4 research outputs found

    Forest Terrain Identification using Semantic Segmentation on UAV Images

    Get PDF
    Beavers' habitat is known to alter the terrain, providing biodiversity in the area, and recently their lifestyle is linked to climatic changes by reducing greenhouse gases levels in the region. To analyse the impact of beavers’ habitat on the region, it is, therefore, necessary to estimate the terrain alterations caused by beaver actions. Furthermore, such terrain analysis can also play an important role in domains like wildlife ecology, deforestation, land-cover estimations, and geological mapping. Deep learning models are known to provide better estimates on automatic feature identification and classification of a terrain. However, such models require significant training data. Pre-existing terrain datasets (both real and synthetic) like CityScapes, PASCAL, UAVID, etc, are mostly concentrated on urban areas and include roads, pathways, buildings, etc. Such datasets, therefore, are unsuitable for forest terrain analysis. This paper contributes, by providing a finely labelled novel dataset of forest imagery around beavers’ habitat, captured from a high-resolution camera on an aerial drone. The dataset consists of 100 such images labelled and classified based on 9 different classes. Furthermore, a baseline is established on this dataset using state-of-the-art semantic segmentation models based on performance metrics including Intersection Over Union (IoU), Overall Accuracy (OA), and F1 score

    Semantic segmentation of major macroalgae in coastal environments using high-resolution ground imagery and deep learning

    Get PDF
    Macroalgae are a fundamental component of coastal ecosystems and play a key role in shaping community structure and functioning. Macroalgae are currently threatened by diverse stressors, particularly climate change and invasive species, but they do not all respond in the same way to the stressors. Effective methods of collecting qualitative and quantitative information are essential to enable better, more efficient management of macroalgae. Acquisition of high-resolution images, in which macroalgae can be distinguished on the basis of their texture and colour, and the automated processing of these images are thus essential. Although ground images are useful, labelling is tedious. This study focuses on the semantic segmentation of five macroalgal species in high-resolution ground images taken in 0.5 x 0.5 m quadrats placed along an intertidal rocky shore at low tide. The target species, Bifurcaria bifurcata, Cystoseira tamariscifolia, Sargassum muticum, Sacchoriza polyschides and Codium spp., which predominate on intertidal shores, belong to different morpho-functional groups. The study explains how to convert vector-labelled data to raster-labelled data for adaptation to convolutional neural network (CNN) input. Three CNNs (MobileNetV2, Resnet18, Xception) were compared, and ResNet18 yielded the highest accuracy (91.9%). The macroalgae were correctly segmented, and the main confusion occurred at the borders between different macroalgal species, a problem derived from labelling errors. In addition, the interior and exterior of the quadrats were correctly delimited by the CNNs. The results were obtained from only one hundred labelled images and can be performed on personal computers, without the need to resort to external servers. The proposed method helps automation of the labelling process.SIFundación Biodiversidad, the Ministerio para la Transición Ecológica y 383 el Reto Demográfico through the Pleamar program, co-funded by the European Maritime and Fisheries Fund (EMFF), call 2018; and Xunta de Galicia for human resources and competitive reference groupsFundación Biodiversidad, the Ministerio para la Transición Ecológica y 383 el Reto Demográfico through the Pleamar program, co-funded by the European Maritime and Fisheries Fund (EMFF), call 2018; and Xunta de Galicia for human resources and competitive reference groupsMinisterio de Ciencia, Innovación y Universidades -Gobierno de Españ

    Multi feature-rich synthetic colour to improve human visual perception of point clouds

    Get PDF
    Although point features have shown their usefulness in classification with Machine Learning, point cloud visualization enhancement methods focus mainly on lighting. The visualization of point features helps to improve the perception of the 3D environment. This paper proposes Multi Feature-Rich Synthetic Colour (MFRSC) as an alternative non-photorealistic colour approach of natural-coloured point clouds. The method is based on the selection of nine features (reflectance, return number, inclination, depth, height, point density, linearity, planarity, and scattering) associated with five human perception descriptors (edges, texture, shape, size, depth, orientation). The features are reduced to fit the RGB display channels. All feature permutations are analysed according to colour distance with the natural-coloured point cloud and Image Quality Assessment. As a result, the selected feature permutations allow a clear visualization of the scene's rendering objects, highlighting edges, planes, and volumetric objects. MFRSC effectively replaces natural colour, even with less distorted visualization according to BRISQUE, NIQUE and PIQE. In addition, the assignment of features in RGB channels enables the use of MFRSC in software that does not support colorization based on point attributes (most commercially available software). MFRSC can be combined with other non-photorealistic techniques such as Eye-Dome Lighting or Ambient Occlusion.Xunta de Galicia | Ref. ED481B-2019-061Xunta de Galicia | Ref. ED431F 2022/08Agencia Estatal de Investigación | Ref. PID2019-105221RB-C43Universidade de Vigo/CISU

    Remote Sensing of the Oceans

    Get PDF
    This book covers different topics in the framework of remote sensing of the oceans. Latest research advancements and brand-new studies are presented that address the exploitation of remote sensing instruments and simulation tools to improve the understanding of ocean processes and enable cutting-edge applications with the aim of preserving the ocean environment and supporting the blue economy. Hence, this book provides a reference framework for state-of-the-art remote sensing methods that deal with the generation of added-value products and the geophysical information retrieval in related fields, including: Oil spill detection and discrimination; Analysis of tropical cyclones and sea echoes; Shoreline and aquaculture area extraction; Monitoring coastal marine litter and moving vessels; Processing of SAR, HF radar and UAV measurements
    corecore