16 research outputs found

    SIMULATING SEISMIC WAVE PROPAGATION IN TWO-DIMENSIONAL MEDIA USING DISCONTINUOUS SPECTRAL ELEMENT METHODS

    Get PDF
    We introduce a discontinuous spectral element method for simulating seismic wave in 2- dimensional elastic media. The methods combine the flexibility of a discontinuous finite element method with the accuracy of a spectral method. The elastodynamic equations are discretized using high-degree of Lagrange interpolants and integration over an element is accomplished based upon the Gauss-Lobatto-Legendre integration rule. This combination of discretization and integration results in a diagonal mass matrix and the use of discontinuous finite element method makes the calculation can be done locally in each element. Thus, the algorithm is simplified drastically. We validated the results of one-dimensional problem by comparing them with finite-difference time-domain method and exact solution. The comparisons show excellent agreement

    Algebraic, Block and Multiplicative Preconditioners based on Fast Tridiagonal Solves on GPUs

    Get PDF
    This thesis contributes to the field of sparse linear algebra, graph applications, and preconditioners for Krylov iterative solvers of sparse linear equation systems, by providing a (block) tridiagonal solver library, a generalized sparse matrix-vector implementation, a linear forest extraction, and a multiplicative preconditioner based on tridiagonal solves. The tridiagonal library, which supports (scaled) partial pivoting, outperforms cuSPARSE's tridiagonal solver by factor five while completely utilizing the available GPU memory bandwidth. For the performance optimized solving of multiple right-hand sides, the explicit factorization of the tridiagonal matrix can be computed. The extraction of a weighted linear forest (union of disjoint paths) from a general graph is used to build algebraic (block) tridiagonal preconditioners and deploys the generalized sparse-matrix vector implementation of this thesis for preconditioner construction. During linear forest extraction, a new parallel bidirectional scan pattern, which can operate on double-linked list structures, identifies the path ID and the position of a vertex. The algebraic preconditioner construction is also used to build more advanced preconditioners, which contain multiple tridiagonal factors, based on generalized ILU factorizations. Additionally, other preconditioners based on tridiagonal factors are presented and evaluated in comparison to ILU and ILU incomplete sparse approximate inverse preconditioners (ILU-ISAI) for the solution of large sparse linear equation systems from the Sparse Matrix Collection. For all presented problems of this thesis, an efficient parallel algorithm and its CUDA implementation for single GPU systems is provided

    Molecules in Superfluid Helium Nanodroplets

    Get PDF
    This open access book covers recent advances in experiments using the ultra-cold, very weakly perturbing superfluid environment provided by helium nanodroplets for high resolution spectroscopic, structural and dynamic studies of molecules and synthetic clusters. The recent infra-red, UV-Vis studies of radicals, molecules, clusters, ions and biomolecules, as well as laser dynamical and laser orientational studies, are reviewed. The Coulomb explosion studies of the uniquely quantum structures of small helium clusters, X-ray imaging of large droplets and electron diffraction of embedded molecules are also described. Particular emphasis is given to the synthesis and detection of new species by mass spectrometry and deposition electron microscopy

    MS FT-2-2 7 Orthogonal polynomials and quadrature: Theory, computation, and applications

    Get PDF
    Quadrature rules find many applications in science and engineering. Their analysis is a classical area of applied mathematics and continues to attract considerable attention. This seminar brings together speakers with expertise in a large variety of quadrature rules. It is the aim of the seminar to provide an overview of recent developments in the analysis of quadrature rules. The computation of error estimates and novel applications also are described
    corecore