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A B S T R A C T

Although point features have shown their usefulness in classification with Machine Learning, point cloud visu
alization enhancement methods focus mainly on lighting. The visualization of point features helps to improve the 
perception of the 3D environment. This paper proposes Multi Feature-Rich Synthetic Colour (MFRSC) as an 
alternative non-photorealistic colour approach of natural-coloured point clouds. The method is based on the 
selection of nine features (reflectance, return number, inclination, depth, height, point density, linearity, 
planarity, and scattering) associated with five human perception descriptors (edges, texture, shape, size, depth, 
orientation). The features are reduced to fit the RGB display channels. All feature permutations are analysed 
according to colour distance with the natural-coloured point cloud and Image Quality Assessment. As a result, 
the selected feature permutations allow a clear visualization of the scene’s rendering objects, highlighting edges, 
planes, and volumetric objects. MFRSC effectively replaces natural colour, even with less distorted visualization 
according to BRISQUE, NIQUE and PIQE. In addition, the assignment of features in RGB channels enables the use 
of MFRSC in software that does not support colorization based on point attributes (most commercially available 
software). MFRSC can be combined with other non-photorealistic techniques such as Eye-Dome Lighting or 
Ambient Occlusion.   

1. Introduction

The difficult visualisation is one of the main limitations of point
clouds. There are several causes that hinder the visualization (Burwell 
et al., 2012; Richter and Döllner, 2014; Meynet et al., 2019): 3D 
perspective, surface overlaps, occlusions, rendering of large numbers of 
points, excessive level of detail, and sometimes, the absence of natural 
colour. Although point clouds obtained by photogrammetric techniques 
have natural colour associated with each point, LiDAR technology does 
not acquire colour from the environment (Abdelhafiz, 2013), instead the 
colour must be acquired independently using a camera, and the photo
graphs must be projected onto the point cloud for colouring each point 
with a pixel value (Spehr et al., 2010). This process is not perfect and 
leads to a number of colouring errors (González et al., 2022). 

In remote sensing, colour/hue is the main visual criteria for image 
interpretation and object detection, followed by size, shape, texture, 
patterns, height, shadow, site, and association (Estes et al., 1983). Ac
cording to the Gestalt principle of similarity, the human eye tends to 
group similar objects, including similarity of colour (Chiu et al., 2017; 

Quinlan and Wilton, 1998; O’Connor, 2015). Furthermore, in the pro
cess of visual perception, edges of the objects are first detected and then 
the stereoscopic process is performed (Oliva and Pérez-Sust, 2008), 
adding texture, depth and orientation, capturing movement and colour. 

When the point cloud has not been coloured, the interpretation of the 
environment is more difficult, the edges cannot be clearly identified 
either, and a colour band visualisation is often used according to 
reflectivity (to distinguish textures) or height (to identify the verticality 
of the environment) (Otepka et al., 2020). However, although scarce for 
the human eye, point cloud features are very useful for the identification 
of objects by Artificial Intelligence. In recent years, many authors have 
extracted features from points clouds, achieving very high success rates 
in point and object classification (Weinmann et al., 2015; Soilán et al., 
2020; Li and Cheng, 2018; Özdemir et al., 2019). Geometric features 
(linearity, planarity, sphericity, omnivariance, anisotropy, eigenen
tropy, sum of eigenvalues, and change of curvature) are the most 
employed in classification, but other type of features (Z-related, radio
metric, shape, contextual and multiple segmentations) have also shown 
their usefulness (Golovinskiy et al., 2009). A large number of features 
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also does not ensure a better classification and often leads to overfitting 
(Weinmann and Weinmann, 2019). 

The aim of this paper is to combine nine features to generate syn
thetic colour attributes that improve human perception of point clouds 
and object recognition as close as possible to the natural colour. 
Following the currently employed Young-Helmholtz trichromatic colour 
theory (Wade, 2021), the nine features are distributed over the three 
RGB channels (after 9–3 reduction process). Furthermore, all possible 
permutations of features per channel are tested to ensure maximum 
proximity to the natural colour and quality of the resulting images. The 
most relevant contributions of this paper are:  

• Selection of nine features based on geometry and visual perception 
criteria: reflectance, return number, inclination, depth, height, point 
density, linearity, planarity, and scattering.  

• Application of seven Image Quality Assessment metrics for the 
evaluation of the raster images generated from the point cloud.  

• Calculation of the colour distance between synthetic-coloured and 
natural-coloured point clouds in the CIELAB colour space. 

• Analysis of the 362,880 permutations generated from the nine fea
tures and recommendation of the highest quality combinations.  

• Tests on one point cloud acquired with a Mobile Mapping System in a 
real urban environment with built and green elements. 

The reminder of this paper is structured as follows. In Section 2, 
works on point cloud visualization and Quality Assessment are 
compiled. The proposed method is explained in Section 3. Section 4 is 
dedicated to present and analyse the results. The discussion is in Sections 
5 and 6 concludes this paper. 

2. Related work 

2.1. Point cloud visualization 

Point cloud visualization has had less research compared to auto
matic point cloud processing and feature extraction (Uchida et al., 
2020). From the beginning, there have been two trends in visualization: 
point-based and mesh-based rendering techniques. The bests results of 
point-based techniques rendering are obtained when each point is 
replaced with an oriented flat circular disk whereas the orientations and 
the radii of such disks can be estimated from the point cloud data (Aliev 
et al., 2020). Advocates of point-based rendering techniques argue that 
this visualization is closer to the scanned data and allows a better 
interpretation, avoiding the omittance of small details caused by 
modelling workflows (Virtanen et al., 2020). The main limitation of 
point-based rendering techniques is the inability to represent linear 
edges caused by missing data between points, which leads to “see 
through” the surface. Creating realistic 3D models, e.g., meshes (shaded 
or texturized), helps to visualize the final result much better than a 
wireframe representation (Remondino, 2003). Usually, mesh-based 
rendering techniques require per-point attributes such as surface nor
mals, local point densities, colours, and object class information, typi
cally computed in pre-processing (Richter and Döllner, 2014), so their 
existence is assumed (Richter and Döllner, 2010). 

After the introduction of web graphic library (WebGL), powered by 
HTML5 (Vahid and Wang, 2019), several web renderers have become 
available, complementing desktop-based solutions. At that time, one of 
the major limitations of real-time point cloud visualization became 
apparent: their massive size. The term massive point clouds encompass 
all point clouds that require big data solutions for storage, management, 
analysis, processing, dissemination, and visualization (van Oosterom 
et al., 2015). Point clouds contain more and more information (Richter 
and Döllner, 2014), both in terms of number of points, which can reach 
several billions, and in terms of attributes. Since the available hardware 
resources of CPU and GPU are limited, and massive point clouds exceed 
available memory size (Richter and Döllner, 2010), the visualization 

relies on hierarchical acceleration structures (Schütz et al., 2020; Mar
tinez Rubi et al., 2015; Discher et al., 2019): regular grids (Yang and 
Huang, 2014), quadtrees (Nelson et al., 2015), octrees (Schütz et al., 
2020), KD-trees (Wang et al., 2021), multiple Level of Detail (LoD) (Liu 
et al., 2020), or Hierarchically Layered Tiles (HLT) (Deibe et al., 2019). 
Other alternatives are the reduction of the number of points (considering 
the loss of information), and distributed computing (Hieu et al., 2022). 

The release of game graphic engines, such as Unity (Hofer et al., 
2018) or Unreal (Edler et al., 2020), for 3D object visualization also 
made an important contribution to point cloud visualization. Game 
engine-based point cloud visualization has advantages in pre-processing 
and rendering efficiency, detail level, and volume perception (Liu et al., 
2021), allowing interactions between the user and the point cloud 
(Virtanen et al., 2020). In addition, the arrival of eXtended Reality de
vices on the market also brings specific challenges in point cloud visu
alization. In Augmented Reality (Wang et al., 2019; Placitelli and Gallo, 
2011; Zhang et al., 2020), it is necessary lightness adjustment for regions 
with similar colours of the point cloud and the background, and colour 
enhancement for regions with fewer projected points (Li et al., 2019). 
Virtual Reality (Vincke et al., 2019) needs a high FPS rate (Discher et al., 
2018) and realistic objects (Alexiou et al., 2019). 

To improve the visualization of point clouds, there are photorealistic 
and non-photorealistic post-processing techniques. Photorealistic tech
niques aim at a visualization closer to the real world by applying 
appropriate point size, orientation, textures, and colour schemes. Non- 
photorealistic techniques deal with the fuzziness of a 3D point cloud 
and highlight edges and structures (Discher et al., 2019). A very com
mon technique is the EDL (Eye-Dome Lighting), consisting of lighting 
group of points close and shading their outlines, which accentuates the 
shapes of objects (Boucheny and Ribes, 2011) and facilitate visual 
filtering (Discher et al., 2018). Another widespread technique is 
Ambient Occlusion (AO), lighting model that approximates the diffuse 
illumination of surfaces based on the directly visible occluders (Bavoil 
and Sainz, 2009; Shi et al., 2022). Artificial Intelligence has even been 
proposed to generate non-photorealistic rendering techniques (Zhang 
et al., 2020; Ren and Song, 2022). In addition, Uchida et al. (2020) 
propose a transparent visualization of point clouds to reduce the noise. 

Several authors have concluded that the use of features offers addi
tional information for visualization. In Otepka et al. (2020), the authors 
indicate that planarity is useful for identifying planar regions, Normal
izedZ for height above terrain, EchoRatio for vertical penetration mea
sure and NormalSigma0 for detecting smooth or rough areas. In Aliev 
et al. (2020), the proposed system learns the neural descriptors for every 
point (e.g. Principal Component Analysis dimensions) and the neural 
rendering network maps the rasterized point descriptors to realistic 
images. However, vast amount of software available for point cloud 
visualization allow visualization by RGB, but only CloudCompare, 
opalsView and Potree support colorization based on point attributes 
(Otepka et al., 2020). 

Regarding to previous approaches, in this work a non-photorealistic 
technique based on the simultaneous visualization of nine point cloud 
features is presented. To the best of the author’s knowledge, this com
bination of features has not been proposed before. Nine feature combi
nation improves point cloud interpretation through synthetic colour, 
and it can be implemented in any software that support point cloud 
rendering with RGB information. 

2.2. Point cloud quality Assessment (PCQA) 

Point clouds are a very useful data type for 3D visualization and 
immersive experiences. Given the high file transfer rate in multimedia 
applications, new MPEG standards are being applied to point clouds 
(Schwarz et al., 2019). The compression methods imply information 
loss, that typically leads to degradation of the visual quality and, 
therefore, which can affect the user experience (Alexiou and Ebrahimi, 
2019), so many authors have designed new Point Cloud Quality 
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Assessment (PCQA) methods. Although QA was already widely used in 
image processing, point clouds pose a new challenge due to the un
structured and non-uniformly distributed points. The objective of QA 
methods is to have a correlated evaluation of human quality assessment 
and human perception (Javaheri et al., 2017); the scores obtained are 
very subjective. Specifically, PCQA methods evaluate both the geometry 
and radiometry (colour-textures) of the point cloud through reference 
data (Viola et al., 2020). 

Colour-texture are evaluated in a similar way to image processing 
metrics. They are also based on neighbourhood relations between 
points, and calculation of colour distances. In Diniz et al. (2021), 
Perceptual Colour Distance Patterns are presented considering a local 
neighbourhood for the computation and colour distances based on 
CIELAB colour-space. In Diniz et al. (2020), Local Binary Pattern (LBP) 
descriptor is adapted to point clouds considering the nearest points as 
the neighbourhood pixels of the descriptor. In Diniz et al. (2020), the 
LBP neighbourhood pixels are based in a voxel distribution. 

Subjective and objective evaluations are critical in order to assess the 
visual quality of media content (Alexiou and Ebrahimi, 2017), but 
despite the progress made, there is a consensus that PCQA is an open 
problem (Diniz et al., 2020). In this work, PCQA is evaluated through 
point cloud rasterization (3D to 2D projection) in an isometric view, 
similar to that presented in Torlig et al. (2018). This option has been 
selected for the following reasons:  

• No changes are performed that affect the geometry of the point 
cloud; therefore, it is not necessary to evaluate the geometric quality 
of the results.  

• QA on images is more developed than on point clouds (many PCQA 
proposals have been adapted from image processing to point cloud 
processing) and the objective of this work is not to propose a new 
PCQA.  

• Although point clouds are 3D information, human visualization 
continues to be by 2D multi-views. 

3. Methodology 

The proposed method to improve the visualisation of point clouds 
and to replace the natural colour by a Multi Feature-Rich Synthetic 
Colour (MFRSC) is explained in this section. It is based on the selection 
and extraction of nine features from the input point cloud 
P

(
Px, Py, Pz, Intens, Return

)
: reflectance, return number, inclination, 

depth, height, point density, linearity, planarity, and scattering. The 
order of combination of these nine features influences the quality and 
realism of the scene. In order to select the most realistic colour combi
nation, the colour distance is calculated through the conversion from 
RGB to CIELAB space. To evaluate the quality of the visualisation, seven 
Image Quality Assessment metrics (MSE, PSNR, SSIM, CSV, BRISQUE, 
NIQE, PIQE) are applied to raster images generated from point clouds. 
Fig. 1 shows the workflow. 

3.1. Feature selection and extraction 

Many features are highly dependent on the type of LiDAR used for 
the survey and the environment. In addition, some features can be 
expensive to calculate (in terms of computation time or completeness), 
and often, point cloud features are interdependent on each other. 

Some of the features require previous k nearest neighbourhood 
search and eigenvalue calculations. The eigenvalues represent the extent 
of a 3D ellipsoid along the principal axes of the k nearest points to each 
point Pi (Weinmann et al., 2015). The eigenvalues are calculated from 
the covariance (Eq. (1)) where P is geometric centre of the neighbour
hood of Pi (Eq. (2)). If there is a vector V in R3 ∕= 0 such SV = λV, then 
the eigenvalues are λ1 ≥ λ2 ≥ λ3 ≥ 0. The selected features must be 
aligned with key perceptual descriptors that facilitate visual recognition. 

S =
1

k + 1
∑k

i=0
(Pi − P)(Pi − P)

T (1)  

Fig. 1. Workflow of the methodology.  
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P =
1

k + 1
∑k

i=0
Pi (2) 

In view of the above, the nine features used in this work are proposed 
and justified below: 

3.1.1. Reflectance (Re) 
The reflectance intensity (Re) is a radiometric feature provided by 

the LiDAR sensor. According to Höfle and Pfeifer (2007), the reflectance 
depends on a reference range, the distance between the laser scanner 
and the object, the angle of incidence, the instrument, and atmospheric 
conditions. Despite its high variability and dependence on the above 
mentioned factors, reflectivity is a widely used feature to identify sur
faces (Colomb et al., 2019), mainly with high reflectivity such as road 
markings and traffic signs (Guan et al., 2018), as well as to preserve 
textures due to variations in material and roughness (Mouriño et al., 
2021). 

3.1.2. Return number (Rn) 
Return number (Rn) is a radiometric characteristic related to the 

penetration capacity of the laser in vegetation elements and crystals 

according to their wavelength. Return number feature is only available 
in multi-return LiDAR and the maximum number of returns is usually 
five for new LiDAR systems (Nik Effendi et al., 2021). This feature is 
widely used in the identification of vegetation cover (Ekhtari et al., 
2018; Ali et al., 2021) and in less extent, glass windows (Zhang and 
Zakhor, 2014). 

3.1.3. Inclination (In) 
Inclination (In) is the feature that indicates the orientation of the 

surface containing the point with respect to the horizon. The inclination 
is obtained from the calculation of the surface normal N

(
Nx, Ny, Nz

)
of 

the point regarding to k nearest neighbours (Eq. (3)). The first feature- 
based recognition model, known as the pandemonium proposed by 
Selfridge (1988), envisages that the visual system can have detectors of 
simple geometric features such as vertical, horizontal and oblique lines. 
Therefore, the visualisation of the inclination of surfaces in the point 
cloud can help in a more direct recognition. 

inclination =

⃒
⃒
⃒
⃒
⃒
⃒
atan

⎛

⎝

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
N2

x + N2
y

√

Nz

⎞

⎠

⃒
⃒
⃒
⃒
⃒
⃒

(3) 

Table 1 
Relation between point cloud selected features and perceptual descriptors.  

Point cloud features 
\Perception 
descriptor 

Edges Texture Shape Size Depth Orientation 

Reflectance  x    x 
Return number  x     
Inclination   x   x 
Depth x   x x x 
Height x   x x x 
Point density x x     
Linearity x  x    
Planarity x  x    
Scattering x  x     

Fig. 2. Schematic diagram of the feature distribution according to their order in the RGB colour channels.  

Table 2 
Channel permutation sorted by MCD.  

Channel permutation (feature order) MCD 

HeLiPlRnReInDeScPd  44.47 
RnReInDeScPdHeLiPl  44.49 
DeLiRnHeRePdPlScIn  44.52 
RnLiDeHeRePdPlScIn  44.55 
RnLiDePlScInReHePd  44.65 
…  
HeRnDeInPdPlReScLi  87.52 
RnHeDeInPdPlScReLi  87.54 
RnInHePlPdDeScReLi  87.73 
HeRnDeInPdPlScReLi  87.81 
HeInRnPlPdDeScReLi  87.81  
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3.1.4. Depth (De) 
Depth (De) is the feature that provides a visualisation of horizontal 

distances. Depth is a very useful feature to identify objects by their 
silhouette (difference in distance between target and background). 
Many 3D cameras base their principle of operation on depth images (3D 
Object Recognition System, 2019; Tham et al., 2015). In point clouds, 
depth can be calculated in various ways, with the calculation from the 
scanning position of the LiDAR being common (Ma et al., 2019, 2018). 
Since the built environment can take many forms and LiDAR position or 
MLS trajectory data are not always available, the proposed depth is 
calculated according to X and Y coordinates (Px, Py) (Eq. (4)). 

depth =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

P2
x + P2

y

√

(4)  

3.1.5. Height (He) 
Height (He) is a feature provided by the point cloud at Z-coordinate. 

Height can be measured from sea level, in case of geo-referenced data, 
from the lowest point or from the ground (Park and Guldmann, 2019; 
Balado et al., 2018). In either of these situations, in the subsequent 
normalization phase, the sea level offset is eliminated. Visualising height 
as a colour gradient allows the verticality and horizontality of envi
ronmental elements to be identified, a principle of human psychology to 
interpret scenes (Selfridge, 1988). 

3.1.6. Point density (Pd) 
Point density (Pd) is a feature that depends on the laser scanning 

frequency, the distance between the laser and the target surface and the 
angle of incidence. It is a relevant feature for highlighting or attenuating 
isolated points or areas with low point density. Many authors have 
proposed methods to calculate the point density (Weinmann et al., 2013; 
Liao et al., 2021; Peng et al., 2021). In this work we use the Eq. (5) for 
calculate point density based on the distance difference between the first 
(d1) and fourth (d4) closest neighbouring points. This measure was 
proposed by Pfeifer et al. (2021), however, in order to obtain the 
delimited values (0–1), the division has been inverted. 

point density =
d1

d4
(5)  

3.1.7. Linearity (Li) 
Linearity (Li) is a geometric feature based on the distribution of k 

neighbouring points from the eigenvalues (λ1λ2λ3) (Eq. (6)) (Weinmann 
et al., 2015). Linearity enhances linear elements, e.g. pole like objects (Li 
et al., 2018), but also corners between two planes. According to many 
object recognition theories, edges are one of the most important fea
tures. According to Marr and Nishihara’s theory (Marr et al., 1978), in 
the first stage of perception, the image is described as edges, spots, bars 
and the geometrical distribution. According to Biederman’s 
Recognition-by-Components (RBC) theory (Biederman, 1987), geons are 
simple volumetric shapes and they responsible for object recognition. 
The first step of recognition would be to extract edges from changes in 
luminance and, in parallel, the division of the object into concave re
gions. The RBC/JIM model (Kurbat, 1994; Hummel and Biederman, 
1992) consider that recognition occurs in a similar way to neural net
works: activation of neurons in successive layers. In the first layer, edges 
are detected. In layers 2 and 3, geons, symmetry and blobs. In layers 4 
and 5, size and orientation of geons. Given the importance of edges, 
linearity is a very relevant feature for object identification. 

linearity =
λ1 − λ2

λ1
(6)  

3.1.8. Planarity (Pl) 
Planarity (Pl) is a geometric feature calculated from the eigenvalues 

(Eq. (7)) (Weinmann et al., 2015). Planarity enhances flat elements that 
conform most of the built environment and allow a visualisation of 
curvature. According to RBC theory, in addition to edge detection, in the 
construction of 3D representations also are relevant the non-accidental 
properties (symmetry, parallelism, straightness/curvature and connec
tions), responsible for maintaining the constancy of objects. Therefore, 
planarity is relevant for identifying geons due to the visualisation of the 
curvature of the objects. 

Table 3 
Channel permutation sorted by IQA metrics with reference.  

Feature order MSE Feature order PSNR Feature order SSIM Feature order CSV 

PlLiHeDeRnRePdScIn 2068 HeInRnScReLiPlPdDe  10.87 HeDeLiScReRnInPdPl  0.3906 DePdRnScReHePlInLi  0.9205 
DeRnRePlLiHePdScIn 2081 HeInLiScReRnPlPdDe  10.92 LiDeHeScReRnInPdPl  0.3907 DePdRnScReLiPlInHe  0.9205 
PlLiInDeRnRePdScHe 2097 HeInRnScReLiPdPlDe  10.93 DeHeLiScReRnInPdPl  0.3923 RnPdDeScReHePlInLi  0.9205 
PdScInDeRnRePlLiHe 2100 HeInRnReScLiPlPdDe  10.94 HeDeLiReScRnInPdPl  0.3926 PlInRnScReHeDePdLi  0.9205 
PlLiInHeRnRePdScDe 2102 DeInHeScReLiPlPdRn  10.95 LiDeHeReScRnInPdPl  0.3927 DePdHeScReRnPlInLi  0.9205 
…  …  …  …  
HeScLiReInRnPlPdDe 4303 PlLiInHeRnRePdScDe  14.90 PlLiHePdRnInDeScRe  0.5526 ScPlHePdRnReDeLiIn  0.9387 
LiScRnHeInRePlPdDe 4330 PdScInDeRnRePlLiHe  14.91 PlLiHeInRnPdDeScRe  0.5531 ScPlHePdLiInDeRnRe  0.9389 
LiScReHeInRnPlPdDe 4334 PlLiInDeRnRePdScHe  14.91 PlLiInPdHeRnDeScRe  0.5543 ReRnPlPdScInHeLiDe  0.9390 
ReScRnHeInLiPlPdDe 4340 DeRnRePlLiHePdScIn  14.95 PlLiInPdRnHeDeScRe  0.5544 RnLiDePdScInHeRePl  0.9393 
ReScLiHeigthInRnPlPdDe 4348 PlLiHeDeRnRePdScIn  14.97 PlLiInHeRnPdDeScRe  0.5560 RnLiPlPdScInHeReDe  0.9395  

Table 4 
Channel permutation sorted by IQA metrics without reference.  

Feature order BRISQUE Feature order NIQE Feature order PIQE 

ScPlRnLiDePdInHeRe  34.83 ScRnPdInDePlHeLiRe  9.276 LiPlPdScDeRnReHeIn  40.05 
ScPlInLiDePdRnHeRe  34.90 ScInHeRnDeLiPdPlRe  9.315 LiPlRnHeDeScPdReIn  40.14 
ScPlInLiDeHeRnPdRe  34.90 ScRnHeInDeLiPdPlRe  9.341 LiScPdPlDeReRnHeIn  40.16 
ScLiRnPlDePdInHeRe  34.91 ScInHeRnDePlPdLiRe  9.377 LiScPdPlDeRnReHeIn  40.16 
ScLiInPlDePdRnHeRe  34.92 PlRnHeInDeScPdLiRe  9.392 LiScInPlDeHeRnRePd  40.21 
…  …  …  
PdScHePlReInDeLiRn  47.00 PdLiPlRnReHeDeScIn  15.23 HeReDeRnPlPdScInLi  64.45 
PdScHePlReLiInRnDe  47.01 DeLiScRnReHeInPdPl  15.23 DeReScRnPlPdHeInLi  64.45 
PdScInPlReLiHeRnDe  47.01 ScLiPlRnReHeDePdIn  15.23 ReRnScPdLiDeInHePl  64.46 
RnScPdPlReLiHeInDe  47.01 PdRnDeLiReHePlScIn  15.27 ScRnDeRePlHePdInLi  64.47 
PdPlDeScReLiInRnHe  47.02 HeRnPlLiRePdInScDe  15.30 DeRnPdRePlHeScInLi  64.61  

J. Balado et al.                                                                                                                                                                                                                                  



ISPRS Journal of Photogrammetry and Remote Sensing 196 (2023) 514–527

519

planarity =
λ2 − λ3

λ1
(7)  

3.1.9. Scattering (Sc) 
Finally, the scattering (Sc) is a geometric feature calculated from the 

eigenvalues according to Eq. (8) (Weinmann et al., 2015). Scattering 
enhances elements of irregular 3D shapes (Munoz et al., 2009). This 
category includes vegetation (Chen et al., 2021) as well as junctions of 
three or more planes, so that dispersion is presented as a feature also 
aligned with edge and geon identification. 

scattering =
λ3

λ1
(8) 

As can be seen from the justification above, there is no one-to-one 
correspondence between features and perceptual descriptors. Although 
point cloud features are carefully chosen, many features have in
terdependencies between them and cover several perceptual descriptors. 
Also, not all perceptual descriptors have the same relevance for inter
preting the scene. Table 1 summarises the relationship between the 
calculated point cloud features and perceptual descriptors. 

3.2. Feature normalization 

The selected features have different ranges. The reflectance values 
depend on the LiDAR tool, so it is difficult to delimit. The return number 
varies between 1 and 4 usually, although some LiDARs reach 5 returns. 
The inclination varies between 0◦ and 90◦. Depth and heigh depend on 
the volume of the scene. Point density, linearity, planarity, and scat
tering vary between 0 and 1. Therefore, it is essential to normalize these 
features to obtain bounded values. Feature normalization is performed 
between 0 and 1. Reflectance, depth and height are adjusted by Eq. (9). 
Return number is divided between 4, and inclination angle between 90. 
Point density, linearity, planarity, and scattering do not require any 
modification. 

fnorm i =
fi − min(f )

max(f ) − min(f )
(9)  

3.3. Channel permutations and reduction 

In order to simultaneously display nine features, it is necessary to 
combine the features Fn for the final distribution to RGB channels 
(Fig. 2). The reduction is done through the conversion of 3 features to 1, 
according to the RGB to greyscale colour conversion (Eq. (10)) with 

Fig. 3. RGB reference image (a) and the best feature permutation according to MCD (b), MSE (c), PSNR (d), SSIM (e), CSV (f), BRISQUE (g), NIQE (h), and PIQE (i).  
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luminance (E’y) in Rec.ITU-R BT.601-7 widely used in image processing. 
A priori, there is no optimal feature order for the combination of the nine 
features simultaneously, so it is necessary to evaluate all the possibil
ities. The combination of different elements, without repetition, only 

changing order is known as ordered arrangement or permutation (n!). 
Being n = 9, the number of possible combinations is 362,880. 

grey = 0.299red + 0.587green + 0.114blue (10)  

3.4. Colour conversion and mean colour distance (MCD) estimation 

Once the nine features have been combined into three, associating 
one to each RGB channel, the input point cloud P with new colour at
tributes P(Px, Py, Pz, R, G, B) can be visualized. This sub-section explains 
how to evaluate all possible feature permutations and choose the one 
with the smallest colour deviation with a reference point cloud 
PREF(PREF x, PREF y, PREF z, RREF, GREF, BREF). The CIELAB colour space is 
more appropriate for calculating colour distances than RGB because 
distances in CIELAB are consistent with the colour differences perceived 
by the human eye (Panigrahy et al., 2021). Since many electronic de
vices capture RGB colour corresponding to standard RGB (sRGB), we 
will assume conversion from sRGB to CIELAB colour space (Eqs. (11)– 
(13)) (Bianconi et al., 2009). Also, MLS surveys are conducted in 
ambient light, typically corresponding to clear days and clear illumi
nation, so the illuminant selected is D65. Illuminant D65 represents 
average Daylight in Western Europe, with an average colour tempera
ture of 6,504 Kelvin. It is the standard for use in colorimetry ISO 

Fig. 4. RGB reference image (a) and the worst feature permutation according to MCD (b), MSE (c), PSNR (d), SSIM (e), CSV (f), BRISQUE (g), NIQE (h), and PIQE (i).  

Table 5 
Channel permutation sorted by 

∑
normalizedQAmetrics.  

Channel permutation (feature order) 
∑

normalizedQAmetrics 

DeLiHeRnReInPlScPd  0.467 
HeReInPdLiScDeRnPl  0.468 
RnLiDePdReHePlScIn  0.474 
HeLiPdRnReInPlScDe  0.474 
HeLiInRnRePdDeScPl  0.477 
ReHeInPdLiScDeRnPl  0.480 
DeLiHeRnReInPdScPl  0.481 
ReRnInPdLiScDeHePl  0.482 
PdLiInRnReHeDeScPl  0.483 
HeLiPlRnReInDeScPd  0.484 
…  
RnLiInPlDePdHeScRe  3.133 
HeLiRnPlDePdReScIn  3.153 
HeLiRePlDePdRnScIn  3.154 
HeLiRnPlDePdInScRe  3.192 
HeLiInPlDePdRnScRe  3.246  
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Fig. 5. RGB reference image (a) and the best feature permutation sorted by 
∑

normalized QA metrics (b–f).  

Fig. 6. Comparison between point cloud visualization methods in Cloud Compare: (a) natural RGB, (b) reflectance grayscale, () white coloured with EDL, (d) MFRSC, 
(e) MFRSC with SSAO, and (f) MFRSC with EDL. 
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10526:1999/CIE S 005/F-1998 and CIE S 005/G-1998. 
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(11)  

where and Xn, Yn and Zn are the tristimulus values of the illuminant (D65 

in this case): 
⎛

⎜
⎝

Xn
Yn
Zn

⎞

⎟
⎠ = 100

⎡

⎢
⎣

0.4124 0.3576 0.1805
0.2126 0.7151 0.0721
0.0193 0.1192 0.9505

⎤

⎥
⎦

⎛

⎜
⎝

R
G
B

⎞

⎟
⎠ (12)  

f (t) =

{

t1/3

7.787t + (16/116)

: 1 ≥ t ≥ 0.008856
: 0 ≤ t ≤ 0.008856 (13) 

The distance estimation between the CIELAB colour values of the 
input point cloud P and the reference PREF is performed as a distance 
calculation in three dimensions (Eq. (14)). The mean of the colour de
viation of all points is finally calculated. 

D =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

(L − LREF)
2

+ (A − AREF)
2

+ (B − BREF)
2

√

(14)  

3.5. Rotation and rasterization 

The conversion of the point cloud into an image is necessary to apply 
the Image Quality Assessment (IQA) metrics. The conversion from point 
cloud to image is done by the rasterization process on the Z-axis. To 
obtain a perspective view of the environment, a 3D rotation matrix Rot is 
applied (Eq. (15)).   

being ϕ the rotation angle in axes Z, θ the rotation angle in Y, and ψ the 
rotation angle in X. 

The rasterization process consists of the following steps: 

Table 6 
Values of IQA metric without reference comparing MRSC raster point cloud and 
natural-coloured raster point cloud.   

BRISQUE NIQE PIQE 

Best MFRSC feature permutation  34.83  9.276  40.05 
Natural-coloured point cloud  44.28  13.53  59.26 
Worst MFRSC feature permutation  47.02  15.30  64.61  

Fig. 7. Comparison between point cloud visualization: MLS highway environment (a) natural-coloured, (d) synthetic-coloured; TLS outdoor (b) natural-coloured, (e) 
synthetic-coloured; TLS indoor (c) natural-coloured, (f) synthetic-coloured. 

Table 7 
Processing time for each case study.  

Case Study Number of points knn calculation (s) Feature extraction (s) Feature combination (s) TOTAL (s) 

MLS street 363,820  1.668  109.505  0.004  111.177 
MLS highway 447,645  2.031  155.073  0.003  157.107 
TLS outdoor 254,798  1.265  64.752  0.004  66.021 
TLS indoor 772,890  2.408  221.744  0.005  224.157  

Rot =

⎡

⎢
⎣

cosϕ*cosθ cosϕ*sinθ*sinψ − cosϕ*cosψ cosϕ*sinθ*cosψ − sinϕ*sinψ
sinϕ*cosθ sinϕ*sinθ*sinψ − cosϕ*cosψ sinϕ*sinθ*cosψ − sinϕ*sinψ

−sinθ cosθ*sinψ cosθ*cosψ

⎤

⎥
⎦ (15)   
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Generation of an empty 2D matrix I(M, N) that encompasses the 
bounding box of the input point cloud in axes XY with a pixel size r. 
Assignment of the points to matrix cells (pixels) according to the 
PXPY coordinates. 
Assignment of each pixel value according to the feature of the point 
with the maximum PZ coordinate. 

3.6. Image quality Assessment 

Image Quality Assessment (IQA) and PCQA methods can be used not 
only to evaluate the quality of decoded, rendered, or transmitted PCs, 
but also to understand the representation and display requirements 
needed to achieve a good perceived quality of experience for the end- 
user (Diniz et al., 2021). Seven IQA metrics are implemented to assess 
the quality of the visualisation of the colour permutations. Four corre
spond to metrics with reference (the equivalent image of the natural 
RGB coloured point cloud acquired by the MLS). Three others corre
spond to metrics without reference. All of them are explained below. 

3.6.1. Image quality metrics with reference  

• MSE (Sara et al., 2019): Mean Squared Error measures the average 
squared difference between the actual and reference pixel values. 
This metric is easy to calculate but may not align well with human 
perception of quality.  

• PSNR (Gupta et al., 2011): Peak Signal-to-Noise Ratio is derived from 
the MSE, and indicates the ratio of the maximum pixel intensity to 
the distortion power. It also sometimes fails to give result similar to 
as perceived by the human visual system.  

• SSIM (Wang et al., 2004): Assuming that human visual perception is 
highly adapted for extracting structural information from scene, the 
Structural Similarity Index Measure combines local image structure, 
luminance, and contrast between neighbouring pixels to obtain a 
more subjective image quality according to human perception.  

• CSV (Temel and AlRegib, 2016): Based on Colour, Structure, and 
Visual system, this estimator quantifies low-level colour degrada
tions, in addition to structural differences (obtained by mean sub
traction and divisive normalization) and perceptual feature maps 
(obtained from contrast sensitivity formulations of retinal ganglion 
cells). 

3.6.2. Image Quality metrics without reference  

• BRISQUE (Mittal et al., 2012): Blind/Referenceless Image Spatial 
QUality Evaluator is trained on a database of images with known 
distortions, and evaluates the quality of images with the same type of 
distortion, therefore, the distortion is subjective to the training set.  

• NIQE (Mittal et al., 2013): Natural Image Quality Evaluator is based 
on the construction of a “quality aware” collection of statistical 
features based on a simple and successful space domain natural scene 
statistic model. These features are derived from a corpus of natural, 
undistorted images. The NIQE score of an image may not correlate as 
well as the BRISQUE score with the human perception of quality.  

• PIQE (Chan and Goldsmith, 2000): Psychovisually-based Image 
Quality Evaluator evaluates the image quality using two 
psychovisually-based fidelity criteria: blockiness and similarity. 
PIQE is less computationally efficient than BRISQUE and NIQE, but 
provides local quality measures in addition to an overall quality 
score. 

4. Experiments 

4.1. Case study 

The selected case study corresponded to 16 m of the Avenida de 
Castilla in Palencia (Spain). It is a typical urban configuration in the form 

of a street with a repetitive pattern. In addition, the case study contains a 
great variety of urban elements: buildings, parked cars, trees of various 
species and sizes, road, road markings, sidewalk, streetlamps and 
furniture. The corresponding point cloud was scanned with Lynx Mobile 
Mapper (Balado et al., 2017), with a Ladybug5 360◦ camera. The survey 
contained 1 million points, but the point density was reduced to accel
erate computation. Density reduction was performed by a 3D grid of 5 
cm resolution that maintained one point per voxel. The point cloud for 
tests contained 363 thousand points. For those features that depended 
on the number of neighbours, k = 25 neighbours was set (Weinmann 
et al., 2015). Subsequently, the feature normalization was applied to 
dimension values between 0 and 1. The rotation matrix of Equation (16) 
was used for the perspective view generation. The rasterization used a 
pixel size r = 10 cm, generating images of 260 × 263 pixels. 

Rot =

⎡

⎢
⎣

−0.559 −0.829 −0.011
0.325 −0.231 0.917

−0.763 0.509 0.399

⎤

⎥
⎦ (16)  

4.2. Results and analysis 

Tables 2–4 show the permutations of features ordered according to 
the values of each metric. Also, Fig. 3 compiles the best feature per
mutation for each metric while Fig. 4 compiles the worst permutation. 
Overall, the analysis of the QA metrics without a visual support is quite 
confusing due to the difference in range values between the metrics and 
abstraction of results. Therefore, a joint view of Tables 2–4 and Figs. 3 
and 4 is recommended, which directly allows relating the quantification 
of the metrics to the subjective human visual perception provided by the 
images. 

The first remarkable issue is the large colour distance between the 
natural RGB colour and any permutation. In the best case, the Mean 
Colour Distance (MCD) obtained is 44.47 colour units (Fig. 3.b), a 
similar value to the distance from orange to red. It is therefore not 
possible to obtain a synthetic colour close to the natural colour with only 
multiple features. However, the best feature order permutation ac
cording to MCD allows a clear view of the scene and the direct identi
fication of vehicles, parking areas, road markings, trees, and buildings. 

The valuations of the IQA metrics are not always related to subjective 
human visual perception. This was indicated by other authors (Torlig 
et al., 2018; Cruz et al., 2019; Alexiou et al., 2018) and it was also 
observed in the present results. In tests performed with IQA metrics with 
reference it is difficult to assess whether the quality of the visualization 
corresponds to the metric and thus, to a particular order of features. 
Comparing the best and worst feature permutation presented in Fig. 3.c-f 
and Fig. 4.c-f, there is no clear distinction which feature order provides 
better visualization; except for MSE, for which the worst feature per
mutation only highlights inclination (Fig. 4.c). In all other metrics 
(PSNR, SSIM, and CSV), the best and worst feature permutation offer 
similar visual perceptions beyond the change in colour palette. 

As for the IQA metrics without reference (BRISQUE, NIQE, PIQE), 
the expected result was completely opposite. Since these metrics greatly 
penalize distortions, in the case of point cloud raster, the IQA metrics 
without reference considered distortions every detail that provide in
formation to the scene. E.g., in the best feature permutation according to 
BRISQUE (Fig. 3.g) and PIQE (Fig. 3.i), it is very difficult to distinguish 
even the cars, which were clearly identifiable with IQA metrics with 
reference. In contrast, the worst feature permutation (Fig. 4.g–i) pro
vides images where many details and objects are clearly distinguishable. 

In order to obtain a joint view of all permutations providing a better 
visualization according to all QA metrics, the values of several metrics 
were combined. For this purpose, given the large variation (range of 
values) between QA metrics, the values were normalized between 0 and 
1 taking as reference the minimum and maximum value of each metric 
(Eq. (9)). The IQA metrics with reference were discarded from this 
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overall assessment, since in this case, IQA metrics are not related to 
human visual perception, as discussed above. The IQA metrics without 
reference were reversed, since higher values indicate worser visualiza
tions but correspond to more rich subjective visualization, as discussed 
above. Therefore, the QA used in the joint assessment were the MCD, 
BRISQUE, NIQE and PIQE. The results obtained are shown in Table 5 
and Fig. 5. 

As can be seen in Fig. 5, the five best feature permutation according 
to 

∑
normalized QA metrics offer a good subjective visualization and 

identification of objects in urban scene. The order of features in the best 
permutations was similar and, consequently, the synthetic colours pro
duced were also similar (except for Fig. 5.c). A clear similarity can be 
observed between the first and fourth position (Fig. 5.b and .e), where 
the road had a dark colour closer to the asphalt and that provides a 
greater contrast between asphalt and other objects, but not with the 
sidewalk. Another clear similarity can be observed with the third and 
fifth position (Fig. 5.d and .f), only practically changing the tonality of 
the road. MFRSC allows to recognize objects and to distinguish their 
component parts, since each part usually has a specific geometry and 
reflectance, and in many cases associated with different natural colours. 
Thus, in the synthetically coloured images in Fig. 5, it is possible to 
distinguish windows and doors of buildings, trunks and foliage of trees, 
and windshields and wheels of cars easily. 

ademas de reconocer objetos, las partes que pudiendo asi no solo 
reconocer objetos sinó Tambien las partes que los component. 

5. Discussion 

The proposed Multi Feature-Rich Synthetic Colour (MFRSC) provides 
a correct visualization of the urban environment. It is obvious that the 
synthetic colour obtained is far from the natural colour, so it is not 
possible to obtain a realistic environment. However, the MFRSC 
perfectly replaces the natural colour and different objects can be iden
tified correctly in the synthetic-coloured environment. Moreover, the 
MFRSC implies other advantage: the visualization is not subject to col
ouring errors. Colour projection from cameras on the point cloud may be 
erroneous due to the inadequate calibration of the photographic 
equipment or to the geometry, visibility, and occlusions of the 3D 
environment. It is therefore a good alternative for viewing coloured 
point clouds if natural colour information is not available. 

The selection of the optimal feature permutation considered the 
Mean Colour Distance (MCD) between natural and synthetic colour, 
since a relation between MCD results and visual perception was shown. 
The authors consider that the use of close-to-natural colours improves 
the human perception. Colour is a feature highly dependent on the 
environment. Colour of cars or buildings can change; however, many 
urban elements have a colour that can be assumed to be constant (e.g., 
green for trees, black for asphalt, or white for road markings), so having 
a colour reference is important for the selection of the optimal feature 
permutation. 

MFRSC focuses on natural colour substitution, so synthetic colour 
generation allows the display of coloured point clouds even in the vast 
amount of software that does not support colourization based on point 
attributes (Otepka et al., 2020). In addition, MFRSC allows a more 
complete visualization of point clouds simultaneously displaying nine 
features than single point attribute visualization. Other advantages are 
the possible combination of MFRSC with other non-photorealistic 
techniques based on illumination and occluders such as EDL or Screen 
Space Ambient Occlusion (SSAO) (Fig. 6). Illumination-based tech
niques calculate shadows from depth buffers in the 3D geometry and 
generate a shadow image that is combined with the colour rendering of 
the scene (in this case, the synthetic colour generated with MFRSC). 

The application of BRISQUE, NIQE and PIQE metrics to the raster 
images of the natural-coloured point cloud indicated values in the 
middle of feature permutations of MFRSC (Table 6). This indicates that a 
significant number of feature permutations offer a lower distortion 

visualization than the natural-coloured point cloud. However, the 
interpretation of these metrics does not have a clear and direct corre
lation with human perception either. 

The best MFRSC feature permutation was also applied to other three 
case studies, not involved in the test already performed for the QA. 
Natural and synthetic colour are show in Fig. 7. The new point clouds 
corresponded to:  

• Highway environment scanned with Lynx Mobile Mapper.  
• Outdoor environment scanned with Terrestrial Laser Scanning (TLS) 

Faro Focus X330.  
• Indoor environment scanned with TLS Faro Focus X330. 

The results of the application to the other case studies followed a 
similar behaviour to that already tested. The visualization of some ele
ments was improved, such as the lower guardrail in the highway. Some 
shades similar to the natural colour were maintained, such as the slate in 
the classroom. A sense of depth was also maintained in all the case 
studies and edges were highlighted. However, some elements had not as 
much contrast compared to the natural colour, such as the differentia
tion of the slope with vegetation and the road. 

The method was implemented in Matlab® 2021a, on a computer i7- 
7700HQ CPU 2.80 GHz 16 GB RAM. The processing times for all case 
studies are listed in Table 7. The processing time depends on the number 
of points. The case study that took the longest time was the TLS indoor 
point cloud with almost four minutes, as it was the largest with 772,890 
points. The 98% of the time was consumed by the feature extraction 
process. Although the programming language used is primarily for 
prototyping, and the translation to other languages will improve the 
computation time, feature extraction is not considered real time today, 
so the method have to be executed offline, already done in other visu
alization works, e.g. continuous LoD (van Oosterom et al., 2022). On the 
other hand, feature combination is a millisecond process, but the anal
ysis of all QA for all permutations of the test case study took 24 h. This 
process is extremely slow and, although it provides the optimal visual
ization for each case study, it can be substituted by the use of the feature 
order recommended in this work which has shown satisfactory visuali
zations in other case studies. 

6. Conclusion 

This work presents a Multi Feature-Rich Synthetic Colour (MFRSC) 
approach to replace the natural colour of point clouds. Nine features 
were selected according to five visual perception descriptors related to 
human visual perception and distributed over the three RGB channels 
(after 9 to 3 reduction process). The nine features were reflectance, re
turn number, inclination, depth, height, point density, linearity, 
planarity, and scattering. The five visual perception descriptors were 
edges, texture, shape, size, depth, orientation. The method was tested on 
an MLS point cloud of real 3D urban environment. All possible feature 
permutations were analysed according to colour distance and IQA 
metrics with and without reference, selecting those that offered the best 
final visualization. As a result, it was observed that, by the mean of 
colour distance and BRISQUE, NIQE and PIQE metrics, it was possible to 
uniform the values and obtain those features permutations with a better 
subjective visualization. 

As a conclusion, the MFRSC allows an alternative colouring to the 
natural colour for point clouds. MFRSC can provide a framework 
composed by feature extraction, normalization, and channel reduction 
in which the optimal visualization can be estimated by brute force 
search. Since the force search requires a long computation time, the test 
MLS urban point cloud provided the optimal feature permutation 
(Depth-Linear-Height for channel R, Return-Reflectance-Inclination for 
channel G, and Planar-Scatter-Density for channel G) that offers a cor
rect distinction of all objects in the urban scene. In addition, this per
mutation of channels and features shown good results in MLS point 
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clouds for road environments and TLS point clouds for outdoor and in
door environments. The method can be implemented for simultaneous 
visualization of multiple features in software that does not support 
colourization based on point attributes and combined with other non- 
photorealistic techniques such as EDL and AO. 

The features used are easily and quickly computable, and they are 
available in almost all laser scanning devices, so technically MFRSC can 
be applied to all types of scenes and laser scanners. However, since point 
clouds acquired by different platforms have different geometric and 
radiometric specifications, also related to the 3D scene and perspective, 
perception of MFRSC may be affected. The future work will evaluate the 
application of MFRSC to Handled and Aerial Laser Scanning in other 
relevant environments, such as country areas or cultural heritage sites. 
Future work will also focus on study if MRSC is a suitable solution for 
immersive point cloud visualization in Virtual Reality devices. Finally, 
Deep Learning techniques will be applied to semantically segment the 
point cloud and relate the parts of each object to a synthetic colour or 
generate natural colour directly from Generative Adversarial Networks. 

Declaration of Competing Interest 

The authors declare that they have no known competing financial 
interests or personal relationships that could have appeared to influence 
the work reported in this paper. 

Acknowledgements 

This research has received funding from Xunta de Galicia through 
human resources grant (ED481B-2019-061), GAIN (grant number 
ED431F 2022/08) and from the Government of Spain through project 
PID2019-105221RB-C43 funded by MCIN/AEI/10.13039/ 
501100011033. This paper was carried out in the framework of the 
InfraROB project (Maintaining integrity, performance and safety of the 
road infrastructure through autonomous robotized solutions and mod
ularization), which has received funding from the European Union’s 
Horizon 2020 research and innovation programme under grant agree
ment no. 955337. It reflects only the authors’ views. Neither the Euro
pean Climate, Infrastructure, and Environment Executive Agency 
(CINEA) nor the European Commission is in any way responsible for any 
use that may be made of the information it contains. Funding for open 
access charge: Universidade de Vigo/CISUG. 

References 

3D Object Recognition System Based On Local Shape Descriptors and Depth Data 
Analysis, Recent Patents Comput. Sci., 2019.12. 
Abdelhafiz, A., 2013. Laser scanner point cloud colouring algorithm applied on real site. 

Surv. Rev. 45, 343–351. https://doi.org/10.1179/1752270612Y.0000000031. 
Alexiou, E., Ebrahimi, T., 2017. On the performance of metrics to predict quality in point 

cloud representations. In: Proc. SPIE. doi:10.1117/12.2275142. 
Alexiou, E., Ebrahimi, T., 2019. Exploiting user interactivity in quality assessment of 

point cloud imaging. In: 2019 Elev. Int. Conf. Qual. Multimed. Exp. pp. 1–6. doi: 
10.1109/QoMEX.2019.8743277. 

Alexiou, E., Ebrahimi, T., Bernardo, M.V., Pereira, M., Pinheiro, A., Cruz, L.A.D.S., 
Duarte, C., Dmitrovic, L.G., Dumic, E., Matkovics, D., Skodras, A., 2018. Point cloud 
subjective evaluation methodology based on 2D rendering. In: 2018 Tenth Int. Conf. 
Qual. Multimed. Exp., pp. 1–6. https://doi.org/10.1109/QoMEX.2018.8463406. 

Alexiou, E., Xu, P., Ebrahimi, T., 2019. Towards modelling of visual saliency in point 
clouds for immersive applications. In: 2019 IEEE Int Conf. Image Process., 
pp. 4325–4329. https://doi.org/10.1109/ICIP.2019.8803479. 

Ali, M.E.N.O., Taha, L.-G.-E.-D., Mohamed, M.H.A., Mandouh, A.A., 2021. Generation of 
digital terrain model from multispectral LiDar using different ground filtering 
techniques. Egypt. J. Remote Sens. Sp. Sci. 24, 181–189. https://doi.org/10.1016/j. 
ejrs.2020.12.004. 

Aliev, K.-A., Sevastopolsky, A., Kolos, M., Ulyanov, D., Lempitsky, V., 2020. Neural 
point-based graphics. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (Eds.), 
Comput. Vis. – ECCV 2020, Springer International Publishing, Cham, pp. 696–712. 

Balado, J., Díaz-Vilariño, L., Arias, P., Soilán, M., 2017. Automatic building accessibility 
diagnosis from point clouds. Autom. Constr. 82, 103–111. https://doi.org/10.1016/ 
j.autcon.2017.06.026. 

Balado, J., Díaz-Vilariño, L., Arias, P., González-Jorge, H., 2018. Automatic classification 
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Özdemir, E., Remondino, F., Golkar, A., 2019. Aerial point cloud classification with Deep 
Learning and Machine Learning algorithms. Int. Arch. Photogramm. Remote Sens. 
Spat. Inf. Sci. XLII-4/W18, 843–849. https://doi.org/10.5194/isprs-archives-XLII-4- 
W18-843-2019. 

Panigrahy, C., Seal, A., Mahato, N.K., 2021. A new technique for estimating fractal 
dimension of color images BT. In: Bhattacharjee, D., Kole, D.K., Dey, N., Basu, S., 
Plewczynski, D. (Eds.), Proc. Int. Conf. Front. Comput. Syst. Springer, Singapore, 
pp. 257–265. 

Park, Y., Guldmann, J.-M., 2019. Creating 3D city models with building footprints and 
LIDAR point cloud classification: a machine learning approach. Comput. Environ. 
Urban Syst. 75, 76–89. https://doi.org/10.1016/j.compenvurbsys.2019.01.004. 

Peng, X., Zhao, A., Chen, Y., Chen, Q., Liu, H., 2021. Tree height measurements in 
degraded tropical forests based on UAV-LiDAR data of different point cloud 
densities: a case study on Dacrydium pierrei in China. For. 12 https://doi.org/ 
10.3390/f12030328. 

Pfeifer, N., Falkner, J., Bayr, A., Eysn, L., Ressl, C., 2021. Test charts for evaluating 
imaging and point cloud quality of mobile mapping systems for urban street space 
acquisition. Rem. Sens. 13 https://doi.org/10.3390/rs13020237. 

Placitelli, A.P., Gallo, L., 2011. Low-cost augmented reality systems via 3D point cloud 
sensors. In: 2011 Seventh Int Conf. Signal Image Technol. Internet-Based Syst., 
pp. 188–192. https://doi.org/10.1109/SITIS.2011.43. 

Quinlan, P.T., Wilton, R.N., 1998. Grouping by proximity or similarity? Competition 
between the gestalt principles in vision. Perception 27, 417–430. https://doi.org/ 
10.1068/p270417. 

Remondino, F., 2003. From point cloud to surface: the modeling and visualization 
problem. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 34. 

Ren, L., Song, Y., 2022. AOGAN: A generative adversarial network for screen space 
ambient occlusion. Comput. Vis. Media. 8, 483–494. https://doi.org/10.1007/ 
s41095-021-0248-2. 
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