1,013 research outputs found

    Viewfinder: final activity report

    Get PDF
    The VIEW-FINDER project (2006-2009) is an 'Advanced Robotics' project that seeks to apply a semi-autonomous robotic system to inspect ground safety in the event of a fire. Its primary aim is to gather data (visual and chemical) in order to assist rescue personnel. A base station combines the gathered information with information retrieved from off-site sources. The project addresses key issues related to map building and reconstruction, interfacing local command information with external sources, human-robot interfaces and semi-autonomous robot navigation. The VIEW-FINDER system is a semi-autonomous; the individual robot-sensors operate autonomously within the limits of the task assigned to them, that is, they will autonomously navigate through and inspect an area. Human operators monitor their operations and send high level task requests as well as low level commands through the interface to any nodes in the entire system. The human interface has to ensure the human supervisor and human interveners are provided a reduced but good and relevant overview of the ground and the robots and human rescue workers therein

    Collective Intelligence and the Mapping of Accessible Ways in the City: a Systematic Literature Review

    Get PDF
    This paper has the objective of assessing how ICTs are being used to provide accessibility in urban mobility, with special interest to collective intelligence approaches. A systematic literature review (SLR) was performed, using several different criteria to filter down the 500+ academic papers that were originally obtained from a search for “accessible maps” to the 43 papers that finally remained in the corpus of the SLR. Among the findings, it was noticed that (i) few studies explored the motivations of users that actively contribute, providing information to feed maps, and they restricted themselves to exploring three techniques: gaming, monetary reward and ranking; (ii) social networks are rarely used as a source of data for building and updating maps; and (iii) the literature does not discuss any initiative that aims to support the needs of physically and visually impaired citizens at the same time

    Participatory Management to Improve Accessibility in Consolidated Urban Environments

    Get PDF
    There is a wide range of regulations on universal accessibility, but our cities are still inaccessible in many cases. Most accessibility problems in cities occur in consolidated areas that were developed prior to the development of current accessibility regulations. This leads to consider the importance of focusing more effort on managing the improvement of the accessibility of existing public urban environments. As such, the objective of this research is to design a conceptual model for accessibility management in consolidated urban environments. Unlike other research focusing on city users to collect information on accessibility problems or to provide services to improve wayfinding, this method has a focus on urban accessibility managers. The model is based on the assessment of the level of accessibility of urban environments together with the assessment of management processes in which city users are actively involved. It consists of a set of basic indicators for the identification of accessible pedestrian routes, and provides a dynamic accessibility index for the evaluation of their efficient management by the responsible governments. The inclusion of this assessment framework in the management process itself enables the necessary improvement actions to be identified and taken in time. ICT (Information and Communication Technologies) provide the communication channel between the responsible governments and city users, making this a more dynamic and efficient management model based on assessment possible.This research was funded by the Conselleria of Innovation, Universities, Science and Digital Society, of the Community of Valencia, Spain, grant number AICO/2020/206, and by the University of Alicante, Spain, grant number GRE19-01

    Decentralized Sensor Fusion for Ubiquitous Networking Robotics in Urban Areas

    Get PDF
    In this article we explain the architecture for the environment and sensors that has been built for the European project URUS (Ubiquitous Networking Robotics in Urban Sites), a project whose objective is to develop an adaptable network robot architecture for cooperation between network robots and human beings and/or the environment in urban areas. The project goal is to deploy a team of robots in an urban area to give a set of services to a user community. This paper addresses the sensor architecture devised for URUS and the type of robots and sensors used, including environment sensors and sensors onboard the robots. Furthermore, we also explain how sensor fusion takes place to achieve urban outdoor execution of robotic services. Finally some results of the project related to the sensor network are highlighted

    Smartphone-based vehicle telematics: a ten-year anniversary

    Get PDF
    This is the author accepted manuscript. The final version is available from the publisher via the DOI in this recordJust as it has irrevocably reshaped social life, the fast growth of smartphone ownership is now beginning to revolutionize the driving experience and change how we think about automotive insurance, vehicle safety systems, and traffic research. This paper summarizes the first ten years of research in smartphone-based vehicle telematics, with a focus on user-friendly implementations and the challenges that arise due to the mobility of the smartphone. Notable academic and industrial projects are reviewed, and system aspects related to sensors, energy consumption, and human-machine interfaces are examined. Moreover, we highlight the differences between traditional and smartphone-based automotive navigation, and survey the state of the art in smartphone-based transportation mode classification, vehicular ad hoc networks, cloud computing, driver classification, and road condition monitoring. Future advances are expected to be driven by improvements in sensor technology, evidence of the societal benefits of current implementations, and the establishment of industry standards for sensor fusion and driver assessment

    Forensic Tracking and Surveillance

    Get PDF
    Digital forensics is an emerging field that has uniquely brought together academics, practitioners and law enforcement. Research in this area was inspired by the numerous challenges posed by the increased sophistication of criminal tools. Traditionally, digital forensics has been confined to the extraction of digital evidence from electronic devices. This direct extraction of digital evidence, however, no longer suffices. Indeed, extracting completely raw data without further processing and/or filtering is, in some cases, useless. These problems can be tackled by the so-called ``computational forensics" where the reconstructs evidence are undertaken further processing. One important application of computational forensics is criminal tracking, which we collectively call ``forensic tracking" and is the main subject of this thesis. This thesis adopts an algorithmic approach to investigate the feasibility of conducting forensic tracking in various environments and settings. Unlike conventional tracking, forensic tracking has to be passive such that the target (who is usually a suspect) should not be aware of the tracking process. We begin by adopting pedestrian setting and propose several online (real-time) forensic tracking algorithms to track a single or multiple targets passively. Beside the core tracking algorithms, we also propose other auxiliary algorithms to improve the robustness and resilience of tracking. We then extend the scope and consider vehicular forensic tracking, where we investigate both online and offline tracking. In online vehicular tracking, we also propose algorithms for motion prediction to estimate the near future movement of target vehicles. Offline vehicular tracking, on the other hand, entails the post-hoc extraction and probabilistic reconstruction of vehicular traces, which we adopt Bayesian approach for. Finally, the contributions of the thesis concludes with building an algorithmic solution for multi-modal tracking, which is a mixed environment combining both pedestrian and vehicular settings

    Evaluating indoor positioning systems in a shopping mall : the lessons learned from the IPIN 2018 competition

    Get PDF
    The Indoor Positioning and Indoor Navigation (IPIN) conference holds an annual competition in which indoor localization systems from different research groups worldwide are evaluated empirically. The objective of this competition is to establish a systematic evaluation methodology with rigorous metrics both for real-time (on-site) and post-processing (off-site) situations, in a realistic environment unfamiliar to the prototype developers. For the IPIN 2018 conference, this competition was held on September 22nd, 2018, in Atlantis, a large shopping mall in Nantes (France). Four competition tracks (two on-site and two off-site) were designed. They consisted of several 1 km routes traversing several floors of the mall. Along these paths, 180 points were topographically surveyed with a 10 cm accuracy, to serve as ground truth landmarks, combining theodolite measurements, differential global navigation satellite system (GNSS) and 3D scanner systems. 34 teams effectively competed. The accuracy score corresponds to the third quartile (75th percentile) of an error metric that combines the horizontal positioning error and the floor detection. The best results for the on-site tracks showed an accuracy score of 11.70 m (Track 1) and 5.50 m (Track 2), while the best results for the off-site tracks showed an accuracy score of 0.90 m (Track 3) and 1.30 m (Track 4). These results showed that it is possible to obtain high accuracy indoor positioning solutions in large, realistic environments using wearable light-weight sensors without deploying any beacon. This paper describes the organization work of the tracks, analyzes the methodology used to quantify the results, reviews the lessons learned from the competition and discusses its future
    corecore