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The work in thesis aims at developing an efficient unidirectional Time-Domain 

technique for modeling the propagation of short and ultra short pulsed optical beams in 

devices containing dispersive material. The non-paraxial Time-Domain Beam Propagation 

Method (TD-BPM) has been developed and used for this purpose. The method relies on the 

classical BPM style of expanding the wave equation as a one-way longitudinal operator 

while retaining the time variation as another variable along with the other transverse spatial 

variables. This arrangement allows the numerical time window to follow the propagation of 

the pulse and hence minimizes computer resource requirements. To account for the fast 

variation of short and ultra short pulses, the method uses higher order rational Padé 

approximants to overcome the paraxial limitation. The use of several iterative numerical 

techniques, to solve the complex sparse matrix operator of the TD-BPM, showed a 

remarkable speed up factors compared to the direct matrix solver in both implementations of 

non-dispersive and dispersive applications. In order to verify and assess the results of the 

TD-BPM, the explicit FDTD has been formulated and implemented. In this thesis, Lorentz 

dispersive model of GaAs and AlGaAs has been used in all implementations. Being an 

implicit method, the TD-BPM converges using large time and longitudinal step sizes 
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compared to the explicit FDTD step sizes. The assessment of the TD-BPM includes 

application to 1-D and 2-D of dispersive material and structures. Full numerical analysis of 

important numerical parameters and dispersive coefficients has been carried out to assess the 

relationship between these variables. It has been noticed that the developed TD-BPM is very 

stable, accurate and efficient in modeling short and ultra short pulse propagation in structures 

containing dispersive materials. The aim of second part of this thesis is to study the 

propagation of short and ultra short optical pulses in directional coupler structures containing 

dispersive materials.  Pulse spread due to material dispersion and intermodal dispersion of 

directional couplers has been modeled accurately. As the initial pulse duration decreases the 

pulse spread increases during power exchange mechanism between the two waveguides 

along the longitudinal direction.  Eventually the pulse breaks up which gives rise to 

distortion. It was found that the existence of material dispersion speeds up the pulse break-up 

phenomena in a shorter distance. Thus, the efficient TD-BPM was implemented and 

compared with the existing FDTD technique for the observation of the complex optical 

behavior inside various photonic device structures containing dispersive and non-dispersive 

material. 
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 بحث ملخّص
 الفلسفة في الذكتوراه درجة

 
 

 محمد شاهد اكوند:  لاسما
 TD-BPMطريقة إتباع الومضات الضوئية في المواد ذات التبعثر الضوئي :  لعنوانا
 
 دكتوراه في الفلسفة:  لدرجة العلميةا
 

 الهندسة الكهربائية:  مجال التخصص
 

 .مارس 2011:  تاريخ الدرجة العلمية
 

 
الرسالة تهدف لتطوير طريقة جديدة لدراسة الومضات الضوئية المتناهية الصغر في المواد ذات التبعثر 

هذه الطريقة هي طريقة محدثة من الطريقة القديمة لدراسة الومضات الضوئية ذي . TD-BPMالضوئي 

الطريقة . لاتجاه الأحادي والتي أثبتت أنها ليست كفاية لدراسة الومضات الضوئية المتناهية الصغرا

إن استعمال ). Praxial(للتغلب على قيود ) Pade(الجديدة تعتمد بشكل أساسي على مفكوكات بادي 

لمطلوبة من تحريك النافذة الوقتية لمتابعة الومضات أثبتت فعالية كبيرة من حيث الوقت والسعة ا

أيضا تم إضافة واستعمال عدة طرق جديدة لمعالجة المصفوفة الرئيسية . الحواسب الآلية المستعملة

لتقييم نتائج الطريقة المطروحة ) FDTD(وقد تم استخدام الطريقة المعروفة  .باستخدام تقنيات تكرارية

)TD-BPM (لقد تم استخدام نموذج اللورينتز  في هذه الرسالة. من حيث الدقة وكفائة استعمال الكمبيوتر

)Lorentz (إن دراسة الطريقة الجديدة تطلب تغيير ومراقبة عدد  .لمحاكاة المواد ذوات التبعثر الضوئي

-TD)أثبتت النتائج أن الطريقة الجديدة . من المتغيرات لتطبيقات المواد ذات البعد الأحادي والثنائي

BPM) هي مستقرة وفعالة ودقيقة لدراسة الومضات المتناهية الصغر في المواد ذات التبعثر الضوئي. 

لدراسة إنتشار ) FDTD(و ) TD-BDM(الجزء الثاني من الرسالة يهدف إلى استخدام الطرق 

الذي يحتوي على مواد ذي تبعثر ) Directional Coupler(الومضات المتناهية الصغر في جهاز 

حظ في هذه الدراسة أن الومضة الضوئية المتناهية الصغر تتعرض إلى انقسام في مسافات لو. ضوئي

 .ذات تبعثر ضوئي موادأقصر مقارنة مع عدم وجود 
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CHAPTER 1 
 

 

 

INTRODUCTION 

 
 
 

1.1 General 
 

The current trend of "high-technology" foresees what will take place in the near 

future. After the invention of the transistor in 1947 at Bell laboratories [1], the 

miniaturization of microelectronic devices paved the way of devices to be smaller-and-

smaller which eventually brought the small scale integration (SSI), medium-scale-integration 

(MSI), large scale integration (LSI) and very-large-scale-integration (VLSI) of the Integrated 

Circuit (IC) systems. The IC industries were dreaming to produce IC’s on a silicon wafer 

with 100% yield that will take the era to wafer scale- integration (WSI) [2]. But till now the 

concept could not pass the hypothesis level. Flaws on the surface of the wafers and problems 

during the deposition or layering process are impossible to avoid, and cause some of the 

individual chips to be defective. The achievable yields are typically 30%-50%. The tunneling 

current [3], parasitic inductance of a heterostructured transistor, reliability-related problems 

associated with the thermal stress and thermal management limits the miniaturization of the 

ICs [4 - 5]. Increase of the clock rate is also limited in the GHz range due to the transit time 

of the electron [4]. The characteristic transit time is determined by the structure and material 
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used in the transistors. Few of the reasons behind the development of the multiprocessor or 

parallel processor in computational systems are mentioned above. 

 

Photonic devices, on the other hand, operate at optical frequencies, with very low 

transmission losses, without dissipation of heat and are immune to electromagnetic 

interference and cross-talk. Therefore, it is very likely that in the near future microelectronics 

will be largely replaced by optoelectronics and photonics. Photonic devices, such as laser 

sources, optical fibers, optical couplers and switches have already been incorporated in 

telecommunication and computer systems. The advantages of photonic devices arise from the 

fact that the carriers are photons, rather than electrons. Transmission of photons is at the 

speed of light, not limited by the transit time as happens in the case of electrons. 

Unfortunately, photonic devices are much larger than their microelectronic counterparts 

because of the diffraction limit. The transmission efficiency of multimode fiber decreases 

with the decreasing of the core-diameter until a cut-off is reached [6]. For single mode fiber, 

which has no cut-off, the guided mode field becomes less confined with the decreasing of the 

core-diameter [7]. This causes the evanescent fields to spread further out of the cladding into 

the surrounding and interfere with the other nearby devices. Therefore, to prevent cross-talk, 

fibers have to be coated with extra layer or be separated by a larger distance with the result of 

further increase of the device size in the transverse direction [7]. In the longitudinal direction, 

design of photonics devices should be done in such a way that excessive loss due to bends 

and interfaces within the devices are minimized. The reduction of the total loss requires the 

devices to be made adiabatic, i.e., with very slow branching angles. Typical branching angle 

in these devices, such as directional coupler and power splitter are within 1°[8 - 9] for better 
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performance. This can make the branching section of the device to be hundreds of 

wavelengths in length. In addition, the weakly guiding nature of the optical structures cause 

the waveguides to be separated sufficiently apart to be isolated from each other. These 

factors cause the optical length of common optical devices to be in the order of thousands of 

wavelengths.  

 

Most of photonic devices rely on compound semiconductor technology that is based 

on the III-V semiconducting materials, such as Gallium Arsenide (GaAs) and Indium 

Phosphide (InP) [10]. A large family of them has a direct band gap. They are ideally suited 

for light generation, such as, laser diodes and light emitting diodes (LEDs) and in light 

detection. Doped fiber amplifier, where silica is commonly doped with Erbium, is used for 

laser amplification [11]. The refractive index of these materials and other optical materials 

used in different applications shows dispersive properties in the optical region of the 

spectrum. Plasmonics is a rapidly emerging photonics discipline that enables unusual 

dispersion engineering, and it has an important impact on the development of metamaterials 

and active nanophotonic devices. Dispersion control and active material integration have 

yielded plasmonic components, such as three-dimensional single layer plasmonic 

metamaterials, all-optical, electro-optic and field effect modulation of plasmon propagation, 

plasmon-enhanced absorption in solar cells, etc [12]. The dispersive nature of these materials 

is commonly expressed by well-known models, such as Debye, Lorentz, and Drude [13] 

models. Ultrashort or femtosecond optical pulses, which have a broad frequency spectrum, 

interact and are strongly affected by the dispersive nature of these materials. Therefore, 

modeling techniques of photonic devices should consider all the challenges mentioned above. 
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This is because accurate and realistic numerical simulation of photonic devices and systems 

is important for investigating innovative basic and engineering concepts, materials, and 

device configurations before they are fabricated. These provide a framework in which one 

can interpret complex experimental results and suggest further diagnostics or alternate 

protocols. On the other hand, modeling techniques have to be very accurate, efficient and 

must run easily on ordinary computer resources; otherwise, they are less useful if they 

require a special computer, such as a supercomputer to which very few people have access. 

 

Time Domain (TD) analysis of ultrashort pulses in dispersive structures of photonic 

devices is much more complicated than Continuous Wave (CW) analysis due to the 

involvement of a large number of frequencies in the spectrum. This adds another dimension 

of challenge to modeling techniques. After understanding the challenges of simulating optical 

devices, extensive knowledge of existing numerical methods have to be explored and 

implemented to show their effectiveness in overcoming these challenges. The following 

paragraph gives an overview and literature survey of these challenges and the available 

techniques to handle them effectively. 

 

1.2 Time-Domain Methods 
 

The Finite Difference Time Domain (FDTD) is one of the most widely used 

numerical techniques for modeling photonic devices. The primitive form of the FDTD 

algorithm, introduced by Yee in 1966 [14], was to choose a geometric relation for the spatial 

sampling of the vector components of the electric and magnetic fields that robustly represents 

both the differential and integral forms of Maxwell's equations. The nonphysical dispersion 
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error arose from the numerical parameters of the FDTD is proportional to the length of the 

wave propagation [15 - 16]. Depending upon the required application and accuracy, the 

numerical dispersion of the method restricts the mesh gridding of at least 10 to 20 cells per 

minimum wavelength in every direction [17]. In the full vector FDTD, six unknowns have to 

be solved by solving six Maxwell's first order equations for 3-D problems that throws a 

challenge of providing enough computational resources for finely meshed grids. In the scalar 

FDTD [18 - 19], the amount of required memory is reduced to one third and to two thirds of 

the vector FDTD scheme for 3-D and 2-D problems, respectively. But this scalar version is 

only suitable for weakly guided waves and it is not widely used [20]. Courant–Friedrichs–

Lewy (CFL) condition on the time step [21 - 22] puts a restriction on both of these methods. 

Thus these methods require large computational resources for pulse propagation in long 

optical devices. This renders a further modification of the FDTD algorithm. Various 

techniques have been proposed to make the FDTD method more efficient by relaxing the 

fineness of the mesh grid including nonuniform [23], adaptive mesh refinement [24] and 

pseudospectral time-domain (PSTD) techniques [25 – 26], etc. The nonunifrom and adaptive 

mesh refinement is limited to specific geometries that conform to specialized grid [23]. For 

short pulses, the temporal pulse sampling density must be increased with the electrical size of 

the problem in PSTD, to avoid the unwanted cumulative numerical dispersion. Thus, even 

though PSTD provides a large reduction in computer resources relative to Yee’s algorithm 

for electrically large problems, it is not suitable for short pulses. Therefore, recently there is 

tendency to modify the FDTD algorithm by overcoming the second limitation of the CFL 

stability criterion. This is done by converting the traditional explicit FDTD to an implicit one. 

To name two of these methods: the Alternating Direct Implicit (ADI) FDTD [27 - 32] and the 
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Locally One-Dimensional (LOD) FDTD [33 - 36]. Although both techniques, being implicit, 

succeeded in removing the CFL stability criterion of the explicit FDTD, however the 

numerical dispersion is inherent to both of these methods where it increases with the increase 

of the time step size. Moreover, the methods exhibit a splitting error proportional to the 

square of the time step size [37], which limits the accuracy of the methods. An effort to 

reduce the splitting error makes the method loose unconditional stability [38]. So the time 

step size is limited for a desired accuracy and excitation spectrum [39 - 41]. Some envelope 

implicit FDTD have been developed which have better numerical dispersion than the 

conventional implicit FDTD, such as the Complex Envelop (CE) ADI-FDTD [42] and the 

envelope LOD-FDTD [43]. The normalized phase velocities of both envelope versions 

remain close to unity at the center wavelength, even for a large time step. This means that 

these methods have better performance over the conventional ADI/LOD-FDTD. Moreover, 

some artifacts for the CE-ADI-FDTD have been found of having the time-harmonic spurious 

charges that produces secondary radiation and anomalous mode propagation [44]. The 

memory requirements for the implicit and the envelope implicit FDTDs, which do not 

depend on the choice of the time step size, are increased compared to the explicit FDTD due 

to the solution of the tridiagonal matrix in addition to the solution of several explicit 

numerical equations. Even though many implicit and envelope FDTDs have been proposed 

which provides comparable results to those of the explicit FDTD, their advantages are not 

clear [43]. However, as the FDTD can model photonic device problems with dispersive 

media, even though with high computational cost for long devices, it can be used as a 

reference tool for a comparison of other newly developed numerical tools. The frequency 

domain constitutive relations in dispersive media can be converted to the time domain either 
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using the recursive convolution integral [45 - 46] or by a direct integration approach [47 – 

48].  As discrete time series representation has a natural representation in terms of z-

transform, use of z-transform approach is also possible to perform this conversion [49 – 50]. 

 

Another attractive method to analyze a number of structures of integrated optics is the 

Beam Propagation Method (BPM). This one-way propagation technique is well-suited for 

long device interaction [51 – 52]. The main advantage of the BPM over the coupled mode 

analysis, for example, is that it accounts both for guided and radiation modes in the same 

formalism and its propagational ability makes it a good tool in the analysis of longitudinally 

varying devices. The original BPM was based on the Fast Fourier Transform (FFT). To 

improve the accuracy and efficiency, the Finite Difference (FD) approximation was later 

used successfully in the formulation of the BPM, resulting in the so called FD-BPM. The 

FD-BPM can be classified either as implicit or explicit. The Crank-Nicholson (CN) implicit 

FD proved to be a very stable and accurate method. On the other hand, explicit methods, 

such as the Real Space (RS) or the explicit FD showed improved convergence and efficiency 

in comparison with their implicit counterpart.  The explicit RS method depends on splitting 

the finite-difference matrix operator into two matrix operators where each matrix contains 

small sub-matrices that are solved analytically. Explicit FD-BPM is another simple and 

attractive method to implement. Both of these approaches were also used efficiently in 

modeling long CW and nonlinear wave interaction [53 – 54]. However, most BPMs were 

developed for CW operations. Recent developments on Time Domain (TD) BPM techniques 

to model pulsed optical beam propagation in waveguide structures proved to be very efficient 

in modeling long device interaction [55 - 56]. The advent of this method occurred with 
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paraxial approximation in narrowband applications and solved explicitly under a 

conditionally stablity limit. Then this method was improved to make it unconditionally stable 

[56] for certain class of problems. Limited wideband application of similar method was 

shown in [57] based on the finite element method and the application of CN scheme in [58] 

made the technique implicit. Recently the application of Padé approximants made the TD-

BPM method applicable to model ultra short pulse interaction in non-dispersive devices [59 - 

60]. A comparative study between this technique and the existing FDTD counterparts 

remains unchecked. In addition, the applicability and the efficiency of this method is yet to 

be examined for material dispersion and nonlinear parametric optical interactions of χ(2) and 

χ(3) [60].  

 

1.3 The Objective of the Thesis 
 
  The main objective of this work is to study the implementation of the Time Domain 

numerical techniques for modeling the propagation of short and ultra short optical pulse 

propagation in dispersive materials. The TD-BPM and the FDTD techniques will be 

implemented and tested to model two dimensional devices containing dispersive material. 

Lorentz model will be used as a dispersive model for the representation of dispersion of the 

material. The outcome of this work will be used to model ultra short pulse propagation in a 

directional coupler made of dispersive material. To accomplish these objectives, several 

numerical issues have to be resolved. Therefore, the work of this thesis is divided mainly into 

three phases. In the first phase, the two techniques will be initially implemented, tested and 

compared for non-dispersive devices. Several tests will be performed to show the 

applicability of these methods to model ultra short pulse propagation in 2-D structures. 
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Comparison of convergence, accuracy, stability and efficiency of the techniques will be 

performed rigorously. In this phase, important numerical parameters of the TD-BPM, such as 

the time step size, the Padé order and the longitudinal step size will be tested. Similar tests 

for the FDTD numerical parameters will be performed. Part of the objective of this phase is 

to explore the possibility of speeding up gains by using different iterative numerical solvers 

for the TD-BPM operator. The second phase involves the application of these two methods to 

model short and ultra short optical pulse propagation in dispersive 2-D material. In addition 

to the tuning of numerical parameters for the two techniques, the study in this phase involves 

the effect of material dispersion on the convergence and the accuracy of the two techniques. 

The third phase involves the study of the propagation of short and ultra short pulse in 

directional couplers made of dispersive material. 

 

1.4 Thesis Organization 
 

The starts with basics of electromagnetic and progressively develops to an advanced 

stage of ultra short pulse propagation in dispersive optical devices. This is done to facilitate 

understanding of the thesis work. This chapter (Chapter one) gives a general overview of the 

literature survey of important issues in photonics technology and the numerical techniques 

used to model short pulse propagation in dispersive material. It is to be mentioned that the 

following chapters also give supplementary literature survey and detailed information for the 

techniques used. The chapter also gives the motivation of this work in detail. Chapter two 

starts with Maxwell's equations, and then shows the derivation of Helmholtz equation and its 

numerical solution with different propagation methods. It was mentioned in the introduction 

that most propagation methods were devised for continuous wave (CW) application. For this 
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reason some applications with the existing methods on different optical devices have been 

demonstrated. The chapter shows the main differences between CW and TD 

implementations. Chapter three shows the formulation and the implementation of the FDTD 

technique. The chapter also gives a literature survey of common implicit FDTD techniques 

that have been developed over the last few years. In addition, this chapter shows the 

application of Bérenger PML as an absorbing boundary condition for the FDTD. Chapter 

four contains the derivation and the implementation of the TD-BPM for non-dispersive 

materials. It gives detailed numerical convergence and accuracy results when applied to 

different geometries. Iterative numerical techniques are also introduced in this chapter to 

enhance the efficiency of the TD-BPM. Chapter five gives an overview of material 

dispersion and the commonly used model that represents practical dispersive materials. The 

chapter also discusses the difficulty of incorporating these models in numerical techniques 

and the impact of the propagation of short pulse in such materials. Chapter six basically 

contains extension of the two main techniques presented in chapters three and four to 

dispersive material. This chapter shows the numerical implementation of short and ultra short 

pulse propagation in dispersive material using the FDTD and the TD-BPM. Comparative 

study of these two methods has been done for one and two dimensions. In two dimensions, 

the implementations in homogeneous dispersive medium as well as a slab waveguide are 

considered. The accuracy, stability and performance of the dispersive TD-BPM have also 

been studied and the results were compared with those of the FDTD results. Chapter seven 

shows the analysis in modeling short and ultra short pulse propagation in dispersive 

directional coupler structures. The effect of the initial pulse width on the mechanism of 
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power switching between the two coupled waveguides is analyzed in detail. The thesis ends 

with a concluding chapter for the whole work as well as future work. 
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CHAPTER 2 
 
 
 

MODELING OPTICAL DEVICES 
 
 
 

2.1 Introduction 
 

This chapter presents the basic equations needed in modeling optical devices starting 

with Maxwell's equations. It gives a review of the slab waveguide theory for the Transverse 

Electric (TE) and the Transverse Magnetic (TM) polarized electromagnetic fields. The 

chapter, then, continues to give an overview for the common techniques used in modeling 

optical devices, namely, the Method of Lines (MoL) and the Beam Propagation Method 

(BPM). The Perfectly Matched Layer (PML) used as an absorbing numerical technique to 

attenuate unwanted radiation fields at the edge of the numerical window is formulated and 

implemented. The chapter ends with the numerical implementations for both the MoL and 

the BPM for two dimensional devices. 

 

2.2 The Wave Equation 
 

Starting with Maxwell's equations in differential form which can be written as 

 t
∂

∇×
∂

= − BE                                        (2.1) 

   t
∂

∇× +
∂

= DH J
                 (2.2) 
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. υρ∇ =D                 (2.3) 

. 0∇ =B                 (2.4) 

where E(r,t) and H(r,t) are respectively the electric and the magnetic field vectors, D(r,t) and 

B(r,t) are respectively the electric and magnetic flux density vectors and J(r,t) and ρυ(r,t) 

represent the current and the charge density sources. In isotropic materials, the magnetic flux 

density vector B has a direct relation with the magnetic field vector H through the scalar 

magnetic permeability µ and can be written as 

µ=B H                (2.5) 

where 0 rµ µ µ= , µr is the relative permeability taken to be unity for non-magnetic materials 

and µ0 is the free space permeability. Also for isotropic electrically non-linear materials the 

electric displacement D can be written, in general, as a function of E, as 

( ) ( ) ( ) ( ) ( ) ( ) ( )2 32 3
0t t t t tχ χ χε  + + + + =D r, E r, E r, E r, E r,            (2.6) 

where ε0 is the free space permittivity. χ is the scalar linear susceptibility, χ(2) and χ(3) are the 

second and third order nonlinear susceptibilities, respectively. For dielectrics, the value of 

0 rε ε ε=  is greater than ε0, and contains a material part characterized by a dipole moment 

density or polarization, P (C/m2). It can again be split as linear and nonlinear part by the 

following equation 

( ) ( ) ( ) ( )0 0t 1 t tχε ε+ += NLD r, E r, P r,              (2.7) 

A medium is linear if its properties do not depend on the amplitude of the fields and thus PNL 

= 0. Considering a non-magnetic (µ = µ0), linear and source free set of Maxwell’s equations 

(J = 0 and ρυ = 0), while taking the curl (∇×) of Eq. 2.1 and using Eq. 2.2, the following can 

be obtained 



- 19 - 
 

{ }
2

2

t

t

µ

µ

∂
∇×∇× ∇×

∂
∂

= −
∂

0

0

E = - H

D
               (2.8) 

Using the vector identity, 

( ) 2∇×∇× ∇ ∇ ⋅ − ∇E = E E                (2.9) 

For a locally homogeneous medium, where ε is locally space independent, the first term on 

the right hand side of the above vector identity can be set to zero (using Eq. 2.3) [1 - 5] to the 

wave equation 

2
2

2 0
t

µ ∂
∇ − =

∂0
DE              (2.10) 

If the medium is linear and non-dispersive, then Eq. 2.10 can be written as 

2
2

0 2 0r t
µ ε ε ∂

∇ − =
∂0

EE             (2.11) 

For a monochromatic field that oscillates with an angular frequency ω, the electric and the 

magnetic fields can be described as 

t
t

j te ω  
=   

   

E(r, ) E(r)
H(r, ) H(r)





            (2.12) 

Then the second derivative with respect to t in Eq. 2.11 can be replaced by -ω2, leading to the 

following vectorial wave equation, as 

2 2 2
0 0k n∇ =E + E                          (2.13) 

where  rn ε=  is the refractive index, 0
0

k c
ω=  is the free space wave number. Eq. 2.13 is 

the well-known Helmholtz equation. 

 



- 20 - 
 

2.3 The Slab Waveguide  
 
 

The slab waveguide consists of three layers with different dielectric constants, 

extending infinitely in the directions parallel to their interfaces. A schematic diagram of a 

three layer planar waveguide is shown in Figure 2.1. It consists of a superstrate, a core and a 

substrate with refractive indices n1, n2 and n3 respectively, where n2 > n3 > n1 which satisfies 

the guidance condition. 

 

 

In order to simplify the analysis, the structure is assumed to be uniform and infinitely 

stretched along the y direction, so that the field can be assumed not to vary along the y- axis. 

This allows to set 0y
∂ =∂

. The direction of propagation is assumed to be the z- direction. 

The wave equation in Eq. 2.13 can be written for each region as [6] 

2 2
2 2
02 2 0, 1, 2, 3rk n r

x z
∂ ∂

+ = =
∂ ∂

E E+ E               (2.14) 

Figure 2.1 The dielectric slab waveguide 

Superstrate Layer       n1 

Guiding Layer          n2 

Substrate Layer          n3 

z 

x 

x = d/2 

x = -d/2 



- 21 - 
 

Moreover, assuming the variation of the fields in the positive z-direction as exp(-jkzz), where 

kz is the propagation constant, Eq. 2.14 can be written region wise separately as 

( )
2

2 2 2
02 0, 1, 3z rk k n r

x
∂

− = =
∂

E - E                 (2.15a)   

( )
2

2 2 2
0 22 - 0zk n k

x
∂

=
∂

E + E                       (2.15b)   

Eq. 2.15a is valid for the substrate and superstrate regions and Eq. 2.15b is applicable for the 

guiding region. There are two types of polarizations that can be supported in slab waveguide 

structure- the Transverse Electric (TE) field and the Transverse Magnetic (TM) field 

polarizations. 

 

2.3.1 Transverse Electric (TE) Guided Modes 
 
For TE-polarized waves, the electric field points in the y-direction, namely y yE=E a  and the 

magnetic field has two components x x z zH H= +H a a . By solving Eq. 2.15 in each layer of 

the slab waveguide along with the application of the boundary conditions for the continuity 

of Ey at the interface, Ey can be expressed as [6] 

      

( ) ( ) ( )

( ) ( )
( ) ( ) ( )

2

2

cos 2 sin 2 2
cos sin 2 2

cos 2 sin 2 2

c

s

r x d
g g

y g g

r x d
g g

dxA r d B r d e

d dE A r x B r x x

dA r d B r d e x

− −

+

  ≥+ 
= + − ≤ ≤


 − ≤ −  

    (2.16) 

where 2 2 2 2
0 2g zr k n k= − , 2 2 2 2

0 1c zr k k n= −  and 2 2 2 2
0 3s zr k k n= − . Using Maxwell's equations, 

the corresponding two non-zero components of the magnetic field Hx and Hz, can be written 

as 
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0

z
x y

kH E
ωµ

= −            (2.17a) 

0

y
z

EjH
xωµ

∂
= −

∂
                      (2.17b) 

Under guiding condition most of the power is confined in the core with oscillatory behavior 

in the middle layer and exponential decaying (evanescent) behavior in the outer regions. This 

feature requires that 2
cr , 2

gr  and 2 0sr >  and can be combined to get the following 

inequalities (for n3>n1) 

   0 1 0 3 0 2zk n k n k k n≤ ≤ ≤              (2.18) 

 Substituting Eq. 2.16 into Eq. 2.17 and applying the boundary conditions for Hz we get [6] 

( ) ( )
2tan g s c

g
g s c

r r r
dr

r r r
+

=
−

             (2.19) 

Eq. 2.19 is the analytical eigenvalue (characteristic) equation for the TE guided modes where 

the only unknown quantity is the propagation constant kz. The eigenvalue equation 

determines the allowed values of the propagation constant kz, i.e., the guided modes. 

 

2.3.2 Transverse Magnetic (TM) Guided Modes 
 

The same approach described in the previous section can be applied to obtain the 

guided modes for the TM polarization. For TM-polarized waves, the magnetic field has a 

single component in the y-direction, namely y yH=H a . The electric field E has two 

components so that x x z zE E= +E a a . By solving Eq. 2.16 in each layer of the slab 

waveguide along with the application of the boundary conditions for the continuity of Hy, Hy 

can then be written as 
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( ) ( ) ( )

( ) ( )
( ) ( ) ( )

2

2

cos 2 sin 2 2
cos sin 2 2

cos 2 sin 2 2

c

s

r x d
g g

y g g

r x d
g g

dxA r d B r d e

d dH A r x B r x x

dA r d B r d e x

− −

+

  ≥+ 
= + − ≤ ≤


 − ≤ −  

    (2.20) 

Using Maxwell's equations, the corresponding two non-zero components of the electric field 

Ex and Ez can be also obtained in terms of Hy 

2
0

z
x y

r

kE H
nωε

=             (2.21a) 

2
0

y
z

r

HjE
n xωε

∂
= −

∂
            (2.21b) 

Substituting Eq. 2.20 in Eq. 2.21 and applying boundary conditions for Ez, we get [6] 

( ) ( )2 2 2
2 1 3

2 2 2 4
1 3 2

tan g s c
g

g s c

r n n r n r
dr

n n r n r r
+

=
−

            (2.22) 

Eq. 2.22 is the analytical eigenvalue equation for the TM guided modes with the only 

unknown quantity being again the propagation constant kz. 

 

2.4 The Method of Lines (MoL) 
 

The Method of Lines (MoL) [7-14] solves partial differential equations (PDE) by 

transforming it into an ordinary differential equation (ODE) whereby all the independent 

variables are discretized except one. Therefore, (n -1) variables are discretized of a PDE with 

n independent variables, resulting in an ODE which can then be solved analytically in terms 

of the remaining variable [16]. Computation of eigenvalues and eigenvectors (eigenpairs) of 

the system matrix are employed in the analytical solution. The eigenpairs calculation requires 

a numerical effort proportional to M3, where M is the number of discrete points used in the 
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field representation. Even though the MoL has been applied to several types of planar 

longitudinally uniform optical and microwave waveguide problems, interface conditions can 

also be easily employed in this method. It has been used to analyze single [17] and multiple 

longitudinal discontinuities in optical waveguides [9], non-linear waveguide problems [11] 

and diffraction problems from waveguide ends [10]. The MoL has been successfully used 

also to model 3D  problems [14-15] for both optical and microwave waveguides. The MoL 

has a high numerical precision and an acceptable computational expense [8]. However, if the 

size of the problem is exceedingly large, the computation of the eigenpairs becomes 

computationally expensive and even prohibitive in some cases.  

 

2.4.1 MoL Formulation 
 

In this section, we discuss the formulation of the MoL for 2-D slab waveguide 

structure. The wave is assumed to propagate in z- direction and the time dependence is 

assumed, as before, to be j te ω . For the waveguide structure shown in Figure 2.1, the 

waveguide geometry is discretized in the x-direction and the boundary layers are parallel to 

the y-z plane. The computational window is bounded in all direction by an electric wall (Ey 

= 0)  or a magnetic wall (Hy = 0). The two dimensional wave equation obtained from Eq. 

2.14 is given by  

( ) ( ) ( )
2 2

2 2
02 2

, ,
, 0

x z x z
k n x z

z x
ψ ψ

ψ
∂ ∂

+ =
∂ ∂

+                     (2.23) 

where ψ  represents either Ey or Hy depending on whether we have TE or TM polarized 

waves, respectively. Upon discretization, the second term in Eq. 2.23 is replaced by the 

three-point central Finite Difference (FD) approximation 
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2
1 1

2 2

2i i i

x x
ψ ψ ψψ + −− +∂

=
∂ ∆

            (2.24) 

Then Eq. 2.23 becomes 

          
( )

2
2 21 1
022

2 0i i i i
i i

d k n
dz x

ψ ψ ψ ψ ψ+ −− +
+ =

∆
+                    (2.25) 

where the subscript i refers to the field at the i- th mesh line in the discretized space as shown 

in Figure 2.2 (in section 2.6). For transverse discretization points Eq. 2.25 assumes to the 

following matrix equation 

( )
( )
( )

( )

( )

( )
( )
( )

( )
( )
( )
( )

( )

1 1

2 2

3 32

22

12
1

22
2

32
2 3
0

2

2 1
1 2 1 0

1 2 11

0 1 2 1
1 2

0

0

M M

M
M

z z
z z
z z

d
dz x

z z

z
n

z
n

z
n

k

n
z

ψ ψ
ψ ψ
ψ ψ

ψ ψ

ψ
ψ
ψ

ψ

   
−    

    −    
 −   

+ +    
∆     

    −
    

−    
   

 
   
   
   
   
   
   
   
  
   

 

 

  

 

 











0
0
0

0

 
 
 
 

=  
 
 
 
 





          (2.26) 

or equivalently, 

2
2

i i 0 i2 ψ Cψ Νψ 0d k
dz

+ + =              (2.27) 

where ( ) ( ) ( ) ( )i 1 2 3ψ
t

Mz z z zψ ψ ψ ψ =    is the column vector representing the 

discretized field, C is a tri-diagonal matrix, N is a diagonal matrix with elements being the 
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square of the refractive indices ( )2 2 2 2
1 2 3 Mn n n n  at the mesh points. Finally, Eq. 2.27 can 

be written as 

2
i

i2

ψ Qψ 0d
dz

+  =                         (2.28) 

where Q C Nk 2
0= + . The general solution of the ordinary second order matrix differential 

equation is given by [10] 

iψ A Bj z -j ze e= Q Q+                        (2.29) 

The first term on the right hand side of Eq. 2.29 represents fields propagation in the − z 

 direction and the second term represents fields propagation in the + z  direction. A and B 

represent the field propagating in ∓𝑧 at z = 0, respectively. Both A and B are column vectors 

of size 1M × , and 
Qj ze (or 

Q-j ze ) is a square matrix of size M M× which can be 

evaluated using eigenvalue decomposition of the matrix Q. The square matrix Q is first 

expressed in terms of its eigenpairs in the form 

1Q UVU-=                     (2.30) 

and thus 

-1Q=U VU                                (2.31) 

where the diagonal matrix V contains  the eigenvalues of Q and the square matrix contains 

the corresponding eigennvectors. The matrix exponentials j ze± Q can then be found using the 

following relation 

Q V -1U Uj z j ze e± ±=                       (2.32) 
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The procedure of adopting the eigenpair calculation for the evaluation of Q  and Qj ze± is a 

fundamental feature of the MoL. 

 

2.5 The Beam Propagation Method 

The Beam Propagation Method (BPM) is a numerical technique used to solve the 

wave equation in optical waveguides. This technique was invented for simulating the 

propagation of light using slowly varying optical fields. The BPM was first introduced in the 

1970's by Feit and Fleck [18 - 19], and it relied on the approximate differential equation 

having first order derivatives along z (the waveguide axis). The BPM decomposes the initial 

field into superposition of plane waves each travelling in different directions. The first order 

derivative equation in z can be solved as an "initial" value problem whereby the "initial" 

value refers to the input field. After a one-way model is obtained, the variable z still has to be 

discretized. The main advantage of the BPM over the traditional mode approach is that it 

computes both guided and radiation modes of linear z-variant devices, in the same 

formalism; no special arrangement is needed to account for radiation modes. In addition, 

optical devices containing nonlinear effects are very difficult to analyze using the 

conventional mode theory. On the other hand, it is very simple to include the nonlinear part 

in the formulation of the BPM by a proper adjustment of the linear version. 

Various kinds of the BPMs, such as the fast Fourier Transform (FFT-BPM) [19 - 22], 

the Finite Difference (FD-BPM) [23 - 30], and the Finite Element (FE-BPM) [31], have been 

developed based on how the derivative with respect to the lateral direction is handled. The 

classical BPM is mainly an approximation to the scalar wave equation in its parabolic form 

using the Fast Fourier Transform and thus it is called FFT-BPM. The FD-BPM, which is a 
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powerful numerical tool, uses Finite Difference (FD) approximations to replace the partial 

derivatives in the wave equation. There are two ways to perform the FD-BPM formalism- 

explicit and implicit approaches. The explicit scheme is only conditionally stable which 

restricts the propagation step to very small values. The implicit scheme developed by Chung 

and Dagli [23] is the state-of-the-art in terms of accuracy, numerical efficiency and stability. 

Its unconditional stability is particularly another advantage which allows setting the 

propagation step relatively large. A Wide-Angle (WA) scheme using Padé approximant 

operators [24], [25] has been developed by Hadley. The limitation of the Slowly Varying 

Envelope Approximation (SVEA) of having the accuracy only for the waves propagating in a 

small angle in the waveguide axis is overcome in the WA-BPM. These contributions made 

the BPM capable of being used even in the design of optical waveguides made of high-

contrast-index materials, such as semiconductor based optical waveguides. 

 

2.5.1 The BPM Formulation 
 

This section shows the formulation of the FD-BPMs based on the solution of the 

parabolic equation. For this purpose the formulation of the parabolic equation from 

Helmholtz equation is derived first. We extract a rapidly changing phase factor in the 

direction of propagation z and write the field Ey, for the TE case as an example, as 

( ) ( ) 0 0, , , , jk n z
yE x y z x y z e−= φ                       (2.33) 

where n0 is the reference refractive index number and k0 is the vacuum wave number. 

Substituting Eq. 2.33  in Eq. 2.13, we get 
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0 0 0 0 0 0 0 0

0 0 0 0

2 2 2

0 02 2 2

2 2 2 2
0 0 0

2

0

jk n z jk n z jk n z jk n z

jk n z jk n z

e e e jk n e
x y z z

k n e k n e

− − − −

− −

∂ φ ∂ φ ∂ φ ∂ φ
+ + −

∂ ∂ ∂ ∂

− φ + φ =
           (2.34) 

With the parabolic (the slowly varying envelope) approximation, where it is assumed 

that the rate of change of the field in the direction of propagation is very small over a 

wavelength, i.e., 
2

0 02 2k n
z z

∂ φ ∂φ
<<

∂ ∂
, the equation can be simplified resulting in the following 

parabolic or Fresnel wave equation 

  ( )
2 2

2 2 2
0 0 0 02 22 jk n k n n

z x y
φ φ φ φ∂ ∂ ∂

= + + −
∂ ∂ ∂

            (2.35) 

All the methods based on the finite difference BPM can be divided into two main 

categories implicit and explicit techniques. Here we give a short formulation of the widely 

used methods. The parabolic equation Eq. 2.35 can be written as 

    
( ) ( ), ,

, ,
x y z

j G x y z
z

φ
φ

∂
=

∂
            (2.36) 

where   ( )
2 2

2 2 2
0 02 2

0 0

1
2

G k n n
k n x y

 ∂ ∂
= + + − ∂ ∂ 

           (2.37) 

The solution of Eq. 2.36 can be written formally as [32 – 34] 

   ( ) ( ) ( ), , , ,j zGx y z z e x y zφ φ− ∆+ ∆ =            (2.38) 

where ∆z is the propagation step along the z-axis which should be sufficiently small. In order 

to develop Eq. 2.38 into a computational form, the equation can be written in the following 

well-known symmetrized operator which is accurate up to second order as [35 - 38] 

 ( ) ( ) ( )( )
2 2

0
0 0 0 3, , , ,

x y
z z zj j d j

a a ax y z z e e e x y z O zφ φ
     ∆ ∆ ∆

− ∇ − − ∇     
     + ∆ = + ∆          (2.39) 
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where    ( ) ( )

( )

0 0 0

2 2 2
0 0 0

2
2

2

2

, , , ,

, ,

a k n

d x y z k n x y z n

x yα α
α

=

 = − 
∂

∇ = =
∂

            (2.40) 

In the Alternating Direction Implicit BPM (ADI-BPM), the split operator of Eq. 2.39 

can be approximated using Cayley form representation, which is second order accurate [33 - 

34] 

   ( )
2

0

2

2
0

2

2
0

1
2

, ,
1

2

zj
a

zj
a

e x y
zj
a

α α
α

α

 ∆
− ∇ 

 

 ∆ ∂
− ∂ = =

 ∆ ∂
+ ∂ 

          (2.41) 

The form of Eq. 2.39 could be used to operate on any field at any stage of the split operator 

equation as 

  ( ) ( )
2 2

2 2
0 0

1 1
2 2

s sz zj F j F
a a

α α
α α

+∆   ∆ ∂ ∆ ∂
+ = −   ∂ ∂   

           (2.42) 

where s + ∆ is an intermediate stage for F in the split operator. The partial derivatives in Eq. 

2.42 can be replaced by their finite-difference approximations; if the second order central FD 

approximation is used, then the right hand side of Eq. 2.42 involves a direct multiplication of 

the discretized field with a tridiagonal matrix, and the operator on the left side involves an 

inversion of a tridiagonal matrix. This method is unconditionally stable. The 2-D version of 

the ADI-BPM is known as the Crank-Nicholson BPM (CN-BPM).  Its formulation is 

obtained by combining Equations (2.38) and (2.41)   for two-dimensions which can be 

expressed in matrix form as 
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where   ( )
2

2 2 2 20
0 0

2 2i i
a xh x k n n
j z

 ∆
= − + ∆ − ∆ 

           (2.44) 

( )
2

2 2 2 20
0 0

2 2i i
a xg x k n n
j z

 ∆
= + − ∆ − ∆ 

           (2.45) 

The implementation of the CN method involves two steps; first the initial field z
iφ  

has to be multiplied by the tridiagonal matrix, and the second step is inverting the matrix on 

the left hand side of Eq. 2.43. This process is repeated several times to cover the entire length 

of the device. A more efficient version of this technique can be used to avoid storing and 

inverting the matrices in every step [32], [33], [39]. Detailed mathematical derivation of this 

method appears in [40].  

 

The Explicit Finite-Difference Method is the simplest and the most attractive BPM 

method. It involves a direct application of the central difference approximation to the 

parabolic equation. If a three point central difference approximation is used in the parabolic 

equation, the discrete form of the Eq. 2.46 is given by 

( ) ( ) ( ) ( ) ( )

( ) ( ) ( )
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0 0

2 2 2
, 1 , 0 0 ,2 2
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φ φ
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+

∆ ∆
 + ∆ = − ∆ − + − ∆ ∆

  ∆
+ − − − +  ∆ ∆  

        (2.46) 
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where i and m represent the discretization of the transverse co-ordinates x and y, respectively. 

This algorithm is stable with the following condition [35] 

   
1

2 2 2
0 0 0 , 02 2 max

4 42 i mz k n k n n
x y

−
 

∆ < + + − ∆ ∆ 
          (2.47) 

 

2.6 Perfectly Matched Layer 
 

The computational window in the above mentioned methods is normally terminated 

either by an electric or a magnetic wall. These types of walls cause total reflection of the 

radiated field back into the computational window. Thus, this necessitates an absorbing 

boundary to be placed so that the radiated field is absorbed. This objective can be achieved 

by use of the so called Perfectly Matched Layer (PML). PML layers are added on both ends 

of the computational window as shown in Figure 2.2.  
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PML layers cause gradual attenuation of the radiated field by converting space into 

the complex domain. In the PML, the real space is transformed to complex space, i.e., 

( )1x x jσ→ +  and ( )1x x jσ∆ → ∆ + , using the attenuation or decay parameter σ. Thus, 

with this type of transformation, the wave propagating in the +x-direction becomes 

( )1j k x j j k x k xe e eσ σ− + −=                        (2.48) 

The resulting exponential decay factor causes the field to be attenuated gradually. The value 

of σ and the number of points in the PML layer is chosen in such a way that the field 

becomes significantly low whenever it reaches the electric or magnetic wall at the extreme 

end of the computational window 

 Electric / Magnetic Wall 
i = 0  
i = 1 PML 

•  
•  
• Superstrate 
•  
•  
•  
• Core 
•  
•  
•  
•  
• Substrate 
•  
•  
• PML 

i = M+1  
 Electric / Magnetic Wall 
  

 
Figure 2.2 Discretization of a waveguide with PML 
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2.7 Implementations 
 

This section shows the implementations of the MoL, the CN-BPM and the EFD-BPM 

to model practical optical problems and devices of free space and slab waveguide.  

 

2.7.1 Homogeneous Media 
 

The propagation of the field in air is analyzed using previously described three 

methods, namely the MoL, the CN-BPM and the EFD-BPM. The methods have been used to 

propagate a Gaussian field in air with an input with half beam width of w0 = 2.0 µm and a 

wavelength of λ = 1.0 µm. The field propagated to a distance of z = 50 µm with ∆x = 0.1 µm, 

∆z = 0.025 µm and a total window size of 40 µm. As shown in Figure 2.3 (a), the three 

methods predict equal beam spread. Figure 2.3 (b) depicts the effect of the perfectly matched 

layer (PML) employed in the numerical solution of the MoL. The ripple seen in the figure at 

z = 40 µm could be removed by enlarging the window size; however this will result in more 

computational cost. Introducing a PML with the same window size significantly reduces the 

ripple as shown in the figure. 
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2.7.2 Slab Waveguide 
 

This section shows the propagation of the TE0 and TE1 modes thorough a symmetric 

waveguide using the EFD-BPM, the CN-BPM and the MoL. The widths of the substrate, the 

guiding and the superstrate of the waveguide are 20 µm, 10 µm and 20 µm with refractive 

indices of 3.5, 3.6 and 3.5, respectively and a wavelength of λ = 1.55 µm is taken. Different 

propagation steps have been chosen for different methods as the EFD-BPM requires a 

stability condition to be fulfilled. A lateral mesh size ∆x = 0.1 µm was used for all 

techniques. The TE0 mode of the slab was launched as an input and the field was allowed to 

propagate to a distance of 40 µm using the three techniques. Figure 2.4 (a) shows the input 

  
 

Figure 2.3 The evolution of a Gaussian field in air using (a) the MoL, the EFD-BPM, and the CN-BPM, (b) 
Effect of implementing the PML in MoL. 
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field and the fields at z = 40 µm. Figure 2.4 (b) shows the propagated fields of the TE1 mode 

using the three techniques under the same condition. The figures show the close agreement 

among the three techniques. 

 

 

 
 

Figure 2.4 Propagated fields at z = 40 µm inside a slab waveguide (a) the TE0 mode (b) the TE1 
mode using the three techniques: the MoL, the EFD-BPM and the CN-BPM. 
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2.7.3 Directional Coupler 
 

The basic structure of a Directional Coupler (DC) is constructed by placing two 

waveguides in close proximity so that the energy can be coupled from one waveguide to the 

other after a longitudinal distance. Figure 2.5 shows the geometry of the directional coupler 

structure with a separation of s. 

 

The coupling length Lc is the distance at which the excited energy in one waveguide 

is transformed completely to the other waveguide. Lc can be computed using the relation [43 

- 44] 

c e oL π
β β

=
−              (2.49)

 

where β e and β o are the propagation constants for the even and odd modes of the DC 

structure. One of the key factors that govern the coupling length is the spacing s between the 

two cores.  
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 Figure 2.5 The directional coupler geometry 
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The three numerical techniques, the MoL, the EFD-BPM and the CN-BPM were used 

to model optical field propagation inside a GaAs directional coupler structure. The 

parameters of the GaAs coupler are as follows: the core width = 1.0 µm and both the 

substrate and the superstrate are taken as 5.0 µm, the gap between the guiding region is s = 

1.0 µm, and the refractive index of the core is 3.6 and that of the substrate and the superstrate 

is 3.5 and a wavelength λ = 1.55 µm. A lateral mesh size ∆x = 0.1 µm and propagation step 

size ∆z = 0.1 µm is used for all techniques. The DC structure was excited with the TE0 mode 

of an isolated waveguide and the field was followed numerically for one coupling length.  

 

Figure 2.6 shows the propagation of the TE0 guided mode of the isolated waveguide 

using the three techniques. The left hand side waveguide is excited by the TE0 mode. The 

 
Figure 2.6 The propagation of the TE0 guided mode of the isolated slab waveguide inside a directional 

coupler with a separation distance s = 1µm. The total propagation distance used is equal to one 
coupling length, Lc = 358.8 µm. 
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field is seen to couple to the adjacent waveguide with the complete transfer of energy in one 

coupling length, Lc = 359.7 µm which agrees with the theoretical value. 

 

Figure 2.7 shows the exchange of power between the two waveguides of the DC structure for 

all the three methods. The two figures show the close agreement among the three 

implemented techniques. 

 

2.8 Summary 
 

Basic equations useful for modeling optical devices have been formulated from 

Maxwell’s equations. Detailed mathematical formulations for the implicit (CN), the explicit 

(EFD) BPM and the MoL were shown. These numerical techniques have been implemented 

 
 

Figure 2.7 Normalized power versus distance along the directional coupler. 
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for CW applications in a homogeneous medium, a slab waveguide and a directional coupler 

structure. The results obtained using all three methods showed close agreement. 
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CHAPTER 3 

 
 
 

THE FINITE DIFFERENCE  

TIME DOMAIN METHOD 

 
 

3.1 Introduction 
 

The Finite Difference Time Domain (FDTD) [1] is one of the most powerful 

numerical techniques for modeling photonic devices which accounts for all aspects of optical 

wave behavior by virtue of direct discretization of Maxwell’s equations. Originally, the 

scheme was created to discretize Maxwell's equations under the assumption of isotropic, non-

dispersive and linear media. As the method grew in popularity and was successfully applied 

in scattering, diffraction, and propagation problems, many researchers devised ways that the 

algorithm could be applied to problems for which the device was no longer simple in 

structure. This chapter gives a description of the FDTD with emphasis on its application to 

model optical devices. The chapter shows the basic equations used for 3D and 2D of TE and 

TM polarizations. The chapter also discusses the implicit, the explicit and the scalar FDTD 

techniques reported in the literature over the years to model optical devices. The 

implementations of the TE polarized and the scalar FDTD to model 2-D structures are also 
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shown. In addition, PML implementation, as an absorbing boundary condition, is presented 

at the end of the chapter.  

 

3.2 Maxwell's Equations 
 

The time dependent Maxwell’s curl equations in general form are (given in Eqs. 2.3 

and 2.4) 

ˆ ˆ ˆ
1

x y z

x y z

t x y z
E E E

∂
∂ µ

∂ ∂ ∂
= −

∂ ∂ ∂
H                (3.1) 

0 rε ε=D E                            (3.2) 

ˆ ˆ ˆ

x y z

x y z

t x y z
H H H

∂
∂

∂ ∂ ∂
=

∂ ∂ ∂
D                (3.3) 

The above vector equations yield the following system of six coupled scalar equations [2] 

1 yx zEH E
t z y

∂∂ ∂
∂ µ ∂ ∂

 
= − 

 
             (3.4a) 

1y z xH E E
t x z

∂ ∂ ∂
∂ µ ∂ ∂

 = − 
 

             (3.4b) 

1 yz x EH E
t y x

∂∂ ∂
∂ µ ∂ ∂

 
= − 

 
             (3.4c) 

yx z HD H
t y z

∂∂ ∂
∂ ∂ ∂

= −               (3.4d) 



- 46 - 
 

y x zD H H
t z x

∂ ∂ ∂
∂ ∂ ∂

= −                          (3.4e) 

yz xHD H
t x y

∂∂ ∂
∂ ∂ ∂

= −                (3.4f) 

These coupled partial differential equations form the basis of the FDTD numerical algorithm 

for electromagnetic wave interactions with general three-dimensional objects. The FDTD 

space grid must be structured so that constitutive relation (Eq. 3.2) is implicit in the positions 

of E and H field vector components in the grid.  

 

3.2.1 TE Polarized Fields 
 

Assuming the structure being modeled extends to infinity and uniform in the y-

direction. All partial derivatives with respect to y may be set to zero.  Thus, the 2D equations 

for the TE field can be obtained from the above coupled partial differential equations for the 

field components Ey, Dy, Hx and Hz as 

1 yx EH
t z

∂∂
∂ µ ∂

=                          (3.5a) 

1 yz EH
t x

∂∂
∂ µ ∂

= −               (3.5b) 

y x zD H H
t z x

∂ ∂ ∂
∂ ∂ ∂

 = − 
 

             (3.5c) 

Eq. 3.5a, 3.5b and 3.5c can be arranged as 

[ ] [ ]( )φ φA B
t

∂
= +

∂
                (3.6) 
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x z yH H E   ,  
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          (3.7) 

 

3.2.2 TM Polarized Fields 
 

Similarly, the equations for the field components Hy, Dx, Dz, Ex and Ez can be 

obtained as 

yx HD
t z

∂∂
∂ ∂

= −       (3.8a) 

yz HD
t x

∂∂
∂ ∂

=        (3.8b) 

1y z xH E E
t x z

∂ ∂ ∂
∂ µ ∂ ∂

 
= − 

 
     (3.8c) 

It can be observed that the TE and the TM fields contain no common field components and 

are therefore decoupled. Eq. 3.8a, 3.8b and 3.8c can also be coupled in the form 

[ ] [ ]( )φ φA B
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It is to be noted that above mentioned formulation is applicable for non-dispersive media. For 

dispersive media some additional formulation has to be included. Before we show the 

implementation of the explicit FDTD, it is useful to show the main equations for the implicit 

FDTD techniques developed recently to overcome the CFL stability condition of the explicit 

FDTD. 

 

3.3 The Implicit FDTD  
 

Recently the Courant-Friedrich-Levy (CFL) condition [3] that prevents the use of 

large time step (∆t) in the discretization of the coupled Maxwell's equations has been 

overcome using the implicit FDTD. As discussed in chapter 1, the literature contains a 

number of implicit FDTD developed recently for this purpose. Two of the widely used 

implicit FDTD methods are the Alternating-Direction-Implicit (ADI) FDTD [4-9] and the 

Locally One-Dimensional (LOD) FDTD [10-13]. In these methods the Crank-Nicholson 

(CN) scheme [14-15] is applied to Eq. 3.6 which gives 

[ ] [ ] [ ]( )

[ ] [ ] [ ]( )
n+1 n2φ φ

2

tI A B

tI A B

∆
+ +

=
∆

− +
            (3.10) 

where I denotes the identity matrix and ϕn is the field at n-th time step. Eq. 3.10 is factorized 

as 

[ ] [ ] [ ] [ ]

[ ] [ ] [ ] [ ]
n+1 n2 2φ φ

2 2

t tI A I B

t tI A I B

∆ ∆  + +  
  =

∆ ∆  − −  
  

           (3.11) 
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In the ADI-FDTD, Eq. 3.11 is solved in two steps that involve solving two explicit and four 

implicit equations [13]. In the LOD-FDTD scheme [14] Eq. 3.11 is also solved in two steps 

whereby two implicit and two explicit equations are needed. An intermediate field of 
1n+ 2 φ  

is used in the first time step as  

[ ] [ ]

[ ] [ ]

1n+ n2 2φ φ

2

tI B

tI B

∆
+

=
∆

−
             (3.12) 

Then the field at n+1-th time step can be obtained using 

   

[ ] [ ]

[ ] [ ]

1n+n+1 22φ φ

2

tI A

tI A

∆
+

=
∆

−
             (3.13) 

In both techniques described before, Eq. 3.11 is solved by two different approaches 

and they are unconditionally stable. However, while obtaining Eq. 3.11 from Eq. 3.10, a 

splitting error term [ ][ ]2 4t A B∆  is introduced to the main formulation. For this reason, it is 

observed in [11, 18] that the normalized phase velocity degrades with the increase of the time 

step size (∆t) as well as with the peak excitation frequency in both of these methods. 

Although the time step size is longer than that of the explicit FDTD, the techniques showed 

limitation on their accuracy as ∆t is increased [17 - 18]. It is also noted that they are not 

suited for ultra short pulse propagation due to the splitting error term mentioned before. On 

the other hand, their envelope FDTD counterparts (the envelope ADI-FDTD [16] and the 

envelope LOD-FDTD [17]), showed a relaxation on the constraint of the time step by 

absorbing the fast temporal variation of the field in Eq. 3.6. Applying the time dependence
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0φ j te ωφ= , where φ
T

x z yH H E =   is the slowly varying envelope (SVE) for the TE 

mode, in Eq. 3.6, we get, 

[ ] [ ] [ ]( )0A B j I
t
φ ω φ∂

= + −
∂

             (3.14) 

Similarly, in the envelope LOD-FDTD two equations, obtained from Eq. 3.12, are 

solved in the half time step [17]. Of the total four equations, two are solved implicitly and the 

remaining two are solved explicitly. In the envelope ADI-FDTD three equations, obtained 

from Eq. 3.12, are solved in the half step [16]. Here four implicit and two explicit equations 

have to be solved. Both envelope versions have lower numerical dispersion and lower 

computational cost than the original one. However, numerical instability is reported in both 

of these methods due to the accumulation of the reflection coming from the PML to the 

computational domain [16, 20]. The larger the time step is, the earlier the appearance of this 

instability and the faster it builds up. Another limitation of these methods is the creation of 

time harmonic spurious numerical artifacts, which are detrimental as they produce secondary 

radiation [21]. Due to the above limitation it was observed that the implicit techniques are not 

suited for ultra short pulse propagation [22]. As the purpose of the thesis is to investigate 

ultra short pulses (with wideband spectrum), the formulation of the explicit FDTD has been 

implemented in the thesis. 

 

3.4 The Explicit FDTD  
 

In the explicit FDTD, direct discretization of the coupled equations (Eq. 3.4) is 

applied. We denote any function u of space and time evaluated at a discrete point in the grid 

and at a discrete point in time as [2] 
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( ) , ,, , , n
i j ku i x j y k z n t u∆ ∆ ∆ ∆ =             (3.15) 

Here, ∆x, ∆y, ∆z, are respectively, the lattice space increments in the x, y, and z coordinate 

directions, and i, j, k are integers. ∆t is the time interval, assumed uniform over the 

observation interval and n is an integer. Using these notations, the numerical approximations 

of Maxwell's curl equations for 2-D non-dispersive problems for TE polarized waves can be 

obtained from Eq. 3.5c as 

( ) ( )1 2 1 2

, 1 2 , 1 2 1 2, 1 2,, ,
, ,

n n n n n n
y y x x z zi k i k i k i ki k i k

i k i k

t tE E H H H H
z xε ε

+ −

+ − + −

∆ ∆
= + − − −

∆ ∆
    (3.16) 

The update of the H-fields are obtained from Eq. 3.5a and Eq. 3.5b as 

( )1 2 1 21

, 1 2 , 1 2 , 1 ,

n nn n
x x y yi k i k i k i k

tH H E E
zµ

+ ++

+ + +

∆
= + −

∆
                                 (3.17) 

( )1 2 1 21

1 2, 1 2, 1, ,

n nn n
z z y yi k i k i k i k

tH H E E
xµ

+ ++

+ + +

∆
= − −

∆           (3.18) 
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These numerical equations are solved sequentially for a finely meshed grid structure. 

The implementations of the above equations are summarized in the flow chart diagram [3] of 

Figure 3.1. While implementing the flow diagram, the FDTD space grid must be structured 

so that the constitutive relation of Eq. 3.2 is implicit in the position of the E and the H field 

vector components in the grid, and in the numerical space-derivative operations upon these 

components that model the action of the curl operator.  

 

The velocity of the numerical wave in the explicit FDTD, which is dependent on the 

space increments ∆x, ∆z and time-step ∆t, is different from the actual analytical wave 

velocity. The difference is called the numerical dispersion error. This error increases linearly 

Curl Curl 
1 2n

yE +  

Hn 

∑ ∑ 

Hn+1 

3 2n
yE +

 

Figure 3.1 The flow chart diagram of the FDTD leap-frog integrator. Multiplicative constants have 
been omitted. (b) Position of the electric field vector components useful for calculating 
magnetic field vector components (c) Position of the magnetic field vector components 
useful for calculating electric field vector components.  
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with the wave propagation distance and with reduction of the grid-sampling density. Another 

restriction of this method is in the choice of the time-step size which must be bounded to 

ensure numerical stability. Based on the complex frequency analysis this bound is obtained 

as [2] 

2 2

1
1 1

t
c x z

∆ <
+

∆ ∆

            (3.19) 

where c is the maximum velocity of light in the region of concern. 

 

3.5 The Scalar FDTD 
 

In the scalar FDTD [24 - 26], the amount of required memory is reduced to one third 

and to two third of the vector FDTD scheme for 3-D and 2-D problems, respectively. Some 

practical optical waveguides are weakly guiding, therefore the scalar analysis [25] is often 

sufficient for these applications. In this method, the transverse electric field is solved and 

assumed to be linearly polarized under the scalar approximations, e.g. y yE aψ=


 . In 

comparison to the vector FDTD scheme which solves Maxwell's equations with three 

unknown field components, only one field is needed to be solved in the scalar FDTD. In this 

method, the scalar wave equation is solved which can be obtained for 2-D non-dispersive 

media from Eq. 2.11 as [25] 

2 2 2 2

2 2 2 2
0

0n
x z c t
ψ ψ ψ∂ ∂ ∂

+ − =
∂ ∂ ∂

             (3.20) 

Using the central difference FD approximation (Eq. 2.24 of chapter 2), the field value 

at t = (n + l)Δt and the lattice point x = iΔx and z = kΔz is expressed explicitly by the field 

values of two previous time steps at the same point and neighboring lattice points. This 
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results in second-order accuracy in the time and space increments. The resulting discretized 

equation is given by 

( ) ( )

2 2
1 2 1 2 3 2

2, , ,
,

22
1 2 1 2 1 2 1 2

2 2, 1 , 1 1, 1,
, ,

2 1n n nx z
i k i k i k

i k

n n n nxz
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δδ ψ ψ ψ ψ

+ − −

− − − −

+ − + −

 +
= − − + 

  

+ + +
          (3.21) 

where x c t xδ = ∆ ∆  and z c t zδ = ∆ ∆ . Again the scalar FDTD computational scheme is stable 

if the CFL criterion given in Eq. 3.19 is satisfied. 

 

3.6 Numerical Implementation 
 

In this section, we show the implementation of the scalar and the vectorial FDTD 

techniques to study the propagation of pulsed optical beams in a slab waveguide. The 1.0 µm 

thick core is of AlGaAs having a refractive index of 2.9697 [27] and the 2.0 µm thick 

cladding and substrate with a refractive index of 2.706. The operating wavelength is λc = 

1.064 µm. A Gaussian pulsed beam in time of the form 

ψ(𝑥, 𝑧 = 0, 𝑡) = ψ0(𝑥)𝑒𝑥𝑝(−𝑡2 𝜎𝑡02⁄ ) is launched as the input field excited at z = 0 in the 

waveguide. Here ( )0 xψ  is the spatial profile in the x-direction taken as the TE0 mode and the 

initial temporal waist of the Gaussian beam is σt0 = 20 fs. A hard source excitation technique 

has been used to launch the input for both methods [28]. The source was assumed at the first 

numerical line of z. The temporal variation of the pulse at the middle of the waveguide (x = 

0) at z = 25 µm and z = 50 µm using both the scalar and the vector FDTD is shown in 

Figures 3.2 (a) and 3.2 (b), respectively. A comparison between the scalar and the vector 
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FDTD results at these two positions are shown in Figures 3.2 (c) and 3.2 (d) by measuring 

the absolute difference at each time. The vectorial field is for the Ey component. 

 

The complete overlap of the pulse using these two methods at two different distances 

and the very small maximum error (less than 10-3) shown in Figure 3.2 suggests a good 

agreement of these two implementations. 

  

3.7 Perfectly Matched Layer (PML) 
 

As discussed in chapter 2, whenever a Partial Differential Equation (PDE) 

numerically is solved by a meshed discretization, the computational grid must be truncated in 

some way, and the key question is how to perform this truncation without introducing 

 
Figure 3.2 The temporal pulse of a propagated Gaussian optical pulsed beam in a slab waveguide at (a) z = 

25 µm and (b) z = 50 µm using the scalar FDTD and the vector FDTD (c) and (d) are absolute 
differences between the scalar and vector fields. 
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significant artifacts into the computation. Some problems are naturally truncated, e.g. for 

periodic structures where periodic boundary conditions can be applied. Some problems 

involve solutions that are rapidly decaying in space, so that the truncation is irrelevant as 

long as the computational grid is large enough. The computational window can be truncated 

either using Absorbing Boundary Conditions (ABC) [29] or by introducing Perfectly 

Matched Layers (PML) techniques [30 - 31]. 

 

The ABC tries to somehow extrapolate from the interior grid points to the edge grid 

point(s), to fool the solution into “thinking” that it extends forever with no boundary. 

Elaborately speaking, in calculating the E field, H values need to be known at the 

surrounding. At the edge of the problem space, even though there is no H at one side, the 

fields at the edge must be propagating outward. So the value at the end can be estimated by 

using the value next to it [29]. It turns out that this is possible to do perfectly in one 

dimension, where waves can only propagate in two directions (±z). However, the main 

interest for numerical simulation lies in two and three dimensions, and in these cases the 

infinite number of possible propagation directions makes the ABC problem much harder.  

 

In 1994, Bérenger [30] proposed an absorbing boundary layer instead of finding an 

absorbing boundary condition. A brief derivation of Bérenger PML applicable in the optical 

pulse propagation in 2-D FDTD problem is described here. As discussed earlier, in the TE 

case, three field components are needed and these are Ey, Hx and Hz. In a PML medium, the 

electric field Ey component is split into two subcomponents Ey= Eyz + Eyx. The PML medium 

equations for the TE case are [29] 
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( )* yz yxyz
x z

E EEH H
t x x

∂∂∂µ σ
∂ ∂ ∂

+
+ = − = −             (3.22) 

( )* yz yxyx
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+ = =             (3.23) 
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∂ ∂ε σ
∂ ∂

+ =               (3.24) 

yx z
x yx

E HE
t x

∂ ∂ε σ
∂ ∂

+ = −               (3.25) 

where σ and σ* are the electric and magnetic conductivity, respectively. It is to be noted that 

when x zσ σ= , then the last two equations can merge and the above equation reduces to a set 

of three equations involving the original three components Hz, Hx and Ey. As a result, the 

PML medium holds as particular cases for all the usual media. Moreover, if the condition, 

*σ σ
ε µ

=               (3.26) 

is satisfied, then the impedance of the PML equals that of the computational region and no 

reflection occurs when a plane wave propagates normally across the interface of the two 

region. The computational grid and the PML region are shown in the Figure 3.3. 
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It is shown in [30] that at an interface normal to z lying between two matched PML 

media having the same (σx, *
xσ ), an optical wave is transmitted without reflection at any 

incidence angle and at any frequency. That is also true, if the first medium is a vacuum and 

the second one is a (σz, *
zσ , 0, 0), since a vacuum can be seen as a (0, 0, 0, 0) medium. That's 

why some conductivities are shown zero in the PML. But at the four corners of the domain, 

the absorbing layers are made of PML media (σz, *
zσ , σx, *

xσ ) having the conductivities equal 

to those of the adjacent media of (σz, *
zσ , 0, 0) and (0, 0, σx, *

xσ ). 

 

Although it is mentioned zero reflection in the above discussion, in reality a small 

amount of reflection is produced which is a function of σ and the thickness δ. The thickness 
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Figure 3.3 Computational main grid and the conductivities in PML region of the FDTD problem space. 
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δ can be as thin as needed; even can be reduced to one cell of the FDTD mesh. However, 

sharp variations of the conductivity create numerical reflections. So, in practical 

computations the layer has to be a few cells thick with conductivity increasing from zero at 

the inner layer interface to a value σm at the outer side of the layer, where its value is 

determined by the maximum allowable reflection coefficient R(θ) using the following 

expression 

( ) ( )( )0 1
log

2m

c p
R

ε
σ θ

δ
+

= −             (3.27) 

where p is the order and c is the velocity of light in free space. The space dependent 

conductivities are calculated using  

( ) ( )
( )

( ) 2

2

1 ; ,
v i v

v v
v i v

i v dv v x z
v

σ σ
+∆

−∆

′ ′= =
∆ ∫           (3.28) 

where the conductivity of a given layer, σ(ρ), has the form of  

( ) m
ρσ ρ σ
δ

 =  
 

             (3.29) 

with σm being the maximum value. The basic difference in the computation of the PML field 

components and the main grid field components lies in the evaluation of the conductivities 

which are absent in the main grid.  

 

3.8 Implementation of Bérenger's PML 
 

 

To test the PML implementation for the FDTD, homogeneous free space has been 

used for this purpose. An ultra short pulsed Gaussian beam having a spatial waist of σx0 = 1.0 

µm and temporal waist of σt0 = 25 fs is propagated through air using the FDTD. The 
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transverse width of the computational window is taken as x = 25 µm and the longitudinal 

length is taken as z = 20.0 µm. For calculating the reference field, the transverse width was 

increased to x = 50.0 µm such that the field does not reach the edge of the computational 

window. The FDTD computational grids are surrounded by PML around all side of the 

window, except the pulse entering side, with 8 cells on each sides and a reflection coefficient 

of -51.0 10× . Both the spatial and the temporal variation of the field were recorded at z = 4, 8, 

12 and 16 µm.  Figure 3.4 shows the spatial pulse profile comparison among the FDTD with 

PML, the FDTD without PML and the reference fields at four propagation distances. 

 

 
Figure 3.4 The spatial pulse profile at a) z = 4 µm b) z = 8 µm c) z = 12 µm and d) z = 16 µm in air obtained 

by the FDTD for using PML and for not using PML compared with the reference field. 
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The figure clearly shows the usefulness of the PML when used at the edge of the 

numerical window. The reflection from the edge of the window is clearly seen as ripple when 

there is no PML. 

 

Figure 3.5 shows the temporal pulse profile for the same distances indicated in Figure 

3.4. As shown in the figure, if the PML is not employed several reflected pulses are formed 

along with the reference pulse, and hence it becomes difficult to distinguish the real 

propagated pulse from the unwanted reflected pulse. 

 
 
 
 

 
Figure 3.5 The temporal pulse profile at a) z = 4 µm b) z = 8 µm c) z = 12 µm and d) z = 16 µm in air 

obtained by the FDTD for using PML and for not using PML compared with the reference field. 
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3.9 Summary 
 

In this chapter, mathematical formulations for the implicit FDTD have been shown 

along with a literature survey of recent applications and underlying challenges in modeling 

optical devices. Detailed mathematical formulation of two different types of explicit FDTD 

namely the vector FDTD and the scalar FDTD have been formulated and implemented. Ultra 

short pulse propagation inside a slab waveguide has been analyzed using both techniques. 

The results show good agreement between the techniques. The chapter also presented 

detailed mathematical formulation of Bérenger PML along with its numerical 

implementation to a homogeneous medium that demonstrates the importance of the PML.  
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CHAPTER 4 
 
 
 

THE TIME-DOMAIN 

BEAM PROPAGATION METHOD 

 
 
 

4.1 Introduction 
 

The recent development of ultrashort powerful laser pulses increased the need to 

study the nonlinear effects by new modeling techniques. With such pulses the hypothesis of 

monochromatic waves is no longer valid, so there is a need to work in the time domain (TD). 

The FDTD method [1], described in the previous chapter, is a well-known technique 

developed and used in many applications to model both TD and CW problems. The method 

has evolved over the last 40 years in solving a variety of challenging problems and optical 

structures containing dispersive and nonlinear interaction. However, its computational cost 

compelled scientists and researchers to search for other methods suitable to model optical 

devices in the time domain. On the other hand, alternative TD techniques are also useful to 

investigate and verify new implementations of complicated material response such as 

dispersion and nonlinearities. As discussed in chapter 2 that the BPM is at present one of the 

most widely used method for the study of light propagation in longitudinally varying optical 

waveguides. In the attempts to modify the BPM [2 - 5] in time domain form, slow wave 
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simulators account for only the slowly time-varying envelope which is not suitable for short 

pulse propagation. To account for short pulse propagation using the beam propagation 

method a new development was observed [6] using the Fast Fourier Transform (FFT). In this 

approach, the spectral domain wave equation is solved using the BPM for each frequency of 

the pulse and the final shape is reconstructed using the inverse FFT. But this method is 

restricted only for linear pulse interaction. Recently, efficient TD-BPM techniques for 

modeling optical pulse propagation in long device interaction were proposed using the 

Explicit Finite Difference (EFD) [7 - 8]. They involve writing the TD wave equation as a 

one-way paraxial equation for the propagation along the axial direction while retaining the 

time variation as another element along with other spatial variables. This arrangement has the 

advantage of allowing the numerical time window to follow the evolution of the pulse and 

hence minimize the computational costs. However, due to the paraxial approximation 

imposed, these techniques showed limitation in modeling ultrashort pulse propagation. 

Recently, a new wide-angle TD-BPM technique based on finite element has been reported 

for modeling short pulse propagation [9]. The method was applied under certain 

approximation by neglecting first-order derivatives of time and longitudinal terms. Another 

more accurate TD-BPM based on using Padé expansion was proposed and verified [10]. The 

rational complex coefficient approximation based on the Padé approximant is used in this 

method as an operator to march the pulse packet along the direction of propagation [11 - 12]. 

This chapter shows the derivation of the TD-BPM operator and also shows the numerical 

implementation to model 2-D optical devices. 
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4.2 The TD-BPM Formulation 
 

The TD wave equation for a non-dispersive medium can be extracted from Eq. 2.13 

as 

2

2 2
0

sr r
z z x x c t

ψ ψ ψ∂ ∂ ∂ ∂ ∂   + =   ∂ ∂ ∂ ∂ ∂   
                      (4.1) 

For TE fields, r = 1, s = n2, and ψ = Ey represents the electric field; for TM fields, r = 1/n2, s 

= 1, and ψ = Hy represents the magnetic field; c0 is the wave velocity in free space; z is the 

propagation direction; and n = n(x) is the position-dependent refractive-index variation. It is 

more convenient to extract a carrier frequency ω and a propagation factor k = kono in the 

direction of propagation from ψ  as 

( )0 0j t k n ze ωψ −= Ψ                (4.2)  

where ko = ω/co, no is a reference refractive index. The removal of the fast carrier allows one 

to track a slowly varying envelope of a pulsed wave directly in the time domain and thus, the 

converged solution could be obtained with moderate time step size [13 - 14]. After 

substitution, Eq. 4.1 can be written in terms of Ψ for the TE case as  

2 2 2 2
2 2 2

0 0 0 02 2 2
0

2 2 0njk n n k j k
z z x c t t

ω ω
 ∂ Ψ ∂Ψ ∂ Ψ ∂ ∂

− − Ψ + − + − Ψ = ∂ ∂ ∂ ∂ ∂ 
                       (4.3) 

One of the motivating features of the TD–BPM is the application of the moving time 

window for efficiency purposes. A compact pulse eventually disappears from the window 

after a certain number of propagation steps, where it requires the computational window to 

be adjusted in time at each propagation step. Here, to derive the parabolic TD–BPM 

technique [7 - 8], one can simply neglect the first term in Eq. 4.3 that has the second 

derivative along the direction of propagation z. On the other hand, to derive the equation for 
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wide-angle TD-BPM (Broadband) application, we define the pseudodifferential square-root 

operator L given by Eq. 4.5 as 

2
2 2 2

0 0 02 2 0jk n n k L
z z

∂ Ψ ∂Ψ
− − Ψ + Ψ =

∂ ∂
                       (4.4) 

where,   
2 2 2

2
02 2

0

2nL j k
x c t t

ω ω
 ∂ ∂ ∂

= − + − ∂ ∂ ∂ 
              (4.5) 

Eq. 4.4 can be factorized as 

 [ ] [ ]0 0 0 01 1 0jk n L jk n L
z z
∂ ∂  − − − + ψ =  ∂ ∂  

             (4.6) 

The solution for the forward propagation of Eq. 4.6 can be written as  

( ) ( )0 0 0 0 0j k n L z j k n zz e e−Ψ = Ψ               (4.7) 

where Ψ(0) is the initial field. In principle, the exponential of the square root operator in Eq. 

4.7 can be computed using the same way as it was done in Eq. 2.33 of chapter 2 using the 

MoL approach, but the inversion of the matrix is limited by the size of the matrix. Some 

inversion techniques may provide reasonable numerical solution along with this approach. 

Another alternative way is the use of Padé approximant technique to approximate the 

operator in Eq. 4.7. 

 

To make the TD-BPM efficient, arrangement of the operator is necessary in a proper 

way. First the use of the central FD approximation to replace partial derivatives in Eq. 4.5, 

one may write the operator in a discrete form. When the initial field is arranged in column 

vector, then the matrix operator will be a sparse matrix of the form shown in Eq. 4.8. 

 



- 70 - 
 

2
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t d

d t d

d t d

d t

S S
S S S

L
S S S

S S

 
 
 
 =
 
 
  

                  (4.8) 

where St and Sd are sparse tri-diagonal and sparse diagonal block matrices, respectively. The 

size of L is x tM M×  by x tM M× , where Mx and Mt are the spatial and the temporal 

discretization points, respectively. Each block matrix given in Eq. 4.8 can be represented by 

its elements as 
1 1
0 1
2 2 2
1 0 1

1 1 1
1 0 1

1 0

0

0 x x x

x x

t
M M M

M M

s s
s s s

S
s s s

s s

+

− +

− − −
− +

−

 
 
 
 =
 
 
  

 ,              (4.9) 

0

0
d

d
d

S
d

d

 
 
 
 =
 
 
  

               (4.10) 

The size of St and Sd is Mt by Mt. The elements of the St and Sd block matrices can be 

represented as 

   
2

2
0 2 2 2

0

2 2i ins
x c t

ω = − + + ∆ ∆ 
                      (4.11a) 

   21d x= ∆              (4.11b) 

   
2 2

1 2 2 2
0 0

i i in ns j
c t c t

ω
− = − −

∆ ∆
                      (4.11c) 

and   
2 2

1 2 2 2
0 0

i i in ns j
c t c t

ω
+ = − +

∆ ∆
                      (4.11d) 
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4.2.1 Padé Approximant 
 

The introduction of Padé approximant in the TD-BPM enables the method to treat the 

propagation of ultrashort optical pulses more accurately. Padé Approximants are a particular 

type of rational fraction approximation to a polynomial. Any function can be approximated 

by its Maclaurine series expansion as 

   𝑓(𝑥) = ∑ 𝑐𝑘𝑥𝑘∞
𝑘=0                      (4.12) 

where 𝑐𝑘 = 𝑓<𝑘>(0)
𝑘!

, f<k>(0) is the k-th differentiation of the function at x = 0. 

Padé proposed [13] finding the closest approximation to the sum by defining a rational 

fraction 𝑃𝑚(𝑥) 𝑄𝑛(𝑥)⁄ , with 

   𝑃𝑚(𝑥) = ∑ 𝑎𝑘
(𝑚)𝑥𝑘𝑚

𝑘=0                           (4.13) 

   𝑄𝑛(𝑥) = 1 + ∑ 𝑏𝑘
(𝑛)𝑥𝑘𝑛

𝑘=0            (4.14) 

where ( )m
ka  is called Padé coefficients of order m for the numerator and ( )n

kb  is the Padé 

coefficients of order n for the denominator. For convenience, the order of the numerator and 

the denominator is assumed to be equal (m = n). These coefficients can be real or complex 

and can be obtained using the Maclaurine series coefficients of Eq. 4.12 as 

  ∑ 𝑐𝑘𝑥𝑘∞
𝑘=0 − 𝑃𝑛(𝑥)

𝑄𝑛(𝑥)
= 𝑂(𝑥2𝑛+1) ≅ 0          (4.15) 

Replacing Eq. 4.13 and Eq. 4.14 in Eq. 4.15, 

  ∑ 𝑐𝑘𝑥𝑘∞
𝑘=0 −

∑ 𝑎𝑘
(𝑛)𝑥𝑘𝑚

𝑘=0

1+∑ 𝑏𝑘
(𝑛)𝑥𝑘𝑛

𝑘=0
= 0                  (4.16) 

Equating the coefficients of 𝑥𝑘 for 𝑘 = 0, 1, 2,⋯ 2𝑛 the following set of equations are 

obtained as 
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            (4.17)

 

The last set of n linear equations of Eq. 4.16 is solved to obtain all the bk coefficients in the 

first stage. In the second stage, the obtained bk and Maclaurine series ck coefficients are 

utilized to obtain ak coefficients. The implementation of the Padé approximants into any 

function minimizes the computational cost while keeping the accuracy level dependent upon 

the order of the Padé primes [14 - 15]. This means there remains an option to make a trade-

off between the accuracy level and the computational cost depending upon the problems to 

be handled. 

 

The Padé approximant operator was used efficiently in the Bi-directional BPM [16 -

18]. The evanescent field, which propagates in slowly varying or uniform sections of the 

device, is incorrectly treated if real Padé coefficients are used [16 - 17]. This causes 

degradation of accuracy and gives rise to serious instability. In contrast, complex-valued 

Padé approximants treat the evanescent field in a better way and achieves higher accuracy. A 

complex propagator is necessary using a complex reference wave number to apply the 

complex-valued Padé approximants [16]. However, the improper treatment of the 

propagating modes may develop instability and hence this technique is not applicable to the 
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normal propagating region. It is observed in [18] that the rotated branch cut Padé exhibits 

better performance than the complex coefficient Padé in approximating the propagator. In 

such situation a branch cut rotation of the square root function into the complex plane is 

given by the following equation as [11] 

( )1 122 21 1 1L L Xγ γ γ− −= + − = +            (4.18) 

where 2X L Iγ= − . The complex factor γ can be written in the form je θγ α=  where  α is 

the magnitude and θ is the angle of γ . When θ ≠ 0 , the factor γ causes the branch cut of the 

square root function to be rotated in the complex plane. The propagation operator can be 

expressed as 

( )1 22
0 00 0

1
2

0 0

1 1

1

1

jk n L zjk n L z

jk n X z

g X

e e

e

e

γ γ

γ

−

−

− + −−

− +

+

=

=

=
            (4.19) 

where 
1

2
0 0g jk n zγ −= − . The Taylor series expansion coefficients of 1g Xe + need to be 

obtained and stored first, then Padé primes are calculated for different parameters. It was 

shown in [19] that the branch cut amplitude α and the angle θ  have optimum values for 

which best results are obtained with even relatively low number of Padé approximants. The 

reported optimum values are ( ) 2
1.5 0kα

−
=  and 2θ π= − .  
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4.2.2 The TD-BPM Operator 
 

In order to compute the field at the next propagation step, Eq. 4.7 is used to do this. 

The first exponential term of Eq. 4.7 can be expressed by Padé approximants as 

   

( )

( )

1 1

1

p
p

k
g X k

n
n

k
k

I d X
e

I e X

+ =

=

+
=

+

∏

∏
             (4.20) 

So, if the field at any transverse plane is known, the field in the next transverse plane can be 

obtained using the above equation of repeated computation. In Eq. 4.20, the sparse matrix 

obtained from the numerator is multiplied with the field that results in a column vector. The 

column vector is then divided using MATLAB operation (left division) by the denominator 

and the process is repeated. In MATLAB, the matrix left division operation x = A\b solves 

the symbolic linear equations Ax = b, and A\b is roughly equivalent to A-1B. There are 

basically two ways to perform the inversion of the matrix; either by using direct algorithm 

based on the Gaussian elimination method and its enhancements or by using iterative 

algorithms in order to approximate the solution by inexpensive (in terms of storage and 

computational time) repetitive computation. In the next section we discuss a few of such 

iterative solvers. 

 

4.2.3 Iterative Methods for Sparse Systems 
 

The term “iterative method” refers to a wide range of techniques that use successive 

approximations to obtain more accurate solutions to a linear system, such as Ax = b, at each 

step [20]. Iterative methods are especially useful when the matrix A is sparse. In theory, 

infinite number of iterations might be required to converge to exact solution. In practice, 
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iteration terminates when a residual r b Ax= − , or some other measure of error, is as small 

as desired. There are several iterative methods, such as, Jacobi, Gauss-Seidel (GS), 

Successive Over Relaxation (SOR), Conjugate Gradient (CG) methods [20 - 21] and others. 

In each of these methods the matrix needs to be of a special type. As for example, Jacobi 

requires strict diagonal dominant elements and its convergence is very slow. GS requires the 

matrix to be symmetric positive definite. SOR and CG is not directly applicable to 

nonsymmetric or indefinite systems. However, CG can be generalized to nonsymmetric 

systems by sacrificing one of the key features of this method of short recurrence and 

minimum error. Nevertheless, several generalizations have been developed for solving 

nonsymmetric systems, including Generalized Minimal Residual Method (GMRES), Quasi 

Minimal Residual (QMR), Conjugate Gradient Stabilized (CGS), Biconjugate Gradient 

(BiCG), and Biconjugate Gradient Stabilized (Bi-CGSTAB). These tend to be less robust and 

require more storage than CG, but they can still be very useful for solving large 

nonsymmetric systems [20 - 21]. More detailed of the methodology of few iterative methods 

that are used in the TD-BPM implementation can be found in the appendix.  

 

4.3 TD-BPM Implementation 
 

In order to test the performance of the TD-BPM technique described earlier, we apply 

it to different homogeneous and waveguide optical problems of 1-D (t, z) and 2-D (t, x, z). 

The results from these implementations will be compared with those of the FDTD. One of 

the main differences between the TD-BPM and the FDTD is the initial excitation of the 

input. This difference remains inherent to both techniques due to their different formulations. 
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One has to note that the TD-BPM considers the input pulse right at z = 0, while the excitation 

of the input for the FDTD requires special techniques. In the following analysis, hard source 

technique at the edge of the computational window (z = 0) has been used. This requires the 

input pulse to enter gradually from z = 0 and to propagate toward the positive z- direction. 

This difference between the two initial excitations creates a difficulty in the assessment of the 

forthcoming results. Another important observation in the subsequent comparative results 

that should be noted is the extraction of the envelope of the pulse from the FDTD results. A 

computer program has been written to determine the position of the envelope of the pulse out 

of the oscillatory TD variation of the FDTD data. This technique adds a hidden accuracy 

concern when comparing the TD-BPM and the FDTD results. Other factors to be mentioned 

at this point is that most of the time the two methods use different ∆t’s which may add errors 

to the exact position of the peak of the pulse and the rest of the envelope data extracted for 

the FDTD. In addition, manual shift of the pulse envelope to match each other at the peak 

might also contribute to the accuracy assessment. 

 

4.3.1 Implementation: 1-D 
 

It is to be noticed that for 1-D implementation, the second derivation with respect to x 

vanishes in Eq. 4.5. The remaining terms of the L operator of Eq. 4.5 are discretized using the 

3-point central FD approximation. Thus, the formed tri-diagonal matrix is the same as the 

operator L2 of Eq. 4.8, which can be expressed as 
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where   
2

2
0 2 2

0

2i ind
c t

ω = + ∆ 
                                  (4.22a) 

   
2 2

1 2 2 2
0 0

i i in nd j
c t c t

ω
+ = − +

∆ ∆
                      (4.22b) 

   
2 2

1 2 2 2
0 0

i i in nd j
c t c t

ω
− = − −

∆ ∆
                      (4.22c) 

We consider the propagation of a pulsed optical beam having a temporal Gaussian 

pulse of the form ( ) ( )2 2
0exp tG t t σ= −  at z = 0, where σt0 scales the duration of the initial 

pulse. This temporal pulse is used as initial condition in all simulations. The wavelength and 

the reference refractive index were chosen to be unity.  

 

We need to compensate for the displacement of the pulse in the time window as the 

pulse moves forward, due to the motion of the envelope at the group velocity. There are two 

methods to use which allows tracking the time window movement. The first is by using the 

moving time window technique. Simply it is described by setting zero boundary conditions at 

the edges of the relative time window and moving in the absolute time enclosure with the 

group velocity of the pulse, such that the relative motion of the pulse in the time window is 

cancelled. But, in some cases the required group velocity vg is not known prior to simulation, 

in which case it has to be computed from the propagation simulation process itself. In this 

case the second technique can be used, which is based on simple periodic boundary 
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conditions. The ends of the relative time window in which the pulse exiting at one side 

simply re-enters at the other side of the time window.  

 

Figure 4.1 shows the propagation of a 50 fs Gaussian pulse using Padé order p = 2 

and ∆t = 0.2 fs. The pulse was allowed to propagate to a distance of z = 100 µm. The figure 

shows the evolution of the pulse at several distances for comparison purposes. Figure 4.1a 

shows the simulation in the case of not using “the moving time window”, while Figure 4.1b 

shows the same simulation in the case of moving the time window at the group velocity of 

the pulse. If the window is not moved at the group velocity of the pulse, then the pulse will 

hit the edge of the time window creating a distortion as seen in Figure 4.1a. It is to be noted 

that all fields of Figure 4.1b are on top of each other, and this is an expected behavior due to 

the absence of dispersion, thus the pulse does not change shape. 
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Figure 4.2 shows a comparison between the TD-BPM results that appear in Figure 4.1 and 

the FDTD results. The FDTD parameters used are ∆z = λ/80 and ∆t = ∆z/(2c0) = 0.021 fs. It 

is noteworthy to mention that the numerical parameters of ∆z and ∆t of the TD-BPM are 

respectively 8 times and 10 times larger than those of the FDTD parameters. This is because 

the FDTD is restricted by the fine mesh convergence [22] and CFL time stepping criteria 

[23]. Figure 4.3 shows good agreement of the results obtained by these two methods. 

 
 
Figure 4.1 The propagation of a 50 fs Gaussian pulse in a homogenious medium using the TD-BPM over a 

distance of z = 100 µm using (a) no moving time window (b) a moving time window. 
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4.3.2 Implementation: 2-D- Free Space  
 

In this section, we extend the implementation of the TD-BPM to 2-D structures by 

considering the propagation of a pulsed optical beam in free space. The excited initial pulsed 

beam considered is ( ) ( ) ( )0, 0,x z t x G tΨ = = Ψ , where  G(t) is a Gaussian pulsed profile, 

which is defined as ( ) ( )2 2
0exp tG t t σ= − , and Ψo(x) is the transverse spatial profile of the 

pulsed beam again taken as a Gaussian spatial profile. The parameter σt0 is the width of the 

initial pulsed beam time profile. We apply the TD-BPM in free space propagation with a 

wavelength of the carrier frequency of λc = 1.0 μm. The reference refractive index was 

chosen to be unity, the initial spatial waist wo = 2.5 μm and the time pulse width to be σ t0 = 

50 fs. The pulse was propagated to a distance of z = 25 μm using Padé order of p = 2, 

 
Figure 4.2 Comparison between the TD-BPM and the FDTD for the propagation of a 50 fs pulse. 
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propagation step size Δz = 0.05 μm, and Δx = 0.1 μm. In this case, the group velocity of the 

optical pulse νg = co.  

 

Figure 4.3 shows the Gaussian pulse spreads along the x-direction while it maintains the time 

shape of the input due to the non-dispersive nature of the material. A moving time window 

has been used for the results of Figure 4.3, that is why the pulse is always seen in the middle 

of the window. We have also verified the results of the TD-BPM with the FDTD results. 

Figure 4.4 shows a comparison between the TD-BPM and the FDTD results for the 

diffraction of the pulse along the spatial dimension x for several longitudinal distances. The 

figure shows the close agreement between the results of the two techniques.  

 
Figure 4.3 The propagation of a pulsed Gaussian beam of σt0 = 50 fs in free space using the non-paraxial 

TD-BPM at several distances. 

t (fs)

x 
( µ

m
)

Input

-100 0 100

-10

0

10

t (fs)

x 
( µ

m
)

z = 6.25 µm

-100 0 100

-10

0

10

t (fs)

x 
( µ

m
)

z = 12.5 µm

-100 0 100

-10

0

10

t (fs)

x 
( µ

m
)

z = 25 µm

-100 0 100

-10

0

10

0.2

0.4

0.6

0.8

0.2

0.4

0.6

0.8

0.

0.2

0.3

0.4

0.5

0.6

0.2

0.4

0.6

0.8



- 82 - 
 

 

4.3.3 Implementation: 2-D- Waveguide  
 

In this section, we use the above mentioned techniques to model the propagation of 

pulsed optical beams in a symmetric GaAs slab waveguide structure. The widths of the 

superstrate, the guiding and the substrate of the waveguide were taken to be respectively 2.50 

μm, 1.0 μm and 2.50 μm. The corresponding refractive indices are 3.4, 3.6 and 3.4, 

respectively. The wavelength of the carrier was taken as λc = 1.55 μm. The reference 

refractive index is the effective index of the fundamental guided TE mode which is n0 = 

3.55984323. The initial spatial pulse was taken as the TE0 mode profile and the pulse 

  
Figure 4.4 A comparison between the TD-BPM and the FDTD results for 2-D free space implementation. The 

figure shows the temporal profile at (a) z = 12.5 µm and (b) z = 25 µm and the spatial profile (c 
&d) of the pulse at the same distances. 

-100 -50 0 50 100
0

0.5

1

t (fs)

F
ie

ld
 A

m
pl

itu
de

-100 -50 0 50 100
0

0.5

1

t (fs)

F
ie

ld
 A

m
pl

itu
de

-10 -5 0 5 10
0

0.5

1

x (µm)

F
ie

ld
 A

m
pl

itu
de

-10 -5 0 5 10
0

0.5

1

x (µm)

F
ie

ld
 A

m
pl

itu
de

Input
TD-BPM
FDTD

(a) (b)

(c) (d)



- 83 - 
 

duration as σ t0 = 50 fs. The beam was propagated to a distance of z = 100 μm using Padé 

order, p = 2, with a propagation step size Δz = 0.10 μm and Δx = 0.1 μm. 

 

Figure 4.5 shows the results of the propagated pulsed beam inside the waveguide at several 

distances using the TD-BPM. In this case, the group velocity of the optical pulse was 

calculated from the velocity of the moving time window and found to be νg = 0.278co. Figure 

4.6 shows that the pulsed beam maintains its spatial shape as a guided mode during 

propagation. Figure 4.6 shows a comparison between the TD-BPM and the FDTD results for 

the temporal profile right in the middle of the waveguide for propagation distances z = 50 µm 

and 100 µm. The figure shows the close agreement between the results of the two techniques. 

 
Figure 4.5 The propagation of the fundamental guided mode pulsed optical beam of σt0 = 50 fs in the slab 

waveguide using the TD-BPM at several distances along the propagation direction. 
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4.3.4 Performance Tests  
 

In the previous sections, comparison between the non-paraxial TD-BPM and the 

FDTD was done based on graphical inspection. In this section, quantitative and detail 

comparison between the two methods are performed more rigorously. It is to be noted that 

the results of the FDTD is taken here to be a reference in all the performance tests that 

follows. The reason for this is that the examples used do not have closed form analytical 

expressions. For this purpose, the maximum percentage difference, the percentage root mean 

square of the difference and the percentage difference at the peak of the pulse obtained by 

these two methods are measured. The maximum percentage difference of the fields is 

measured as 

 
Figure 4.6 Comparison between the TD-BPM and the FDTD for the propagation of the fundamental guided 

mode pulsed optical beam in the slab waveguide at several distances along the propagation. 
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 Maximum % difference = ( ) ( ) 100, 2 2
B F
y y

T TMax E t - E t t× − ≤ ≤          (4.23) 

where ( )B
yE t   and ( )F

yE t  are the amplitude of the temporal profile of the fields obtained by 

the TD-BPM and FDTD respectively, taken in the middle of the spatial window. The 

percentage root mean square difference is defined as [24] 

  % r.m.s. difference = ( )
2 2

2

1 100
T

T
t dt

T
ε

−
×∫              (4.24) 

where ( ) ( ) ( )B F
y yt E t - E tε =  is the difference of the amplitude of the field measured by the 

two methods. The percentage difference in the peak is the percentage difference of the fields 

measured by the two methods at t = 0 (the peak of the pulse), which is 

  % difference in peak = ( ) ( )( ) 100B F
y yE 0 - E 0 ×            (4.25) 

The normalized intensity at a particular position along the propagation direction with respect 

to the input is also measured using the TD-BPM and the FDTD. In some cases we also 

investigate the group velocity ratio (GVR) of the two methods. In the following, the 

variations of these assessment parameters with the variation of different numerical 

parameters for the non-paraxial TD-BPM technique are investigated. 

4.3.4.1 Time Step (∆t) 
 

In this section, a symmetric slab waveguide is considered for the following simulation 

comparison with similar parameters of the structure considered in section 4.3.3. The core of 

the slab is a non-dispersive GaAs with a refractive index of n = 3.5993 and a substrate and a 

superstrate of refractive index of n = 3.4 and λc = 1.55 µm. The substrate and superstrate are 

2.5 µm thick each, while the core width is 1.0 µm. The calculated effective refractive index is 
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neff = 3.55845. The parameters for the FDTD are:  z = 80cλ∆ = 0.019375 µm, ∆x = 0.1 µm 

and ( )02 0.0323t z c∆ = ∆ =  fs.  The initial pulsed beam is formed using the spatial profile 

of the TE0 and the temporal pulse of the Gaussian profile with a pulse width of 25 fs. The 

profile of the pulse in the middle of the waveguide at a propagation distance of z = 100 µm is 

recorded for a comparison between the two techniques.  

 

Figure 4.7 shows the effect of changing the time step size ∆t on the assessment 

parameters defined in Eqs. 4.23, 4.24 and 4.25 for the two techniques. In the TD-BPM, ∆z = 

0.1 µm and a Padé order p = 4 were used, while ∆x is kept the same as that of the FDTD. The 

figure illustrates that the choice of higher ∆t gives a high percentage differences; however the 

TD-BPM never becomes unstable. As ∆t is reduced, the percentage differences are 

decreased. Figure 4.8 shows the measuring parameters as a function of ∆t for an initial pulse 

width of σt0 = 100 fs. Similar observations to those of Figure 4.7 can be noted. On the other 

hand, comparison between the two cases show that as the initial pulse width increases, the 

required time steps size can be relaxed. It is to be noted that at ∆t = 2 fs, the time step size of 

TD-BPM is around 62 times that of the FDTD step size when  σt0 = 100 fs and it is around 23 

times when σt0 = 25 fs  at ∆t = 0.75 fs.  
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Figure 4.8 The same as of Figure 4.7 but with initial pulse width of σt0 = 100 fs. 
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Figure 4.7 The effect of changing the time step size (∆t) on the convergence of the TD-BPM technique 

in comparison with the FDTD for a time pulse width of 25 fs (a) The percentage maximum 
difference (b) The percentage of root mean square of the difference   (c) The percentage 
difference at peak, (d) the Group Velocity Ratio. 
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4.3.4.2 Propagation Step (∆z) 
 

Figure 4.9 shows the effect of changing the propagation step size ∆z of the TD-BPM 

on the percentage root mean square difference with fixed mesh size ∆z of the FDTD for 

initial temporal pulse widths of 25 fs, 50 fs and 100 fs. In the TD-BPM, Padé order p = 4, 

and time step sizes ∆t = 0.4 fs, 0.8 fs and 1.25 fs for 25 fs, 50 fs and 100 fs pulse, 

respectively were used; while ∆x is kept the same as that of the FDTD.  

 

The figure shows that ∆z can be increased to more than 64 times as those of the FDTD for an 

initial pulse widths of σt0 = 100 fs and 50 fs, while it can be increased to 52 times for an 

initial pulse width of 25 fs without any change in the percentage difference.  

 

 
Figure 4.9 The effect of changing the propagation steps size (∆z) on the percentage root mean square 

difference of the technique in comparison with the FDTD for the propagation of a pulsed 
beam of 25 fs, 50 fs and 100 fs initial temporal waist inside a non-dispersive slab waveguide. 
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4.3.4.3 Padé Order 
 

Figure 4.10 shows the effect of changing the Padé order p on the percentage of root 

mean square difference between the two techniques for initial temporal pulse widths of 25 fs 

and 100 fs. In the TD-BPM, ∆z = 0.1 µm and time step size ∆t = 0.4 fs and 1.25 fs for 25 fs 

and 100 fs pulse, respectively were used; while the other numerical parameters are kept the 

same as those of the FDTD.  

 

The figure shows that the percentage difference remains unchanged with the change of the 

Padé order p. A Padé order p = 2 gives the same percentage differences as higher orders. It is 

noted that the r.m.s. difference is reduced to 0.56% when the temporal pulse width increases 

to 100 fs. It is mentioned earlier that an initial pulse with 100 fs temporal-width has slower 

variation in comparison with the 25 fs pulse and this leads to a smaller error.   

 
Figure 4.10 The same as of Figure 4.9 with the variation of the Padé order. 
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4.3.4.4 Computational Requirements  
 

In this section, we compare the performance of the TD-BPM with the FDTD in terms 

of computational time and memory requirements using the implementation of the slab 

waveguide parameters used in the previous section. Two different cases were studied with 

the initial spatial pulse being the TE0 mode and the temporal pulse of waists of σt0 = 25 fs 

and σt0 = 100 fs. The beam was propagated to a distance of z = 100 μm using a Padé order of 

p = 4, a propagation step size of Δz = 0.1 μm, and Δx = 0.1 μm. The time steps of Δt = 1.0 fs 

for σt0 = 25 fs and Δt = 2.5 fs for σt0 = 100 fs were used. The FDTD parameters were ∆z = 

λ/80 = 0.019375 µm and ∆t = ∆z/(2c0) = 0.032314 fs. It is mentioned earlier that the FDTD 

parameters are restricted with the fine mesh sizes and the CFL time criteria. In the TD-BPM 

implementations, different iterative techniques were used along with the direct method for 

inverting the matrices of the Padé operator described earlier. It has been noticed that all 

iterative solvers require almost the same computer memory space as the direct solver in the 

TD-BPM, but they require different computational time. The computational time taken by 

each algorithm depends upon the condition of the matrix. Figure 4.11 shows a comparison 

between the FDTD and the different solvers of the TD-BPM along the direction of 

propagation z for two different initial pulse-widths of 25 fs and 100 fs.  
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Figure 4.11 The total computational time of the FDTD and the TD-BPM using direct and iterative solvers 

for (a) 25 fs and (b) 100 fs pulsed beams as a function of propagation distance z. 
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The figure shows that the computational time in the TD-BPM methods increase 

linearly with the device length, while that in the FDTD changes nonlinearly with the device 

length. In iterative solvers the computational cost is reduced by a significant amount 

compared to that of the direct solver of the TD-BPM. The fastest convergence among the 

iterative techniques is demonstrated by the “CGS” with a speed increase factor of around 4-5 

times the FDTD and double of the direct solver. Table 4.1 shows the convergence of the 

different iterative solvers with a default residual of 10-6. The table shows that the 

convergence of the CGS is the fastest among the three selected iterative methods. 

Table 4.1 Convergence of the Iterative Solvers of the TD-BPM operator for optical slab waveguide at minimum 
residual of 10-6. 

 
Iterative Methods Number of Iteration  Residual 

BICG 4 2.67×10-7 
BICGSTAB 2 2.84×10-7 

CGS 2 5.33×10-8 
QMR 4 2.67×10-7 
LSQR 3 9.022×10-7 

MINRES 3 2.84×10-7 
PCG 4 2.84×10-7 

SYMMLQ 3 2.84×10-7 
GMRES 4 2.67×10-7 

 

The results of Figure 4.11 also show that the FDTD computational time depends on 

the initial pulse width. As the initial width increases the required computational time 

increases. The figure also shows the FDTD when the spatial frame is moved with the group 

velocity to follow the interaction of the pulse along the z- direction [25 -26] and it is referred 

to here as the Moving Window FDTD (MW-FDTD). As discussed earlier that for many 

dielectric waveguide problems, such as the one in this example, it is difficult to know the 

group velocity in advance. Therefore, a dynamical numerical mechanism has been built to 

calculate the group velocity of the pulsed beam from the velocity of the pulse peak and then 
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the window was moved accordingly. It is worth mentioning at this point that the MW-FDTD 

faces numerical difficulty and instability in moving the spatial frame of the technique. This 

difficulty comes from the fast oscillation of the carrier frequency that makes the 

determination of the exact peak of the pulse difficult. If the exact group velocity cannot be 

determined, then the movement of the window gives instability during the course of 

propagation especially for long device interaction. The results for the MW-FDTD shown in 

figures 4.11 (a) and 4.11 (b) have been achieved after several numerical challenges using 

different techniques to stabilize the results. From Figure 4.11, one can notice that the iterative 

TD-BPM techniques and the MW-FDTD generally have faster computational time compared 

to the classical FDTD and the direct TD-BPM for 25 fs initial pulse width. The MW-FDTD 

has the best computational time with the iterative “cgs” TD-BPM comes next on the list. On 

the other hand, for 100 fs initial pulse width, the iterative techniques have similar 

computational time and they all have better performance with the increase of z as compared 

to the FDTD, the MW-FDTD and the direct TD-BPM. 

 

Figure 4.12 shows the corresponding computer memory requirement of the FDTD, 

the MW-FDTD and the TD-BPM for 25 fs and 100 fs pulse beams as a function of device 

distance z. The figure shows that the memory requirement by the FDTD increases linearly 

with the size of the device, while it remains constant in the case of the TD-BPM and the 

MW-FDTD due to moving window concept. On the other hand, comparison between the TD-

BPM and the MW-FDTD in terms of computer memory requirements shows that the TD-

BPM is always superior to the MW-FDTD. For example, the MW-FDTD requires around 14 

times more computer than the TD-BPM for σt0 = 25 fs and around 65 times more computer 
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memory for σt0 = 100 fs.  In addition, at z = 100 µm, the TD-BPM requires around 35 and 78 

times less memory than the FDTD for 25 fs and 100 fs initial pulse width, respectively

 

All above implementations were performed using an Intel core i5 750, 2.67 GHz 

quad-core processor and 3 GB RAM. 

 

 
 

Figure 4.12 Computer memory requirement of the FDTD and the TD-BPM using direct and iterative 
solvers with (a) 25 fs and (b) 100fs initial pulsed beam widths. 
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4.4 Conclusion  
 

In this chapter, detailed derivation of the non-paraxial TD-BPM for analyzing short 

and ultra short pulse propagation using Padé approximant technique and the methodology for 

obtaining the Padé quotient is shown. One dimensional numerical implementation has been 

performed using the TD-BPM, the FDTD and the MoL and their results were compared with 

each other. The TD-BPM has been also implemented in 2-D homogeneous medium and slab 

waveguide and the results have been verified with that of the FDTD. In addition, detailed 

performance tests were performed on the important numerical parameters of the TD-BPM 

and again the results were compared with the FDTD. Several iterative solvers have been 

tested in this technique to enhance the performance of the TD-BPM. Comparative study of 

the performance tests in terms of computational time and memory usage showed the TD-

BPM to be very stable and accurate for various numerical parameters. The time step size and 

the longitudinal step size can be made several times larger than the FDTD sizes. It is also 

shown that using a number of iterative solvers for the solution of sparse linear systems of 

equations increased the convergence of the TD-BPM several folds. Therefore, it is concluded 

that the technique is very efficient in the analysis of short and ultra short pulse propagation in 

non-dispersive structures. 
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CHAPTER 5 
 

 

 

MATERIAL DISPERSION MODELS 
 

 

 

5.1 Introduction 
 

Dispersion is a phenomenon that occurs when the phase velocity of a wave is 

dependent on frequency [1]. Dispersion can greatly affect short optical pulses. A short pulse 

is made up of a wide spectrum of frequencies all added together coherently, where each of 

them travels at different velocity. In a dispersive system, this gives rise to pulse spread. Pulse 

spread may also arise in non-dispersive material which is termed as intermodal dispersion or 

modal dispersion (sometimes referred to as modal distortion). Dispersion may also occur 

from the waveguide where it is called waveguide dispersion and this is usually weak 

compared to the other effects. This chapter describes the frequency response of optical 

material (material dispersion) and the different models usually used to approximate this 

behavior.  

 

5.2 Material Dispersion 
 

In optics, there are three sources of dispersion that arises from refraction, diffraction, 

and interference [2]. The first one is due to the variation of the refractive index with 
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frequency. The second one, diffraction, arises from the coupling of the wave vector direction 

and frequency that occurs at dielectric interfaces at non-normal incidence. The third has the 

origin in the interference of waves in periodic structures. The second and the third 

mechanisms can be adjusted and are usually used to counteract certain parts of the dispersion 

arising from materials. 

 

There are several mathematical models that have been constructed to describe the 

frequency response of materials. The purpose of these models is to represent the macroscopic 

properties (e.g., dielectric constant) of the material with microscopic one (e.g., the atomic 

properties). The Debye, the Lorentz, the Cole-Cole and the Drude models are such models to 

represent the dielectric behavior of material within the frequency range of interest. The 

Debye model accounts for the dielectric relaxation and is commonly used to represent the 

frequency behavior of biological tissues and soil permittivities in wide frequency ranges. In 

Lorentz model, electrons are considered to be elastically bound with the nuclei which can be 

used to model non-metal and non-polar molecules, such as some optical materials and 

metamaterials [3]. The Cole-Cole models are better suited for some polymers, biological 

material and some dispersive dielectrics. The Drude model can be viewed as a special case of 

the Lorentz model wherever the restoring force of electrons of the atom to the nuclei is 

absent. Therefore, this model is useful to describe the behavior of metals at optical 

frequency. These models sometimes are interrelated to each other. Sometime it becomes 

difficult to extract the model parameters of the macroscopic dispersion relation for a material 

over the entire frequency range. In those cases, the parameters are frequently determined by 

fitting experimental data over the frequency range of interest. If the frequency range is not 
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too large, dispersion models with single term is enough. Otherwise, a model with multiple 

terms or combination of different models is sometimes necessary. 

 

5.2.1 Debye Model 
 

This dispersive medium model has a single pole. Derivation of the Debye model 

starts from the response of a dielectric to an applied DC electrical field [4]. Polarization takes 

time to follow the electric field. At steady state, it is given by 

( ) ( ) ( )0 1 tP t E t P e τε ε −
∞= − −                         (5.1) 

where  P∞  is the polarization in the steady state, P(t) is the instantaneous polarization, and τ 

is the time constant. The exponential build up of the polarization provides the rate of buildup 

which can be expressed as 

    
( ) 1 tdP t

P e
dt

τ

τ
−

∞=               (5.2) 

Replacing P∞  from Eq. 5.2 into Eq. 5.1, we get 

( ) ( ) ( ) ( )
0 1

dP t
P t E t

dt
ε ε τ= − −             (5.3) 

Taking the Fourier transform and rearranging, 

( )
( ) ( )

0

11
1

P
E j

ω εχ ω
ε ω ωτ

−
= + =

+              (5.4) 

For the permittivity function to fit in the range of frequencies from zero to infinity, these 

conditions should be met 

    ( ) ( )0 ,r s rε ε ε ε∞= ∞ =              (5.5) 
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where ε∞ is the permittivity at infinite frequency and εs is the static permittivity at DC. 

Therefore, the relation has to be modified to 

( )
1

s

j
ε εε ω ε

ωτ
∞

∞

−
= +

−                         (5.6) 

where τ is the characteristic relaxation time of the medium named after the chemist Peter 

Debye. Dielectric relaxation refers to the relaxation response of a dielectric medium to an 

external electric field. Relaxation, in general, is a delay or lag in the response of a linear 

system, and therefore dielectric relaxation is measured relative to the expected linear steady 

state (equilibrium) dielectric values. In the case where the media is biological or water-based 

[5], [6], the dispersive debye model is of multiple relaxations of multiple species as given in 

the following equation 

    ( )
1 01

M
sm

m mj j
ε ε σε ω ε

ωτ ωε
∞

∞
=

−
= + +

−∑             (5.7) 

Typical values of the debye model for water, methanol blood and muscle tissues are 

shown in Table 5.1 [7-10]. 

Table 5.1 Debye parameters of several dispersive materials.  
 

Compound εs1 τ1 (ps) εs2 τ2 (ps) εs3 τ3 (ns) ε∞ σ (Sm-1) 

Water 87.57 17.67 6.69 0.9 - - 3.92 0.0 

Methanol 32.5 51.5 5.91 7.09 4.9 1120 2.79 0.0 

Blood 50.7 7.95 16.2 408 9835 73.5 6.5 0.7 

Muscle 45.2 7.0 11.9 371 5018 66 6.5 0.2 

 
The complex relative permittivity and the complex refractive index can be expressed 

in terms of their real and imaginary parts as [4] 
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    𝜖̃ = ε1 + 𝑗ε2 = (𝑛 + 𝑗κ)2              (5.8) 

The real part of the refractive index causes phase speed and the imaginary part indicates the 

amount of absorption. Equating the real and imaginary part of Eq. 5.8, the refractive index 

can be calculated using the following relation [4] 

2 2
1 2 1

2
n

ε ε ε+ +
=               (5.9) 

The variation of the real and imaginary part of the relative permittivity and refractive index 

of human muscle tissue approximated by Debye model is shown in Figure 5.1.  

 

The figure shows that variation of the real part of the refractive index which causes 

the phase speed variation is slightly affected by the frequency variation. On the other hand, 

 
Figure 5.1 Frequency dependence of the real and imaginary part of the dielectric constant (a and b) 

and the same for refractive index (c and d) of human muscle tissue approximated by Debye 
model. 
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the imaginary part of the refractive index that causes the absorption loss is highly frequency 

dependent. 

 

5.2.2 Lorentz Model 
 

The variation of the basic dipole moment of the system with the application of 

electric field is accounted by observing this electronic motion. Understanding this behavior 

leads to a model of the electric susceptibility of the medium and, hence, its permittivity. 

Lorentz model is based on classical mechanics and electromagnetic theory. Here the atom-

field interactions are modeled by assuming an atom as a mass (the nucleus) connected to 

another smaller mass (the electron) by a spring as shown in Figure 5.2. In quantum 

mechanics viewpoint, this assumption is the dipole approximation of electron-atom 

interaction. Therefore, this perspective is quite valid [11].  

 

The postulate that the force binding the two could be described by Hooke's Law, i.e.,

2
0rF Kr m rω= − = −



  , where K is the equivalent spring constant, r  is the displacement from 

equilibrium, m is the mass of electron and ω0 is the resonant frequency. If Lorentz's system 

Fr = -Kr 

nucleus e 

V 

E 

Ff = -Γv 

Fe = -eE 

Figure 5.2 Forces affecting a free electron in Lorentz model. 
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comes into contact with an electric field, then the electron will simply be displaced from 

equilibrium. The oscillating electric field of the electromagnetic wave will set the electron 

into harmonic motion. Electrical force can be written as eF eE= −
 

, where e is the charge of 

electron and E


is the applied electric field vector. The effect of the magnetic field can be 

omitted because it is miniscule compared to the electric field. The possibility of damping is 

also considered in this model. The damping or friction loss can be written as: 

( ) 1,f

v trF m m
t τ τ

∂
= − Γ = − Γ =

∂






, where v  is the electron velocity and τ is the 

relaxation time of the electron. The damping or the friction loss Γ accounts for the radiation 

energy loss due to emission. So the faster the relaxation time, the higher is the friction loss. 

This damping loss also stands for the scattering or collisions, e.g. excited ions colliding with 

other ions in gas phase, oscillating electrons exciting vibrations in a material, etc. The 

binding force, the damping force and the electrical force can be related by the equation of 

motion as 

f r em a F F F⋅ − − =
  

             (5.10) 

where a is the acceleration of the electron. Each force can be replaced from the relations 

mentioned in the paragraph as 

( ) ( ) ( ) ( )
2

2
02

r t r t
m m m r t eE t

t t
ω

∂ ∂
+ Γ + = −

∂ ∂

 





          (5.11) 

Then Fourier Transform of this equation is to obtain the Fourier component at a single 

frequency ω 

( ) ( ) ( )2 2
0m j m m r eEω ω ω ω ω− − Γ + = −





           (5.12) 
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gives us the frequency dependent charge oscillation (and thus polarization). ( )r ω  shows the 

features of the driven damped harmonic oscillator as 

( ) ( )
( )2 2

0

Eer
m j

ω
ω

ω ω ω
= −

− − Γ +





           (5.13) 

The attributes of this equation are as follow 

1. Maximum amplitude when denominator minimum, when at ω≈ω0 (resonance) 

2. For excitation at resonance (ω≈ω0) ( )r ω  is entirely imaginary at resonance, 90 

degree phase difference between E


 and ( )r ω . 

3. At high frequencies (ω >> ω0) the amplitude ( )r ω  vanishes. 

4. At low frequencies (ω << ω0) a finite amplitude is obtained. 

Now we relate single atom displacement ( )r ω  to single atom dipole moment as [4] 

( ) ( )erµ ω ω= −
 

             (5.14) 

or    ( ) ( )
( )

2

2 2
0

Ee
m j

ω
µ ω

ω ω ω
= −

− − Γ +





            (5.15) 

We now need to convert this single electron response to dipole moment per unit volume, P. 

To achieve this, the sum of dipole moment over all electrons in a volume V needs to be 

divided by the volume. If we have N valence electrons /m3, this gives NV electrons in volume 

V giving the polarization as 

( ) ( ) ( ) ( )
( )

2

2 2
1 0

1 NV

i
i

ENeP N
V m j

ω
ω µ ω µ ω

ω ω ω=

= = =
− − Γ +

∑




           (5.16) 

Susceptibility is defined as  
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( ) ( )
( ) ( )

2

2 2
0 0 0

1
e

P Ne
E m j

ω
χ ω

ε ω ε ω ω ω
 

= =  
− − Γ + 

          (5.17) 

From which permittivity is given as [4]  

( ) ( )
2

2 2
0 0

11 1r e
Ne
m j

ε χ ω
ε ω ω ω

 
= + = +  

− − Γ + 
          (5.18) 

5.2.2.1 Lorentz Model of GaAs 
 

GaAs is of particular interest for several reasons. It has a very fast turn-on time, that 

is, it becomes conductive almost immediately after photoexcitation. The electron mobility in 

GaAs is very high, about 8 times greater than that of silicon, and the lifetime of the 

photogenerated carriers is about 10 ns, compared to 10 ms for silicon. GaAs is extensively 

used in the applications of microwave integrated devices, infrared light emitting diodes, solar 

cells, laser diodes, optical windows [12] and THz spectroscopy (TRTS) [13]. 

We use the universal properties of electrons as: electron charge e = 1.60217649×10-19 

C; effective mass of electron, me=9.10938188×10-28 g; ε0 = 8.854187817×10-12 and the 

properties of GaAs are: effective mass of each electron, m = 0.063me; at the Γ valley of 

conduction band of the energy band structure [14] and the relaxation time, τ = 1/Γ =1 × 10-12 

s [15] in the Lorentz model. A rigorous study for obtaining the valence electron density is 

done in [14], from which it is understood that the valence electron density depends on many 

factors, such as, temperature, materials purity, doping profile, etc. A straight forward 

calculation can be done to have an approximate idea of the electron density from the atomic 

density of GaAs = 4.5 × 1028 atoms/m3 [14] and its valence electrons/atom = 4, as N = 4 × 

4.5 × 1028 electrons/m3 = 18.0 × 1028 electrons /m3. This yields the Lorentz model of GaAs as 
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( )
30

2 12 2
0

9.093164014 101
10r j

ε
ω ω ω

×
= +

− − +
            (5.19) 

To have the model to be fitted with the experimental values and to obtain the resonant 

frequency we use the Sellmeyer Equation [16] 

   ( ) 2 21
Bn A

C
λ

λ
= +

−
             (5.20) 

The empirical parameters A, B and C2 are found in [16] as 8.950, 2.054 and 0.390, 

respectively from which resonant wavelength is at λ0 = 0.625 µm. The electron concentration 

is adjusted to N = 18.0 × 1028.98 in order to obtain the resonant at that particular wavelength. 

This model now fits the experimental value of the refractive index of GaAs as n = 3.5992551 

at λ = 1.55 µm [17]. The variation of the real and imaginary part of the permittivity of GaAs 

with frequency and wavelength approximated by the Lorentz model is shown in Figure 5.3.  
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To fit the model over a frequency range of interest, it is found that in some cases the 

model needs to be composed of multispecies, as 

( )
2

2 2
1 2

p
i i

i i ij
ε ωε ω ε

ω ω δ ω∞
=

∆
= +

+ −∑            (5.21) 

where ∆εi = εs,i - ε∞ is the difference between static low frequency permittivity and the 

permittivity at the high frequency limit, ε(∞), ωi is the resonant frequency, and δi is the 

damping coefficient.  

 

Typical values obtained from different sources used for different purposes in the 

thesis are given below. The Lorentz parameters obtained from the derivation of the model for 

GaAs are: ε∞  = 1.0, εs = 11.011, ω0 = 3.01384 × 1015 rad/s and δ = 1.0 × 1011 s-1. With ε∞  = 

 
Figure 5.3 Wavelength λ dependence (a and b)  and its corresponding frequency dependence (c and d) 

of the real and imaginary part of the relative permittivity of GaAs using Lorentz Model. 
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1.5376, εs = 8.2944, ω0 = 0.66 × 1016 rad/s and δ = 1.0 × 1013 s-1, a very good agreement is 

achieved with the single species for modeling AlGaAs [18]. In addition to these parameters 

and for convenient numerical testing purposes, some nonphysical parameters are sometimes 

used as: ε∞  = 2.25, εs = 5.25, ω0 = 4.0 × 1014 rad/s and δ = 2.0 × 109 s-1 to provide rapid 

variation in the ultra short pulse propagation over a short distance. 

 

5.2.2.2 Ultra Short Pulses in GaAs 
 

In optics, an ultra short pulse of light is an electromagnetic pulse whose time duration is 

in the order of femto second (10-15s) range. Because of the progress in the generation, 

amplification and measurements of ultra short pulses [19], this time scale becomes 

accessible. Due to large energy concentration, this topic encompasses the study of interaction 

of intense laser with matter, as well as transient response of atoms and molecules and basic 

properties of the fs radiation itself [19-21]. Right after the invention of the laser in the 1960s, 

the scientific community was working on producing short light pulses in lasers. In the 70’s 

progress in laser physics opened the door for pico-second pulse generation and continued in 

80’s to achieve femto second pulse [19]. Femto second technology opened up new 

fascinating possibilities based on some unique properties of ultra short light pulses which 

include [19 - 21]  

• Energy can be concentrated in a temporal interval as short as fs which corresponds to 

a few optical cycles in the visible range.  

• Pulse peak power can be extremely large even at moderate pulse energies. e.g. for 

100 fs pulses an energy of 1 nJ exhibits an average power of 10 MW. Focusing this 

pulse to a 100 μm2 spot will generate an intensity of 20 TW/cm2. 
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• The geometrical length of a femto second pulse amounts only to several μm. Such a 

coherence length is usually associated with incoherent light. The essential difference 

is that incoherent light is generally spread over a much longer distance.  

 

Faster data transfer and processing is possible by utilizing this faster carrier frequency 

and subsequent higher bandwidths. A variety of reversible as well as irreversible nonlinear 

processes become accessible due to the large intensities of fs pulses. There are proposals to 

use such pulses for laser fusion [22]. Because of the large energy concentration in a very 

short duration, it is possible to utilize nonlinear processes in fiber and other optical-electronic 

devices. 

 

The ultrashort pulse plays interesting roles in material dispersion of GaAs. As the 

pulse duration decreases, the frequency content increases, hence the refractive index range of 

variation increases. Figure 5.4 shows the refractive index of GaAs variation with the angular 

frequency for different pulse widths.  
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Four short pulses with a Gaussian temporal profile of waists of 120 fs, 50 fs, 25 fs 

and 10 fs were considered in the figure to investigate the change of refractive index due to 

their broad frequency band. It has been shown in the inset figures of each subplot that as the 

temporal waist is decreased the frequency content increases. The shorter pulse, which 

contains a larger frequency spectrum and hence causing larger variation of the refractive 

index in the material, will experience a varied velocity for each of the frequency within the 

pulse. The propagation of short pulses in dispersive material causes attenuation to some 

frequencies, in addition to the pulse spread due to the group velocity of the pulse. The 

 
 
Figure 5.4 Operating refractive index of GaAs for Gaussian pulse with spread of (a) 120 fs, (b) 50 fs, (c) 25 fs, (d) 

10 fs and their frequency spectrum (inset figures). 
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spreading of pulses cause pulse splitting in certain situations, and hence, distortion to the 

original shape of the pulse.  

 

5.2.3 Drude Model 
 

In this model it is assumed that the conduction electrons are not bound to the atom 

giving the postulate that ω0 = 0 in the Lorentz model. This assumption is somewhat valid for 

highly conductive materials, such as metal. The dispersion of a metal has frequently been 

taken into account using the Drude model. The permittivity expression of this model is 

   ( )
2

21 p

j
ω

ε ω
ω ω

= +
Γ −

             (5.22) 

where the plasma frequency ωp is defined as 
2

0
p

Ne
m

ω
ε

= . 

 

5.3 Summary 
 

Dispersive behavior of different optical materials has been represented using Debye, 

Lorentz and Drude models. Detailed mathematical formulation of these models have been 

derived and the modeling parameters of Water, Methanol, Human tissue, GaAs and AlGaAs 

have been presented in this chapter. The variation of the refractive index of GaAs with the 

frequency content of ultra short pulse has been also analyzed. 
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CHAPTER 6 

 

 

 

DISPERSIVE TIME DOMAIN  

NUMERICAL TECHNIQUES 
 

 

 

6.1 Introduction 
 
 

While one often describes a material by some constant (frequency independent) value 

of the permittivity and permeability, in reality all material properties are frequency dependent 

or alternatively can be said to be dispersive in nature, as we discussed in the previous 

chapter. The ionosphere, biological tissues, crystalline structures, ferrites, optical fibers, and 

radar-absorbing materials are dispersive [1]. Dispersive or time-varying media can be easily 

tackled in time-domain analysis [2 - 3]. In general, a time discretization strategy may involve 

either explicit or implicit updates. The explicit updates, such as the FDTD [4 - 5], are matrix-

free and with low computational complexity. However, its memory requirements scale 

linearly with the number of unknowns. On the other hand, implicit updates, such as, the TD-

BPM [6 - 10] or the implicit FDTD of the ADI or the LOD, are able to overcome the 

maximum time step bound imposed by the Courant stability limit [11 - 12]. However, they 
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require the solution of a linear system at every time step. This chapter shows the derivation 

of the TD-BPM and the FDTD in order to account for material dispersion. Their numerical 

implementation to model 2-D optical devices, and also their accuracy and performance tests 

are presented. The main objective of these implementations will remain in the framework of 

short and ultra short pulse propagation in dispersive material. 

 

6.2 The Dispersive FDTD 
 

In dispersive medium, the constitutive equation relating the electric field and the 

electric flux density D is expressed as a convolution integral between E and the inverse 

Fourier transformed frequency dependent permittivity. The direct implementation of the 

convolution requires the storage of the entire past time. In Trapezoidal Recursive 

Convolution (TRC) [13] and its improved Piecewise Linear Recursive Convolution (PLRC) 

[14 - 15], a recursive accumulator is used whereby storage of only few previous time steps is 

necessary. These techniques are applicable only to linear dispersive material. Other popular 

implementations for the convolution also exist with the z-transform (ZT) [16 - 17] whereby 

the transfer function in frequency domain is converted to the z-domain. The frequency 

dependent constitutive equation in dispersive media can also be expressed as ordinary 

differential equation (ODE) in time involving D and E by the inverse Fourier transform, 

which is commonly referred as the Auxiliary Differential Equation (ADE) approach [18 - 

19]. It is observed that the ADE-based implicit methods require less CPU time than the TRC, 

PLRC and ZT based implicit techniques [20 - 21]. In this section, the derivation of the 

explicit FDTD and later on the TD-BPM are accomplished using the ADE technique. 
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The equations in 2-D for the Transverse Electric (TE) field can be obtained for 

dispersive material from the coupled partial differential equations given in Eq. 3.5 of chapter 

3 as [5] 

y x zD H H
t z x

∂ ∂ ∂
∂ ∂ ∂

= −                          (6.1a) 

( ) ( ) ( )0 .rD Eω ε ε ω ω=              (6.1b) 

0

1 yx EH
t z

∂∂
∂ µ ∂

=               (6.1c) 

0

1 yz EH
t x

∂∂
∂ µ ∂

= −               (6.1d) 

 

A similar formulation can be followed to obtain the TM case. Following the numerical 

procedure described in chapter 3 and using the central Finite Difference (FD) approximation 

of the 1st order derivative, Eq. 6.1a can be written as  

( ) ( )1 2 1 2

, 1 2 , 1 2 1 2, 1 2,, ,

n n n n n n
y y x x z zi k i k i k i ki k i k

t tD D H H H H
z x

+ −

+ − + −

∆ ∆
= + − − −

∆ ∆
       (6.2) 

Here we have used the notations used in Eq. 3.15. To account for the dispersive property of 

the material, it is necessary to have the dispersion model in their time domain formulations. 

Three different types of dispersive models have been described in chapter 5. The inverse 

fourier transform of the Debye, the Lorentz and the Drude models from chapter 5 are 

respectively given as  

y y
y s y

dD dE
D E

dt dt
τ ε τε∞+ = +  (Debye)                (6.3a) 

2 2
2 2
0 02 22 2y y y y

y s y

dD d D dE d E
D E

dt dt dt dt
ω δ ω ε δε ε∞ ∞+ + = + +        (Lorentz)            (6.3b) 

2 2
2

2 2
y y y y

y p

d D dD d E dE
E

dt dt dt dt
ω− Γ = − Γ +            (Drude)                    (6.3c) 
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The above equations provide the scope to obtain the electric field, which is eventually 

necessary to calculate the magnetic fields. The updates of the electric field for the models 

mentioned above, using again the central FD approximations, are 

1 2 3 2
1 2

,1 2
, ,

,
1 2 3 2

, ,

2 2 2

2

n n
n

y y yi kn
i k i k

y i k
n n

s y yi k i k

D D D
t tE

E E
t

τ τ

τε τεε

+ −
−

+

− −∞ ∞

 
+ + 

∆ ∆ =
 
 − +

∆ 

            (6.4a) 
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nn
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nn n

y y s yi k i k i k
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E t D t E
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t E

δ ω

δ ε ω ε
ε δ

ε δ

−+

−+ −

∞
∞

−

∞

 + ∆ + − + ∆ 
 

= + − ∆ + − ∆ 
+ ∆  

 + − + ∆  

         (6.4b) 
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∆ −
+ −

− ∆ Γ

                              (6.4c) 

It is to be noted from the above equations that for calculating Ey in the new time step 

( )1 2n +  at any mesh point, the values of fields Ey and Dy at the two previous time steps of 

( )1 2n −  and ( )3 2n − , namely 1 2n
yE − , 3 2n

yE − , 1 2n
yD −  and 3 2n

yD −  are required. Table 6.1 

shows a summary for the coefficients of Eq. 6.4. 
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Table 6.1 Coefficients of Debye, Lorentz and Drude model used for 
1 2

,

n

y i k
E

+
 calculation in FDTD of Eq. 6.4. 
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4
2 t

−
− ∆ Γ

 2
2
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t

+ ∆ Γ
− ∆ Γ
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pt

t
ω∆
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 -1 

 

 

The updates for the H-fields are obtained from Eq. 6.1c and Eq. 6.1d as 

( )1 2 1 21

, 1 2 , , 1 ,
0

n nn n
x x y yi k i k i k i k

tH H E E
zµ

+ ++

+ +

∆
= + −

∆
             (6.5) 

( )1 2 1 21

1 2, , 1, ,
0

n nn n
z z y yi k i k i k i k

tH H E E
xµ

+ ++

+ +

∆
= − −

∆
             (6.6) 

The computational sequence of the dispersive FDTD can be summarized in the flow chart 

shown in Figure 6.1. 
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6.3 The Dispersive TD-BPM 
 

In this section, we formulate the TD-BPM described in chapter 4 to model structures 

containing dispersive material. Starting with the general 2-D wave equation for the TE case 

(Eq. 2.10)  

2 2 2

2 2 2
0

1 0y y yE E D
z x tµ

∂ ∂ ∂
+ − =

∂ ∂ ∂
           (6.7) 

Initialize 1 2n
yE − , 3 2n

yE − , 1 2n
zH + , 1 2n

xH + , 
1 2n

yD −  and 3 2n
yD −  for the entire Region 

Set Excitation 

Update 1 2n
yD +  and Use Dispersion 

relation for the update of 1 2n
yE +  

Update 1n
zH +  and 1n

xH +  

n<N 

Post Process Results 

yes 

no 

3 2 1 2

1 2 1 2

n n
y y

n n
y y

E E

E E

− −

− +

=

=
  and    

3 2 1 2

1 2 1 2

n n
y y

n n
y y

D D

D D

− −

− +

=

=
 

Figure 6.1 The flow chart of the dispersive FDTD algorithm. 
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Here we assume that the device is uniform and infinitely stretched along the y- direction, so 

that there is no variation of field in the y-direction. Extracting a carrier from the fields by 

assuming ( )ψ j t
yE t e ω=  and ( )φ j t

yD t e ω= . The removal of the fast carrier allows one 

to track a slowly varying envelope of a pulsed wave directly in the time domain and thus, the 

converged solution could be obtained with a moderate time step size [13 - 14].  Upon the 

substitution of these assumptions in Eq. 6.7, the following equation can be written 

    
2 2 2

2
2 2 2

0

ψ ψ 1 φ φ2 0j
z x t t

ω ω
µ

 ∂ ∂ ∂ ∂
+ − + − ϕ = ∂ ∂ ∂ ∂ 

                       (6.8) 

Using the same steps used above, the dispersive equation of 6.3 can be written as 

  
( ) ( ) ( )

( ) ( ) ( )

φ
1

ψ
ψs

d t
j t

dt
d t

j t
dt

ωτ τ

ε ωτ ε τ ε∞ ∞

+ ϕ + =

+ +
         (Debye)         (6.9a) 
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( ) ( ) ( )
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2

2
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φ t 2 ψ t
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d d d
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dt dt dt

d d
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dt dt
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dt

ω ω δ ω

ω ε ω ω

δε ω ω ε

∞

∞

   
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  
 

= + − + 
 

 
+ + ψ + ψ 

 

(Lorentz)          (6.9b) 
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( ) ( ) ( )
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2

2

2
2

2

2

φ φ φ
2

ψ ψ
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ψ
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dt dt dt

d t d t
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dt dt

d t
j t t

dt

ω ω ω

ω ω

ω ω
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 

 
Γ + + 

 

         (Drude)      (6.9c) 
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The time derivatives of Eq. 6.8 and Eq. 6.9 can be discretized using the central FD 

approximations. Then, the discretized equations of Eq. 6.9 give the following relation 

between ϕ and ψ as 

i iφ ψQ R=                          (6.10) 

where i represents the discretization along time, Q and R are tri-diagonal matrices and the 

coefficients of these matrices are given in Tables 6.2, 6.3 and 6.4 for the three dispersive 

models discussed before. 

 
Table 6.2: The coefficients of Q and R matrices for the Debye model. 
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∆
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Table 6.3: The coefficients of Q and R matrices for the Lorentz model 
 

 Diagonal  Below the diagonal Above the diagonal 
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Table 6.4: The Coefficients of Q and R matrices for the Drude model 
 

 Diagonal  Below the diagonal Above the diagonal 

Q ( )2
2

2 j
t

ω ω− + Γ −
∆

 2

1 2
2

j
t t

ωΓ +
+

∆ ∆
 2

1 2
2

j
t t

ωΓ +
−

∆ ∆
 

R 2 2
2

2
p j

t
ω ω ω− + + Γ −

∆
 2

1 2
2

j
t t

ωΓ +
+

∆ ∆
 2

1 2
2

j
t t

ωΓ +
−

∆ ∆
 

 

Eq. 6.10 can be also written as  

1
i i iφ ψ ψQ R−= = Α              (6.11) 

where 1Q R−Α = . Upon the substitution of Eq. 6.11 in Eq. 6.8, we arrive the following 

equation written in terms of ψ as 

2 2
i i

i2 2

ψ ψ 0AP
z x

∂ ∂
+ − ψ =

∂ ∂
                    (6.12)  

where the diagonal, right-off-diagonal and left-off-diagonal elements of the tri-diagonal P 

matrix are 2
2

0

1 2
t

ω
µ

 + ∆ 
, 2

0

1 1 j
t t

ω
µ

 − + ∆ ∆ 
 and 2

0

1 1 j
t t

ω
µ

 − ∆ ∆ 
, respectively. If we define 

the pseudodifferential square-root operator Ld in a similar approach that we did earlier in 

chapter 4 as 

2
2

i i2ψ ψdL T
x

 ∂
= − ∂ 

                     (6.13) 

The dense matrix T is expressed as 

T PA=                       (6.14) 

Applying again the FD approximations to the spatial derivatives in Ld, given in Eq. 6.13, the 

matrix operator Ld in its discrete form can be written as a sparse matrix as 
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1 2
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0 0

0 0
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+ 
 + 
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

  



          (6.15) 

Sd1 and Sd2 are diagonal matrices with the elements of 22 x− ∆  and 21 x∆ , respectively. 

The size of the tri-diagonal block matrix 2
dL  is Mx by Mx, where Mx is the number of the 

spatial discretization points along x. The size of each block is Mt by Mt, where Mt is the 

number of temporal discretization points. Therefore, the size of matrix 2
dL  will be Mx × Mt 

by Mx × Mt.  

Then Eq. 6.12 can be written as 

i,mψ 0d dL L
z z

∂ ∂  + − =  ∂ ∂  
             (6.16) 

where  m represents the discretization along the x-direction. For forward propagation, the 

solution can be written as 

( ) ( )i,m i,mψ ψ 0dj L zz e−=                      (6.17) 

where, ( )i,mψ 0  is the initial field. The implementation of Eq. 6.17 is very similar to the 

implementation of Eq. 4.7 with the addition of the dispersive information. In principle, the 

exponential of the square root operator Ld of Eq. 6.15 can be solved either using the MoL 

approach, as mentioned in Eq. 2.32 of chapter 2, or using the techniques mentioned in 

chapter 4. However, the MoL approach is very costly because it requires finding the 

eigenvalues and eigenvectors in addition to the inversion of a large matrix. 
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6.4 Implementations 
 

In order to test the performance of the formulation described before, the two methods 

(the FDTD and the TD-BPM) have been implemented to model the propagation of short and 

ultra short pulse propagation in dispersive one dimensional, two dimensional homogeneous 

and waveguide problems. The following implementations use Lorentz model as a 

representative of dispersion, while the implementation of the other two models should 

produce similar results. The choice of Lorentz model in this work is due to the fact that the 

dispersive GaAs and AlGaAs materials can be represented using this model of dispersion. 

 

6.4.1 One Dimensional Implementation 
 

In this section, the propagation of a 1-D Gaussian pulse in a dispersive medium that 

has a Lorentz model is considered. The parameters for the dispersive material considered are: 

δ=2.0 × 109s-1, ε∞ = 2.25, εs = 5.25, ω0 = 4.0× 1014 rad/s and λc = 2.19 µm [11]. The initial 

Gaussian pulse width was taken to be στ0 = 25 fs, and the pulse was propagated to a distance 

of z = 126 μm. The operator given in Eq. 6.16 was also implemented and solved using the 

MoL approach for comparison purposes. The numerical parameters used for the TD-BPM in 

the simulation are: p = 2, Δz = 0.05 μm, and Δt = 0.80 fs, while the corresponding numerical 

parameters used for the FDTD are: Δz = λc / 80 = 0.027375 μm, and Δt = 0.0456566 fs. 

Figure 6.2 (a) and (b) show the temporal shape of the propagated pulse at z = 55 μm and z = 

126 μm, respectively, using the TD-BPM, the FDTD and the MoL techniques. The figures 

show the close agreement of the three results. The initial pulse shows a significant spread 

during the propagation in the dispersive material. It is to be noted that the temporal step size 
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∆t for the TD-BPM is more than 17 times larger than the corresponding ∆t used for the 

FDTD. 

 

 

 
Figure 6.2 The propagation of the Gaussian pulse at (a) z = 55 μm and (b) z =126 µm in a 1-D dispersive 

medium represented by Lorentz model using the MoL, the TD-BPM and the FDTD. 
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6.4.2 Two Dimensional Implementation 
 

In this section, the implementation of the time domain numerical techniques of the 

TD-BPM and the FDTD for the investigation of dispersive homogeneous and 2-D waveguide 

problems will be discussed. 

 

6.4.2.1 Homogeneous Medium 
 

First the propagation of a pulsed Gaussian beam in a homogeneous AlGaAs dispersive 

medium has been investigated. The medium is approximated by a Lorentz model with the 

following parameters: δ=1.0×1013s-1, ε∞ = 1.5376, εs = 8.2944, ω0 = 6.6×1015 rad/s and λc = 

1.064 µm [24]. The initial temporal waist and the spatial waist of the Gaussian beam were σt0 

= 20 fs and w0 = 3.0 µm, respectively. The TD-BPM numerical parameters used in the 

following simulation are: p = 4, Δz = 0.1 μm, Δx = 0.1 μm and Δt = 0.75 fs. The numerical 

parameters used in the FDTD simulation are:  z = 80λ∆ = 0.0133 µm, ∆x = 0.1 µm and 

0(2 )t z c∆ = ∆  = 0.02218 fs. In the FDTD simulation, ∆t is upper bounded by the stability 

criterion of CFL given in [5]. Figure 6.3 shows the evolution of the pulsed beam at several 

propagation distances of z = 12.5 µm, 25.0 µm and 50.0 µm. The figure shows that the pulse 

diffracts in the spatial direction due to the homogeneity of the material, while it spreads due 

to material dispersion. The energy of the pulse is reduced due to the effect of the damping 

coefficient in the medium. The results obtained by the TD-BPM are compared with the 

results obtained using the FDTD. Figure 6.4 shows the time profile of the pulse in the middle 

of the spatial computational window x using both methods. It can be seen from the figure that 

the two techniques produce very similar results. It is to be noticed again that the time step 

size ∆t used in this simulation is more than 33 times that of the FDTD. 
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Figure 6.4 The temporal profile of the propagated pulsed beam in a homogeneous 2D dispersive 

medium at z = 25.0 µm and z = 50.0 µm using the non-paraxial TD-BPM and the FDTD. 
 

 
Figure 6.3 The evolution of the pulsed Gaussian optical beam in a homogeneous 2D dispersive medium 

using the non-paraxial TD-BPM for an initial pulse width of σt0 = 20 fs. 
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6.4.2.2 Slab Waveguide 
 

In this section, the propagation of pulsed optical beams in a dispersive symmetric slab 

waveguide is considered. The waveguide has a core of dispersive material of Lorentz type 

while the substrate and the superstrate are of non-dispersive silica material. The superstrate, 

the core and the substrate widths were taken to be 2.5 μm, 1.0 μm and 2.5 μm, respectively. 

The substrate refractive index is 1.52. The core dispersive medium is approximated by a 

Lorentz model with the following parameters: δ=2.0 × 109 s-1, ε∞ = 2.25, εs = 5.25, ω0 = 8.0× 

1014 rad/s, and λc = 3.0 µm. The refractive index of the core at this wavelength is 3.172. The 

initial pulsed beam has a Gaussian temporal pulse of waist σt0 = 50 fs with the TE0 spatial 

mode profile. The propagation step size was taken to be Δz = 0.1 μm, p = 4, Δx = 0.1 μm and 

Δt = 1.25 fs for the TD-BPM. Figure 6.5 shows the propagated pulsed beam at z = 4.0 µm, 

8.0 µm, 12.0 and 16.0 µm along the propagation direction inside the waveguide using the 

non-paraxial TD-BPM. Figure 6.5 shows that the optical pulse preserved its spatial guided 

mode profile along the x- direction while the temporal profile has spread within a very short 

distance due to the high variation of the refractive index in the core within the frequency 

spectrum of the initial pulse. The overall intensity of the pulsed beam has been reduced, as 

can be seen from the figure, due to the effect of the damping coefficient in the medium. The 

results obtained by the TD-BPM are compared with that of the FDTD in Figure 6.7. The 

parameters for the FDTD are: ∆𝑧 = λ𝑐 80 = 0.0375𝜇𝑚⁄ , ∆x = 0.1 µm and ∆𝑡 =

∆𝑧 (2𝑐0) = 0.0625433 ⁄ fs. In the FDTD simulation ∆t, again, is upper bounded by the CFL 

stability criterion which is 19 times smaller than that used for the TD-BPM. The high 

attenuation and the temporal spread indicate the strong interaction of the pulsed beam with 

the dispersive material. Figure 6.6 describes the temporal pulse shape right in the middle of 



- 130 - 
 

the waveguide for both the TD-BPM and the FDTD. It is clear from the figure that the two 

techniques produce very similar results.  

 

 

 
 

Figure 6.5 Propagation of the TE0 pulsed optical beam in the dispersive slab waveguide using the TD-
BPM at several propagation distances. The two horizontal lines show the positions of the 
core layer of the slab. 
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6.5 Performance of the TD-BPM 
 

In previous sections, comparison between the TD-BPM and the FDTD was done 

based on graphical inspection. In this section, quantitative and detailed comparisons of these 

two methods are performed rigorously. The material dispersion structures used in this work 

do not have closed form analytical expressions; therefore the FDTD result is taken as a 

reference in the following comparison. The maximum percentage difference, the percentage 

root mean square difference, the percentage difference at peak of the pulse and the ratio of 

the group velocities obtained by these two methods are calculated. Definitions of all these 

quantities are presented in chapter four (section 4.3.4). 

 

 
Figure 6.6 Comparison between the TD-BPM and the FDTD results of the temporal profile of the 

propagated pulse with σt0 = 50 fs at several distances along the direction of z inside the 
dispersive slab waveguide. 
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It is to be noted that the accuracy analysis for dispersive structures are different from 

those seen in chapter 4. The strength of material dispersion in addition to the duration of the 

initial pulse width plays major roles on the numerical parameters of the TD-BPM and the 

FDTD. Therefore, in the following analysis three different cases are considered to fully 

explore the limit for the numerical parameters. The first and second cases use a dispersive 

GaAs symmetric slab waveguide that has a relatively strong dispersion relation that has the 

following parameters: a substrate and a superstrate refractive index of n = 3.4. The dispersion 

relation of the GaAs-based core is again fitted to Lorentz model with δ=5.0×1011 s-1, ε∞ = 1.0, 

εs = 11.011, ω0 = 3.014 ×1015 rad/s and λc = 1.55 µm. The substrate and superstrate are 2.5 

µm thick each, while the slab width is 1.0 µm. The calculated effective refractive index is neff 

= 3.558445. In these cases we study the effect of changing the initial pulse width using σt0 = 

25 fs and 100 fs. The third case uses a 25 fs pulsed beam propagation in a relatively weak 

dispersive AlGaAs core material with a substrate and superstrate of refractive index of n = 

2.706. The dispersion relation of the AlGaAs-based core is also fitted to Lorentz model with 

δ=1.0×1013s-1, ε∞ = 1.5357, εs = 8.2944, ω0 = 6.6 ×1015 rad/s, and λc = 1.064 µm. The 

calculated effective refractive index is neff = 2.9406. In each case, the initial pulsed beam is 

formed using the spatial profile of the TE0 and the temporal pulse of the Gaussian profile. 

The parameters for the FDTD are: ∆z = λc/80 = 0.0194 µm, ∆t = ∆z/(2c0) = 0.0323 fs for the 

first two cases and ∆z = λc/80 = 0.0133 µm, ∆t = 0.02218 fs for the third case and ∆x = 0.1 

µm for all the cases considered. The pulses were propagated to a distance of z = 100 µm.  
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6.5.1 Time step (∆t) 
 

In this part the effect of changing the time step size ∆t is studied for the three 

different cases described earlier. Figure 6.7, 6.8 and 6.9 show the effect of the time step size 

∆t on the percentage maximum difference, the percentage root mean square of the difference, 

the percentage difference at peak of the pulse and the group velocity ratio of the FDTD and 

the TD-BPM for the three cases. In TD-BPM, ∆z = 0.1 µm, and a Padé order p = 4 were 

used. The comparison between the three figures suggest that the TD-BPM method has a 

relatively large difference compared to the FDTD if the dispersion model has a strong 

dispersion profile and the initial pulse is in the ultra short range as in Figure 6.7. It is 

interesting to note, from Figure 6.8, that the method converges to small difference around ∆t 

= 3 - 4 fs, which means that the time step is around 93 - 124 times that used in the FDTD. 

The same observation can be noticed for the 25 fs pulse in Figure 6.9, for a small difference 

of around ∆t = 0.5 fs, for example, the time step size is 23 times the step sized used for the 

FDTD.   
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Figure 6.8  The same as in Figure 6.7 but with an initial temporal pulse waist of σt0 = 100 fs. 
 

 
Figure 6.7 The effect of changing the time step size (∆t) on the accuracy of the technique in comparison 

with the FDTD (a) The percentage maximum difference (b) The percentage of root mean 
square of the difference   (c) The percentage difference at peak, (d) Group Velocity Ratio for 
the propagation of a pulsed beam of 25 fs temporal waist inside a GaAs dispersive slab 
waveguide. 
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It is to be noticed that the shape of the maximum percentage difference and percentage r.m.s. 

difference are the same. For this reason, the effect of Padé order and propagation step size is 

investigated by considering only the percentage r.m.s. difference. 

 

6.5.2 Propagation step (∆z) 
 

Figure 6.10 shows the effect of the variation of the propagation step size on the 

percentage root mean square difference between the two methods for all the three cases. Padé 

order p = 4 and time step sizes of ∆t = 0.4167 fs and 1.25 fs for 25 fs and 100 fs pulse, 

respectively were used as numerical parameters for the TD-BPM. 

 
Figure 6.9 The same as in Figure 6.7 but with AlGaAs dispersive core waveguide whose Lorentz model 

parameters were given in the text. 
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The figure illustrates that the method is very stable even for large propagation step sizes (30 

– 45 times higher than that of the FDTD) for short pulse width propagation in strongly 

dispersive material and for ultra short pulse propagation in weakly dispersive material. On 

the other hand, the difference for the 25 fs in GaAs core is a bit on the high side as compared 

to the other two cases. The following test may help to explain this difference. 

 

6.5.3 Padé Order 
 

Figure 6.11 shows the effect of varying the Padé order p on the percentage root mean 

square difference between the two methods for all the three cases. In TD-BPM, ∆z = 0.1 µm 

and time steps ∆t = 0.4167 fs and ∆t = 1.25 fs for 25 fs and 100 fs pulse widths were used, 

 
Figure 6.10 The effect of changing the propagation step size (∆z) on the percentage root mean square 

difference of the technique in comparison with the FDTD for the propagation of a pulsed 
beam of 25 fs and 100 fs temporal waist inside a strongly dispersive GaAs and a weakly 
dispersive AlGaAs dispersive slab waveguide. 
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respectively. At a Padé order of 8 or more, for ultra short pulse of 25 fs case in strongly 

dispersive material of GaAs, the r.m.s. difference becomes small. For the short 100 fs case in 

strongly dispersive material and for the ultra short 25 fs pulse case in weakly dispersive 

material of AlGaAs, a difference level of less than 1% is achieved even at Padé order of 2 and 

4, respectively. 

 

It can be understood from the above performance tests that high accuracy is achieved using 

the TD-BPM with very low computational cost for ultrashort pulse propagation in weakly 

dispersive material and for short pulse propagation in strongly dispersive material. However, 

for the 25 fs ultrashort pulse propagation in the strongly dispersive GaAs, a Padé order of p = 

 
Figure 6.11 The effect of changing Padé order on the accuracy of the TD-BPM in comparison with the 

FDTD for the propagation of a pulsed beam of 25 fs and 100 fs temporal waist inside a 
strongly dispersive GaAs and a weakly dispersive AlGaAs dispersive slab waveguide. 
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8 or higher, ∆z = 0.05 µm and ∆t = 0.5 fs or less results in sufficiently low differences, which 

eventually requires a longer computational cost.  

 

6.6 The Performance of the FDTD 
 

Since the dispersive problems considered in this thesis do not have analytical 

solutions, convergence of the FDTD parameters is examined in this section. For this purpose, 

the same waveguide parameters of the previous section have been taken into account. The 

TD-BPM parameters used are: Padé order p = 8, ∆z = 0.05 µm and ∆t = 0.5 fs, while for the 

FDTD ∆z = λc/80 = 0.019375 µm is kept fixed when ∆t/∆tCFL was varied from 0.5 to 0.95. 

When ∆t/∆tCFL is unity the method becomes unstable. Figure 6.12 shows the effect of the 

assessment parameters used earlier on varying ∆t/∆tCFL. The figure shows that the FDTD 

requires 0.8 the CFL limit for convergence. 
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Figure 6.13 also shows the same analysis for the variation of the FDTD mesh size ∆z, when 

∆t/∆tCFL is fixed to the values that keep the method stable as ∆z is varied. 

 
 

Figure 6.12 The effect of changing the time step size ∆t on the accuracy of the FDTD in comparison 
with the TD-BPM (a) The percentage maximum difference (b) The percentage of root mean 
square of the difference   (c) The percentage difference at peak, (d) Group Velocity Ratio 
for the propagation of a pulsed beam of 25 fs temporal waist inside a GaAs dispersive slab 
waveguide. 

 



- 140 - 
 

 

Figure 6.13 shows that the FDTD requires very small values of ∆z for convergence. For 

example when ∆z = 0.1 µm, by which almost all the TD-BPM analysis were performed, the 

method becomes unstable. It is to be noted that fine mesh gridding refers to small time steps 

as well. 

 

6.7 Computational Resource Requirement 
 

In this section, the two methods are examined in terms of the computational resources 

required. The parameters used here have the same previous values, for Figure 6.7, except for 

the following. The pulsed beam was propagated to a distance of z = 300 μm using Padé order, 

p = 4, propagation step size Δz = 0.1 μm, Δx = 0.1 μm and time step sizes Δt = 2.5 fs and Δt = 

1.0 fs for 100 fs and 25 fs, respectively. In the TD-BPM implementation different iterative 

 
Figure 6.13 The same as of Figure 6.12 with the variation of the FDTD mesh size ∆z. 
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solvers discussed in chapter 4 have been used, such as the “QMR”, the “CGS” and the 

“LSQR” along with the direct method of implementing the Padé operator. It has been noticed 

that all the iterative solvers require almost the same computer memory space as the direct 

solver. However, they require different computational times for convergence. Figure 6.14 

shows the computational time for 100 fs using the FDTD, the Moving Window (MW-FDTD) 

the iterative and the direct methods of the TD-BPM. 

 
The figure shows that both the TD-BPM direct and the iterative techniques require less 

computational time than that of the FDTD and the MW-FDTD. The “CGS” always requires 

least computational time compared to any of the other techniques. Figure 6.15 shows the 

computational time for the 25 fs propagation inside AlGaAs dispersive waveguide using the 

same techniques. 

 
Figure 6.14 Computational time of the dispersive FDTD and the dispersive TD-BPM using the direct and the 

iterative solvers for the propagation of 100 fs pulsed beam in GaAs dispersive slab waveguide. 
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The figure shows that iterative solvers of the TD-BPM require less computational time than 

that of the FDTD and the MW-FDTD. At z = 300 µm the “CGS” is around 22 times faster 

than the FDTD. Figure 6.16 shows the computer memory requirement by the time domain 

methods for the above two cases. The figures show that the proportionate increase of the 

memory consumption with the device size in the case of the FDTD is higher than the 

constant memory consumption of the TD-BPM using the direct or the iterative techniques. 

This is due to the fact that the TD-BPM is a unidirectional technique that follows the 

propagation of the pulse and thus requires less computational resources. 

 

 
Figure 6.15 Computational time of the dispersive FDTD and the dispersive TD-BPM using the direct and the 

iterative solvers for the propagation of 25 fs pulsed beam in dispersive AlGaAs slab waveguide. 
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Figure 6.16 Memory usage by the dispersive FDTD and the dispersive TD-BPM using direct and 

iterative solvers with (a) 25 fs and (b) 100 fs pulsed beam. 
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Notes on the convergence of the dispersive TD-BPM 

 
It has been noticed that the convergence and the accuracy of the dispersive TD-BPM 

is dependent on the time step size ∆t used. Other numerical parameters (e.g., p and ∆z) also 

play a role in the convergence of the dispersive TD-BPM. As ∆t decreases, as expected, the 

accuracy increases. For weakly dispersive material ∆t can be relaxed to relatively large 

values, as compared to the FDTD step size, even for ultra short initial pulse duration. For 

strong dispersive material ∆t can be relaxed if the initial pulse duration is in the short range 

(e.g., 100 fs). Moreover, for ultra short pulse durations, ∆t must be decreased to small values. 

Several numerical experiments showed that the size of ∆t has an impact on the shape of the 

dense matrix T in Eq. 6.14 and as a result the operator matrix Ld. In the range of ∆t ≈ 1.0 fs or 

higher, the matrix T approaches a tri-diagonal matrix with the rest of the elements being very 

small values (e. g. 10-14) where they have little influence on the accuracy of the method and 

hence can be eliminated. One such numerical experiment is shown in Figure 6.17. In this 

experiment ∆t = 2.5 fs was used and the field amplitude at z = 50 µm and 100 µm are 

obtained by the TD-BPM using both the full exact matrix and the manipulated tridiagonal 

approximate matrix of the dispersive matrix operator. The results are compared with that of 

the FDTD in terms of percentage difference of field amplitudes. 
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It is clear from the figure that the percentage difference does not change much, if the 

approximate tridiagonal matrix of the dispersive TD-BPM operator is used. It is noted that 

the approximated TD-BPM consumes similar computational resources (time and memory) to 

those of the non-dispersive TD-BPM discussed in chapter 4. In addition, as it is known that 

the dispersive matrix Ld needs to be well conditioned for the convergence of iterative solvers, 

with large ∆t provides faster convergence for these solvers. Therefore, the comparative 

results of the computational time and memory requirements shown earlier will be different 

with faster convergence and less memory requirements. On the other hand, for ultrashort 

pulse duration in strongly dispersive material sufficient discretized points are necessary to 

define the fast variations of the pulse profile. One possible solution to relax the time step size 

 
Figure 6.17 The effect on the percentage difference between the FDTD and the TD-BPM using the exact 

operator (a and c) and an approximated operator (b and d) at z = 50 µm (a and b) and at at z = 
100 µm (c and d) for the propagation of a pulsed beam of 100 fs temporal waist inside a 
GaAs dispersive slab waveguide. 

. 
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∆t for ultra short pulses is to use higher order approximation of the finite difference method. 

If ∆t is relaxed, then the dense matrix may produce banded dispersive matrix (e.g., 

tridiagonal or pentadiagonal) after eliminating small values, as discussed before, hence the 

efficiency can be improved. 

6.8 Conclusion 
 

Detailed mathematical formulations and numerical implementations of the TD-BPM 

have been shown for different dispersive devices. The chapter also shows the formulation 

and the implementation of the FDTD to study dispersive devices. One dimensional ultra short 

pulse propagation in dispersive media has been implemented by the TD-BPM and verified by 

the FDTD and the MoL. Excellent comparative results were observed. Short and ultra short 

pulsed beam propagation inside homogeneous dispersive medium, dispersive slab waveguide 

were also implemented and the results have been verified by the FDTD. The performance of 

the TD-BPM in terms of various accuracy measuring quantities has been analyzed rigorously 

with the variation of different numerical parameters, such as the time step size ∆t, the 

propagation step size ∆z and the Padé order p. Analysis shows that the TD-BPM is very 

stable, accurate and efficient technique for the analysis of short as well as ultra short 

propagation in dispersive material. Some results indicate that the time step size ∆t for the 

TD-BPM is much larger than that needed for the FDTD (e.g., 23 - 123 times). Similar 

observations has been noticed for the propagation step size ∆z. Propagation of ultra short 

optical pulses in a strongly dispersive material requires smaller time step sizes and higher 

Padé orders for convergence. For small values of ∆t, the TD-BPM becomes less efficient 

compared to the FDTD due to the size of the main matrix of the operator. It has been noticed 
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that as ∆t increases to the range of 1 fs the dispersive matrix Ld becomes similar to its 

corresponding non-dispersive one, and hence the dispersive TD-BPM technique shows 

similar efficiency to that of the non-dispersive TD-BPM discussed in chapter 4. 
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CHAPTER 7 

 

 

 

DISPERSIVE DIRECTIONAL  

COUPLER ANALYSIS 

 

 

 

7.1 Introduction 
 

The Optical Directional Coupler (ODC) forms the basis for many important elements 

used in photonic structures, such as optical power splitters, nonlinear optical switches and 

WDM filter devices. The basic structure of the ODC is placing two cores in close proximity 

so that the electric field can be coupled from one core to the other. Coupled optical 

waveguide structure shows potential of being used as an all optical switch, which in turn, 

provides the carriers to manage the new and competitive dense wavelength division 

multiplexing (DWDM) networks. This type of network eventually provides the increasing 

demand for high bandwidth. In recent years considerable research work has been conducted 

on twin core fiber for switching applications [1-3]. The operation of CW of the ODC is well 

documented in the literature. Under special conditions, when CW light is launched in one 

waveguide it can completely couple into the other waveguide. The same light couples back to 
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the original waveguide using the same mechanism as long as they are close to each other. 

Complete power exchange is only possible between modes with equal propagation constants 

for each waveguide in isolation. This condition is called phase matching or “synchronism”. 

In other words, all guided modes (for more than one) of two identical waveguides are 

mutually in phase, and therefore can couple to each other at all wavelengths. Non-identical 

waveguides can have coupling between modes whose phases are accidentally synchronized 

for certain wavelengths [4]. On the other hand, few studies have touched on the analysis of 

short pulse propagation in the ODC and little is known for pulse propagation in dispersive 

ODC. One of the underlying challenges behind the design of coupled waveguide structures is 

intermodal dispersion [5] which causes pulse spreading and even splitting of the pulse and as 

a result a loss of information [6]. This is the dispersion that takes place between the two 

dominant modes of the directional coupler structure. This intermodal dispersion is severe for 

the propagation of short and ultrashort pulses which have broad frequency spectra. The 

material dispersion adds another challenge in designing ODC, as the dispersive material has 

varied refractive indices over a large frequency spectrum for short pulses. Thus, it is essential 

to distinguish between the effect of material dispersion and intermodal dispersion in the case 

of short pulse propagation. One may recognize the complicated behavior of pulse 

propagation in dispersive directional coupler devices, due to the involvement of several 

variables in the mechanism of power exchange between the two waveguides. This behavior is 

completely different from the usual CW case. Therefore, it requires reliable and accurate 

numerical tools to investigate the complicated phenomenon of short pulse propagation in 

dispersive directional coupler devices. In this chapter, we use the previously discussed 
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numerical tools (the FDTD and the TD-BPM) for the analysis of short and ultrashort pulse 

propagation in a dispersive directional coupler. 

 

7.2 Background 
 

It has been predicted in 1995 [4] that the intermodal dispersion can break up short 

pulses launched in directional couplers. Later on, this break up phenomenon has been 

observed experimentally [7]. When a pulse is launched in one waveguide of the directional 

coupler structure, the two normal modes (supermodes) of the structure are excited equally at 

the input. If the initial pulse duration is smaller than the group delay difference along the 

length of interaction between the two supermodes, the two modes walk away from each other 

over propagation length of the coupler and they exit from each waveguide output as two 

splitted pulses of equal amplitudes. The total input power will be divided equally on the four 

pulses and the power exchange mechanism stops. [8]. Coupled mode theory can be used to 

describe the interaction of pulse propagation in non-dispersive directional coupler using an 

approximate one-dimensional approach. Considering weakly coupled waveguides, the 

electric field can be written as a sum of the fields in each waveguides as 

𝐸(𝑥,𝑦, 𝑧, 𝑡) = 𝐴1(𝑧, 𝑡)𝐵1(𝑥, 𝑦)𝑒−𝑗(𝜔0𝑡−𝛽0𝑧) + 

                                                             𝐴2(𝑧, 𝑡)𝐵2(𝑥, 𝑦)𝑒−𝑗(𝜔0𝑡−𝛽0𝑧)          (7.1) 

where z is the direction of propagation, A1 and A2 are the  slowly varying envelopes of the 

modes of the waveguides in separation, B1 and B2 are the transverse spatial field profiles for 

each waveguides, β0 is the propagation constant and ω0 is the central carrier frequency of the 

pulse. The two coupled equations can be formulated as [7]  
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where the propagation constant β, when expanded around the carrier frequency ω0 gives 
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where vg and k″ are the group velocity and group velocity dispersion, respectively. The group 

velocity dispersion (GVD) k″ is responsible for pulse broadening [9 - 12]. When a pulse is 

launched in an optical waveguide, it behaves differently for the sign of k″. For normal 

dispersion regimes (wavelengths where k″>0) high frequency component of optical pulse 

(blue shifted) travel slower than the low frequency component (red shifted). Opposite action 

happens for the anomalous dispersion regime (wavelengths where k″<0). Similarly, the 

coupling coefficient C that depends on the overlap between the spatial fields B1 and B2, can 

be expanded around the carrier frequency ω0 as 

   ( ) ( ) ( ) ( ) ( )
2

0 0 02
C C C C

ω
ω ω ω ω ω

∆
′ ′′= + ∆ +             (7.5) 

Where 𝐶′ = 𝑑𝐶
𝑑𝜔

 and 𝐶" = 𝑑2𝐶
𝑑𝜔2 are respectively the first order and the second order 

coupling coefficient dispersion terms. Using the normal mode expansion [8] we can write 

    𝐶 = 𝛽𝑒−𝛽𝑜

2
                       (7.6) 

and     𝛽 = 𝛽𝑒+𝛽𝑜

2
                      (7.7) 
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where βe and βo are the propagation constants of the even and the odd modes of the structure, 

respectively. The intermodal dispersion is given as  

    𝛿𝜏 = 𝜏𝑒 − 𝜏𝑜 = 2 𝑑𝐶
𝑑𝜔                      (7.8) 

This is actually the group delay difference between the two modes per unit length. 

7.3 Numerical Implementations 
 

In this section, both TD techniques of the TD-BPM and the FDTD, discussed in the 

previous chapters, have been used to analyze the propagation of pulsed optical beams in a 

dispersive directional coupler. The objective of this analysis is to study the effect of material 

dispersion on the mechanism of coupling when excited by short and ultra short pulses. Figure 

7.1 shows the geometry of the dispersive directional coupler structure with a separation of s. The 

directional coupler shown consists of both dispersive and non-dispersive layers. 
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The core refractive index of the device having a dispersive material is approximated 

by the Lorentz model surrounded by non-dispersive materials with a refractive index of 3.4. 

The Lorentz model approximates the dispersive property of GaAs, used in chapter 6, with ε∞ 

= 1.0, εs = 11.011, ω0 = 3.0138425 × 1015 rad/s and δ=5.0×1011 s-1. It is to be noticed that 

these parameters are the same parameters used to test the performance of the TD-BPM and 

the FDTD of chapter 6. As it has been noticed before that the dispersive parameters of this 

waveguide suggests that it has relatively strong dispersion relation at the center-carrier 

wavelength. The operating carrier wavelength is λc = 1.55 µm. In all of the simulation results 

that follows again a Gaussian pulsed beam in time of the form 

( ) ( ) ( )2 2
0, 0, expx z x τψ τ ψ τ σ= = −  is launched as an input field, excited at z = 0 in one of 

the waveguides, while a zero field is assumed at the second waveguide. Here ( )0 xψ  is the 

spatial profile in the x-direction taken as the TE0 mode of a single waveguide of the 

x 
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Figure 7.1 The Dispersive Directional Coupler Geometry 
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directional coupler structure. Each waveguide is single mode at the central carrier 

wavelength λc. 

 

 

Figure 7.2 shows the evolution of the pulsed beam in the spatio-temporal window of 

the TD-BPM for a 50 fs initial pulse width at several propagation distances. The input (not 

shown here) has been launched in the upper waveguide. The figure shows the exchange of 

power of the pulsed beam between the two waveguides along the propagation direction. The 

figure also shows the pulse splits into two pulses in the input waveguide as can be seen in 

Figure 7.2 (d). Figure 7.3 and 7.4 show the time profiles of the propagated pulsed beam 

inside the dispersive directional coupler for two different initial pulse widths of 25 fs and 120 

 
Figure 7.2 Evolution of the pulsed optical beam with an initial pulse width of 50 fs inside the dispersive 

directional-coupler structure of Figure 7.1 at several distances along the longitudinal direction. 
The horizontal lines show the position of the two waveguide boundaries. 
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fs respectively, using the TD-BPM and the FDTD techniques. The profiles shown are taken 

at the middle of the two waveguides indicated by WG1 (where the input was launched) and 

WG2 (the other waveguide). The figures show the time profiles of the pulse at two distances 

of z = Lc/2 and Lc =  57.27 μm, where Lc is the CW coupling length. The numerical 

parameters used for these simulation results are: ∆z = λ/80 = 0.019375 µm and ∆t = ∆z /(2c0) 

to meet the CFL criteria for the FDTD. The TD-BPM parameters are Δz = 0.05 μm, p = 8 and 

Δt = 0.40 fs and 1.8 fs for σt0 = 25 fs and 120 fs respectively, while Δx = 0.1 μm for both 

techniques.   

 

  
Figure 7.3  Temporal profiles at two distances along the z direction in the two waveguides of a directional 

coupler for an initial pulse-width of 25 fs using the TD-BPM and the FDTD. WG1 is the waveguide 
where the input has been launched. 
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Comparison between the two figures show that the interaction of ultra short pulses of 25 fs 

range  with the dispersive material gives rise to attenuated pulse energy in addition to pulse 

spread and hence the pulse splits as shown in Figure 7.3(b). Short pulses in the range of 120 

fs has little change in comparison to the input at this distance compared to the ultra short 

pulses in the range of 25 fs as the power exchange takes place along the directional coupler 

structure. The effect on short pulses is seen to take place at longer distances than those of 

ultra short ones as will be discussed in detail in the following section. 

 

 

 

 
Figure 7.4 The same as of Figure 7.3 but for an input beam of 120 fs temporal pulse-width. 
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7.4 Material and Intermodal Dispersions Analysis 
 

To understand the complicated behavior of the interaction of ultra short pulse 

propagation inside a dispersive directional coupler, we compare the propagation of different 

initial pulse widths over a distance of several coupling lengths. The distance of z = 286.3 µm 

is around five times the coupling length of the CW operation of the directional coupler. In 

addition, several numerical experiments have been performed to distinguish between the 

material dispersion effects from those of the intermodal dispersion effects. Figure 7.5, 7.6 

and 7.7 show the normalized power versus the propagation distances z of the two waveguides 

of the directional coupler for CW and for different initial pulse-widths. Curves starting with a 

normalized power of one belong to the upper half of the computational window with respect 

to x indicated by WG1, where the input was launched. Curves starting with a zero normalized 

power belong to the lower half of the computational window that contains the unexcited 

waveguide indicated by WG2. Figure 7.5 shows the normalized power inside the waveguides 

for the 120 fs initial pulse width inside dispersive and non-dispersive DC structures. The 

corresponding CW normalized power of the non-dispersive DC structure has been included 

in the figure as a reference. 
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For this case, material dispersion has a strong effect on the behavior of power exchange, 

especially at large distances. The effect of material dispersion on the propagation of 120 fs 

pulse can be seen very clearly in the figure. Figure 7.6 shows a comparison between the 

dispersive DC (indicated by D) and the non-dispersive (indicated by ND) DC, when the 

material dispersion of two waveguides is turned-off for an input of 50 fs initial pulse width. 

 
 

Figure 7.5 Normalized power inside the upper and lower waveguides of the directional coupler along the 
direction of propagation for CW and 120 fs initial pulse-width. Solid lines belong to the upper 
waveguide (WG1) where the input was launched and dashed lines belong to the lower waveguide 
(WG2). D means dispersive and ND means non-dispersive. 
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The figure shows clearly the effect of material dispersion on the propagation of 50 fs pulse. 

The amount of power exchange between the two waveguides is seen to decrease along the 

direction of propagation where the reduction for the dispersive case is much larger than that 

of the non-dispersive case. It is to be noted that the reduction of power exchange is also 

accompanied by a reduction of power loss in the intermodal dispersion case. Figure 7.7 

shows the same simulation as in Figure 7.6, but for the shorter pulse width of 25 fs. Similar 

conclusions can be drawn from Figure 7.7 as those of 50 fs, but with more reduction in 

power exchange between the two waveguides. 

 
 

Figure 7.6 The same as in Figure 7.5 but for an initial pulse width of 50 fs. 
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As we have discussed in the previous chapter, material dispersion causes group velocity 

dispersion and losses in the material. To study the effect of losses due to dispersive material, 

Figures 7.8 and 7.9 show a comparison between the normalized power for dispersive material 

in the case of δ = 5.0 × 1011 s-1(as given before) and when δ = 0 (zero loss) for initial pulse 

widths of 50 fs and 25 fs of Figures 7.6 and 7.7, respectively.  At z = 286.3 µm, there is 

roughly 40% loss in energy within the device as can be seen from the figures.  

 
 

Figure 7.7 The same as in Figure 7.6 but for an initial pulse width of 25 fs. 
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Comparison between Figures 7.8 and 7.9 along with the previous analysis of Figure 7.5, 

leads us to conclude that the energy loss at this central carrier wavelength is not affected 

greatly by the initial pulse width duration. This is due to the fact that the central carrier 

wavelength of the pulsed beams are relatively far from the resonance of the imaginary part of 

the dielectric constant of GaAs, as can be seen in Figure 5.3 (b)  and (d). Although the central 

carrier wavelength is far from resonance, this has a large impact on the propagation of the 

pulse in the dispersive DC structure. 

 

 
Figure 7.8 The same as in Figure 7.6, but for δ = 0. 
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7.5 Pulse Spread Due to Material and Intermodal 
Dispersions 

 
It is well known that as the initial pulse duration decreases the frequency content 

increases. Thus, an ultra short pulse in the range of 25 fs which contains a wide band of 

frequencies around the central carrier frequency, where the CW directional coupler was 

designed with. This central frequency is no longer the only dominant frequency in the 

operation of the structure at this pulse duration scale. The expanded frequency content is 

expected to have a dramatic effect on the operation of the normal directional coupler. On the 

other hand, these effects and interactions are very involved and difficult to predict using 

analytical based techniques, such as the coupled mode theory or the normal mode theory. In 

order to assess and study the effect of an increase in the frequency content of the pulse and to 

  
Figure 7.9 The same as in Figure 7.7, but for δ = 0. 
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measure the effect of material dispersion, we examine the pulse spread for both the 

dispersive and the non-dispersive cases of the two waveguides. This means that the first case 

considers the presence of material dispersion while the second case considers the absence of 

it. We measure the change in the width of the pulse as a function of propagation distance. 

Figure 7.10 shows the relative pulse width increase, in percent with respect to the input pulse 

duration, in both waveguides for non-dispersive and dispersive structures with 25 fs and 50 fs 

initial pulse widths considered before.  

 

The upper two plots are almost similar to those of Figure 8 in [13], which uses the non-

paraxial TD-BPM in a non-dispersive DC structure. Generally the figure shows two 

observations. First, it can be noticed that as the initial pulse duration decreases, the relative 

 
Figure 7.10 Relative pulse width increase in percent for the propagation of 50 fs and 25 fs pulses in dispersive 

and non-dispersive directional couplers. 
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pulse spread increases. The second is the oscillatory behavior of the relative pulse change in 

both waveguides. One has to notice that waveguide dispersion is small compared to other 

dispersion effects presented here. Comparison between the dispersive and the non-dispersive 

cases gives a clear indication of the effect of material dispersion on the pulse spread during 

propagation. For 50 fs initial pulse width material dispersion produced 3.5 times the relative 

increase in pulse spread compared to the non-dispersive case at z = 286.3 µm. For the shorter 

pulse of initial pulse width of 25 fs, the relative increase of pulse spread is double this 

number. For the dispersive case with a pulse width of 25 fs a large pulse spread up to around 

600% within 5Lc is predicted. 

 

Using Fast Fourier Transform (FFT) to examine the frequency content of pulses gives a 

different perspective and information compared to the time domain. Figure 7.11 and 7.12  

show the frequency spectrum of the input temporal pulse of 25 fs and 50 fs launched at the 

1st waveguide along with that of the output temporal pulse of the two dispersive and non-

dispersive waveguides of the DC at z = 5Lc = 286.3 µm. General observation show that the 

dominant frequencies launched at the input have changed positions during propagation, with 

the creation of new dominant frequencies of two peaks and sometimes three peaks as seen in 

Figure 7.11 (d), for example. This splits and the interaction of several dominant frequencies 

during the course of propagation is the main cause of pulse spread and pulse breakup. 

Comparison between Figure 7.2 (d) (pulse profile at z = 286.3 µm) with its corresponding 

fourier spectrum in Figure 7.12 (d), show that the two peaks in WG1 belongs to the two 

pulses and the single peak in WG2 belongs to the single pulse. 
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It appears that the existence of material dispersion accelerates the creation of new dominant 

frequencies; hence it results in further pulse spread compared to the pulse spread due to 

intermodal dispersion alone. 

 

 
Figure 7.11 Frequency Spectrum of the input of 25 fs temporal pulse and the pulsed beams of a GaAs 

directional coupler having non-dispersive medium (ND) and Lorentz dispersive medium at z 
= 5Lc = 286.3 µm. 
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7.6 Conclusion 
 

In this chapter we employed the time domain techniques described in the previous 

chapters to study the propagation of short and ultra short pulsed optical beams inside a 

dispersive directional coupler. For short optical pulse durations, spatio-temporal coupling 

effect, which increases with the decrease of pulse width, has a profound impact on the 

interaction of pulses with the material and the structure. It has been observed that the 

existence of material dispersion gives rise to pulse spread in addition to the pulse spread due 

to intermodal dispersion. The power exchange mechanism between the two waveguides was 

seen to depart drastically from the usual CW. The study in this chapter is concentrated on the 

differences between the existence of material dispersion and the absence of it for the purpose 

 
 

Figure 7.12 The same as in Figure 7.11 with temporal pulse of 50 fs. 
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of quantifying the effect of dispersion in a guided structure. In this study we showed and 

calculated the exact amount of pulse spread due to each dispersive effect separately. As the 

initial pulse decreases, the pulse spread in a dispersive DC structure increases and eventually 

the pulse breaks up. The existence of material dispersion accelerates the pulse spread 

profoundly. The mechanism of splitting pulses may cause distortion in certain applications, 

but may lead to a desirable effect for other applications. 
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CHAPTER 8 

 

 

 

CONCLUSION AND  

FUTURE WORK PLAN 

 
 
 

8.1 Conclusion 
 
 

The work done in this thesis is intended to study the interaction of short and ultra 

short pulses with dispersive material using the non-paraxial TD-BPM. A systematic 

modeling of the method has been shown starting from the CW to time domain and from non-

dispersive to dispersive applications. Alongside this objective, the FDTD has been also 

formulated and implemented in non-dispersive and dispersive devices of different 

dimensions of 1-D and 2-D. At each stage, results obtained by the TD-BPM have been 

compared with its FDTD counterparts. Prior to the implementation of the method in a 

dispersive material, it was tested in terms of its accuracy, stability, convergence and 

performance for non-dispersive optical devices. It was observed that the developed TD-BPM 

method is unconditionally stable, accurate and converges even when large time steps (∆t) and 

large propagation steps (∆z) are used. In addition, the method was implemented along with 

several iterative solvers to speed up the execution time of the technique. It was shown that 
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the performance of the method, in terms of computational time and computer memory usage, 

using both the direct and iterative solver is much better than the FDTD when used as a 

unidirectional technique.  

 

Detailed mathematical modeling and implementations to the non-paraxial TD-BPM have 

been performed for short and ultra short pulse propagation inside a dispersive 1-D and 2-D 

homogeneous medium and an optical slab waveguide. The graphical and quantitative 

analyses were performed by comparing the results obtained by the method with its FDTD 

counterparts. It was observed again that the method is free from CFL criteria, very stable and 

accurate in modeling short and ultra short pulse propagation in dispersive structures. High 

accuracy with this method can be achieved requiring very low computational cost and 

resources for short pulse interaction in highly dispersive and ultra short pulse interaction in 

weakly dispersive materials. Applications of ultra short pulse propagation in highly 

dispersive material can also be performed using this technique, but requires higher 

computational cost and resources. It has been also noticed that if the temporal step size is 

relaxed to the order of ≈ 1 fs, then the matrix that contains the dispersive information in the 

operator of the TD-BPM can be approximated as a tridiagonal matrix by eliminating other 

small coefficients without jeopardizing accuracy. As a result, the non-paraxial dispersive TD-

BPM efficiency becomes similar to its non-dispersive counterpart. 

 

Directional couplers consisting of dispersive and non-dispersive material have been analyzed 

fully using the time domain techniques for short and ultra short pulse interaction. A non-

paraxial TD-BPM has been developed for analyzing the coupling behavior of this device in 
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the time domain. Complicated effects, such as pulse spread, distortion and splitting were 

calculated accurately along the device direction. Detailed analyses were performed to 

differentiate the effect due to intermodal dispersion from these due to material dispersion. It 

was observed that for ultra short pulse interaction inside a strongly dispersive GaAs DC 

causes very large pulse spread, which eventually results in pulse splitting. It was also found 

that material dispersion has a strong effect on the pulse spread phenomenon as compared to 

the intermodal dispersion of the directional coupler. 

 

8.2 Future Work Plan 
 

The TD-BPM is understood to be a promising implicit numerical tool for analyzing 

optical devices. So far the applicability of this method is tested in non-dispersive optical 

devices. In this thesis the applicability of the method in dispersive optical devices of Lorentz 

profile has been tested. The introduction of an iterative solver has made the method robust 

and more efficient. The analysis of this method in this thesis has just started to explore a 

number of interesting practical problems. Here is a limited list of possible future work. 

1. Expanding the FD approximation of the time derivatives using higher orders, e.g., 

fourth order, may lead to further relaxed time step sizes. As it has been discussed in 

chapter 6, that when ∆t approaches 1 fs most of the elements of the dense dispersive 

matrix become very small and can be neglected with little effects on accuracy of the 

method. The main operator matrix will become pentadiagonal, and hence makes the 

efficiency of the dispersive TD-BPM comparable to the non-dispersive counterpart. 
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2. There are a number of techniques in the literature depend on the idea of the split step 

of the main operator. Splitting the time variation from the spatial variation in the 

operator will have again a great impact on the efficiency of the method [1]. 

3. The work in this thesis can be easily extended to other important dispersive models of 

Debye, Drude and Cole-Cole. 

4. The method should be useful to study a number of problems in surface plasmons and 

metamaterials applications [2 - 4]. 

5. The extension of the TD-BPM to non-linear material of χ(2)and χ(3) to study 

propagation of short and ultra short pulsed optical beams in such materials would be 

very useful. This would be also useful to analyze long distance temporal soliton 

interactions. 

6. If the efficiency of the method improves through split-step techniques discussed in (2) 

above, extension to 3-D would be another interesting implementation that helps to 

understand a number of complicated 3-D problems. 

7. The extension of the method to bidirectional problems to account for reflections 

would again be very interesting in many applications such as Y-junctions, Bragg 

gratings and photonic crystals. 
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APPENDIX 
 

Algorithms of Iterative Solvers 
 

A.1 Conjugate Gradient Squared (CGS)  
 

This method was developed by Sonneveld in 1984 [1] to gain a faster convergence 

than the biconjugate gradient (BCG). The algorithm of this method can be summarized as   

 

The iteration starts with the initial guess x0 of the unknown x, computes few auxiliary 

vectors along with the residual vector r and continues until r reaches a tolerance. The 

Euclidean inner product mentioned in step 4 and 8 can be represented in matrix notation as 

( ), Hx y y x= , where yH is the Hermitian matrix of y. This algorithm works quite well in 

many cases. But very high variations of the residual vectors often cause the residual norms 

computed from the result of line 7 of the above algorithm to become inaccurate. 

 

1. Compute r0 := b – Ax0, *
0r  arbitrary 

2. Set p0 := u0 := r0 
3. for j = 1, 2, 3,…Until Convergence Do 
4. ( ) ( )* *

0 0, ,j j jr r Ap rα =  

5. j j j jq u Apα= −  

6. ( )1j j j j jx x u qα+ = + +  

7. ( )1j j j j jr r A u qα+ = − +  

8. ( ) ( )* *
1 0 0, ,i j jr r r rβ +=  

9. 1 1j j j ju r qβ+ += +  

10. ( )1 1j j j j j jp u q pβ β+ += + +  
11. EndDo 
 

Figure A.1 Algorithm of Conjugate Gradient Squared (CGS) 
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A.2 Least Square (lsqr)  
 

This method solves the equivalent linear system T TA Ax A b=  to overcome the 

nonsymmetric linear system [2]. This method uses the conjugate gradient (CG) algorithm to 

solve the equivalent linear system. The algorithm is of this method is as 

   

In this algorithm zi is the residual vector which has to be minimized. In step 4 and 8, 

αi and βi is calculated using the vector norm defined as 
1

q
n pq p

ip
i

x x
=

 =  
 
∑ . This algorithm is 

characterized by slow convergence to problems arising from the partial differential equations 

(PDEs). Preconditioning should improve performance somewhat, but normal equations are 

also difficult to precondition. 

 
 
 
 
 

1. Compute r0 = b – Ax0, z0 = ATr0, p0 = z0 
2. for i = 1, 2, 3,…Until Convergence Do 
3. iw Ap=  
4. 2 2

2i i iz wα =  
5. 1i i i ix x pα+ = +  
6. 1i i i ir r wα+ = −  
7. 1 1

T
i iz A r+ +=  

8. 2 2
1 2 2i i iz zβ +=  

9. 1 1i i i ip z pβ+ += +  
10. EndDo 

 
Figure A.2 Algorithm of Least Square (lsqr) 
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A.3 Quasi-Minimal Residual (QMR)  
 

This method is based on the projection processes onto Krylov subspaces, which are 

considered currently to be among the most important iterative processes [3 - 4]. The main 

idea behind this algorithm is to solve the reduced tridiagonal system in a least squares sense. 

Since the constructed basis for the Krylov subspace is bi-orthogonal, the obtained solution is 

viewed as a quasi-minimal residual solution, which explains the name. Additionally, QMR 

uses look-ahead techniques to avoid breakdowns in the underlying Lanczos process, which 

makes it robust. The algorithm is of this method is as 

 

1. Compute r0 = b – Ax0, β1 = δ1 = 0 1 0 2: rγ = , 1 1 0 1w v r γ= = , 0 0 0w v= =  

2. Until Convergence Do 
3. For j = 1,2,….m, Do  
4. ( ),j j jAv wα = , 

5. 1 1ˆ j j j j j jv Av v vα β+ −= − −  

6. 1 1ˆ T
j j j j j jw A w w wα δ+ −= − −  

7. ( ) 1 2

1 1 1ˆ ˆ,j j jv wδ + + +=  

8. ( )1 1 1 1ˆ ˆ,j j j jv wβ δ+ + + += , If δj+1 = 0 Stop 

9. 1 1 1ˆj j jw w β+ + +=  
10. 1 1 1ˆj j jv v δ+ + +=  
11. EndDo 
12. Formulate the tridiagonal matrix Tm 
13. Compute ( )1

1m my T eβ−=  and  0m m mx x V y= +  

14. Compute the quasi residual norm ( ) 1 2mJ y e T yβ= −  
15. If J(y) is small enough then stop 
16. EndDo 

 
 

Figure A.3 Algorithm of Quasi-Minimal Residual (QMR) 
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The Lanczos vectors V, W are formed using the generated elements v1, …, vm, w1,… 

wm that are used in step 13. The tri-diagonal matrix in step in step 12 is formulated using the 

elements generated in step 4,7 and 8 as 

1 2

2 2 3

1 1

m

m m m

m m

T

α β
δ α β

δ α β
δ α

− −

 
 
 
 =
 
 
  

            (A.1) 

The (m+1) × m sized tridiagonal matrix mT  is formed using  

    m
m T

m

T
T

e
 

=  
 

               (A.2) 

where T
me  is the transpose of the m-th c olumn of the (m+1) × m identity matrix. 
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