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Abstract

A Practical and Optimal Approach to CNC Programming for Five-Axis Grinding of

the End-Mill Flutes

Mahmoud M. Rababah, PhD.

Concordia University, 2011

For a solid carbide tapered end-mill, every flute includes a flute surface and a rake face

along a helical side cutting edge, and the end-mill core is at the center and is tangent

to all the flutes. The flutes significantly affect the tools cutting performance and life,

and the core radius mainly affects the tools rigidity. Mainly, two methods are adopted

in industry to grind the flutes; these are: the direct method and the inverse method.

In the direct method, a flute is ground using a standard grinding-wheel moving in

multi-axis machining to generate the rake face and the flute surface. However, the

flute is the natural outcome of the grinding process without any control. On the

other side, the inverse method employs the concept of inverse engineering to build

a grinding-wheel that accurately grinds the end-mill flutes. This yields a free-form

grinding-wheel profile that is used on a 2-axis grinding machine; however, the flute

shapes are only exact on one section of the end-mill; when the grinding-wheel moves

along the side cutting edge to smaller sections; the deviation of the generated flute

from the designed one will be increased. Thus, neither can this method grind the

rake face with the prescribed normal rake angle, nor generate the side cutting edge in

good agreement with its design. Moreover, the grinding-wheel profile is very difficult

and expensive to make.
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To address these problems, a practical and optimal approach for five-axis grind-

ing of prescribed end-mill flutes is proposed by; first, establishing a 5-axis flute grind-

ing theory describing the wheels locations and orientations during grinding the rake

faces with constant normal rake angles; Second, introducing a simple grinding-wheel

consisting of lines and circular arcs; and finally, applying an optimization algorithm

to optimize the grinding-wheel shape and path. Overall, this approach significantly

advances the CNC programming technique for the 5-axis flute grinding, and can

substantially increase the quality of the solid carbide end-mills and lays a good foun-

dation for the CAD/CAE/CAM of end-mills. The advantages of this approach over

the other approaches are verified using computer simulation.
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Chapter 1

Introduction

1.1 Research Problems

Complex parts machining requires the use of different conventional and non conven-

tional cutting tool shapes. While flat end-mills are sufficient for 21
2
D machining and

some surface finish functions, more complicated tools are needed for more complex

parts where multi-axis machining is involved. End-mill cutting tools can be cylin-

drical flat end-mill, fillet end-mill, taper ball end-mill, etc. (Fig. 1.1). The end-mill

cutting tools are normally generated using milling or grinding operations. The effi-

ciency of the generated end-mills is mainly dependent on the material used and the

geometry obtained. The end-mill cutting tool material should satisfy toughness, hot

hardness and wear resistance properties required to perform the cutting operations.

The geometry has direct impact on the tool strength, the chip evacuation capabilities,

the tool dynamics and the tool life. It can be described mainly by the cutting edges

and the tool flutes.

While milling can be sufficient to produce end-mills from high speed steel
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(a) Cylindrical (b) Ball end (c) Fillet end

(d) Tapered flat end (e) Tapered ball end (f) Cone end

(g) Rounded end (h) Inverted cone end (i) Circular arc generatrix

Figure 1.1: Different shapes of end-mill cutting tools.

2



workpieces, it is not sufficient for harder materials as carbide or ceramics. Thus,

grinding will be involved. It can be defined as a material-removal process in which

abrasive particles (grains) are contained in a bonded grinding-wheel operating at a

high speed [1]. The grinding-wheels are normally of standard shapes (Fig. 1.2) that

are precisely balanced for high rotational speeds. However, non-standard wheels can

sometimes be involved to perform specific grinding functions. Grinding is considered

as a multi-points cutting process in which some of the randomly positioned and

oriented grains will be engaged with the workpiece and perform cutting, plowing or

rubbing operations depending on the orientations of the grains and their rake angles.

Analogues to milling; grinding has many cutting teeth engaged with the work-

piece at the same time, the workpiece is fed relative to the grinding-wheel, and face

and peripheral grinding can be conducted. Despite these similarities, major differ-

ences exist; these are: the cutting teeth of the engaged grains are more numerous

than the cutting points in milling, cutting speeds are much higher, no unique rake

angle exists for the grinding-wheels and, on average, these rake angles are of very

high negative values. Moreover, more control can be achieved on the final parts

dimensions.

Grinding operations in general can be categorized into [2]: (a) Surface grind-

ing which is the most common operation that generally involves grinding of flat sur-

faces. (b) Cylindrical grinding operations grind the external surface of the workpiece

(crankshaft bearings, spindles, pins, etc.) using traverse, plunge or profile grind-

ing. (c) Internal grinding using small wheels to grind the inside diameter of the

3
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Figure 1.2: Some of standard grinding-wheel shapes.
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workpiece. (d) Centerless grinding which is a high production process for continu-

ously grinding cylindrical surfaces where the workpiece is not supported by centers.

(e) Other grinding operations including tool grinding, heavy stock removal grinding,

creep feed grinding, etc.

Since our concern in this dissertation is the end-mill grinding, it will be ex-

plored in details in the coming chapters. However, it can be mainly categorized

into: (1) two-axis end-mill grinding using non-conventional grinding-wheels (inverse

method), (2) multi-axis end-mill grinding using standard grinding-wheels (direct

method) and (3) novel multi-axis tool grinding using a novel grinding-wheel that

is optimized together with its path to generate accurate flute shapes [3]- [6] .

As the two-axis and the multi-axis grinding processes available both do not

have much control on the end-mill shapes, the ground flutes will not be optimal for

tool dynamics, tool strength and chip evacuations. Also, the processes will be unable

to produce end-mills matching the optimally designed ones; leading to inaccurate

cutting analysis. Thus, the need arises for a novel process that can better control

the flutes shapes and ensures accurate cutting edges and constant normal rake angles

along those edges. With the novel multi-axis grinding theory introduced in this

dissertation, a simple prismatic grinding-wheel consisting of lines and circular arcs is

adopted to grind end-mill cutting tools using five-axis CNC grinding machines. The

wheel path and geometry are both optimized for more accurate tool flute shapes,

accurate cutting edges and constant normal rake angles along those edge.
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1.2 Research Objectives

The first objective of this work is to establish a five-axis tool grinding theory. Thus,

the grinding-wheel location and orientation will be described during the grinding

process using explicit mathematical representations. This is carried out while ensuring

an accurate side cutting edge and a constant normal rake angle along that edge. The

grinding-wheel will follow the side cutting edge in similar manner to a cutter in milling

process when it follows the set of the cutter contact points (CC points).

The second objective is to grind the end-mill flutes with close matching to the

designed ones. This is achieved by optimizing the geometric parameters and the path

of the grinding-wheel. The grinding-wheel is of a novel shape and is first introduced in

this dissertation. It can represent many of standard grinding-wheels already available

in industry.

As a result, a true tool model will be generated that can be directly used in the

finite element analysis to accurately predict the tool strength and dynamics during

the cutting process. It is unlike the available tool models which are based only on

design and are unattainable in a real manufacturing process.

1.3 Dissertation Organization

The remaining sections of this dissertation are organized as follows. Chapter 2 re-

views the concept of the swept surface and the current approaches to obtain it. It

6



also discusses the current tool grinding processes and the improvements that has been

gained in the last few years. Chapter 3 simulates one of the main grinding processes

currently available in academia and industry; that is the inverse method. The advan-

tages and the disadvantages of this method will also be highlighted in this chapter.

Chapter 4 will establish a five-axis tool grinding theory and will derive the grinding-

wheel location and orientation during the grinding process (wheel path) in order to

grind the end-mill flutes with accurate side cutting edges and constant normal rake

angles along those edges. Chapter 5 will introduce a novel grinding-wheel profile con-

sisting of lines and circular arcs. The profile of the grinding-wheel will be optimized

with its path in order to grind the tool flutes with close matching to the designed

ones. Chapter 6 contains the summary of this work and the future work the author

is intending to pursue.
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Chapter 2

Literature Review

This chapter reviews the concept of the swept surface, its importance to the grinding

process and the methods available to generate it. Then, a comprehensive review for

the grinding processes described in literature and adopted in industry is conducted.

2.1 Grinding–Wheel Swept Volume

The importance of the swept volume in CAD/CAM comes from its role in (1) cal-

culating the cutter-workpiece engagements for the cutting force calculations [7] - [11]

and (2) machining simulation as many software codes are already available in hands

(eg. Catia and MasterCam). The in-process workpiece can be updated every tool

path step by subtracting the swept volume generated from the workpiece using the

Boolean operation (Fig. 2.1). This will give the CAD/CAM engineer an insight on

the final product without the need to do real machining. Hence, the design-machining

cycle will be reduced and will be more efficient.

The swept volume can be defined as the volume generated from moving an

object (generator) along a prescribed path. Moving a sphere along a circular path

8



Workpiece

Removed material

Swept volume

Tool

Figure 2.1: In-process workpiece updated using the swept volume.

generates a torus shape swept volume (Fig. 2.2). Most researchers explore generating

the swept volume of cutting tools following a specific tool path in multi-axis CNC

machines. However, there is no closed-form expression for the swept volume of cutting

tools moving in a general multi-axis motion [12]. One way around this is to use the

swept surface (also called the swept envelope) instead of the swept volume.

The swept envelope is defined as the enclosing envelope that is constructed of

the intermediate swept profiles of the cutting tool. A general method for developing

the envelope was introduced by Wang and Wang [13] and Sambandan and Wang [14].

A moving Frenet frame with an origin coincides with a reference point on the moving

cutter was proposed in order to extend the domain of the parametric equation of the

cutting tool to 4D space. The fourth dimension can be eliminated by considering the

fact that the velocity vector of any point on the swept envelope should be tangential

9



Swept
volum

e
Swept volume

Path

Path

G
enerator

Generator

Figure 2.2: Swept volume generated by moving the generator along a prescribed path.

to the envelope.

Chung et al. [15] developed their approach to generate the swept envelope for

three-axis cutter motion by modeling the swept envelope in a single-valued form as

a family of tangential curves (silhouette curves). However, a forth order polynomial

needs to be solved for each silhouette curve and the approach is not extendable to a

higher axis motion.

Chiou and Lee [16] proposed one method that provides a parametric solution

for the swept envelope of a generalized cutter. They considered the kinematics of

one specific five-axis machine and then obtained the velocity at each point of the

generalized cutter from that machine kinematics. The swept envelope was obtained

based on the envelope theory, that is, the velocity vector of any point on the swept

envelope should be tangential to the envelope.

Since the envelope was obtained in a parametric form, it was not possible to

10



represent it as a simple surface, thus, an approximation algorithm was proposed by

Weinert et al. [17] to represent the envelope as a NURBS surface. The method is

robust and can be applied to the material removal simulations using the Boolean

operation. However, the envelope was generated for cylindrical and fillet-end cutters

only, and not for general shape cutters.

Du et al. [18] proposed, using the rigid body motion theory, a moving frame

on the cutter surface. A parametric closed-form solution of the swept envelope was

obtained for generalized cutter shapes. The developed method can be used for NC

simulation and verification.

Simpler and more generic swept envelope formulation based on the tangency

condition in the envelope theory was proposed by Li et al. [19], the simplicity in his

method comes from dealing with the surface of the cutter as a revolving surface in

the cutter moving frame instead of using the generic cutter shape geometry. Also,

the method proposed by Aras [20] developed a parametric representation of the swept

envelope for general cutter shapes in multi-axis milling using two families of spheres.

The surface of the cutter was modeled as a canal surface constructed from generating

circles. Those generating circles are obtained from the tangency of the first family of

spheres with the cutter surface. The second family of spheres, representing the cutter

motion, generates characteristic circles in directions normal to the spheres motions.

The intersection points between the generating circles and the characteristic circles

lie on the swept envelope.

While all the aforementioned researchers obtained parametric closed-form so-
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lutions for the swept envelope, Chen and Wei [21] developed an efficient and accurate

approach to generate an explicit closed-form solution for the swept envelope. The

cutter was modeled as a set of thin disks. The disks generate a family of circles at

each specific height that can be enclosed by an envelope profile. While excellent, it

is only applicable for three-axis motion.

As previously mentioned, the closed-form solution is mostly represented in

parametric form. This requires surface approximations. Thus, many researchers

had trend toward numerical solutions for the swept envelope. Their works can be

categorized into two main approaches; vector representation approach [22]- [26] and

cutter slice model approach [27], [28].

A numerical approximation of the swept envelope can be generated by calcu-

lating the intersection of the cutter with vectors emanating from or representing the

workpiece designed surface. The vectors can be normal to the workpiece surface [29],

unidirectional along the cutter axis [23]- [25] or a combination of both (also called

hybrid) [22]. The accuracy of these methods is strongly proportional to the vectors

resolution.

The cutter slice approach models the surface of the cutter as a set of circles

[27], [28]. For each circle in the set, the normal to the plane containing the circle and

the velocity vector are calculated. The grazing points (points on the swept envelope)

are then generated from the cross product of these two vectors. The family of the

grazing points for the set of circles represents the silhouette curve. The accuracy is

directly proportional to the number of circles representing the cutter. At this moment
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it is worth to tell that the grinding-wheel swept volume can be found in the same

manner of the cutting tools swept volumes as it also has a revolving shape and moving

along a prescribed path.

2.2 End–Mill Cutting Tools Grinding

As a main type of cutting tools, solid carbide end-mills are very important to metal

cutting, and there are always high demand for better end-mills in the manufacturing

industry. The criteria for a solid carbide end-mill with high machinability on a type

of metal are (1) the cutting force and the cutting edge temperature are comparatively

low while the tool cutting the metal, (2) the integrity of the machined surface is good,

and (3) the tool life is long. In practice, some end-mills are well designed [30]- [32],

and a tool design includes all information about the functional features, e.g., 2 to 5

flutes, the primary and the secondary flanks along the side cutting edges, the bottom

cutting edges with the rake faces and the flanks. The rake angle of the rake face

influences the cutting force in machining, and the flute shape and size determine the

tool rigidity and the chip evacuation ability. Thus, the flutes eventually affect the

tools cutting performance and life. In order to accurately grind prescribed flutes, the

side cutting edge should be derived first.

The side cutting edge equation is normally derived by considering a constant

helical angle to the generatrix [33]- [40], a constant helical angle to the revolving

axis [41]- [43], a constant pitch [44], [45] or, in some situations, a combination of
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two [46]. For example, a ball end-mill having a cutting edge with a constant helical

angle to the cutting tool axis will not have a mathematical description for the cutting

edge at the top of the ball. For the top of the ball, a constant helical angle to

the generatrix or a constant pitch should be considered. At the common point of

the two segments of the cutting edge, the continuity and the smoothness should be

maintained.

A general mathematical model of the APT tool side cutting edge was intro-

duced by Engin and Altintas [47]. With this model, many cutters used in industry

such as cylindrical end-mills, ball end-mills, fillet end-mills, etc., have well-established

mathematical representations for their side cutting edges. For other cutting tools that

cannot be defined using the APT model such as parabolic cutting tools, a paramet-

ric form can be used to represent the revolving profile of the cutting tool [48] (eg.

Hermite, Bezier or B-Spline representations) and the side cutting edge can be found

numerically.

After deriving the mathematical equation of the side cutting edge, two main

methods are normally adopted in end-mills grinding; the first method deals with

determining the flute shape generated by a given grinding-wheel (direct method),

and the second method focuses on designing a grinding-wheel profile that generates

accurate end-mill flutes.

While the first method can be easily applied using the concept of the envelope

theory, previous works focused on modeling the grinding-wheel and the cutting tool

as two sets of finite thickness disks [49], [50], the problem is then simplified into
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calculating disk-disk intersections. The advantage of these works is that they built the

basic foundation for grinding machining simulation; in particular, they were able to

represent the geometry of the ground flutes, based on the selected standard grinding-

wheel and its path during grinding. For example, Puig et al. [51] developed a 3D tool

grinding simulation system. In this system, based on the CNC program (or codes)

of grinding a tool, the grinding-wheel movements were represented with a number of

Boolean operations; and the computer solid model of the tool is built by applying the

Boolean operations on the discrete 2D cross-sections of the tool billet and rendering

them in the three dimensions. Also, Kim and Ko [52] were able to construct the

solid models of the ground end-mills in their computer simulation software system

and retrieve from the models some tool geometric information that is difficult to

physically measure in order to virtually inspect the tools.

The same grinding simulation methodology can be used to perform the inverse

method grinding; that is to generate a wheel profile from a prescribed end-mill flute.

For a given wheel location, this is carried out by repeatedly increasing the radius of

each disk in the wheel until it contacts the desired helical surface profile [50]. Accuracy

of the simulation can be controlled by varying the number of disks representing the

grinding-wheel and the end-mill. However, no closed-form solution was obtained using

these methods.

A part from the simulation methodology, obtaining a wheel profile from a

prescribed flute profile has been investigated in many papers [33]- [45]. Assuming first

that the grinding-wheel axis makes a particular angle with the cutting tool axis, and

15



second that the distance between the tool coordinate system and the grinding-wheel

coordinate system is known, then, the profile of the wheel can be generated according

to the principle of reverse engineering of the envelope, which states that any contact

point between the helical surface and the revolving surface must have its normal

vector passing through the revolving axis. This method will yield a grinding-wheel

with a free-form profile for the 2-axis flute grinding. For example, Tsai and Hsieh [33]

generated a grinding-wheel profile to manufacture a ball end-mill cutting tool, Chen

and Chen [37] generated a grinding-wheel profile for a fillet end-mill cutting tool

with a concave-arc generatrix. Many other researchers employed the same principle

of reverse engineering to generate the wheel profile; for example, Chen et al. [35]

generated the wheel profile for a concave cone cutting tool. Chang and Chen [36]

obtained the wheel profile for a cutting tool with a circular arc generatrix, and Chen

et al. [42] developed the wheel profile for circular arc ball end-mill cutting tools. The

main steps of their works are similar, including (1) determining the profile of the

grinding-wheel for the 2-axis tool grinding and (2) calculating the tool rotation speed

and the grinding-wheel feed rate.

The generated grinding-wheel profiles from the aforementioned works made

the relative motions between the grinding-wheel and the cutting tool simple and

decreased the simultaneous cooperative axes of the CNC tool grinding machine to 2

axes. However, as many researchers pointed out [42], [43]; there are residual surfaces

on the tool and the side cutting edge strip is narrower near the tool tip. Thus post-

processing is needed. Beside this, the free-form shapes of the grinding-wheels made
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them very difficult and expensive to make. Also, this current method cannot grind the

rake faces with the specified normal rake angles. Moreover, the end-mill flute is exact

only on one cross-section of the end-mill and the flute shape will be uncontrolled when

moving to smaller end-mill cross-sections as the case in tapered end-mills grinding.

Different from the grinding methods mentioned above, Chen and Bin [53]

and Feng and Bin [54] proposed a novel coordinate system on the side cutting edge

and used a four-axis grinding machine with a standard grinding-wheel to grind the

rake face of the end-mill. With a simple standard wheel, more relative motions were

required to ensure constant normal rake angles along the side cutting edges. However,

the proposed method is only applicable for special grinding-wheel shapes (torus and

spherical) and no full flute grinding has been conducted.

Now, 5-axis CNC tool grinding machines are more popular, and it is required

to machine the flute in one path, instead of multiple paths. To precisely machine the

flutes of the tapered end-mills in 5-axis grinding, an optimal and practical approach

to CNC programming is originally proposed [3]- [5] and will be introduced in the

proceeding chapters.

2.3 Summary

In this chapter we closely reviewed current techniques related to our research topic,

including geometric modeling of the swept volume and the end-mill tools grinding.

The tools grinding research was described briefly in this chapter to cover most of
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the development in the field. Thus, next chapter will describe in detail one of the

main tools grinding processes, that is; the two-axis tool grinding (inverse method,

also known as indirect method), and will generate the grinding-wheel profile required

to grind a prescribed tool flute by direct implementation of the method.
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Chapter 3

Two–Axis Tool Grinding

(Inverse Method)

3.1 Introduction

The principle of reverse engineering of the envelope will be described in detail in this

chapter and will be employed in finding a grinding-wheel that grinds a prescribed

tool flute shape along a two-axis path. Then, a grinding simulation will be carried

out and the method drawbacks will be identified. But first, the geometric model of

the end-mill cutting tool will be described.

3.2 Geometric Model of the End–Mills

End-mills mainly include several geometric features, such as several helical flutes and

the corresponding side and bottom cutting edges, the first and the second flanks of

each cutting edge, a gash (or a split) on the bottom, and the central core. As our

work focus is the flutes grinding; two features are of our concern: the side cutting
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edge and the flute profile.

3.2.1 Side cutting edge

To design an end-mill, a Cartesian coordinate system �T =:
(
oTxTyTzT

)
is estab-

lished. Its origin oT is located at a reference point on the tool axis. The reference

point is normally selected on the end face in case of the flat end-mills or the fillet

end-mills or the center of the ball in case of the ball end-mills, etc. The zT-axis coin-

cides with the tool axis and the xT- axis is defined in relative with the starting point

of the cutting edge. In this coordinate system, the side cutting edge of the end-mill

is a helix on the cutting surface and is formulated with a parametric form.

First, the helical angle at any point on the side cutting edge can have one of

two definitions: (1) the angle between the tangent vector of the cutting edge at that

point and the tool axis or (2) the angle between the tangent vector and the generatrix.

By adopting the second definition of the tool revolving surface ST , where

ST
(
zT, θ

)
=

[
rT

(
zT
) · cos θ rT

(
zT
) · sin θ zT

]T
(3.1)

as shown in Fig. 3.1, the partial derivatives of the surface vector are calculated as

∂ST
∂z
=

[
∂rT(zT)

∂zT
· cos θ ∂rT(zT)

∂zT
· sin θ 1

]T
(3.2)

and

∂ST
∂θ
=

[
−rT

(
zT
) · sin θ rT

(
zT
) · cos θ 0

]T
(3.3)

In general, the tangent vector dST of the helical curve and the tangent vector
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Figure 3.1: The cutting surface of an end-mill.

δST of the generatrix can be estimated as

dST =
∂ST
∂zT

· dzT + ∂ST
∂θ
· dθ (3.4)

and

δST =
∂ST
∂zT

· δzT (3.5)

The helical angle ψ between the two vectors is obtained as

cos2ψ =

(
dST · δST

‖dST‖ · ‖δST‖
)2

(3.6)

with more simplifications, we get

(
dzT

)2
=

((
∂ST
∂θ

)2
/(

∂ST
∂zT

)2
)
· cot2ψ · dθ2 (3.7)

Thus, the positive square root of the above equation is given as

dzT =

√√√√(
∂ST
∂θ

)2
/(

∂ST
∂zT

)2

· cotψ · dθ (3.8)
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By first, integrating both sides of Eq.(3.8) and then, substituting the integration

constant using the starting point of the side cutting edge, a relationship can be

established between zT = zTC and θ = θC . Apply this relationship back into Eq.(3.1)

to obtain the side cutting edge equation as

CT
C
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

xT
C

yTC

zTC

1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

rT
(
zTC
) · cos θC

rT
(
zTC
) · sin θC
zTC

1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(3.9)

3.2.2 Tool flute

Flutes are important geometric elements of the end-mills as they significantly affect

the tools cutting performance. Specifically, the flutes of an end-mill are relevant to

its core thickness, its rake angle, and the space for chips, so they determine the tools

rigidity, cutting forces, and chip evacuation flow in machining. The flute surface is

generated by sweeping the cross-sectional flute profile along the side cutting edge. Fig.

3.2 shows a general flute profile of a four-flute end-mill in the tool coordinate system

�T mentioned previously. In detail, the profile is normally considered on the tool

major section between the circles of the maximum tool radius rmax
T and the maximum

core radius rmax
C and consists of five segments. (1) Line segment F0F1 forms the rake

face with radial rake angle αR , which is the angle between F0F1 and x
T-axis; (2)

circular arc F1F2 of radius r1 is tangent to both F0F1 and the core circle of radius r
max
C ;
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Figure 3.2: A general flute design of a four flute end-mill on the tool coordinate

system.

(3) circular arc F2F3 of radius r2 is tangent to F1F2, and the two circular arcs form

the flute surface; (4) line segment F3F4, tangent to F2F3, generates the secondary

relief surface with relief angle γS; and (5) line segment F4F5 generates the primary

relief surface with relief angle γP. Taking a four-flute end-mill as an example does

not lose the generality, the flute parametric representation is derived and provided in

the following.

The length of the flute profile is adopted as parameter l starting from point
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F0 where l = 0. The parametric equation of segment F0F1 is

F (l) =

⎡
⎢⎢⎣ rmax

T

0

⎤
⎥⎥⎦− l ·

⎡
⎢⎢⎣ cosαR

sinαR

⎤
⎥⎥⎦where l ∈ [0, lF1 ] (3.10)

In same manner, the parametric equation of F1F2 is described as

F (l) = O1 +

⎡
⎢⎢⎣ r1 sin

(
αR − l−lF1

r1

)
−r1 cos

(
αR − l−lF1

r1

)
⎤
⎥⎥⎦where l ∈ [lF1 , lF2 ] (3.11)

and for F2F3 the equation is

F (l) = O2 +

⎡
⎢⎢⎣ −r2 sin

(
αR − lF2−lF1

r1
+

l−lF2
r2

)
r2 cos

(
αR − lF2−lF1

r1
+

l−lF2
r2

)
⎤
⎥⎥⎦where l ∈ [lF2 , lF3 ] (3.12)

For a given length of segment F4F5, lF4F5 , the parametric equation of F3F4 can be

represented as

F (l) =

⎡
⎢⎢⎣ lF4F5 cos γP

rT − lF4F5 sin γP

⎤
⎥⎥⎦+ (lF4 − l) .

⎡
⎢⎢⎣ cos γS

− sin γS

⎤
⎥⎥⎦where l ∈ [lF3 , lF4 ] (3.13)

Now the parametric equation of the last segment, F4F5 , can be expressed as

F (l) =

⎡
⎢⎢⎣ 0

rmax
T

⎤
⎥⎥⎦+ (lF5 − l) .

⎡
⎢⎢⎣ cos γP

− sin γP

⎤
⎥⎥⎦where l ∈ [lF4 , lF5 ] (3.14)

In the previous equations, lFi
is the length of the flute profile at point Fi, where

i ∈ {0, 1, ..., 5}, and can be obtained together with the two arcs centers O1 and O2

using the geometric relations.

3.3 Grinding–Wheel Profile Shape

Starting from the parametric equation derived in the previous section for the tool

flute, the flute surface generated from sweeping F (l) along the side cutting edge can
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be easily obtained. In general, the flute surface is represented as

STF(l, θC) =

⎡
⎢⎢⎢⎢⎢⎢⎣

xT
F

yTF

zTF

⎤
⎥⎥⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎢⎢⎣

cos θC − sin θC 0

sin θC cos θC 0

0 0 zTC(θC)

⎤
⎥⎥⎥⎥⎥⎥⎦
F(l) (3.15)

here, for cylindrical surfaces, we have

zTC =
rmax
T θC
tanψ

(3.16)

By establishing the grinding-wheel coordinate system �G, where xG-axis lies

on the xTyT plane at an angle 45o (the superscript “o” stands for degree) from xT-

axis, and zG-axis as the grinding-wheel axis. Here, oGzG line and oTzT line are skew

lines that lie on two different planes with a common normal line oToG of length a.

zG-axis can now be found by rotating zT-axis about xG-axis with angle 90o−ψ. yG-

axis is now found from the right hand rule (Fig. 3.3). The equation of the line oGzG

can now be expressed in the tool coordinate system �T as

rTzG =

⎡
⎢⎢⎢⎢⎢⎢⎣

√
2
2
a

√
2
2
a

0

⎤
⎥⎥⎥⎥⎥⎥⎦
+ λ1

⎡
⎢⎢⎢⎢⎢⎢⎣

√
2
2
cosψ

−
√
2
2
cosψ

sinψ

⎤
⎥⎥⎥⎥⎥⎥⎦

(3.17)

where λ1 is the length parameter. Since the grinding-wheel has a revolving surface,

the normal vector of any point on that surface must pass through the grinding-wheel

axis zG. Then

rTzG = S
T
F(l, θC) + λ2NF (3.18)
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Figure 3.3: Tool and grinding-wheel coordinate systems relationship.

where

NF =

[
NF,xT NF,yT NF,zT

]T
=

∂STF
∂l
× ∂STF

∂θC
(3.19)

By eliminating λ1 and λ2, the equation can now be expressed as

a
(√
2NF,zT +NF,yT tanψ −NF,xT tanψ

)
+ zTF ·

(
NF,xT +NF,yT

)
−NF,zT ·

(
xT
F + yTF

)
+
√
2 tanψ · (yTF ·NF,xT − xT

F ·NF,yT
)
= 0

(3.20)

Now, by using the property of the helical surface

yTFNF,xT − xT
FNF,yT =

rmax
T

tanψ
NF,zT (3.21)

Eq.(3.20) can be expressed as

a
(√
2NF,zT +NF,yT tanψ −NF,xT tanψ

)
+ zTF ·

(
NF,xT +NF,yT

)
−NF,zT ·

(
xT
F + yTF

)
+
√
2rmax

T NF,zT = 0

(3.22)
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solving Eq.(3.15) and Eq.(3.22) simultaneously for l and θC, the contact curve between

the tool and the grinding-wheel (effective grinding edge EGE) can be obtained as

CT
F =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

xT
F

yTF

zTF

1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(3.23)

Then, the grinding-wheel surface SGW can be obtained by first transforming the contact

curve CT
F to the grinding-wheel coordinate system �G to get CG

F , then rotating a full

rotation about zG-axis. Mathematically, this can be represented as

CG
F = ROT(ψ − 90o, x) · T(−a, 0, 0) · ROT(−45o, z) ·CT

F (3.24a)

SGW =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

xG
W

yGW

zGW

1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

cos θ − sin θ 0 0

sin θ cos θ 0 0

0 0 1 0

0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
CG

F (3.24b)

where

ROT(θ, x) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0

0 cos θ − sin θ 0

0 sin θ cos θ 0

0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(3.25a)
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T(a, b, c) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 a

0 1 0 b

0 0 1 c

0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(3.25b)

ROT(θ, z) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

cos θ − sin θ 0 0

sin θ cos θ 0 0

0 0 1 0

0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(3.25c)

The grinding-wheel cross-section can now be calculated by intersecting surface

SGW with x
GzG plane. Thus, the wheel profile can be represented as

CG
W =

⎡
⎢⎢⎢⎢⎢⎢⎣

RW

0

zGW

⎤
⎥⎥⎥⎥⎥⎥⎦

(3.26)

where

RW =

√
(xG

W)
2
+ (yGW)

2
(3.27)

3.4 Grinding Process Parameters

After deriving the grinding-wheel profile, only two parameters are required to com-

pletly describe the grinding process, these are:
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1. The axial feed rate Vz, and can be estimated as

Vz =
∂zTC
∂t
=

∂zTC
∂θC
· ∂θC

∂t
= ω

∂zTC
∂θC

(3.28)

where ω is the angular velocity of the tool about its axis.

2. The radial feed rate Vr, and can be derived from the radial displacement ds. If

the radial displacement is determined by the variation of the outer radius of the

cutting tool only; then over-cut will occur. Thus, the radial displacement will

be determined as (Fig. 3.4)

ds = rmax
C − rmax

C

rmax
T

· rT(zTC ) (3.29)

Hence, the radial feed rate Vr can now be found as

Vr =
d

dt
(ds) = ω

d

dzTC

(
rmax
C − rmax

C

rmax
T

· rT(zTC )
)
· dz

T
C

dθC
(3.30)

3.5 Grinding Simulation

The inverse method grinding simulation is conducted for two different end-mills; a

cylindrical ball end-mill and a tapered flat end-mill. The free-form profiles of the

grinding-wheels required to grind those end-mills are generated. Then, the radial

and the axial feeds are calculated. Finally, a discussion about the final shapes of the

end-mills will highlight the major drawbacks of the current method.
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Figure 3.4: The radial displacement of the grinding-wheel along the tool axis.

3.5.1 Cylindrical ball end–mill

A 15mm cylindrical ball end-mill with length L = 40mm and a cylinder cross-section

as shown in Fig. 3.5 and a helical angle of 60o is ground using the inverse method

described, the grinding-wheel axis is initially located at a distance a = 1.5 × rmax
T =

22.5mm from the tool axis. The grinding-wheel profile is shown in Fig. 3.6. As can

be depicted from the figure, the profile is consisting of 5 free-form segments with

only C0 continuity between the primary and the secondary relief surfaces; making the

production of such wheels impractical.

In order to find the axial and the radial feeds, the side cutting edge of the
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end-mill is derived first. It can be expressed as

CT
C =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

rmax
T · cos θC

rmax
T · sin θC

zTC

1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

0 ≤ zTC ≤ L (3.31a)

CT
C =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

√
(rmax

T )2 − (zTC )2 cos θC√
(rmax

T )2 − (zTC )2 sin θC

zTC

1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

− rmax
T ≤ zTC ≤ 0 (3.31b)

where

θC =

⎧⎪⎪⎨
⎪⎪⎩

zTC ·tanψ
rmaxT

0 ≤ zTC ≤ L

1
2
tanψ ·

[
ln

(
rmaxT −zTC
rmaxT +zTC

)]
−rmax

T ≤ zTC ≤ 0
(3.32)

Now, the axial feed rate Vz can be expressed as

Vz =

⎧⎪⎪⎨
⎪⎪⎩

rmaxT

tanψ
ω 0 ≤ zTC ≤ L

(rmaxT )2−(zTC )
2

rmaxT ·tanψ ω −rmax
T ≤ zTC ≤ 0

(3.33)

In order to find the radial feed, first we find the radial displacement as

ds =

⎧⎪⎪⎨
⎪⎪⎩

0 0 ≤ zTC ≤ L

rmax
C − rmaxC

rmaxT
·
√
(rmax

T )2 − (zTC )2 −rmax
T ≤ zTC ≤ 0

(3.34)

Hence, the radial feed rate Vr can now be found from Eq.(3.30) as

Vr =

⎧⎪⎪⎨
⎪⎪⎩

0 0 ≤ zTC ≤ L

rmaxC

rmaxT
·
√

(rmaxT )2−(zTC )
2

rmaxT ·tanψ · zTC · ω −rmax
T ≤ zTC ≤ 0

(3.35)
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Figure 3.7: Effect of the radial displacement on the cylindrical ball end-mill core

shape.

Thus, due to the radial displacement, the core of the end-mill will look as shown in

Fig. 3.7. The ground end-mill is now shown in Fig. 3.8. It shows the error in the

generated side cutting edge by comparing with the designed one.

3.5.2 Tapered flat end-mill

A tapered flat end-mill having a major radius rmax
T = 15mm, a tool length L = 40mm,

a tapered angle ϕT = 10
o, a helical angle ψ = 20o and dimensions at the major

cross-section as shown in Fig. 3.9 is also ground using the inverse method. The

grinding-wheel axis is initially located at a distance a = 3 × rmax
T = 45mm from the

tool axis. The profile of the grinding-wheel is consisting of 5 free-form segments as
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Figure 3.8: Ground ball end-mill using the inverse method simulation.

shown in Fig. 3.10. In order to find the axial and the radial feeds, the cutting edge

of the end-mill is derived first. This gives the expression

CT
C =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

(
rmax
T − tanϕT(L− zTC )

)
cos θC(

rmax
T − tanϕT(L− zTC )

)
sin θC

zTC

1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(3.36)

where

θC =
tanψ

sinϕT

[
ln

(
rmax
T − L tanϕT

tanϕT

+ zTC

)
− ln

(
rmax
T − L tanϕT

tanϕT

)]
(3.37)

Now, the axial feed rate Vz can be expressed as

Vz =
rmax
T · cosϕT − (L− zTC ) sinϕT

tanψ
ω (3.38)
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Figure 3.11: Effect of the radial displacement on the tapered flat end-mill core shape.

In order to find the radial feed, first we find the radial displacement as

ds = rmax
C − rmax

C

rmax
T

· (rmax
T − (L− zTC ) tanϕT

)
(3.39)

Hence, the radial feed rate Vr can now be found from Eq.(3.30) as

Vr = rmax
C · sinϕT − (L− zTC ) sinϕT tanϕT

tanψ
ω (3.40)

Thus, due to the radial displacement, the core of the end-mill will look as shown in

Fig. 3.11. And then, the end-mill will look as shown in Fig. 3.12.
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Figure 3.12: Ground tapered flat end-mill using the inverse method simulation.

3.6 The Advantages and the Disadvantages of the

Inverse Method

The inverse method grinding is considered as a simple process that grinds the end-mill

flutes with simple relative motions between the grinding-wheel and the cutting tool.

This approach includes three steps; First, the inverse method is adopted to calculate

the grinding-wheel profile, which is represented with a free-form curve; second, the

grinding-wheel is made according to the profile; and then the 2-axis CNC grinding

operation is applied to machine the flutes. Generally, these flutes are accurate; hence,

this approach is applicable. Unfortunately, there are two major drawbacks of this

approach. The first drawback is that the special grinding-wheel is difficult to make

37



and dress due to its free-form profile, and the second one is that this approach cannot

be used for machining accurate flutes of tapered end-mills. Regarding any flute of a

tapered end-mill, its side cutting edge is a helix on the conical end-mill envelope, and

the flutes cross-section curve varies along the tool axis. Neither is the flute geometry

modeled by sweeping a flute cross-sectional curve along the side cutting edge from

one end to the other, nor can it be machined with the 2-axis CNC grinding. A simple

example is rendered in the following to explain the problem of the current approach

to machining the flutes of the tapered end-mills.

In industry, the conventional 2-axis tool grinding machines are still used to

machine end-mills, and a machine of this kind is illustrated in Fig. 3.13. The machine

kinematics is that the grinding-wheel can move up and down along the YM-axis and

rotate about this axis by angle BM, and the end-mill can move along the XM-axis and

rotate about its axis. Usually, the rotation of BM cannot be simultaneously executed

with the motions of XM and YM, so this machine is a 2-axis CNC grinder. This type

of machine is often used to grind the flutes of cylindrical end-mills. In machining, the

BM is set and fixed at the helical angle of the side cutting edge and the specially-made

grinding-wheel is set at YM coordinate with a proper height in terms of the end-mill.

The grinding-wheel rotates in high speed; and while rotating with a proper angular

velocity, the end-mill is fed against the grinding-wheel. Since the cross-sectional curve

of the flute is uniform along the side cutting edge, the flute can be precisely ground.

However, the flutes of tapered end-mills (or with tapered cores) are more complicated,

and the current approach cannot be applied to machining these flutes.
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Figure 3.13: Illustration of the kinematics of a 2-axis tool grinding machine.

To illustrate the problem of grinding the flutes of the tapered end-mills in 2-

axis CNC grinding, an example of grinding four straight flutes of a tapered end-mill

is provided here. Assuming the end-mill flutes shapes as described in Fig. 3.14, and

for seeking of simplicity without losing the generality, let the helical angle to be zero.

Then, the side cutting edge will be represented on the figure as line coincident with

xT-axis.

It is obvious that the side cutting edge of the ground end-mill is different from

the side cutting edge of the designed one. This difference increases with decreasing

the cross-section. Moreover, for smaller cross-sections, the rake face is diminishing

and resulting in inaccurate radial rake angle, the relief surfaces are also diminishing

and thus a compensation method will be required.
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and the accuracy of the cutting edge.
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In industry, it is necessary to machine the flutes of the tapered end-mills with

the prescribed rake angle and flute shape. Besides, it is always expected to make and

dress the non-standard grinding-wheel more conveniently and economically. To meet

these requirements, the grinding-wheel profile should consist of simple geometries,

e.g., line segments and circular arcs, instead of a free-form curve. More importantly,

the flutes should be accurately machined in 5-axis CNC grinding. To overcome the

aforementioned problems, one goal of this dissertation is to develop a new inverse

method for machining the tapered end-mill flutes in 5-axis grinding.

3.7 Summary

The inverse method grinding has a simple relative motion between the grinding-

wheel and the end-mill. The flute shape obtained is exact at the major cross-section.

However, no control on the flutes shapes exist when moving along the tool axis toward

smaller cross-sections, the side cutting edge is inaccurate, the radial rake angle is also

inaccurate, the rake face and the relief surfaces are diminishing for smaller cross-

sections. This will directly impact the accuracy of the tool strength estimation and

the tool dynamic analysis, and more vibrations will appear due to the non uniform

cutting forces along the side cutting edge.
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Chapter 4

Five-Axis CNC Grinding of End–

Mill Flutes using the Direct Method

4.1 Introduction

As a main type of cutting tools, tapered end-mills are often used to machine parts

with deep shapes. To cut them, long tools have to be used; unfortunately, long cylin-

drical end-mills are less rigid, resulting in unacceptable deflection during machining.

Comparatively, long tapered end-mills are more rigid to have much less deflection

while cutting deep shapes. For a tapered end-mill, its flute geometries substantially

affect the tool rigidity and the cutting forces in machining. By definition, a flute in-

cludes a flute surface and a rake face along a helical side cutting edge; the two surfaces

are next to each other. The rake angle of the rake face determines the cutting forces.

The flute surface determines the core radius and the tool area moment of inertia; it

also provides space for chip evacuation. Thus, the flutes of a tool affect its cutting

performance and life. To make the flutes, currently, there are two methods: the di-

rect and the inverse methods. In the direct method for 5-axis grinding of a flute of a
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tapered end-mill, a standard wheel is subjectively selected, the wheel orientation and

location (WOL) are approximately calculated, and then it grinds the flute along the

side cutting edge to generate the rake face and the flute surface simultaneously. This

process can make the rake face with the specified rake angle; however, the desired

core radius is not guaranteed, and the machining error can reduce the tool rigidity.

To address this problem, it is important to develop a new automated and accurate

CNC programming approach to 5-axis flute grinding in the direct method so that

the rake angle and the core radius can be ensured. Therefore, it is one of the main

objectives of our research work.

Thus, our innovative work establishes a NC programming theory for 5-axis

grinding of tapered end-mill flutes with standard profile grinding-wheels and con-

structs genuine geometric models of machined flutes, which are necessary for finite

element analysis with high fidelity. In this chapter, first, the current end-mill geomet-

ric model is provided. Second, the generic mathematical equations of grinding-wheel

locations and orientations in 5-axis grinding of tapered end-mill flutes are derived as a

new multi-axis CNC programming theory. Finally, the mechanism of the 5-axis flute

grinding machine is introduced and related to the wheel locations and orientations

derived.
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4.2 Geometric Fundamentals of Solid Carbide Ta-

pered End–Mill Flutes

A solid carbide tapered end-mill mainly includes several geometric features, such

as several helical flutes and the corresponding side and bottom cutting edges, the

first and the second flank faces of each cutting edge, a gash on the bottom, and the

central core. In this work, a helical flute is defined with a flute surface and a rake

face along the side cutting edge; the reason for defining a flute in such a way is that a

flute is machined with a standard grinding-wheel along a specified path in the direct

method. Since the flutes of a solid carbide tapered end-mill are important to the

tool performance and life, our research is focused on accurate machining of the flutes.

Due to the complex shape of the flutes, they are often machined with 5-axis CNC

grinding; unfortunately, the CNC programming technique for 5-axis flute grinding

has not fully established and the flute cannot be accurately machined. To develop

an advanced programming approach, the basis geometry of a tapered end-mill flute

is introduced first.

Theoretically, a solid carbide tapered end-mill can be first designed with a

commercial CAD/CAM software system, and then it can be made on a 2-axis CNC

grinding machine. This is called the inverse flute machining method. As an important

feature of the tool, the flute is designed in a way that the flute cross-section profile is

defined and swept along the helical side cutting edge as discussed earlier in Chapter
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Figure 4.1: A general flute design of a four flute end-mill on the tool coordinate

system.

3 (Fig. 4.1).

To machine the flutes, compared to the aforementioned inverse method, the

direct method is more popular in the tool manufacturing companies. In this method, a

standard grinding-wheel is selected subjectively, and then the grinding-wheel moves

along its path in the 5-axis CNC grinding. Since the key parameters of the flutes

are the rake angle and the core diameter, their accuracy should be ensured during

machining. Regarding the flute shape, it is widely accepted that the flute shape

is less important to the tool performance and life; thus, it is more flexible without

any machining tolerance specified, and the actual shape is mainly dependent on the

shape of the selected grinding-wheel. Therefore, one of the objectives of this work is to

45



establish a new CNC programming technique for 5-axis flute grinding with a variety

of standard grinding-wheels. More specifically, based on a selected grinding-wheel, its

orientation and location in the 5-axis grinding should be determined automatically

and accurately so that the specified rake angle and the core diameter are guaranteed.

Due to the large flexibility of the flute shape, the way of grinding-wheel selection is

not under investigation in this work.

As guides of the flutes, the side cutting edges of an end-mill are crucial to

the 5-axis flute grinding; by natural, they are the paths of the wheel location in

the 5-axis CNC program. In this work, the side cutting edges are defined with the

parametric representation in the aforesaid tool coordinate system �T. Generally, each

side cutting edge is a helix on the envelope of the tool, and all of them are evenly

distributed around the tool axis. The tool envelope ST is a revolution surface, and a

longitude of this surface is here called a generatrix. Hence, as a mathematical model

of the side cutting edges, the helix has a constant helical angle ψ at any point on

the side cutting edge, which is the angle between the corresponding tangent vector

of the cutting edge and the generatrix. The end-mill envelope is represented with

two parameters: the zT coordinate and the rotation angle θ about the zT-axis. From

which, the side cutting edge can be derived as described early in Chapter 3. For

instance, the side cutting edge for the tapered ball end-mill shown in Fig. 4.2 can be

expressed as

CT
C
=

[
r(zT) cos θ r(zT) sin θ zT 1

]T
(4.1)
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where

θ(zT) =

⎧⎪⎪⎨
⎪⎪⎩

tanψ
sinϕT

[
ln
(
R+zT sinϕT
Rcos2ϕT

)]
−R sinϕT ≤ zT ≤ L

1
2
tanψ

[
ln
(
R+zT

R−zT
)
− ln

(
1−sinϕT
1+sinϕT

)]
−R ≤ zT ≤ −R sinϕT

(4.2)

4.3 Unit Normal Vector of the Rake Face

It is well-known that the rake angle of the rake face along the side cutting edge is

a critical parameter that determines the cutting forces and the cutting temperature.

For clarity, the rake angle is named more specifically according to its position; the

radial rake angle αR is the rake angle on a plane perpendicular to the tool axis (see

Fig. 4.1), and the normal rake angle is on a plane perpendicular to the tangent vector

of the side cutting edge (see Fig. 4.1 and Fig. 4.3). In industry, the rake angle often
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refers to the normal rake angle. To grind a flute with the specified (normal) rake

angle, the grinding-wheel should be properly oriented during machining. Hence, the

wheel orientation should be accurately calculated in the 5-axis CNC programming.

According to the geometric model of the 5-axis fluting, a lateral face of the

grinding-wheel should be aligned with the rake face, which means that the normal

vectors of the two faces are in the same direction. Therefore, it is necessary to find

out the unit normal vector of the rake face in the 5-axis CNC programming. To

formulate this normal vector, we start with the definition of the normal rake angle.

The following diagram, Fig. 4.3, illustrates a normal rake angle at a point on the

side cutting edge and the angle-related geometries. The procedure of defining the

normal rake angle of a rake face at a cutting edge point P is (1) to construct a plane
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Γ perpendicular to the cutting edge; and (2) to construct a plane Π perpendicular

to the cutting velocity. Here, the plane Γ is perpendicular to the tangent vector T

of the helical cutting edge CT
C at point P, and the plane Π passes through the tool

axis (zT-axis) and point P. The intersection between these planes is line b, and the

intersection between the plane Γ and the rake face (not shown in Fig. 4.3) is line B.

Thus, the angle between the lines b and B is the normal rake angle αn. Since the

rake face is spanned by B and T, the normal of this face can be found as the cross

product of B and T. Based on the definition of the normal rake angle, its equation

can be formulated in the tool coordinate system �T in the following.

Suppose the coordinate of point P is
(
PxT ,PyT ,PzT

)
in the tool coordinate

system �T. According to the equation of the side cutting edge, Eq.(3.9), the unit

tangent vector T at point P in �T is

T =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

TxT

TyT

TzT

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

dCT
C∥∥dCT
C

∥∥ (4.3)

To express the unit vector B, first; the normal plane Γ perpendicular to vector T will

have a unit normal vector represented as

NΓ = T (4.4)

and second, the reference plane Π will have a unit normal vector expressed as

NΠ =

[
−PyT PxT 0 0

]T
(4.5)
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Now the unit vector b coinciding with the line of intersection of the two planes is

expressed as

b =

[
bxT byT bzT 0

]T
=
NΠ ×NΓ

‖NΠ ×NΓ‖ (4.6)

The vector n is located on the normal plane Γ and perpendicular to both T and b.

Thus

n =

[
nxT nyT nzT 0

]T
= b×T (4.7)

Let b rotate clockwise around T with angle αn, where αn is the normal rake angle of

the rake face along the cutting edge. Then, the unit vector B is derived as

B =

[
BxT ByT BzT 0

]T
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

TxT nxT bxT 0

TyT nyT byT 0

TzT nzT bzT 0

0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
·

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

sinαn

cosαn

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(4.8)

Now, the rake face unit normal vector N can be expressed as

N = B×T (4.9)

In the 5-axis flute grinding, the grinding face should be aligned with the rake

face of the tool, therefore, the normal vector of the rake face is used to determine the

grinding-wheel orientation in the 5-axis CNC programming.

4.4 Five–axis CNC Grinding of End–Mill Flutes

Solid carbide is very hard, so the grinding manufacturing process has to be used in

the tool production. The grinding mechanism is that a large number of tiny grains
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with sharp edges on the grinding-wheel remove the stock material of parts. Since it is

essential for the grains on the wheel peripheral with high cutting speed, the grinding-

wheel should be rotated in high angular velocity during machining. Conventionally,

the grinding machine tools could only machine parts of regular shapes, i.e., planes,

cylinders, and holes; and, as an operation of finish machining, parts are ground by

removing a small amount of material for high accuracy and high finish. Now, the

5-axis grinding machine tools can machine complex surfaces by removing relatively

a large amount of stock material with high efficiency. The solid carbide end-mills

are complex in shape, especially, their flutes; and their two important parameters

are the normal rake angle and the core radius. To grind the end-mill flutes with the

specified core radius and normal rake angle, the selected grinding-wheel should be

properly located and oriented (in terms of the end-mill) on the 5-axis CNC grinding

machine tool. Because the volume of the material removed is difficult to determine,

currently, the wheel location is approximated, resulting a large deviation of the core

radius. Therefore, it is indispensary to accurately model the volume swept by the

grinding-wheel in its 5-axis motions; and, with this model, the wheel location can be

calculated to ensure the specified core radius after grinding.

Due to the tight tolerances of the core radius and the normal rake angle of

a machined tool, the wheel location and orientation should be accurately calculated

in the CNC programming. In other words, the specified core radius and the normal

rake angle are the criteria for the CNC programming. In this section, the geometric

models of the grinding-wheels are established in order to determine the wheel position
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for 5-axis grinding of an end-mill flute.

4.4.1 Grinding–wheel parametric representations

In industry, there are many types of standard grinding-wheels, and they are often

used for production of solid carbide end-mills for these wheels are cheaper, compared

to non-standard grinding-wheels. Fig. 4.4 shows three standard grinding-wheels,

which are often used to grind the flutes. Since the grinding-wheel in Fig. 4.4b is in

the generic shape of the three wheels, the parametric equation of this wheel can be

used to represent the other wheels. Thus, the parametric equation is derived here.

First, a coordinate system �G =:
(
oGxGyGzG

)
is established. The origin oG of �G

is located on the right face of the grinding-wheel and the zG-axis is aligned with the

wheel axis and pointing to the left. The xG- and yG-axes are on the right face and

are perpendicular with each other. The parameters, R0, tG, αG and T are labeled in

the diagram. In this coordinate system, the parametric representation of the wheel

is provided in the following.

SW (u, v) =

[
RW(u) · cos v RW(u) · sin v u 1

]T
(4.10)

where 0 ≤ v ≤ 2π,

RW(u) =

⎧⎪⎪⎨
⎪⎪⎩

R0 +
u

tanαG
0 ≤ u ≤ tG · sinαG

xG +
√

ρ2 − (u− zG)
2 tG · sinαG ≤ u ≤ T

(4.11)
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Figure 4.4: Grinding-wheels of standard shapes.

and CG =

⎡
⎢⎢⎢⎢⎢⎢⎣

xG

yG

zG

⎤
⎥⎥⎥⎥⎥⎥⎦

4.4.2 Determination of the grinding–wheel orientation

Solid carbide end-mills have different normal rake angles, and those tools are used to

cut different metals. To machine a part of a specific metal, an appropriate rake angle

of the tool can effectively reduce the cutting forces and the cutting edge temperature,

and it can also increase the cutting edge strength and tool life. The normal rake

angle is very important, therefore, it has to be ensured in machining. To grind a rake
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face with the specified normal rake angle along its corresponding side cutting edge,

the selected grinding-wheel should be properly oriented so that one of its lateral faces

always contacts with the rake face at any point on the side cutting edge. Thus, the

mathematical model of grinding the rake face is that the unit normal of the rake face

is in the opposite direction of the unit normal of the lateral face. Based on this model,

the wheel axis direction can be found; this direction is the wheel orientation of the

5-axis grinding.

To establish the mathematical model of the rake face grinding, the geometric

relationship between the grinding-wheel and the flute of the tool is illustrated in Fig.

4.5. First, a point PW (u, v) on the wheel surface and represented in the wheel coor-

dinate system �G is chosen. Second, the surface normal NW (u, v) at point PW (u, v)

in �G is found. Then, assuming the tool coordinate system �T is stationary, the

grinding-wheel is re-orientated so that the wheel surface normal NW (u, v) is aligned

with the rake face normal N
(
zTC, θC

)
but in the opposite direction. Since NW (u, v)

is represented in �G, it has to be transformed into the tool coordinate system �T.

More specifically, to align NW (u, v) with N
(
zTC, θC

)
in the way aforementioned, three

steps are proceeded in a consecutive way: (1) to coincide the two coordinate systems,

�G with �T; (2) to rotate NW (u, v) about the x
T-axis by angle μ, and (3) to rotate

NW (u, v) about the z
T-axis by angle η

Using Eq.(4.9), the unit normal N
(
zTC, θC

)
of the rake face at point P

(
zTC, θC

)
can be calculated in the tool coordinate system �T. The unit normal vectorNW (u, v)

at PW (u, v), N
T
W, can be derived by first calculating N

G
W, where the superscripts T
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and G are to relate the vector to �T and �G coordinate systems, respectively.

NG
W (u, v) =

∂SW
∂u
× ∂SW

∂v∥∥∂SW
∂u
× ∂SW

∂v

∥∥ (4.12)

Then, NG
W (u, v) is rotated about the x

T-axis by angle μ, the transformation matrix

is

ROT(μ, x) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0

0 cosμ − sinμ 0

0 sinμ cosμ 0

0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(4.13)

Then, NG
W (u, v) is rotated about the z

T-axis by angle η, the transformation matrix

is

ROT(η, z) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

cos η − sin η 0 0

sin η cos η 0 0

0 0 1 0

0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(4.14)

Finally, NW (u, v) can be represented in the tool coordinate system �T as

NT
W(u, v) = ROT (η, z) · ROT (μ, x) ·NG

W(u, v) (4.15)

Therefore, the wheel surface normal is in the opposite direction of the rake face

normal. Since they are represented in the tool coordinate system �T, the equation of

the mathematical model of grinding the rake face is

N(zTC , θC) +N
T
W(u, v) = 0 (4.16)

By using Eq.(4.16), the two rotation angles, μ and η, can be solved, and the grinding-

wheel can be re-orientated so that the normal rake angle of the rake face can be
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accuratly obtained in the 5-axis fluting (see the appendix).

4.4.3 Determination of the grinding–wheel location

In order to calculate the wheel location, the point selected previously on the grinding-

wheel in the wheel coordinate system �G, PW (u, v), is first represented in the tool

coordinate system �T as

PT
W (u, v) = T

(
oGxT , o

G
yT , o

G
zT

) · ROT(η, z) · ROT(μ, x) ·PW (u, v) (4.17)

By coinciding PT
W (u, v) with point P

(
zTC, θC

)
at the cutting edge, the grinding-wheel

location oG in the tool coordinate system �T,
(
oGxT , o

G
yT , o

G
zT

)
, can be derived (see the

appendix).

At this point, it is worth to tell that the grinding-wheel location and orientation

are affected by the selection of point PW (u, v). Hence, the flute shape will also be

affected. Therefore, using a proper point will guarantee accurate core radius for the

end-mill cutting tools as will be shown in the proceeding sections.

4.4.4 The effective grinding edge in five–axis CNC grinding

The main objective of the CNC programming for the 5-axis flute grinding is to cal-

culate the grinding-wheel location and orientation in terms of the end-mill. A kernel

technique is to accurately and efficiently represent the geometry of the wheel swept

volume in the 5-axis CNC grinding. Since the kinematics of the 5-axis grinding and

milling are similar and the 5-axis milling has been under extensive research, it would
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be easier and clearer to describe the 5-axis flute grinding in comparison with the

5-axis surface milling. For the 5-axis milling, the orientation of the cutting tool can

be simultaneously changed while the tool moving along the pre-planned paths, in

order to achieve better geometric match between the tool and the part local surface

without gouging and interference. From the geometric point of view, the tool sweeps

a complex volume, in which the stock material is removed; and the exterior surface of

this volume mathematically is the envelope of the tool revolving surface at different

locations in the 5-axis milling process. This envelope is called cutter swept surface.

Actually, a cutter swept surface is composed of the effective cutting edges at different

tool locations, which is defined as the silhouette boundary of the tool revolving surface

in the tool velocity direction at a location (see Fig. 4.6). With the effective cutting

edge, the cutter swept surface can be easily constructed, and the 5-axis CNC tool

paths can be generated. Basically, the geometric feature of the 5-axis flute grinding

is similar to that of the 5-axis surface milling.

To ensure the specified core radius and normal rake angle of the end-mill

flutes, the flutes have to be cut on the 5-axis grinding machine tool, and the disk-

alike grinding-wheel should be properly located and oriented, respectively. During

machining, the grinding-wheel moves along the helical side cutting edge, sweeping an

imaginary volume. In this work, the volume is called wheel swept volume, and any

workpiece material inside the volume is removed. The mathematical model of the

wheel swept volume is the envelope of the wheel exterior surface at different locations

during grinding; and at a wheel location, the envelope element is a curve, which is
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called the effective grinding edge in this work. An effective grinding edge is defined

as the wheel surface points at which the surface normals are perpendicular to the

instantaneous wheel velocity at a wheel position (WP). A wheel position refers to the

wheel center location and the wheel axis direction in the tool coordinate system �T.

Therefore, the wheel swept surface can be represented by finding the effective grinding

edge of the wheel at any moment of the machining process. Fig. 4.7 shows that a

grinding-wheel cuts from position 1 to position 2 in the 5-axis grinding. In this cut,

the effective grinding edges at the two locations and the swept surface they generate

are plotted. Due to the complicated kinematics of the 5-axis grinding, the effective

grinding edge is not simply the wheel profile; it varies at different positions and is a

curve on the wheel surface. Therefore, the wheel swept surface could be quite complex

in shape. In this work, we derive a closed-form equation of the effective grinding edge

by first establishing a mathematical model for the wheel swept surface as shown in

the following section.

4.4.5 Mathematical model of the grinding–wheel swept sur-

face

The motion of the grinding-wheel along the wheel path will form the swept volume

that can be represented as

SV (u, v, t) = T
(
oGxT , o

G
yT , o

G
zT

) · ROT(η, z) · ROT(μ, x) · SW(u, v) (4.18)
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where

T
(
oGxT , o

G
yT , o

G
zT

)
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 oGxT

0 1 0 oGyT

0 0 1 oGzT

0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(4.19)

To obtain the swept envelope (flute surface), one parameter should be eliminated

from SV; this is achieved using the envelope theory

|J | =
∣∣∣∣ ∂SV

∂u
∂SV
∂v

∂SV
∂t

∣∣∣∣ = 0 (4.20)

Re-arranging, we get Eq.(4.20) in the form

a · cos v + b · sin v = c (4.21)

where

a =
•(
oGxT

)
cos η +

•(
oGyT

)
· sin η − u · •η · sinμ+RW · ∂RW∂u ·

•
η · sinμ

b =

•(
oGyT

)
· cosμ cos η − •

μ ·u+
•(
oGzT

) · sinμ− •(
oGxT

) · cosμ sin η −RW · ∂RW∂u ·
•
μ

c = −
•(
oGzT

) ·∂RW
∂u
· cosμ+

•(
oGyT

)
·∂RW

∂u
· sinμ cos η −

•(
oGxT

) ·∂RW
∂u
· sinμ sin η

(4.22)

If
∣∣c/√a2 + b2

∣∣ ≤ 1, the following relationship will be obtained
v(u, t) =

⎧⎪⎪⎨
⎪⎪⎩

sin−1
(

c√
a2+b2

)
− φ

π − sin−1
(

c√
a2+b2

)
− φ

(4.23)

where

sinφ =
a√

a2 + b2
and cosφ =

b√
a2 + b2

(4.24)

Substitute the relationship obtained from Eq.(4.23) into Eq.(4.18) to get the flute

surface

SF = SV (u, v (u, t) , t) (4.25)
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as shown in Fig. 4.8. The flute surface can be imagined as an infinite family of

contact curves (effective grinding edges) guided by the side cutting edge.

4.5 Five–Axis Tools Grinding Machines

With development of the 5-axis grinding machine tools, such as WALTER, ROL-

LOMATIC and ANCA machines, solid carbide end-mills can be ground with higher

accuracy and quality, compared to the conventional method of grinding tools man-

ually. Particularly, the end-mill flutes have to be machined with the 5-axis CNC

grinding since their geometry is quite complicated. Fig. 4.9 shows the configura-

tion of a general 5-axis grinding machine tool, and the machine coordinate system
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�M =: (OMXMYMZM) includes the XM, YM, ZM, BM and CM axes. On this ma-

chine tool, the grinding-wheel can translate along theXM,YM and ZM axes and rotate

about the BM and CM axes simultaneously in order to machine complex geometries.

The relationship governing this coordinate system with �T :=
(
oTxTyTzT

)
coordinate system is fully dependent on the grinding-machine considered. Here, for

the machine adopted, using proper transformations, the axes motions of the grinding-

machine can be related to the grinding-wheel locations and orientations obtained

previously, those relationships are expressed as⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

XM

YM

ZM

1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 − cosBM − sinBM dx

1 0 0 dy

0 − sinBM cosBM dz

0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

oGxT

oGyT

oGzT − oToB

1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(4.26a)

BM = μ

CM = −η
(4.26b)

where dx, dy and dz are the X
M, YM and ZM components of a vector starting at oG

and ending at oB at the time the machine is located at its home position.

4.6 Applications

In order to verify the grinding approach proposed, grinding simulation is conducted for

cylindrical end-mills and tapered end-mills using different standard grinding-wheels

(Fig. 4.10).
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Table 4.1: Description of cylindrical end-mills grinding processes.

Grinding Grinding End-mill End-mill Helical angle Normal rake uL uU

Process wheel outer radius core radius (ψ) angle (αn)

I a 25mm 12.5mm 20o 10o 45mm 50mm

II b 25mm 12.5mm 10o 12o 0mm 8.8mm

III c 25mm 12.5mm 30o 20o 35mm 44mm

4.6.1 Grinding simulation of cylindrical end–mills

Three grinding processes are considered in simulating cylindrical end-mills grinding.

The regions that can have contact with the end-mill rake face are highlighted with

different color. The parameter u is chosen along the radial direction for wheels a and

c, and along the wheel axis for wheel b. The end-mill dimensions and the grinding-

wheel used for each process are listed in Table. 4.1.

Changing the point of the grinding-wheel in contact with the side cutting

edge, PW (u, v), will directly affect the core radius of the ground end-mill. The

deviation errors of the ground end-mill cores in comparing with the required cores

are represented as a contour plot in Fig. 4.11.

The plot shows that the cores radii are altered by both u and v parameters.

Thus, selecting a proper point, PW (u, v), is very essential in order to obtain end-

mill cores with accurate geometries as shown in Fig. 4.12, Fig. 4.13 and Fig. 4.14

for processes I, II and III, respectively, where the ground flute surface is tangent to
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Figure 4.11: Contour plots for the core deviation errors of cylindrical end-mills.
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Figure 4.11: Contour plots for the core deviation errors of cylindrical end-mills.
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Table 4.2: Describtion of tapered end-mill grinding processes.

Grinding Grinding End-mill Helical angle Normal rake uL uU

Process wheel (ψ) angle (αn) (mm) (mm)

IV d Fig. 4.15a 20o 10o 30 45

V e Fig. 4.15b 30o 6o 0 14.4

VI c Fig. 4.15c 10o 12o 35 50

the end-mill core and has an exact side cutting edge. The normal rake angle is also

accurate and constant along the side cutting edge.

4.6.2 Grinding simulation of tapered end–mills

Grinding simulation is also conducted for three tapered flat end-mills having different

geometries as shown in Fig. 4.15, where all dimensions are in millimeters. The end-

mills are ground using different grinding-wheels. The details of the grinding processes

are listed in Table 4.2.

As the core has a cone shape, its radius will increase when moving along the

end-mill axis, the grinding-wheel is required to move far from the end-mill axis in

order to account for the increase. Hence, the point on the grinding-wheel in contact

with the cutting edge, PW (u, v), is varying. In order to simplify the problem, v is

assumed (for now) constant during grinding and is assigned a value of 170o. u is
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Figure 4.13: Cylindrical flat end-mill ground using grinding process II.
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Figure 4.15: Geometries of tapered end-mills ground using the proposed approach.

assumed to vary linearly along the end-mill axis, that is

u = u1 + (u2 − u1)ln (4.27)

where ln is the normalized length along the end-mill axis, and u1 and u2 are the values

that locate the contact point on the grinding-wheel when it is at the beginning and

at the end of the cutting edge, respectively. u1 and u2 values will directly affect the

core shape of the ground end-mill. The deviation errors between the conical cores

of the ground end-mills and the designed conical cores (Fig. 4.16) are used to select

the proper values for u1 and u2. These values are then used to conduct the grinding

simulation as shown in Fig. 4.17, Fig. 4.18 and Fig. 4.19 for the grinding processes

IV, V and VI, respectively.

It is obvious from the figures that the approach proposed grinds the end-mills

with accurate side cutting edges while ensuring exact normal rake angles. The conical
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Figure 4.16: Contour plots for the core deviation errors of tapered end-mill.
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Figure 4.16: Contour plots for the core deviation errors of tapered end-mill.
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cores can also be controlled by varying u1 and u2 in order to obtain accurate ones.

4.7 Conclusions

The five-axis rake face grinding process introduced in this chapter ensures constant

normal rake angles on the rake faces along the side cutting edges. The wheel locations

and orientations along the wheel path were derived and shown that they are affected

by the selection of the wheel point in contact with the cutting edge. The wheel point

in contact with the cutting edge can be controlled to produce end-mills with accurate

conical cores. Beside the wheel point parameters (u and v), the wheel geometric

parameters affect the final shape of the tool flutes. These parameters will be explored

to pave the way for wheel path and wheel shape optimizations as will be discussed in

the proceeding chapter.
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Chapter 5

An Optimal Approach to 5–Axis End

–Mill Flutes Grinding

5.1 Introduction

To achieve better tool dynamics for more accurate cutting, and to produce an end-

mill with longer tool life, the produced end-mill should be an accurate copy of the

designed model. This chapter establishes an optimization algorithm to grind the

end-mills flutes in close matching to the designed ones by introducing a novel, yet

simple, grinding-wheel , consisting of lines and circular arcs, that moves along the

side cutting edge in 5-axis machining to produce accurate flutes and keep constant

normal rake angle along the side cutting edge.

5.2 Parametric Representation of the Grinding–

Wheel of Simple Geometry

The shape proposed for the grinding-wheel is represented as (Fig. 5.1)

81



W ( )R u

G
z

0R

G

Gt

T

u
P1

P2

P3

Line

Line

Circular arc

Circular arc

Grinding-wheel

profile

Line

G

1

2

P4

Go

Figure 5.1: The revolving shape of the grinding-wheel.

SW (u, v) =

[
RW(u) · cos v RW(u) · sin v u 1

]T
(5.1)

where 0 ≤ v ≤ 2π, and

RW (u) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

R0 +
u

tanαG
0 ≤ u ≤ tG · sinαG

xG2 +
√

ρ12 − (u− zG2)
2 tG · sinαG ≤ u ≤ zG

xG4 −
√

ρ22 − (u− zG4)
2 zG3 ≤ u ≤ T

(5.2)

and Pi =

⎡
⎢⎢⎢⎢⎢⎢⎣

xGi

yGi

zGi

⎤
⎥⎥⎥⎥⎥⎥⎦
for i = {1, ..., 4}, where P1 =

⎡
⎢⎢⎢⎢⎢⎢⎣

R0 + tG · cosαG

0

tG · sinαG

⎤
⎥⎥⎥⎥⎥⎥⎦
, P2 = P1 +

⎡
⎢⎢⎢⎢⎢⎢⎣

−ρ1 · sinαG

0

ρ1 · cosαG

⎤
⎥⎥⎥⎥⎥⎥⎦
, P3 = P2 +

⎡
⎢⎢⎢⎢⎢⎢⎣

ρ1 · sin βG

0

ρ1 · cos βG

⎤
⎥⎥⎥⎥⎥⎥⎦
and P4 = P2 +

⎡
⎢⎢⎢⎢⎢⎢⎣

(ρ1 + ρ2) · sin βG

0

(ρ1 + ρ2) · cos βG

⎤
⎥⎥⎥⎥⎥⎥⎦
.
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5.3 Five–Axis Grinding of End–Mill Flutes

In order to conduct accurate flute grinding, the flute is required to be modeled accu-

rately and efficiently; for tapered end-mills, flutes are often designed with their solid

models built using commercial CAD software, thus, they should be ground within

the specified tolerance in production. Technically, the model of the tapered end-mill

flutes is more complicated than that of the cylindrical end-mills. In modeling a flute

of a cylindrical end-mill, the cross-sectional profile of the flute is swept along a helical

side cutting edge. However, a flute of a tapered end-mill cannot be modeled in the

same way; on the contrary, it is much more difficult to model. Basically, all of the

flute profiles of a tapered end-mill should include the rake face with the prescribed

rake angle and should be tangent to the core of the tool; but they are not the same in

shape. Since only one grinding-wheel is used to machine the flute for high efficiency,

the flute profiles are determined by the grinding-wheel. Therefore, a tapered end-mill

flute can be modeled in the following way.

First, the flute profile at one end of the tapered end-mill is designed based on

the requirements of high performance cutting. Second, according to an approach to

programming for 5-axis flute grinding, the grinding-wheel orientation is determined.

Then, the grinding-wheel profile with line segments and circular arcs is optimized so

that the given flute profile is ensured in machining.

Compared to the aforesaid 2-axis grinding machines, the 5-axis grinding ma-

chines are more flexible in changing the orientation of the grinding-wheel with regard
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to the workpiece of the end-mill. With this advanced function, these machines can

grind the flutes including the rake faces with their prescribed normal rake angles.

Hence, it is always required that, at any moment of the machining process, the

grinding-wheel is tangent to the side cutting edge at a point and the rake face at

this point. Therefore, the same approach proposed in the previous chapter can be

used to derive the equations of the grinding-wheel path (see the appendix) and the

grinding-wheel swept envelope SF .

The cross-sectional profile of the end-mill flute surface rG at any plane PP

perpendicular to the end-mill axis (zT = k) is obtained by first solving the equation

zTF (u, t) = k (5.3)
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in order to establish a relationship between u and t (Fig. 5.2). Here, zTF is the zT-

component of SF as obtained early in Eq.(4.25). Then, rG will be simply represented

as

rG = SF(u) (5.4)

Since the grinding-wheel locations and orientations are obtained for any point

P on the side cutting edge in terms of θC, establishing a relationship between θC and

the time t is necessary to represent the wheel locations and orientations for real time

machining. This relationship can be expressed as

∥∥∥∥dCT
C

dθC

∥∥∥∥ =
∥∥∥∥dCT

C

dt

∥∥∥∥ · dt

dθC
(5.5)

where
∥∥∥dCT

C

dt

∥∥∥ is the feed f . Then

∫ ∥∥∥∥dCT
C

dθC

∥∥∥∥ · dθC =
∫

f · dt (5.6)

For example, this relationship can be expressed for cylindrical flat-end mills of radius

rT as

θC =
f√

rT +
(

rT
tanψ

)2
· t (5.7)

and for tapered flat end-mills as

zC = f · cosψ · cosϕT · t (5.8)

where zC is related to θC as discussed early in chapter 3.

And now, it is worth to emphasize on the fact that the wheel path will be

different for different selection of PW. This means that the shape of the ground flute
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is changed by varying the values of u and v; the thing that gives more flexibility to

control the ground flute toward better end-mill cutting dynamics and life.

5.4 Wheel Path and Wheel Profile Optimization

The main objective of the optimization method is to grind the end-mills with pre-

cise flutes while keeping constant normal rake angle. In other words, to minimize

the maximum deviation between the ground flute cross-sectional profile rG and the

designed one, F(l). Since F(l) is commonly described in terms of the radial angles

(rake, primary and secondary), a relationship should be established to connect these

radial angles to their corresponding normal angles. Then the parameters affecting

rG will be analyzed. These parameters will then be optimized using global optimum

determination by linking and interchanging kindred evaluators (GODLIKE) to obtain

optimal wheel shapes grinding precise end-mill flutes along optimal paths.

5.4.1 Normal–radial rake angles relationship

As the end-mill is commonly described via the cross-sectional profile of the flute

surface; the normal rake angle, the primary normal relief angle and the secondary

normal relief angle are all derived from their corresponding radial angles in the follow.

The radial rake angle at point P on the cutting edge is the angle bounded

between vector AθC , resulted from projecting a vector connecting point P with the

origin on the xTyT plane, and AR as shown in Fig. 5.3.
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Mathematically, AθC can be expressed as

AθC =

⎡
⎢⎢⎢⎢⎢⎢⎣

cos θC

sin θC

0

⎤
⎥⎥⎥⎥⎥⎥⎦

(5.9)

so

AR =

⎡
⎢⎢⎢⎢⎢⎢⎣

cosαR cos θC + sinαR sin θC

cosαR sin θC − cos θC sinαR

0

⎤
⎥⎥⎥⎥⎥⎥⎦

(5.10)

Since AR is located on the rake face, the following relationship is valid

AR ·N = 0 (5.11)

where N is the rake face unit normal vector at point P as derived previously in

Eq.(4.9). Simplifying Eq.(5.11) will reveal the normal-radial rake angles relationship.

For cylindrical cutters the relationship is expressed as

αn = tan
−1 (tanαR cosψ) (5.12)
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Table 5.1: Values of the wheel parameters for cylindrical end-mill grinding

R0 tG tw αG βG ρ1 ρ2

(mm) (mm) (mm) (deg.) (deg.) (mm) (mm)

20 15 30 15 50 2 35

and for tapered cutters as

αn = tan
−1

(
cosψ sinαR + cosαR sinψ sinϕT

cosαR cosϕT

)
(5.13)

The normal-radial rake angles relationship derived can be used directly to represent

the relationships between the normal and the radial relief angles.

5.4.2 Optimization problem description

The shape of rG is controlled by both the wheel shape and the wheel path. The wheel

shape can be controlled simply by the geometric parameters of the wheel profile.

Mainly, these are R0, αG, βG, ρ1 and ρ2. The wheel path is controlled by changing the

location of point PW on the grinding-wheel surface (i.e. u and v).

Consider grinding a cylindrical flat-end mill by keeping constant normal rake

angle of 10o and values assigned to the wheel parameters as listed in Table 5.1. Also

consider the contact point PW is defined by assuming u = 0.5mm and v = 175o. By

changing only one at a time, the effect of the parameters on the flute shape can be

represented as shown in Fig. 5.4.
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Now, the optimization problem can be described mathematically for the cylin-

drical flat end-mills as

min
x∈R7

max ‖(F(l)− rG)‖ (5.14)

subject to

xL ≤ x ≤ xU

where x = {R0, αG, βG, ρ1, ρ2, u, v}. Here, xL and xU are the lower and the upper

bounds of x, respectively.

As described in the previous sections, since the flute cross-sectional profile of

the tapered end-mill F(l) is changing along the end-mill axis, more complexities are

added to the problem in order to ensure exact end-mill flute shapes and conical cores.

This can be solved by considering more than one flute cross-sectional profile along

the end-mill axis. The objective function will then be to minimize the maximum

deviation existed in all cross-sections. Mathematically this can be expressed as

min
x∈R
max

{
max

∥∥∥(F(l)i− rGi
)∥∥∥} , i = 1, ...,m (5.15)

subject to

xL ≤ x ≤ xU

where m is the number of considered flute cross-sectional profiles along the end-mill

axis.

Thus, as the grinding-wheel is moving along the side cutting edge, it is required

to (1) move far from the end-mill axis in order to account for the core variation and (2)
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obtain close matching between F(l) and rG in the considered end-mill cross-sections.

In other words, point PW on the grinding-wheel contacting the side cutting edge

should be changed; this means that u and v should also be changed. Assuming that

their variation along the side cutting edge is linear. Then, they can be expressed as

u = u1 + (u2 − u1)ln

v = v1 + (v2 − v1)ln

(5.16)

where (u1, v1) and (u2, v2) are the optimal values for (u, v) at the start and at the

end of the side cutting edge, respectively, and ln is the end-mill normalized length

between the two cross-sections considered. Due to this flexibility of changing point

PW, close matching between the designed and the ground flutes is attainable for the

tapered end-mills.

5.4.3 GODLIKE Algorithm

To efficiently solve the optimization problem in this work, a global optimization

method, called the global optimum determination by linking and interchanging kin-

dred evaluators (GODLIKE) is employed [55]. This method simultaneously uses the

existing global optimization solvers, the genetic algorithm (GA), the differential evo-

lution (DE), and the adaptive simulated annealing (ASA) to find the global optimum.

The main purpose of employing different existing solvers is to increase the robustness

of finding the global optimum solution and to decrease the chance of premature con-

vergence to a local solution, which could diminish the time-consuming fine tune in

each solver.
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GODLIKE randomly separates the main population (Pop) of size (Popsize)

into three sub-populations (sub pop(i), i = {1, 2, 3}) with random sizes (Fig. 5.5).

However, the size of each sub-population should not be less than the pre-specified

value (MinIndiv). The sub-populations are then continuously updated by the opti-

mization solvers until the convergence criteria takes place or the maximum iterations

(ti) corresponding to each algorithm are exceeded. The value of the maximum iter-

ations corresponding to each solver is randomly generated for each generation. This

value should not be less than a specified number of iterations (ItersLb) to avoid

premature results, and the sum of all iterations
∑3

i=1
ti should not exceed a certain

value (ItersUb) to force the individuals to interchange more often through the in-

volved solvers. The sub-populations are then combined to form the main population

for the next generation. This procedure is repeated until all algorithms are converged

to the global solution or until the maximum function evaluations (MaxFuneval) or

the maximum generations (MaxIters) are exceeded.

In other words, the GODLIKE optimization method simultaneously executes

several conventional global optimization solvers for the same optimization problem;

and it constantly shares the results of the solvers after each generation. A salient fea-

ture of the GODLIKE method is that the individuals of the solvers are interchanged

after each generation in the optimization process, thus the initial values of the indi-

viduals for the new generation are well selected, based on the results of the iterations

of the previous generation of the solvers. Although this method seems take longer

time to converge to the optimum solution because several solvers are involved, this
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Figure 5.5: GODLIKE scheme flowchart.
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method can effectively avoid invalid convergence to a local optimum and can remain

efficient by using well selected initial values of the individuals. This method is applied

to the optimization of the grinding-wheel profile and path, and the results are quite

satisfactory.

5.5 Application

To validate this practical and optimal approach to CNC programming for 5-axis

grinding of the prescribed flutes of the tapered end-mills and to demonstrate the

advantages of this new approach over the current inverse method, two grinding ex-

amples of cylindrical and tapered end-mills flutes are simulated. Given prescribed

flute profiles for the end-mills, the grinding-wheels profiles and the grinding-wheels

paths are simultaneously optimized. The programming for the 5-axis flute grinding

is conducted, and the grinding simulation is provided.

5.5.1 Five–axis grinding of cylindrical end-mill flutes

In the first example, a cylindrical end-mill with a flute profile is provided. Since cylin-

drical end-mills are special types of the tapered end-mills, it is easier to understand

this new approach, if it is applied to a cylindrical end-mill. The parameter values of

the flute profile and the tool are listed in Table 5.2. The flute profile is plotted in

Fig. 5.6.

Based on the given flute profile, this new approach is applied on CNC pro-
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Table 5.2: The parameters values of the cylindrical end-mill.

Tool Radius Core radius Tool length Helical angle Radial rake angle

(mm) (mm) (mm) (deg.) (deg.)

25 12.5 40 45 6

r1 r2 γP γS

(mm) (mm) (deg.) (deg.)

8.3 20.8 4 45

gramming for the 5-axis grinding of this flute. To machine the rake face with the

specified rake angle, the orientation angles μ and η of the grinding-wheel are cal-

culated as 33.07o. and −30.83o, respectively. The wheel location at the first point

of the side cutting edge is (50.05mm, -31.24mm, -13.47mm) in the tool coordinate

system. In the process of optimizing the grinding-wheel profile, the population size

is 500, the function evaluation number and the maximum deviations between the

designed flute profile and the machined flute profiles of GODLIKE, GA, ASA, and

DE solvers are listed in Table 5.3. Using this special grinding-wheel to machine the

flutes of the cylindrical end-mill in 5-axis grinding, the effective grinding edge and the

machined flute profile can be computed. It is evident that the GODLIKE solver is

more accurate and efficient in optimizing the grinding-wheel profile. For comparison,

the machined flute profile and the designed flute profile are plotted in Fig. 5.7, and

the machining error curve is plotted in Fig. 5.8. The maximum deviation between

the profiles of the machined and the designed flutes is 0.32mm.
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Table 5.3: Performance comparison of the GODLIKE solver and the other solvers.

Solver GODLIKE GA ASA DE

Function evaluations 29026 31001 97001 100460

Maximum deviation (mm) 0.3168 0.3869 0.4717 0.3251

To show the difference between this new approach and the aforesaid inverse

method, the inverse method is applied to this example. The grinding-wheel profile

generated using the inverse method is a free-form curve, which is plotted in Fig.

5.9a. So, it is difficult and expensive to dress and make the grinding-wheel. Using

our approach, the grinding-wheel profile is optimized with simple geometric features,

which is plotted in Fig. 5.9b. The values of the grinding-wheel profile parameters

R0, αG , βG, ρ1 and ρ2 are 31.34mm, 19.91
o, 64o, 1.81mm and 428mm, respectively.

Moreover, the flute machined with the optimized grinding-wheel is simulated and

shown in Fig. 5.10.

5.5.2 Five–axis grinding of tapered end–mill flutes

The main advantage of this new approach, compared to the current inverse method,

is that this approach can precisely grind the flutes of the tapered end-mills while the

inverse method cannot. To demonstrate this advantage, the second example employs

a tapered end-mill with its flute designed, and the CNC programming for the 5-axis

grinding of the flute is generated using this approach. The tool parameter values are
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Figure 5.9: The grinding-wheels used to grind the cylindrical end-mill.
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listed in Table 5.4. The flute profile on the larger tool end is plotted in Fig. 5.11.

First, the aforementioned inverse method is used to determine the grinding-

wheel profile based on the designed flute profile at the larger tool end. The calculated

profile is a free-form curve plotted in Fig. 5.12. The flute is machined in 2-axis

CNC grinding and is simulated in a computer system. The simulation model of the

machined tapered end-mill is provided in Fig. 5.13. It is clear that the machined side

cutting edge deviates from the designed one and the flute on the smaller tool end

does not have any rake face.

Second, this new approach is employed for machining similar tapered end-mill.

For grinding the rake face with the specified rake angle in the 5-axis flute, two cross-

sectional profiles for the designed flute are considered; these are the smallest and the

largest cross-sections. The designed parameters R0, αG, βG, ρ1, ρ2, u1, v1, u2 and
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Table 5.4: The parameters values of the tapered end-mill.

Helical angle Radial rake Tool tapered Tool radius at the Core radius at the

(deg.) angle (deg.) angle (deg.) larger end (deg.) larger end (deg.)

20 10 10 15 7.8

Tool length r1 r2 γP γS

(mm) (mm) (mm) (deg.) (deg.)

40 2.4 9 5 30

v2 are obtained from the optimization solver as 37.75mm, 19.60
o, 49.11o, 1.22mm,

20.10mm, 3.00mm, 179.48o, 1.06mm and 165.11o , respectively. The optimization

solver used a population of 500 individuals to minimize the maximum deviation that

results from those cross-sections. The outputs obtained from the solver are an optimal

grinding-wheel profile as shown in Fig. 5.14, and an optimal grinding-wheel path as

described in the follow.

For complete flute machining, point Pw(u, v) is calculated along the side cut-

ting edge with u and v are assumed to change linearly as described previously in

Eq.(5.16). Hence, for each point on the side cutting edge, a proper contacting point

on the grinding-wheel is calculated and the optimal grinding-wheel path is generated.

This assumption can be verified by comparing the generated end-mill core with the

designed one as shown in Fig. 5.15.

Now, to compare the flute profiles generated using this new approach and the

inverse method, the profiles of these methods on the smaller tool end are plotted in
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Figure 5.15: The end-mill core designed vs. generated using the proposed approach.

Fig. 5.16a together with the designed flute profile. It is evident that the flute profile

of the inverse method is far from the designed profile, and the flute profile of the new

approach is close to the designed one. The machining error curve is plotted in Fig.

5.16b. Since the maximum deviation is 0.3mm, a main reason is that the given flute

profile is not reasonable, for example, the rake face cannot be a straight line. It is

not possible for a grinding-wheel with simple geometries to generate such a rake face,

unless the grinding-wheel profile is a free-form curve.

Also, in this example the flute profile generated using the new approach and the

designed flute profile at the largest end-mill cross-section are compared and plotted

in Fig. 5.17a. The machining error curve is plotted in Fig. 5.17b, and the maximum

error is 0.322 mm. The simulation model of the tapered end-mill is provided in Fig.
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(b) The machining error curve between the flute profile generated with the

new approach and the designed one.

Figure 5.16: Profile of the end-mill flute at the smaller cross-section
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5.18.

5.6 Conclusion

The main objectives of the end-mill flutes are the chips evacuation, ensuring enough

strength, reducing the vibration and extending the tool life. This leads to design-

ing end-mill flute shapes that require accurate grinding. Beside satisfying this, the

proposed method replaces the use of complex grinding-wheel shapes by simple ones

and generates constant normal rake angles along the side cutting edge for better

tool dynamics. This is conducted by exploiting the flexibility available in the 5-axis

machining, where the grinding-wheel can change its orientation and location simul-

taneously to generate an accurate flute and satisfy, on the same time, the tangency

condition between the contact point and the side cutting edge to produce end-mills

with the the required normal rake angles.
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(b) The machining error curve between the flute profile generated with the

new approach and the designed one.

Figure 5.17: Profile of the end-mill flute at the larger cross-section
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Chapter 6

Conclusions and Future Work

6.1 Summary

Two main methods are available in industry to grind the end-mills: the direct and

the inverse method. In the direct method, standard grinding-wheels can be used

in multi-axis CNC grinding machines to grind the end-mill flutes. The flute shapes

will be the natural result of the process without any control. On the other side, the

inverse method requires a free-form profile for the grinding-wheel to grind the end-mill

flutes in a 2-axis grinding machine. While this method seems accurate, it is unable

to produce accurate side cutting edges and constant normal rake angles for tapered

end-mills. Hence, the need arose to develop new methods that can produce accurate

flute shapes for better tool dynamics and life, in the same time, the side cutting edge

should be accurate and the normal rake angle should be constant.

The new approach proposed in this dissertation introduces a simple shape of

the grinding-wheel consisting of lines and circular arcs that grinds the end-mills with

accurate flute shapes using 5-axis CNC machines. The side cutting edge obtained
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in this process is accurate and the normal rake angle is constant. This approach is

developed by exploiting the tangency between the helical surface of the flute and the

surface of the grinding-wheel. In other words, a point on the grinding-wheel must

have its normal aligned with the normal of a point on the side cutting edge, and both

points should be coincident. Doing this will build the basic foundation for the new

5-axis grinding theory proposed in this dissertation.

The geometric parameters of the grinding-wheel proposed and the location of

the point on the grinding-wheel surface in contact with the side cutting edge can be

optimized for better control on the flute shape along the side cutting edge. The result

will be an optimal shape of the grinding-wheel moving along an optimal path to grind

accurate end-mill flutes in 5-axis grinding machines.

The optimization algorithm used in this dissertation combines three well-

known solvers (GA, DE and ASA) that work together to produce the optimal so-

lution. The solvers share the same individuals after each generation to guarantee non

pre-matured results and to eliminate the fine-tuning impact on the final solution.

A relationship between the normal rake angle and the radial rake angle is

also established in this work. The importance of this relationship comes from the

fact that the engineers mostly build their end-mill models based on the flute cross-

sections. Thus, the radial rake angle is mostly the given, and converting this angle

to a normal rake angle is required for this approach.
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6.2 Future Work

Due to the importance of the tapered ball-end-mills in CNC machining, the future

work will focus on building the CNC programming theory for these end-mills. The

ground end-mills will have constant normal rake angles along the side cutting edges

and the flutes shapes will be under control for better tool dynamics and life. Same

principles can be used as those discussed in this work to achieve this goal. However,

controlling the flute shape and avoiding gauging the side cutting edge in the ball

section is not an easy task and is currently under research.

A general form of equations for the grinding-wheel locations and orientations

will also be derived in order to grind flutes with constant normal rake angles for

end-mills with free-form revolving profiles. This can be achieved by first representing

the revolving profile of the end-mill as a NURBS curve. Then, the side cutting edge

can be derived numerically, and the same procedure described in this dissertation can

be followed to obtain this goal. However, side cutting edge gauging is still the main

obstacle in achieving this goal and this will require more investigations and may lead

to developing a side cutting edge gauging theory in 5-axis CNC end-mill grinding.

Finally, a real 5-axis CNC grinding can be conducted and the produced end-

mills can be compared with those available in the market in two main criteria; these

are: the vibration produced during cutting and the end-mill life. However, accom-

plishing this is based on the facilities that will be available in the future.
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Appendix A

Grinding–Wheel Orientation and Lo-

cation for Cylindrical End-Mills

The side cutting edge for cylindrical end-mills of radius rT can be expressed as

CT
C =

[
rT · cos θC rT · sin θC rT

tanψ
· θC 1

]T
(A.1)

Then, the wheel orientation is expressed by the angles μ and η as:

μ =

⎧⎪⎪⎨
⎪⎪⎩

sin−1
(

c√
a2+b2

)
− φ

π − sin−1
(

c√
a2+b2

)
− φ

(A.2)

where

sinφ =
a√

a2 + b2
, cosφ =

b√
a2 + b2

(A.3a)

a = cosαG

b = − sinαG · sin v

c = cosαn · sinψ

(A.3b)

Also

η =

⎧⎪⎪⎨
⎪⎪⎩

η1 if η1 = η3,4

η2 if η2 = η3,4

(A.4)
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where

η1,2 =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

sin−1
(

c1√
a12+b1

2

)
− φ1

π − sin−1
(

c1√
a12+b1

2

)
− φ1

(A.5)

where

sinφ1 =
a1√

a12 + b1
2
, cosφ1 =

b1√
a12 + b1

2
(A.6a)

a1 = sinαG · cos v

b1 = − cosαG · sinμ− cosμ · sinαG · sin v

c1 = − cosψ · cosαn · sin θC + cos θC · sinαn

(A.6b)

Also

η3,4 =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

sin−1
(

c2√
a22+b2

2

)
− φ2

π − sin−1
(

c2√
a22+b2

2

)
− φ2

(A.7)

where

sinφ2 =
a2√

a22 + b2
2
, cosφ2 =

b2√
a22 + b2

2
(A.8a)

a2 = cosαG · sinμ+ cosμ · sinαG · sin v

b2 = sinαG · cos v

c2 = cosψ · cosαn · cos θC + sin θC · sinαn

(A.8b)

Now the orientation of the wheel axis is expressed as

IG = ROT(η, z) · ROT(μ, x) ·

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

0

1

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(A.9)
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The wheel location can also be obtained as

oGxT = rT · cos θC − u · sinμ · sin η +
(
R0 +

u
tanαG

)
· (cosμ · sin η · sin v − cos η · cos v)

oGyT = rT · sin θC + u · sinμ · cos η −
(
R0 +

u
tanαG

)
(cosμ · cos η · sin v − sin η · cos v)

oGzT =
θC

tanψ
· rT − u · cosμ− sinμ · sin v ·

(
R0 +

u
tanαG

)
(A.10)
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Appendix B

Grinding–Wheel Orientation and Lo-

cation for Tapered End-Mills

For the tapered flat end-mill shown in Fig. B.1, the side cutting edge is expressed as

CT
C =

[
rT

(
zT
) · cos θC rT

(
zT
) · sin θC zT 1

]T
(B.1)

where

rT(z
T) = r0 + zT tanϕT (B.2)

and

θC
(
zT
)
=
tanψ

sinϕT

·
[
ln

(
r0 + zT · tanϕT

r0

)]
(B.3)

Now the wheel orientation is expressed by μ and η as:

μ =

⎧⎪⎪⎨
⎪⎪⎩

sin−1
(

c√
a2+b2

)
− φ

π − sin−1
(

c√
a2+b2

)
− φ

(B.4)

where

sinφ =

(
a√

a2 + b2

)
, cosφ =

(
b√

a2 + b2

)
(B.5a)

127



0r

T

T ( )r z

T

T
z

Figure B.1: Schematic of a general tapered end-mill.

a = cosαG

b = − sin v sinαG

c = cosαn cosϕT sinψ + sinαn sinϕT

(B.5b)

And

η =

⎧⎪⎪⎨
⎪⎪⎩

η1 if η1 = η3,4

η2 if η2 = η3,4

(B.6)

where

η1,2 =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

sin−1
(

c1√
a12+b1

2

)
− φ1

π − sin−1
(

c1√
a12+b1

2

)
− φ1

(B.7)

where

sinφ1 =

(
a1√

a12 + b1
2

)
, cosφ1 =

(
b1√

a12 + b1
2

)
(B.8a)

a1 = sinαG cos v

b1 = − cosαG sinμ− cosμ sinαG sin v

c1 = − cosψ cosαn sin θC + cos θC sinαn cosϕT − cosαn cos θC sinψ sinϕT

(B.8b)
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and

η3,4 =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

sin−1
(

c2√
a22+b2

2

)
− φ2

π − sin−1
(

c2√
a22+b2

2

)
− φ2

(B.9)

where

sinφ2 =

(
a2√

a22 + b2
2

)
, cosφ2 =

(
b2√

a22 + b2
2

)
(B.10a)

a2 = cosαG sinμ+ cosμ sinαG sin v

b2 = sinαG cos v

c2 = cosψ cosαn cos θC + sin θC sinαn cosϕT − cosαn sin θC sinψ sinϕT

(B.10b)

Now the orientation of the wheel axis is expressed as

IG = ROT(η, z) · ROT(μ, x) ·

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

0

1

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(B.11)

The wheel location can also be obtained as

oGxT =
(
r0 + zT tanϕT

)
cos θC − u sinμ sin η +

(
R0 +

u
tanαG

)
(cosμ sin η sin v − cos η cos v)

oGyT =
(
r0 + zT tanϕT

)
sin θC + u sinμ cos η −

(
R0 +

u
tanαG

)
(cosμ cos η sin v + sin η cos v)

oGzT = zT − u cosμ− sinμ sin v
(
R0 +

u
tanαG

)
(B.12)
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