770 research outputs found

    Simulation of a finishing operation : milling of a turbine blade and influence of damping

    Get PDF
    Milling is used to create very complex geometries and thin parts, such as turbine blades. Irreversible geometric defects may appear during finishing operations when a high surface quality is expected. Relative vibrations between the tool and the workpiece must be as small as possible, while tool/workpiece interactions can be highly non-linear. A general virtual machining approach is presented and illustrated. It takes into account the relative motion and vibrations of the tool and the workpiece. Both deformations of the tool and the workpiece are taken into account. This allows predictive simulations in the time domain. As an example the effect of damping on the behavior during machining of one of the 56 blades of a turbine disk is analysed in order to illustrate the approach potential

    Simulation of a finishing operation : milling of a turbine blade and influence of damping

    Get PDF
    Milling is used to create very complex geometries and thin parts, such as turbine blades. Irreversible geometric defects may appear during finishing operations when a high surface quality is expected. Relative vibrations between the tool and the workpiece must be as small as possible, while tool/workpiece interactions can be highly non-linear. A general virtual machining approach is presented and illustrated. It takes into account the relative motion and vibrations of the tool and the workpiece. Both deformations of the tool and the workpiece are taken into account. This allows predictive simulations in the time domain. As an example the effect of damping on the behavior during machining of one of the 56 blades of a turbine disk is analysed in order to illustrate the approach potential

    From computer-aided to intelligent machining: Recent advances in computer numerical control machining research

    Get PDF
    The aim of this paper is to provide an introduction and overview of recent advances in the key technologies and the supporting computerized systems, and to indicate the trend of research and development in the area of computational numerical control machining. Three main themes of recent research in CNC machining are simulation, optimization and automation, which form the key aspects of intelligent manufacturing in the digital and knowledge based manufacturing era. As the information and knowledge carrier, feature is the efficacious way to achieve intelligent manufacturing. From the regular shaped feature to freeform surface feature, the feature technology has been used in manufacturing of complex parts, such as aircraft structural parts. The authors’ latest research in intelligent machining is presented through a new concept of multi-perspective dynamic feature (MpDF), for future discussion and communication with readers of this special issue. The MpDF concept has been implemented and tested in real examples from the aerospace industry, and has the potential to make promising impact on the future research in the new paradigm of intelligent machining. The authors of this paper are the guest editors of this special issue on computational numerical control machining. The guest editors have extensive and complementary experiences in both academia and industry, gained in China, USA and UK

    Discrete modeling of sculptured surface machining for robust automatic feedrate selection

    Get PDF
    Traditional feedrate selection techniques currently used in three and five-axis CNC machining reduces milling efficiency. Manually estimated feedrates tend to be conservative and constant, greatly increasing mill time. The goal of this research is to develop robust techniques and software tools for automatically generating optimized feedrates for use on three and five-axis CNC mills, to both simplify the feed selection process and to increase the safety and efficiency of the milling operation through milling process simulation. The simulation software estimates milling force vectors for each tool move, and identifies a feedrate that maintains a desired peak force. The desired cutting force value may be selected to prevent cutter breakage, maintain part tolerance, or meet some other criteria. Other conditions are also considered, such as maximum allowable chip thickness and machine constraints. This allows for the generation of variable feedrates that are optimized for each tool move. The software consists of three distinct portions: a discrete mechanistic model, a discrete geometric model, and a CNC machine model. The mechanistic model estimates cutting forces as a function of cut geometry, cutter/stock relative velocity, and material constants. The geometric model keeps track of the changing in-process stock geometry and provides the cut geometry parameters required by the mechanistic model. The CNC machine model calculates the cutter/stock relative velocity based on feed inputs, machine kinematics, and controller behavior. A feed value is calculated in an iterative manner for each tool move based on the force estimates. The results of this research have produced accurate force estimates during sculptured surface machining, and have also demonstrated that this approach at automatic feedrate selection is feasible. Testing of feedrate selection has included the five-axis milling of production turbomachinery in an industrial environment. An average improvement in efficiency of 20% has resulted from the use of the optimized feeds

    Automated CNC Tool Path Planning and Machining Simulation on Highly Parallel Computing Architectures

    Get PDF
    This work has created a completely new geometry representation for the CAD/CAM area that was initially designed for highly parallel scalable environment. A methodology was also created for designing highly parallel and scalable algorithms that can use the developed geometry representation. The approach used in this work is to move parallel algorithm design complexity from an algorithm level to a data representation level. As a result the developed methodology allows an easy algorithm design without worrying too much about the underlying hardware. However, the developed algorithms are still highly parallel because the underlying geometry model is highly parallel. For validation purposes, the developed methodology and geometry representation were used for designing CNC machine simulation and tool path planning algorithms. Then these algorithms were implemented and tested on a multi-GPU system. Performance evaluation of developed algorithms has shown great parallelizability and scalability; and that main algorithm properties are required for modern highly parallel environment. It was also proved that GPUs are capable of performing work an order of magnitude faster than traditional central processors. The last part of the work demonstrates how high performance that comes with highly parallel hardware can be used for development of a next level of automated CNC tool path planning systems. As a proof of concept, a fully automated tool path planning system capable of generating valid G-code programs for 5-axis CNC milling machines was developed. For validation purposes, the developed system was used for generating tool paths for some parts and results were used for machining simulation and experimental machining. Experimental results have proved from one side that the developed system works. And from another side, that highly parallel hardware brings computational resources for algorithms that were not even considered before due to computational requirements, but can provide the next level of automation for modern manufacturing systems

    Geometric process planning in rough machining

    Get PDF
    This thesis examines geometric process planning in four-axis rough machining. A review of existing literature provides a foundation for process planning in machining; efficiency (tool path length) is identified as a primary concern. Emergent structures (thin webs and strings) are proposed as a new metric of process robustness. Previous research efforts are contrasted to establish motivation for improvements in these areas in four-axis rough machining. The original research is presented as a journal article. This research develops a new methodology for quickly estimating the remaining stock during a plurality of 2 y D cuts defined by their depth and orientation relative to a rotary fourth axis. Unlike existing tool path simulators, this method can be performed independently of (and thus prior to) tool path generation. The algorithms presented use polyhedral mesh surface input to create and analyze polygonal slices, which are again reconstructed into polyhedral surfaces. At the slice level, nearly all operations are Boolean in nature, allowing simple implementation. A novel heuristic for polyhedral reconstruction for this application is presented. Results are shown for sample components, showing a significant reduction in overall rough machining tool path length. The discussion of future work provides a brief discussion of how this new methodology can be applied to detecting thin webs and strings prior to tool path planning or machining. The methodology presented in this work provides a novel method of calculating remaining stock such that it can be performed during process planning, prior to committing to tool path generation

    Advanced Process Planning for Subtractive Rapid Prototyping

    Get PDF
    This paper presents process planning methods for Subtractive Rapid Prototyping, which deals with multiple setup operations and the related issues of stock material management. Subtractive Rapid Prototyping (SRP) borrows from additive rapid prototyping technologies by using 2ÂœD layer based toolpath processing; however, it is limited by tool accessibility. To counter the accessibility problem, SRP systems (such as desktop milling machines) employ a rotary fourth axis to provide more complete surface coverage. However, layer-based removal processing from different rotary positions can be inefficient due to double-coverage of certain volumes. This paper presents a method that employs STL models of the in-process stock material generated from slices of the part along the rotation axis. The developed algorithms intend to improve the efficiency and reliability of these multiple layer-based removal steps for rapid manufacturing.Mechanical Engineerin

    Automatic compensating cleanup operation

    Get PDF
    Journal ArticleToday's part geometries are becoming ever more complex and require more accurate tool path to manufacture. Machining process efficiency is also a major consideration for designers as well as manufacturing engineers. Although the current advanced CAD/CAM systems have greatly improved the efficiency and accuracy of machining with the introduction of Numerically Controlled (NC) machining, excessive material may still be left on the finished part due to machining constraints, including the inaccessibility of the designed part geometry with respect the cutter, machine motion constraints like ramp angles, specific cutting patterns, etc. Polishing operations such as grinding and hand finishing are quite time consuming and expensive and may damage the surface of the part or introduce inaccuracies because of human errors. Although most of the existing machining approaches attempt to reduce such excessive restmaterials by modifying NC tool paths, none of them is satisfactory. They can be time consuming, error prone, computationally intensive, too complicated to implement, and limited to certain problem domains. A compensating cleanup tool path will be developed in this research to automatically remove these excessive material from the finish part. This method greatly reduces the burden of hand finishing and polishing and also reduces the error and complexities introduced in manually generating cleanup tool paths in the shop floor. More important, the tool path generated by this method will reduce the machining time and increase tool life compared with optimized tool path which left no excessive material behind

    A Practical and Optimal Approach to CNC Programming for Five-Axis Grinding of the End-Mill Flutes

    Get PDF
    For a solid carbide tapered end-mill, every flute includes a flute surface and a rake face along a helical side cutting edge, and the end-mill core is at the center and is tangent to all the flutes. The flutes significantly affect the tools cutting performance and life, and the core radius mainly affects the tools rigidity. Mainly, two methods are adopted in industry to grind the flutes; these are: the direct method and the inverse method. In the direct method, a flute is ground using a standard grinding-wheel moving in multi-axis machining to generate the rake face and the flute surface. However, the flute is the natural outcome of the grinding process without any control. On the other side, the inverse method employs the concept of inverse engineering to build a grinding-wheel that accurately grinds the end-mill flutes. This yields a free-form grinding-wheel profile that is used on a 2-axis grinding machine; however, the flute shapes are only exact on one section of the end-mill; when the grinding-wheel moves along the side cutting edge to smaller sections; the deviation of the generated flute from the designed one will be increased. Thus, neither can this method grind the rake face with the prescribed normal rake angle, nor generate the side cutting edge in good agreement with its design. Moreover, the grinding-wheel profile is very difficult and expensive to make. To address these problems, a practical and optimal approach for five-axis grinding of prescribed end-mill flutes is proposed by; first, establishing a 5-axis flute grinding theory describing the wheels locations and orientations during grinding the rake faces with constant normal rake angles; Second, introducing a simple grinding-wheel consisting of lines and circular arcs; and finally, applying an optimization algorithm to optimize the grinding-wheel shape and path. Overall, this approach significantly advances the CNC programming technique for the 5-axis flute grinding, and can substantially increase the quality of the solid carbide end-mills and lays a good foundation for the CAD/CAE/CAM of end-mills. The advantages of this approach over the other approaches are verified using computer simulation

    Automated Digital Machining for Parallel Processors

    Get PDF
    When a process engineer creates a tool path a number of fixed decisions are made that inevitably produce sub-optimal results. This is because it is impossible to process all of the tradeoffs before generating the tool path. The research presents a methodology to support a process engineers attempt to generate optimal tool paths by performing automated digital machining and analysis. This methodology automatically generates and evaluates tool paths based on parallel processing of digital part models and generalized cutting geometry. Digital part models are created by voxelizing STL files and the resulting digital part surfaces are obtained based on casting rays into the part model. Tool paths are generated based on a general path template and updated based on generalized tool geometry and part surface information. The material removed by the generalized cutter as it follows the path is used to obtain path metrics. The paths are evaluated based on the path metrics of material removal rate, machining time, and amount of scallop. This methodology is a parallel processing accelerated framework suitable for generating tool paths in parallel enabling the process engineer to rank and select the best tool path for the job
    • 

    corecore