information of



Safety 2016, 2, 9 15 of 25

the Enable Door Driver signal, the driver sends an enable signal to the controller of each door (Enable
Door Passenger—EDP) to act safely on opening/closing the doors, while taking into account if the
train is moving and whether there is an obstacle in the door.

Figure 8a describes the functional model of the Door Status Control (DSC) main function, and the
partial functional model of the Video Surveillance (VS) main function, which are both located at the
same physical location: Train.Car1.ZoneA.Door (Figure 4).

Figure 8. Door Status Control: (a) functional model; (b) extended HW/SW architecture.

The Door Status Control main function requires different input subfunctions to assure the
safe operation of door opening/closing: enable subfunctions (Enable Door Driver—EDD, Enable
Door Passenger—EDP), command subfunctions (Door Open Command—DOC and Door Close
Command—DCC), and monitoring subfunctions (Door Open Detection—DOD, Door Closed
Detection—DCD, Door Velocity—DV, Obstacle Detection—OD). Door open commands are generated
by passengers and the driver, but the door close command is controlled only by the driver. These input
subfunctions are directed toward the Door Control Algorithm (DCA) subfunction which determines
when and how to close the doors through the Door Manipulation (DM) subfunction. Note that the
final decision on opening/closing the door relies on the Enable Door Passenger (EDP) signal, which is
determined by the driver.

The Video Surveillance function receives video images via the Video Input (VI) subfunction,
processes them through the process image control subfunction and finally, if it is the case, it raises an
alarm using the lamps and sirens connected to the PUCam. For clarity, only relevant information of the
Video Surveillance main function is shown in Figure 8a.

The extended HW/SW architecture of the Door Status Control main function includes all the
nominal design decisions in the functional model (i.e., EDD, EDP, DCC, DOC, DOD, DCD, DV, OD,
DCA, and DM subfunction implementations (Figure 8a)), design decisions with respect to possible
redundancies for these subfunctions, and corresponding health management mechanisms to detect
implementation failures and reconfigure between redundancies.

To identify possible redundancies, we apply the compatibility analysis focusing on forced
compatibilities because there are no matching subfunctions to consider heterogeneous redundancies
arising from natural redundancies (Subsection 3.2). After analysing all the I/O functions in the
functional model located in compatible physical locations, we can observe that both Door Status
Control and Video Surveillance are performed in the same (compatible) physical location. From this
initial analysis, we can identify that there is a camera in each train car focusing towards the door. Based
on engineering knowledge, we can come up with the heterogeneous redundancy implementations
reusing the camera and its PUCam of the Video Surveillance main function.



Safety 2016, 2, 9 16 of 25

Shaded cells in Figure 8 identify heterogeneous redundancies. For clarity, we show heterogeneous
redundancies only for DOD and DCD subfunctions, but note that the extended HW/SW architecture
may include heterogeneous redundancies of OD and DV subfunctions as displayed in Table 4.

To use these redundancies, the extended functional model must include fault detection and
reconfiguration mechanisms. Figure 8b shows the partial extended HW/SW architecture describing
some heterogeneous redundancies (DOD, DCD) and design decisions for fault detection (FD_SF,
FD_R_SF) and reconfiguration (R_SF) implementations and required resources. In Figure 8b, we show
a possible realization of the health monitoring mechanisms of the DOD subfunction using a single
fault detection implementation (FD_DOD), duplicated reconfiguration implementations (R_DOD), and
duplicated fault detection of the reconfiguration implementations (FD_R_DOD). The decision on the
number and distribution of fault detection, reconfiguration, and fault detection of the reconfiguration
is left to the designer. Note also that, for simplicity, we have omitted repeating subfunctions without
redundancies in Figure 8b (i.e., EDD, EDP, DCC, DOC, DCA, DM—white cells in Figure 8a), but these
also are part of the complete extended HW/SW architecture.

Table 4. Studied subfunction implementation redundancies and necessary resources.

Subfunction Nominal implementation Heterogeneous implementation Homogeneous implementation

Door Open Detection (DOD) PU1, OpenSensor Camera, PUCam, SWOpenDet,
Comm PU1, OpenSensor2

Door Open Detection (DCD) PU1, ClosedSensor Camera, PUCam, SWCloseDet,
Comm PU1, ClosedSensor2

Obstacle Detection (OD) PU1, ObstacleSensor Camera, PUCam, SWObstDet,
Comm PU1, ObstacleSensor2

Door Velocity (DV) PU1, VelocitySensor Camera, PUCam, SWSpeed,
Comm PU1, VelocitySensor2

The cost assessment is performed by adding up the cost of hardware and software resources.
The cost of software components is quantified by considering their development cost assuming that
it will be paid off in X years (let us assume X = 4 years for calculation purposes). We classify four
types of software components: fault detection (SW_FD), reconfiguration (SW_R), fault detection of
the reconfiguration (SW_FD_R) and Control/Detector (SW_Det). The development costs for each of
these four software components is considered once for different subfunction implementations: once
developed, they are adapted for the related subfunction implementations.

This assumption is adopted because the grouped subfunction implementations are closely related
and costs therefore do not multiply (the cost of N variants is not N times the cost of a single
software variant [37]). Fault detection implementations adapt to different subfunctions modifying
subfunction-specific time/value thresholds. The development cost of reconfiguration implementations
does not differ for different subfunctions because reactivation logic holds the same. Reconfiguration’s
fault detection implementations differ only in the keepalive timeout, and the development is independent
of any subfunction. All the control/detector software implementations have a similar logic.

Hardware cost: sensors, controllers and actuator costs are obtained from suppliers. The human
cost related to mounting/testing is considered for sensors and actuators assuming ten minutes per
sensor (actuator) at a rate of 60 e/hour.

Regarding failure rate values, resources with the same characteristics have been grouped.
Pressure sensor covers open, closed and obstacle detection sensors. A processing unit carries all
its different parameters; and communications (Comm.) include Multifunction Vehicle Bus (MVB)
and Ethernet communication protocols and their gateway. Plausible values have been assumed for
software components (Table 5).



Safety 2016, 2, 9 17 of 25

Table 5. Failure rate and cost values.

Component λ (year-1) Cost (e)

SW_Det, SW_HM 1E-2 80

Pressure Sensor [38] 1.6E-2 20

Speed Sensor [38] 1.8E-2 25

Camera [39] 9.43E-2 -

PU [40] 3.87E-2 30

Comm. & Gateway 5E-3 200

4.1. Redundancy Strategies

In order to analyse the effect of redundancy strategies, the reliability of the Door Status Control
main function is analysed according to equations in Subsection 3.4 for different Door Status Control
configurations including homogeneous and heterogeneous redundancies.

Among the four input subfunctions with possible heterogeneous redundancies (DOD, DCD,
OD, DV), alternative extended HW/SW architectures are analysed (Table 6) adding one additional
heterogeneous redundancy and/or homogeneous redundancy to each subfunction. The configuration
of heterogeneous redundancies reuses the camera and requires a specific software component and
communication resources, and the configuration of homogeneous redundancies includes a duplicated
sensor for the specific subfunction (see Figure 8b and Table 4).

Table 6. Analysed configurations.

ID Configuration

#1 No redundancies (Figure 8a)

#2 4 heterogeneous redundancies

#3 4 homogeneous redundancies

#4 3 heterogeneous redundancies.: DCD, DOD, DV;
1 homogeneous redundancy: OD

#5 2 heterogeneous redundancies.: DCD, DOD;
2 homogeneous redundancies: OD, DV

#6 1 heterogeneous redundancy: DCD;
3 homogeneous redundancies: OD, DV, DOD

For each subfunction with redundancies, the fault detection and reconfiguration strategy shown
in Figure 8b for DOD subfunction is repeated. Denoting the set of subfunctions with redundancies as
SF={DOD, DCD, OD, DV}, Table 7 displays the implementations of the health monitoring mechanisms
with their corresponding resources used for the set of subfunctions with redundancies.

Table 7. Health monitoring implementations and resources.

Implementation FD_SF R_SF FD_R_SF

Implementation 1 PU1, SWFD_SF, Comm PU1, SWR_SF PUCam, SWFD_R_SF, Comm

Implementation 2 No redundancy PUCam, SWR_SF, Comm PU1, SWFD_R_SF, Comm

Figure 9 shows the DSC configurations’ relative cost and failure probability with respect to the
DSC configuration without redundancies described in the functional model in Figure 8a.



Safety 2016, 2, 9 18 of 25

0.8

1

1

1.2

1.4
0

10

20

→

←

→

→

→

→

1

2

3

4

5

6

Relative Fail. Prob.
Relative Cost

T
im

e
 (

Y
e
a
rs

)

Figure 9. DSC configurations: relative cost and failure probability.

Figure 9 shows the relative improvement on the design of the Door Status Control main function
for the studied train car, when including different types of redundancies. Results confirm that
heterogeneous redundancies are more economical than homogeneous redundancies (see also Table 8).
However, the need of additional mechanisms (software) to make implementations compatible leads to
having slightly worse reliability than homogeneous redundancies.

Table 8. Relative failure probability and cost values in Figure 9 (T = 12 years).

ID Relative Failure Probability Relative Cost

#2 0.988 1.318

#3 0.946 1.393

#4 0.98 1.348

#5 0.969 1.383

#6 0.958 1.413

To analyse further differences between redundancy strategies, Failure Criticality Index (FCI)
evaluations have been performed calculating for each component i [41]: the ratio between the number
of system failures caused by the component i to the total number of system failures. To deal with
the lack of exact knowledge of the failure data of the software components, we have integrated the
uncertainty analysis of SW_Det component’s failure data with the FCI assessment (see Subsection 3.4.4).
Figure 10 shows the distribution of the FCI values of Door Open Detection subfunction’s redundancy
components with λSW_Det = [0.001–0.1].

0.3

0.2

0.1

0.1 0.155.10-2

Failure Criticality Index

P
ro

b
a
b
il
it
y

m=0.0826; dev=0.0103 H
e
te

ro
g
e
n
e
o
u
s
 R

e
d
u
n
d
a
n
c
y

m=0.1506; dev=0.0089

Failure Criticality Index

P
ro

b
a
b
il
it
y

H
o
m

o
g
e
n
e
o
u
s
 R

e
d
u
n
d
a
n
c
y

0.1 0.155.10-2

0.3

0.2

0.1

0.4

0

Figure 10. Probability distribution of failure criticality index values of DOD redundancies.

In a homogeneous redundancy configuration, duplicated sensors are connected to the same
processing unit, while in the heterogeneous configuration, the camera is connected to one unit and
the original sensor is in another unit (see Table 4). From Figure 10, we can see that the reuse of the
unit adds bottlenecks to the system design resulting in a worse FCI than distributing tasks among
different units.



Safety 2016, 2, 9 19 of 25

4.2. Reconfiguration Strategies

To analyse the influence of the number and distribution of reconfiguration implementations on
system dependability, this nomenclature is adopted in Table 9: SFi refers to the ith implementation of
the subfunction; 1R, 2R and 3R identify the number of reconfiguration implementations; and C and D
letters designate centralised and distributed configurations, respectively.

Based on configuration #2 (Table 6), alternative reconfiguration strategies have been tested with
different failure rate values of health monitoring software components (λSW_HM): SW_FD, SW_R
and SW_FD_R. The failure rates of these components have been modified altogether to highlight the
influence of reconfiguration implementations on system failure probability. Table 9 displays failure
probability values of the DSC main function for alternative reconfiguration strategies with different
failure rate values of health monitoring software components. For instance, the configuration 2R C is
the same as the architecture described in Figure 8b (including heterogeneous redundancies for OD and
DV in Table 4 and repeating the health monitoring configuration of the DOD subfunction for DCD,
OD, and DV according to Table 7) and the configuration 2 of Figure 9 (PUCam = PU2).

Table 9. DSC failure probability for reconfiguration distribution strategies (T = 10 years).

Configuration Reconfiguration Implementation Distributions
DSC Failure Probability

λSW_HM = 0.05 λSW_HM = 0.15 λSW_HM = 0.25

1R C PU1(R_DOD1, R_DCD1, R_OD1, R_DV1) 0.856 0.887 0.902

1R D PU1(R_DOD1); PU2(R_DCD1); PU3(R_OD1); PU4(R_DV1) 0.867 0.892 0.904

2R C PU1(R_DOD1, R_DCD1,R_OD1, R_DV1);
PU2(R_DOD2, R_DCD2, R_OD2, R_DV2) 0.850 0.888 0.905

2R D PU1(R_DOD1, R_DCD2); PU2(R_DOD2, R_DCD1);
PU3(R_OD1, R_DV2); PU4(R_OD2, R_DV1) 0.853 0.888 0.905

3R C
PU1(R_DOD1, R_DCD1, R_OD1, R_DV1);
PU2(R_DOD2, R_DCD2, R_OD2, R_DV2);
PU3(R_DOD3, R_DCD3, R_OD3, R_DV3)

0.838 0.874 0.897

3R D
PU1(R_DOD1,R_DCD2,R_OD3);
PU2(R_DOD2,R_DCD1,R_DV3);

PU3(R_DOD3,R_OD1,R_DV2); PU4(R_DCD3,R_OD2,R_DV1)
0.839 0.875 0.897

From Table 9, two main patterns are identified: the greater the λSW_HM and number of
reconfiguration redundancies, the better the failure probability of distributed reconfigurations.
The failure probability of centralised reconfigurations confirms that the introduction of additional
components increase system failure sources. However, with the increase of the failure rate values and
reconfiguration’s redundancies, the system’s common cause failures gain importance, and distributed
implementations perform better than configurations with system bottlenecks. Interestingly, there is
a “threshold” failure rate, beyond which the distribution of reconfiguration strategies has no impact
on the failure probability of the system. The “threshold” failure rate decreases as the number of
reconfiguration’s redundancy implementations increases (see grey cells in Table 9). This should be
studied further, but it seems reasonable that the higher the failure probability of the reconfiguration
implementations, the impact of the reconfiguration strategies becomes less important.

4.3. Health Management Mechanisms and Communication Influences

Taking configuration #2 of Table 6 as the reference configuration (with redundancies in Table 4
and health monitoring mechanisms in Table 7), Figure 11 depicts the results of different architectures
to test the influence of ideal fault detection, reconfiguration, and communication implementations.
The outcome failure probability of different configurations has been normalized with respect to
the reference configuration, in which the behaviour of the fault detection, reconfiguration and
communication implementations have been considered with their respective failure characterization.



Safety 2016, 2, 9 20 of 25

As Figure 11 shows, there is a 7% maximum difference between the ideal and the reference
configurations in which the fault detection, reconfiguration and communication implementations are
assumed perfectly reliable (cf. yellow line). The influence of the failure behaviour of the fault detection
is also noticeable (dashed purple line) caused by the lack of redundancy implementations.

R
e
la

ti
v
e
 F

a
il
u
re

 P
ro

b
a
b
il
it
y

Time (years)

0 5 10 15 20

0.94

0.96

0.98

1

Ideal: Comm

Ideal: R

Ideal: FD

Ideal: FD, Comm

Ideal: R, Comm

Ideal: FD, R

Ideal: FD, R, Comm

Figure 11. Relative failure probability of ideal configurations.

To further evaluate the influence of the fault detection and reconfiguration subfunction failures on
system failure occurrence, FCI evaluations have been performed for configurations #2 and #3 in Table 6
(with redundancies in Table 4 and health monitoring mechanisms in Table 7). Two arrangements
have been tested for configuration #3: connect explicit homogeneous sensors to the same PU or
connect explicit homogeneous sensors to different PUs. Table 10 displays FCI values of fault detection
(FCIFFD_SF ) and reconfiguration subfunctions (FCIFR_SF ) for different Redundancy Strategies (RS).

Table 10. FCIFFD_SF and FCIFR_SF using different redundancy strategies.

RS FCIFFD_DOD
FCIFR_DOD

FCIFFD_DCD
FCIFR_DCD

FCIFFD_OD
FCIFR_OD

FCIFFD_DV
FCIFR_DV

A 0.1520 0.1367 0.1524 0.1374 0.1520 0.1372 0.1563 0.1416

B 0.2265 0.1949 0.2267 0.1956 0.2265 0.1954 0.2362 0.1999

C 0.1826 0.1623 0.1832 0.1632 0.1825 0.1627 0.1863 0.1674

A: 4 Homogeneous Redundancies connected to different explicitly added 4 PUs. B: 4 Homogeneous
Redundancies connected to the same existing PU1. C: 4 Heterogeneous Redundancies connected to PU1
and PUCam.

In agreement with Figure 11, Table 10 displays that the FCI values of fault detection subfunction
failures have higher criticality than reconfiguration subfunction failures. Table 10 also confirms that
concentrating redundancies in the same unit increases the influence on the system failure occurrence
of fault detection and reconfiguration subfunctions (Figure 10).

To check the consistency of the data depicted in Figure 11, Table 11 displays the FCI values of
alternative subfunction failures under different assumptions: Door Control Algorithm (FCIFDCA )
and Door Open Detection (FCIFDOD ) as an example of input subfunction’s failure influence. The
failure influences of the reconfiguration sequence of the Door Open Detection (FCIFR_DOD Seq.) and
fault detection sequence of the Door Open Detection (FCIFFD_DOD Seq. ) on the system failure occurrence
have also been analysed (see Equations (7) and (8), respectively).



Safety 2016, 2, 9 21 of 25

Table 11. Failure criticality index values for different assumptions.

Configuration FCIFDCA FCIFDOD FCIFFD_DOD Seq. FCIFR_DOD Seq.

Ideal: FD, R, Comm 0.9222 0.0953 0 0

Ideal: Comm, FD 0.9221 0.1016 0 0.0522

Ideal: FD, R 0.9236 0.0931 0 0

Ideal: FD 0.9237 0.0994 0 0.0542

Ideal: Comm, R 0.9278 0.2123 0.1461 0

Ideal: Comm. 0.9279 0.2119 0.1456 0.0798

Ideal: R 0.9278 0.2121 0.146 0

Reference 0.9291 0.2085 0.1456 0.0851

Figure 11 and Table 11 are in agreement: the ideal architecture is the least critical architecture and
the real reference model is the most critical. Furthermore, we see that the fault detection has greater
influence than reconfiguration and communication. For example, let us focus on the column FCIFDCA :
while assuming ideal reconfiguration and communication implementations creates a difference of
0.14% and 0.129% from the FCI of the reference configuration respectively, assuming ideal fault detection
implementation makes a 0.584% difference with respect to the reference configuration.

Focusing on the column FCIFDOD , we can see that the configuration which assumes ideal
fault detection (and combinations thereof with ideal reconfiguration and/or ideal communication)
implementation has the biggest difference with respect to the reference configuration. Note that the
Door Open Detection subfunction is one of the contributors to the system failure occurrence, but not
the only one; the remainder of input subfunctions, the door control algorithm subfunction and the
door manipulation implementation’s resources also has an influence.

Finally, to analyse the influence of the communication on system failure probability, we have
implemented uncertainty analyses assigning different interval values to the communication’s failure
rate (λcomm). Accordingly, we have analysed its influence on the distribution of the system failure
frequency at the time instant T = 5 years for the configuration #2 in Table 6 with health monitoring
mechanisms shown in Table 7 (Figure 12).

λcomm=[0.1,0.2]; m=0.831; dev=0.0244

0.2 0.4 0.6 0.8 10
0

0.05

0.1

0.15

Failure Probability

P
ro

b
a
b
il
it
y

λcomm=[0.2,0.3]; m=0.8973; dev=0.0151

0.1

0.2

0.2 0.4 0.6 0.8 10
0

Failure Probability

P
ro

b
a
b
il
it
y

λcomm=[1e-4,1e-3]; m=0.646; dev=0.015

0.2 0.4 0.6 0.8 10

0.1

0.2

0

P
ro

b
a
b
il
it
y

Failure Probability

λcomm=[1e-3,1e-1]; m=0.7238; dev=0.042

0.2 0.4 0.6 0.8 10
0

0.02

0.04

0.06

0.08

P
ro

b
a
b
il
it
y

Failure Probability

Figure 12. DSC failure probability distributions for different communication’s failure rate intervals.

As Figure 12 confirms, an increase in λcomm results in deterioration of the system’s failure
probability. The mean and deviation of the system’s failure probability distribution depend on
the failure rate interval.

5. Conclusions

In this paper, we have demonstrated how D3H2—a recently proposed analysis
methodology—assists in the systematic assessment of the influence on dependability and
cost of the location, type, and level of redundancy and reconfiguration implementations. The



Safety 2016, 2, 9 22 of 25

dependability evaluation model used by D3H2 is capable of analysing a range of sophisticated general
failure patterns that may cause system failure. These include the potential failure of fault detection and
communication implementations. The analysis capabilities include dealing with dynamic scenarios
and uncertainty in failure characteristics data which is typical in the case of software components.

The influence of heterogeneous redundancies on system dependability and cost largely depends
on the analysed system. In the case study presented in this paper, influencing factors included
additional homogeneous sensors, software components for heterogeneous redundancies, and the
impact of communication failure rates on heterogeneous redundancies. Heterogeneous redundancies
show slightly lower reliability than homogeneous redundancies due to the added resources needed to
make implementations compatible. However, as a result of the presence of common cause failures
in homogeneous configurations, their failure criticality is higher than heterogeneous redundancies.
Regarding the incurred cost, sensors need to be paid for for each introduced additional redundancy
while software components are developed once and can be replicated across different implementations.
Replication of software must be done with care to avoid the use of identical software in cases where
common cause failure is relevant. Hence, the greater the number of redundancies, the cheaper becomes
a solution that uses heterogeneous redundancies.

The influence of reconfiguration distribution strategies have been analysed emphasizing the
following conclusions: as the number of reconfiguration redundancies or failure rates of reconfiguration
software components increase, distributed reconfiguration strategies perform better than centralised
reconfiguration strategies and the higher the unreliability of the reconfiguration implementations,
the less important the impact of the distribution strategies becomes. The failure contribution of
health management mechanisms and communication implementations needs to be evaluated for each
architecture. As confirmed by the results, the influence of these implementations is defined by their
criticality with respect to the system design.

Overall, D3H2 enabled a sophisticated and detailed assessment of the example system and
enabled us to develop insights into the possible use of redundancy for achieving an improved trade-off
between reliability and cost in this case. The study has also shown limitations of D3H2 and points
towards further work:

(a) The formal identification and categorisation of heterogeneous redundancies for complex systems
is a challenging task. The lack of deterministic relations between some of the variables hampers
the formalisation process. Possible solutions to address these issues can include formalisation of
engineering design knowledge through meta-modelling techniques (e.g., [42]) or formal analysis
of highly networked scenarios through equation-based modelling formalisms (e.g., [43]).

(b) We have not included downtime costs arising from repair activities, which leads to high financial
penalties due to the immobilization of trains on stations or tracks. For our future goals, we
plan to perform the following activities: (1) introduce repair concepts to evaluate availability
and downtime costs; (2) automate the architecture optimisation extracting the combination of
homogeneous and heterogeneous redundancies, which maximizes dependability and minimizes
cost, e.g., by extending work on metaheuristics in [14]; and (3) weigh the degradation of the
functionality considering other factors than component failure rates.

(c) While for non-repairable systems only the order of failure is important, for repairable systems,
both the order of failure and repair must be respected. In D3H2, the reconfiguration process is
governed by the reconfiguration priority of implementations. This means that the reconfiguration
process is not necessarily a sequential process, but it can follow a random process. Therefore, the
predefined sequential logic of repairable Dynamic Fault Tree gates [24] is invalid for repairable
systems. More powerful and flexible stochastic formalisms are needed to address these properties
(e.g., [44]).

(d) Finally, with the dependability evaluation model presented in this paper, there is potential
for automation and optimization via use of metaheuristics. Fitness functions can include
dependability and cost while parameters to be altered may include the location, type, and



Safety 2016, 2, 9 23 of 25

level of redundancies and health monitoring mechanisms. Metaheuristics can focus on choosing
solutions for these variables that could optimize the trade-off between dependability and cost.

Acknowledgments: This work was partially funded by CAF Power & Automation company. The authors would
like to thank colleagues at CAF Power & Automation for the discussions that helped to develop the case study
and all the anonymous reviewers and the Editor for their valuable comments that helped to improve the clarity
and the completeness of the paper.

Author Contributions: This paper reports on results of Jose Ignacio Aizpurua’s doctoral research. Coauthors
advised this research and contributed to the preparation of the manuscript.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations/Nomenclature

CDFT Component Dynamic Fault Tree
FD_R_SF Fault Detection of the R_SF
DCA Door Control Algorithm
FD_SF Fault Detection of the SF
DCD Door Closed Detection
FP False Positive
DM Door Manipulation
MF Main Function
DOC Door Open Command
O Omission
DOD Door Open Detection
OD Obstacle Detection
DSC Door Status Control
PL Physical Location
DV Door Velocity
PU Processing Unit
EDD Enable Door Driver
R Reconfiguration
EDP Enable Door Passenger
R_SF Reconfiguration of the SF
FCI Failure Criticality Index
SF Subfunction
FD Fault Detection
TCMS Train Control and Monitoring System

References

1. Elegbede, A.; Chu, C.; Adjallah, K.; Yalaoui, F. Reliability allocation through cost minimization.
IEEE Trans. Reliab. 2003, 52, 106–111.

2. Avizienis, A. The N-Version Approach to Fault-Tolerant Software. IEEE Trans. Softw. Eng. 1985, SE-11,
1491–1501.

3. Aizpurua, J.I.; Muxika, E. Functionality and Dependability Assurance in Massively Networked Scenarios.
In Safety, Reliability and Risk Analysis: Beyond the Horizon; CRC Press: Boca Raton, FL, USA, 2013;
pp. 1763–1771.

4. Aizpurua, J.I.; Muxika, E.; Manno, G.; Chiacchio, F. Heterogeneous Redundancy Analysis based on
Component Dynamic Fault Trees. In Proceedings of PSAM 12, Honolulu, HI, USA, 22–27 June 2014.

5. Avizienis, A.; Laprie, J.C.; Randell, B.; Landwehr, C. Basic Concepts and Taxonomy of Dependable and
Secure Computing. IEEE Trans. Dependable Secur. Comput. 2004, 1, 11–33.



Safety 2016, 2, 9 24 of 25

6. Shelton, C.P.; Koopman, P. Improving System Dependability with Functional Alternatives. In Proceedings of
the Int. Conf. on Dependable Systems and Networks (DSN), Florence, Italy, 28 June–1 July 2004; pp. 295–304.

7. Wysocki, J.; Debouk, R. Methodology for Assessing Safety-critical Systems. Int. J. Model. Simul. 2007,
27, 99–106.

8. Adler, R.; Schneider, D.; Trapp, M. Engineering dynamic adaptation for achieving cost-efficient resilience in
software-intensive embedded systems. In Proceedings of the Engineering of Complex Computer Systems,
Oxford, UK, 22–26 March 2010 ; pp. 21–30.

9. Aizpurua, J.I.; Muxika, E. Model Based Design of Dependable Systems: Limitations and Evolution of
Analysis and Verification Approaches. Int. J. Adv. Secur. 2013, 6, 12–31.

10. Strigini, L. Fault Tolerance Against Design Faults. In Dependable Computing Systems: Paradigms, Performance
Issues, and Applications; Diab, H., Zomaya, A., Eds.; John Wiley & Sons: New York, NY, USA, 2005;
pp. 213–241.

11. Blanke, M.; Hansen, S.; Blas, M.R. Diagnosis for Control and Decision Support in Complex Systems.
In Proceedings of Synergy of Control, Communications and Computing–COSY, Ohrid, Macedonia,
16–20 September 2011; pp. 89–101.

12. Cauffriez, L.; Renaux, D.; Bonte, T.; Cocquebert, E. Systemic Modeling of Integrated Systems for Decision
Making Early on in the Design Process. Cybern. Syst. 2013, 44, 1–22.

13. Perez, D.; Mirandola, R.; Merseguer, J. On the Relationships between QoS and Software Adaptability at the
Architectural Level. J. Syst. Softw. 2014, 87, 1–17.

14. Adachi, M.; Papadopoulos, Y.; Sharvia, S.; Parker, D.; Tohdo, T. An approach to optimization of fault tolerant
architectures using HiP-HOPS. Softw. Pract. Exp. 2011, 41, 1303–1327.

15. Katsaros, P.; Angelis, L.; Lazos, C. Performance and effectiveness trade-off for checkpointing in fault-tolerant
distributed systems. Concurr. Comput. Pract. Exp. 2007, 19, 37–63.

16. Chen, D.; Lönn, H.; Mraidha, C.; Papadopoulos, Y.; Reiser, M.; Servat, D.; Azevedo, L.S.; Piergiovanni, S.T.;
Walker, M. Automatic Optimisation of System Architectures using EAST-ADL. In Proceedings of the
SAFECOMP 2013—Workshop ASCoMS (Architecting Safety in Collaborative Mobile Systems), Toulouse,
France, 24–27 September 2013.

17. Marca, D.A.; McGowan, C.L. SADT: Structured Analysis and Design Technique; McGraw-Hill, Inc.: New York,
NY, USA, 1987.

18. Aizpurua, J.I. Functionality and Dependability Assurance in Massively Networked Scenarios. Ph.D. Thesis,
Electronics and Computing Department, Mondragon University, Basque Country, Spain, January 2015.

19. Asim, M.; Zhou, B.; Llewellyn-Jones, D.; Shi, Q.; Merabti, M. Dynamic Monitoring of Composed Services.
In Cyberpatterns; Blackwell, C., Zhu, H., Eds.; Springer: Berlin, Germany, 2014; pp. 235–245.

20. Kaiser, B.; Liggesmeyer, P.; Mäckel, O. A New Component Concept for Fault Trees. In Proceedings of the
Safety Critical Systems & Software (SCS), Canberra, Australia, 9–10 October 2003; pp. 37–46.

21. Papadopoulos, Y.; Walker, M.; Parker, D.; Rüde, E.; Hamann, R.; Uhlig, A.; Grätz, U.; Lien, R. Engineering
failure analysis and design optimisation with HiP-HOPS. Eng. Failure Anal. 2011, 18, 590–608.

22. Dugan, J.; Bavuso, S.; Boyd, M. Dynamic fault-tree models for fault-tolerant computer systems.
IEEE Trans. Reliab. 1992, 41, 363–377.

23. Montani, S.; Portinale, L.; Bobbio, A.; Codetta-Raiteri, D. Radyban: A tool for reliability analysis of dynamic
fault trees through conversion into dynamic Bayesian networks. Reliab. Eng. Syst. Saf. 2008, 93, 922–932.

24. Manno, G.; Chiacchio, F.; Compagno, L.; D’Urso, D.; Trapani, N. Conception of Repairable Dynamic Fault
Trees and resolution by the use of RAATSS, a Matlab toolbox based on the ATS formalism . Reliab. Eng.
Syst. Saf. 2014, 121, 250–262.

25. Codetta-Raiteri, D. The Conversion of Dynamic Fault Trees to Stochastic Petri Nets, as a case of Graph
Transformation. Electron. Notes Theor. Comput. Sci. 2005, 127, 45–60.

26. Bouissou, M.; Bon, J.L. A new formalism that combines advantages of fault-trees and Markov models:
Boolean logic driven Markov processes. Reliab. Eng. Syst. Saf. 2003, 82, 149–163.

27. Kaiser, B.; Gramlich, C.; Forster, M. State-Event Fault Trees - A Safety Analysis Model for Software-Controlled
Systems. Reliab. Eng. Syst. Saf. 2007, 92, 1521–1537.

28. Raiteri, D.C. Integrating several formalisms in order to increase Fault Trees’ modeling power. Reliab. Eng.
Syst. Saf. 2011, 96, 534–544.

29. Zio, E. The Monte Carlo Simulation Method for System Reliability and Risk Analysis; Springer: Berlin, Germany, 2013.



Safety 2016, 2, 9 25 of 25

30. Edifor, E.; Walker, M.; Gordon, N. Quantification of Simultaneous-AND Gates in Temporal Fault Trees.
In New Results in Dependability and Computer Systems; Springer: Berlin, Germany, 2013; Volume 224,
pp. 141–151.

31. Littlewood, B.; Strigini, L. Software Reliability and Dependability: A Roadmap. In Proceedings of the
Conference on The Future of Software Engineering, Limerick, Ireland, 4–11 June 2000; pp. 175–188.

32. Goseva-Popstojanova, K.; Trivedi, K.S. Architecture-based approach to reliability assessment of software
systems. Perform. Eval. 2001, 45, 179–204.

33. Lyu, M.R. Software Reliability Engineering: A Roadmap. In Proceedings of the Future of Software
Engineering, 2007 (FOSE ’07), Minneapolis, MN, USA, 23–25 May 2007; pp. 153–170.

34. Forster, M.; Trapp, M. Fault Tree Analysis of Software-Controlled Component Systems Based on
Second-Order Probabilities. In Proceedings of the ISSRE’09, Mysuru, Karnataka, 16–19 November 2009;
pp. 146–154.

35. Manno, G.; Chiacchio, F.; Compagno, L.; D’Urso, D.; Trapani, N. MatCarloRe: An integrated FT and
Monte Carlo Simulink tool for the reliability assessment of dynamic fault tree. Expert Syst. Appl. 2012,
39, 10334–10342.

36. Meedeniya, I.; Moser, I.; Aleti, A.; Grunske, L. Architecture-based Reliability Evaluation Under Uncertainty.
In Proceedings of QoSA-ISARCS ’11, Boulder, CO, USA, 20–24 June 2011; pp. 85–94.

37. Kanoun, K. Real-world design diversity: A case study on cost. IEEE Softw. 2001, 18, 29–33.
38. IAEA. Component Reliability Data for Use In Probabilistic Safety Assessment; IAEA-TECDOC-478; Technical

Report for IAEA: Vienna, Austria, 1988.
39. JVC Professional. Available online: http://pro.jvc.com/ (accessed on 5 August 2015).
40. Vinod, G.; Santosh, T.; Saraf, R.; Ghosh, A. Integrating Safety Critical Software System in Probabilistic Safety

Assessment. Nuclear Eng. Des. 2008, 238, 2392–2399.
41. Wang, W.; Loman, J.; Vassiliou, P. Reliability importance of components in a complex system. In Proceedings

of the 2004 Annual Symposium Reliability and Maintainability, Los Angeles, CA, USA, 26–29 January 2004;
pp. 6–11.

42. Henderson-Sellers, B. Bridging metamodels and ontologies in software engineering. J. Syst. Softw. 2011,
84, 301–313.

43. Fritzson, P. Introduction to Modeling and Simulation of Technical and Physical Systems with Modelica; Wiley-IEEE
Press: Hoboken/Piscataway, NJ, USA, 2011.

44. Sanders, W.H.; Meyer, J.F. Stochastic Activity Networks: Formal Definitions and Concepts. In Lectures on
Formal Methods and Performance Analysis; Springer: Berlin, Germany, 2001; Volume 2090, pp. 315–343.

c© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons by Attribution
(CC-BY) license (http://creativecommons.org/licenses/by/4.0/).

http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/

	Introduction
	Related Work
	D3H2 Methodology
	Functional Modelling Approach
	Compatibility Analysis
	Extended Functional Modelling Approach
	Dependability Evaluation Modelling Approach
	Preliminaries on Component Dynamic Fault Trees
	Dependability Evaluation Modelling Approach: Concepts and Notation
	Dependability Evaluation Modelling Approach: Analysis Algorithm
	Dependability Evaluation Modelling Approach: Uncertainty Analysis


	D3H2 Application: Train Car Door Status Control
	Redundancy Strategies
	Reconfiguration Strategies
	Health Management Mechanisms and Communication Influences

	Conclusions

