6 research outputs found

    Design of risk assessment methodology for IT/OT systems : Employment of online security catalogues in the risk assessment process

    Get PDF
    The revolution brought about with the transition from Industry 1.0 to 4.0 has expanded the cyber threats from Information Technology (IT) to Operational Technology (OT) systems. However, unlike IT systems, identifying the relevant threats in OT is more complex as penetration testing applications highly restrict OT availability. The complexity is enhanced by the significant amount of information available in online security catalogues, like Common Weakness Enumeration, Common Vulnerabilities and Exposures and Common Attack Pattern Enumeration and Classification, and the incomplete organisation of their relationships. These issues hinder the identification of relevant threats during risk assessment of OT systems. In this thesis, a methodology is proposed to reduce the aforementioned complexities and improve relationships among online security catalogues to identify the cybersecurity risk of IT/OT systems. The weaknesses, vulnerabilities and attack patterns stored in the online catalogues are extracted and categorised by mapping their potential mitigations to their security requirements, which are introduced on security standards that the system should comply with, like the ISA/IEC 62443. The system's assets are connected to the potential threats through the security requirements, which, combined with the relationships established among the catalogues, offer the basis for graphical representation of the results by employing tree-shaped graphical models. The methodology is tested on the components of an Information and Communication Technology system, whose results verify the simplification of the threat identification process but highlight the need for an in-depth understanding of the system. Hence, the methodology offers a significant basis on which further work can be applied to standardise the risk assessment process of IT/OT systems

    A software development framework for secure microservices

    Get PDF
    Abstract: The software development community has seen the proliferation of a new style of building applications based on small and specialized autonomous units of computation logic called microservices. Microservices collaborate by sending light-weight messages to automate a business task. These microservices are independently deployable with arbitrary schedules, allowing enterprises to quickly create new sets of business capabilities in response to changing business requirements. It is expected that the use of microservices will become the default style of building software applications by the year 2023, with the microservices’ market projected to reach thirtytwo billion United States of American dollars. The adoption of microservices presents new security challenges due to the way the units of computation logic are designed, deployed and maintained. The decomposition of an application into small independent units increases the attack surface, and makes it a challenge to secure and control network traffic for each unit. These new security challenges cannot be addressed by traditional security strategies. Software engineers developing microservices are facing growing pressure to build secure microservices to ensure the security of business information assets and guarantee business continuity. The research conducted in this thesis proposes a software development framework that software engineers can use to build secure microservices. The framework defines artefacts, development and maintenance activities together with methods and techniques that software engineers can use to ensure that microservices are developed from the ground up to be secure. The goal of the framework is to ensure that microservices are designed and built to be able to detect, react, respond and recover from attacks during day-to-day operations. To prove the capability of the framework, a microservices-based application is developed using the proposed software development framework as part of an experiment to determine its effectiveness. These results, together with a comparative and quality review of the framework indicate that the software development framework can be effectively used to develop secure microservices.Ph.D. (Computer Science

    Enhancing Trust –A Unified Meta-Model for Software Security Vulnerability Analysis

    Get PDF
    Over the last decade, a globalization of the software industry has taken place which has facilitated the sharing and reuse of code across existing project boundaries. At the same time, such global reuse also introduces new challenges to the Software Engineering community, with not only code implementation being shared across systems but also any vulnerabilities it is exposed to as well. Hence, vulnerabilities found in APIs no longer affect only individual projects but instead might spread across projects and even global software ecosystem borders. Tracing such vulnerabilities on a global scale becomes an inherently difficult task, with many of the resources required for the analysis not only growing at unprecedented rates but also being spread across heterogeneous resources. Software developers are struggling to identify and locate the required data to take full advantage of these resources. The Semantic Web and its supporting technology stack have been widely promoted to model, integrate, and support interoperability among heterogeneous data sources. This dissertation introduces four major contributions to address these challenges: (1) It provides a literature review of the use of software vulnerabilities databases (SVDBs) in the Software Engineering community. (2) Based on findings from this literature review, we present SEVONT, a Semantic Web based modeling approach to support a formal and semi-automated approach for unifying vulnerability information resources. SEVONT introduces a multi-layer knowledge model which not only provides a unified knowledge representation, but also captures software vulnerability information at different abstract levels to allow for seamless integration, analysis, and reuse of the modeled knowledge. The modeling approach takes advantage of Formal Concept Analysis (FCA) to guide knowledge engineers in identifying reusable knowledge concepts and modeling them. (3) A Security Vulnerability Analysis Framework (SV-AF) is introduced, which is an instantiation of the SEVONT knowledge model to support evidence-based vulnerability detection. The framework integrates vulnerability ontologies (and data) with existing Software Engineering ontologies allowing for the use of Semantic Web reasoning services to trace and assess the impact of security vulnerabilities across project boundaries. Several case studies are presented to illustrate the applicability and flexibility of our modelling approach, demonstrating that the presented knowledge modeling approach cannot only unify heterogeneous vulnerability data sources but also enables new types of vulnerability analysis
    corecore