
Enhancing Trust –A Unified Meta-Model for Software Security
Vulnerability Analysis

Sultan Saud Alqahtani

A Thesis
In the Department

of
Computer Science and Software Engineering

Presented in Partial Fulfillment of the Requirements
For the Degree of

Doctor of Philosophy (Software Engineering) at
Concordia University

Montreal, Quebec, Canada

July 2018

© Sultan Saud Alqahtani, 2018

ii

CONCORDIA UNIVERSITY

School of Graduate Studies

This is to certify that the thesis prepared

By: Sultan Saud Alqahtani

Entitled: Enhancing Trust – A Unified Meta-Model for Software Security
Vulnerability Analysis

and submitted in partial fulfillment of the requirements for the degree of

Doctor of Philosophy (Computer Science)

complies with the regulations of this University and meets the accepted standards with
respect to originality and quality.

Signed by the final examining committee:

___ Chair
Dr. Rolf Wüthrich
___ External Examiner
Dr. Ettore Merlo

___ Examiner
Dr. Wahab Hamou-Lhadj

___ Examiner
Dr. Todd Eavis

___ Examiner
Dr. Nikolaos Tsantalis

___ Supervisor
Dr. Juergen Rilling

Approved by __
 Dr. Volker Haarslev, Graduate Program Director

30 August 2018 __
 Dr. Amir Asif, Dean

 Faculty of Engineering and Computer Science

iii

Abstract

Enhancing Trust – A Unified Meta-Model for Software Security Vulnerability Analysis

Sultan Saud Alqahtani, Ph.D.

Concordia University, 2018

 Over the last decade, a globalization of the software industry has taken place which has

facilitated the sharing and reuse of code across existing project boundaries. At the same time,

such global reuse also introduces new challenges to the Software Engineering community, with

not only code implementation being shared across systems but also any vulnerabilities it is

exposed to as well. Hence, vulnerabilities found in APIs no longer affect only individual projects

but instead might spread across projects and even global software ecosystem borders. Tracing

such vulnerabilities on a global scale becomes an inherently difficult task, with many of the

resources required for the analysis not only growing at unprecedented rates but also being spread

across heterogeneous resources. Software developers are struggling to identify and locate the

required data to take full advantage of these resources. The Semantic Web and its supporting

technology stack have been widely promoted to model, integrate, and support interoperability

among heterogeneous data sources.

This dissertation introduces four major contributions to address these challenges: (1) It

provides a literature review of the use of software vulnerabilities databases (SVDBs) in the

Software Engineering community. (2) Based on findings from this literature review, we present

SEVONT, a Semantic Web based modeling approach to support a formal and semi-automated

approach for unifying vulnerability information resources. SEVONT introduces a multi-layer

knowledge model which not only provides a unified knowledge representation, but also captures

software vulnerability information at different abstract levels to allow for seamless integration,

analysis, and reuse of the modeled knowledge. The modeling approach takes advantage of

Formal Concept Analysis (FCA) to guide knowledge engineers in identifying reusable

knowledge concepts and modeling them. (3) A Security Vulnerability Analysis Framework (SV-

AF) is introduced, which is an instantiation of the SEVONT knowledge model to support

iv

evidence-based vulnerability detection. The framework integrates vulnerability ontologies (and

data) with existing Software Engineering ontologies allowing for the use of Semantic Web

reasoning services to trace and assess the impact of security vulnerabilities across project

boundaries.

Several case studies are presented to illustrate the applicability and flexibility of our

modelling approach, demonstrating that the presented knowledge modeling approach cannot

only unify heterogeneous vulnerability data sources but also enables new types of vulnerability

analysis.

v

DEDICATION

To my father’s mother (my grandmother Naffla bint Saad) of blessed memory, who passed away 40 days
before the oral defense of this thesis.

Without her sacrifices, my life as a PhD student would not have been a reality. Unfortunately, she never
got to see me become the first “Dr.” in my family. I hope that she can see me now and that I have her
admiration as she has mine. May her memories be only for a blessing.

To my parents for their endless love, support, and encouragement.

vi

ACKNOWLEDGEMENTS

First and foremost, all praises to Allah for blessing, protecting, and guiding me throughout

my studies. I could never have accomplished this without my faith.

This thesis is dedicated to my grandmother of blessed memory, whom I wish to formally

acknowledge here. My grandmother Nafla bint Saad, the matriarch of our family, passed away

40 days before I completed the oral examination for this thesis. For many months, my grandma

put up with my exceptional stress and busyness as this thesis winded down and she saw much

less of me than usual. Although she was not always skilled at hiding her disappointment when I

was too busy to visit, she took great pride in knowing that soon I would be done with my

doctorate. Grandma, I’m done.

I would like to express my sincere gratitude to my supervisor Prof. Juergen Rilling for his

continuous support, patience, motivation, and immense knowledge. His unique personality as a

supervisor and friend is the main reason behind the success of this research. The research

objectives would not have been achieved without the professional and experienced guidance and

support of my supervisor. I also extend my thanks to members of the examining committee

including Dr. Wahab Hamou-Lhadj, Dr. Todd Eavis, Dr. Nikolaos Tsantalis, and Dr. Ettore

Merlo (External) for critically evaluating my thesis and providing me with invaluable comments

at different stages of my research.

My gratitude also goes to Ambient Software Evolution Group members at Concordia

University: Rabe Abdalkareem, Mostafa Erfani, Ellis Emmanuel Eghan, SayedHassan

Khatoonabadi, Chris Forbes, Parisa Moslehi, and Yasaman Sarlati. Special thanks go to the

incredible Ellis Emmanuel Eghan for his help as well as his time spent working on our first

project (Semantic Global Problem Scanner – SEGPS). Through numerous emails and Skype

conferences, I have been lucky to have a colleague like Ellis who has the ability to tackle big

problems and make them easy to solve. I am forever thankful to my brothers and colleagues

Hamad BinSalleeh and Feras Aljumah, whose friendship made this journey and my stay in

Canada truly memorable. I would also like to acknowledge the financial support from the

Government of Saudi Arabia under the scholarship of Imam Mohammed Bin Saud University,

which enabled me to undertake my PhD studies.

Last but certainly never least, I take this opportunity to express my deepest gratitude to my

first teachers (my dear mother and my father), my brothers, and my sisters for their unconditional

vii

love, prayers, and support. Without them, this journey would not have been possible, and to them

I dedicate this milestone.

viii

Table of Contents

List of Figures .. xii

List of Tables .. xiv

List of Acronyms .. xvi

1 Introduction ... 1

1.1 Problem Statement .. 2

1.2 Thesis Contributions ... 4

1.3 Related Publications .. 6

1.4 Thesis Organization .. 7

2 Background .. 8

2.1 The Semantic Web and Ontologies in a Nutshell ... 8

2.2 Ontologies in Software Engineering ... 12

2.3 Formal Concept Analysis (FCA) .. 13

2.4 Vulnerabilities Databases .. 15

2.5 Vulnerabilities Detection Techniques ... 16

2.6 Chapter Summary ... 19

3 A Study on the Use of Vulnerability Databases in Software Engineering 20

3.1 Introduction ... 20

3.1.1 Definitions ... 21

3.1.2 Goals and Outcomes ... 22

3.2 Literature Search and Selection .. 23

3.2.1 Scope ... 23

3.2.2 Considered Venues and Search Terms .. 24

3.2.3 Search Methodology ... 25

3.2.4 Snowballing .. 25

3.2.5 Article Selection Results ... 26

3.3 Research Trends .. 26

3.3.1 Facet 1: Which SVDBs are Commonly Used in the SE Research Community? 28

3.3.2 Facet 2: Which SE Repositories were Mined Together with SVDBs? 30

3.3.3 Facet 3: Which SE Task was Being Supported Through Using SVDBs? 31

3.4 Common Uses of SVDBs on Software Engineering Tasks .. 33

ix

3.4.1 Empirical Research ... 33

3.4.2 Modeling ... 40

3.4.3 Source Code: Vulnerability Analysis .. 44

3.4.4 Security Testing .. 49

3.4.5 Risk Analysis and Management .. 54

3.4.6 Other Tasks ... 56

3.5 Study Implications .. 56

3.5.1 How the Surveyed Articles Used SVDBs for Different SE Tasks 57

3.5.2 Common Pitfalls when Using SVDBs in Software Engineering Tasks 59

3.6 Threats to Validity .. 61

3.7 Future Research Opportunities .. 62

3.8 Chapter Summary ... 64

4 A Unified Ontology-based Modeling Approach for Software Vulnerabilities Data
Sources ... 65

4.1 Introduction ... 65

4.2 Literature Review .. 67

4.2.1 Software Security Ontologies ... 67

4.2.2 Ontology Development Using FCA .. 74

4.3 Development of an Initial Software sEcurity Vulnerability ONTology (SEVONT) 74

4.4 SEVONT: Knowledge Modeling and Engineering ... 78

4.4.1 Step 1: Vulnerabilities Information Acquisition and Pruning ... 81

4.4.2 Step 2: Initial System-Specific Ontologies ... 83

4.4.3 Step 3: Ontology Mapping Using FCA ... 86

4.4.4 Step 4: Establishing Concept Hierarchy Using FCA Lattice .. 91

4.4.5 Step 5: A Unified Knowledge Representation .. 93

4.5 Use Cases Scenarios ... 95

4.5.1 Use Case Scenario #1: Identifying Inconsistencies in Vulnerability Public Disclosure
Dates 97

4.5.2 Use Case Scenario #2: Enriching Vulnerability Data ... 98

4.6 Chapter Summary ... 100

5 SV-AF – A Security Vulnerability Analysis Framework ... 101

5.1 Introduction ... 101

5.2 A Security Vulnerability Analysis Framework ... 102

x

5.2.1 Knowledge Modeling .. 102

5.2.2 Knowledge Engineering and Integration .. 105

5.2.3 An Example Scenario: Modeling global vulnerability impacts using bi-directional
dependencies ... 106

5.3 Methodology ... 108

5.3.1 Overview ... 108

5.3.2 Fact Extraction and Population ... 108

5.3.3 Ontology Instances Alignment .. 109

5.3.4 Knowledge Inference and Reasoning.. 111

5.4 Case Studies .. 112

5.4.1 Case Studies Data.. 113

5.4.2 Case Studies Results ... 114

5.5 Discussion and Threats to Validity ... 120

5.5.1 Case Study 1 ... 120

5.5.2 Case Study 2 ... 121

5.5.3 Threats to Validity .. 121

5.6 Chapter Summary ... 122

6 Recovering Semantic Traceability Links between APIs and Security Vulnerabilities 123

6.1 Introduction ... 123

6.1.1 Motivating Example .. 125

6.2 Modeling API Vulnerabilities ... 126

6.2.1 Knowledge Modeling .. 127

6.2.2 Ontologies Instances Alignment ... 128

6.2.3 Knowledge Inferencing and Reasoning .. 130

6.3 Case Study .. 133

6.3.1 Case Study: CVE-2015-0227 .. 133

6.3.2 Comparison Against Existing Tools ... 139

6.4 Findings... 141

6.5 Chapter Summary ... 142

7 API Trustworthiness: An Ontological Approach For Software Library Adoption 144

7.1 Introduction ... 144

7.1.1 Motivation Example .. 147

7.2 Background ... 148

xi

7.2.1 External Library Re-Use and its Implications on Project Quality 148

7.2.2 Evolvable Quality Assessment Metamodel (SE-EQUAM) .. 151

7.3 Ontology-based Trustworthiness Assessment Model (OntTAM) ... 154

7.3.1 Artifact Selection .. 155

7.3.2 Model and Model Adjustment .. 156

7.3.3 Measures and Metrics ... 161

7.3.4 Assessment Process... 164

7.4 Case Study .. 167

7.4.1 Study Setup ... 168

7.4.2 Identifying and Measuring Software Security Vulnerabilities .. 169

7.4.3 Identifying and Measuring License Violations ... 172

7.4.4 Identifying and Measuring API Breaking Changes .. 177

7.4.5 Assessment Process... 182

7.5 Chapter Summary ... 185

8 Conclusions and Future Work ... 186

8.1 Summary of the Findings .. 186

8.2 Future Work .. 189

8.2.1 Current Limitations ... 189

8.2.2 Opportunities for Future Research .. 193

Bibliography .. 197

xii

List of Figures

Figure 1: Semantic Web architecture in layers [16].. 9
Figure 2: Description Logics System. ... 10
Figure 3: Concept lattice (Galois lattice) of Table 1. .. 14
Figure 4: Percent of articles per venue. ... 26
Figure 5: Number of articles per year. .. 26
Figure 6: Trends of common vs specialized SVDBs use. The cumulative number of usages indicates the
total number of published articles using SVDBs to the year shown on the x-axis. 28
Figure 7: Top 6 common SVDBs used in our surveyed articles. .. 29
Figure 8: The SE repositories used with SVDBs. On the left, a stacked bar plot which shows the trends on
the SE mined repositories. On the right, a plot shows the distribution of the literature survey according to
the SE repository used. ... 30
Figure 9: A stacked bar plot which shows the trends of the investigated tasks. The y-axis shows the
number of articles published in a given year. ... 32
Figure 10: Types of testing in SE [143]. ... 49
Figure 11: Initial software security vulnerability domain ontology (high-level overview). 77
Figure 12: An overview of our knowledge modeling methodology. .. 79
Figure 13: The software security vulnerability analysis ontology. ... 80
Figure 14: NVD vulnerability entry - CVE-2017-10932 attributes. ... 84
Figure 15: Vulnerabilities entries’ attributes and information from exploit-database website. 84
Figure 16: The main classes extracted from D1 (left) and D2 (right) to create their system-specific
ontologies. ... 85
Figure 17: Manually identified vulnerabilities concepts from 11 SVDBs. ... 86
Figure 18: Example of unifying the attributes names from the system-specific data sources. 88
Figure 19: Concept lattice for the merged context table to guide classification of concepts in domain and
system level concepts. ... 91
Figure 20: Stability measure applied on the combined concept lattice. .. 92
Figure 21: Vulnerability related dates concepts and sub-concepts. .. 93
Figure 22: Overview of namespaces and nomenclature used. .. 96
Figure 23: Distribution of CVSS severity scores, which are on a scale of 0 to 10, rounded to the nearest
integer. .. 99
Figure 24: The SV-AF Ontologies Abstraction Hierarchies. .. 103
Figure 25: Knowledge engineering process to support result integration. .. 105
Figure 26: Unidirectional vs. bi-directional dependencies. .. 106
Figure 27: SV-AF’s ontologies and concepts involved in software vulnerability dependencies analysis.
 .. 107
Figure 28: SV-AF system overview.. 108
Figure 29: Instances matching approach. .. 109
Figure 30: Weighted similarity modeling. .. 111
Figure 31: Probabilistic PSL similarities results. .. 115
Figure 32: Inferred project dependencies in SBSON. ... 118

xiii

Figure 33: Geronimo-jetty6-javaee5 uses 5 projects (external APIs) from level 1 dependency and each
project suffers from security vulnerabilities. .. 120
Figure 34: Integrating code and build information with knowledge from other heterogeneous resources.
 .. 125
Figure 35: System overview. .. 127
Figure 36: The SV-AF’s [44] ontologies concepts involved in an API. ... 128
Figure 37: SV-AF knowledge base similarity graphs. .. 129
Figure 38: Hierarchy of code properties. .. 132
Figure 39: Inferred project dependencies in SBSON. ... 133
Figure 40: Extracting patch relevant information from NVD and commit messages. 135
Figure 41: Diff output for WSS4J r1619358 and r1619359. .. 136
Figure 42: Inferred links between vulnerabilites.owl, code.owl, and versioning.owl. 136
Figure 43: Class diagram for our modified package. .. 138
Figure 44: Motivating Example – How OntTAM can assist developers in trust assessment. 147
Figure 45: Generic structure of quality assessment models[244]. .. 151
Figure 46: SE-EQUAM ontology meta-model reuse to instantiate a domain model ontology
(OntEQAM)[231]. .. 153
Figure 47: SE-EQUAM process to instantiate evolvability model. .. 153
Figure 48: The Software Security and Trustworthy Ontology Hierarchy. .. 155
Figure 49: Reuse of the SE-QUAM meta-model to instantiate the OntTAM domain model ontology. ... 157
Figure 50: An example defining the associated trustworthiness concepts and measures for a sample
project. .. 158
Figure 51: Integrating OntTAM ontology into SV-AF model and reusing SE-QUAM concepts. 160
Figure 52: Categories of license violations. .. 163
Figure 53: Fuzzy Assessment Process Steps. .. 165
Figure 54: WVD measure fuzzy scale and Weight Fuzzy Scale for WVD measure. 166
Figure 55: Overview of case study setup process. .. 168
Figure 56: License distribution in the Maven repository. ... 174
Figure 57: Most Popular Type 1 License Violation Pairs. .. 175
Figure 58: Most Popular Type 2 License Violation Pairs. .. 175
Figure 59: Most Popular Type 3 License Violation Pairs. .. 176
Figure 60: An example of a reported bug showing how a breaking change in the ASM library impacts
Orbit and its dependent projects.. 181
Figure 61: Distribution of breaking changes and their impacts in the analyzed ASM libraries. 182
Figure 62: Overview of relations in the semantic OntTAM domain model. .. 183
Figure 63: Tool Architecture. ... 195
Figure 64: Visualizing indirect vulnerable dependencies. .. 196
Figure 65: Direct vulnerable dependencies. .. 196

xiv

List of Tables

Table 1: An example of a context table .. 14

Table 2: The selected journals and conference venues that we considered in our initial article selection
process .. 24

Table 3: Keyword searches for online library search .. 25

Table 4: The set of attributes we collected on each article ... 27

Table 5: Results of SE empirical research articles using SVDBs ... 34

Table 6: SE articles using SVDBs in SE modeling task ... 40

Table 7: SE articles using SVDBs in vulnerability analysis ... 44

Table 8: SE articles using SVDBs in security testing task.. 50

Table 9: SE articles using SVDBs in risk analysis and management ... 54

Table 10: Summary of how surveyed articles used SVDBs for different SE tasks. The numbers are shown
in percentage for each category (i.e., SVDBs types, and SE Repo. used). ... 57

Table 11: Summary of recent works on software security domain ontologies engineering 73

Table 12: Core concepts (classes) defined in the surveyed vulnerabilities ontologies 76

Table 13: 11 Security vulnerability databases .. 82

Table 14: Vulnerabilities databases ID schemas and standards usages .. 82

Table 15: D1 context table K1 .. 87

Table 16: D2 context table K2 .. 87

Table 17: The context table after object union operation ... 87

Table 18: The context table K after an equivalent match ... 88

Table 19: The context table after the second mapping type .. 89

Table 20: The context table after the third mapping type ... 89

Table 21: Final context table K ... 90

Table 22: Ontologies artifacts metrics .. 94

Table 23: Dataset statistics .. 96

Table 24: Example information retrieved from our Knowledge Base for NVD and Exploit-DB as denoted
in Query 1 ... 98

Table 25: Top 10 CWE software weaknesses by the number of Exploits (D2) .. 100

Table 26: Maven Repository statistics .. 113

Table 27: Maven Repository statistics .. 113

Table 28: Subject systems and sizes for transitive dependencies analysis ... 114

Table 29: Example of linked vulnerability ... 116

Table 30: Critical Vulnerabilities for Android Project ... 116

Table 31: owl:sameAs link (w) evaluation ... 117

Table 32: SV-AF vs. OWASP Dependency Check tool accuracy evaluation .. 118

Table 33: Transitive dependencies on vulnerable components ... 119

Table 34: Dataset size evaluation.. 122

Table 35: Sample Derby Versions with Reported Vulnerabilities .. 125

Table 36: Ontology Namespaces .. 130

Table 37: Results... 137

xv

Table 38: Results of Direct and Indirect Usage of the Vulnerable Method
Wssecurityutil.Verifysignedelement ... 138

Table 39: Comparison of Analysis Results ... 140

Table 40: Example of Derby versions and their depedent projects in Maven .. 148

Table 41: Breaking and non-breaking changes ... 150

Table 42: The most common breaking and non-breaking changes in the Maven Repository [242] 150

Table 43: Overview of selected case study projects ... 169

Table 44: Vulnerability densities of selected projects .. 171

Table 45: Clients who switched from a vulnerable API in later release ... 172

Table 46: Totals of each type of violation found by querying the data store .. 174

Table 47: Licence Violation Counts in selected projects. ... 177

xvi

List of Acronyms

CAPEC Common Attack Pattern Enumeration and Classification
CPE Common Platform Enumeration
CVE Common Vulnerabilities Exposure
CVSS Common Vulnerabilities Scoring System
CWE Common Weakness Enumeration
DL Description Logic
FCA Formal Concept Analysis
NVD National Vulnerability Database
OSS Open Source Software
OWL The Web Ontology Language
PSL Probabilistic Soft Logic
RDF Resource Description Format
SBSON Software Build Systems Ontologies
SE Software Engineering
SEON Software Evolution ONtologies
SEVONT Software sEcurity Vulnerability ONTology
SVDB Security Vulnerability Database
SW The Semantic Web
WVD Weighted Vulnerability Density

1

Chapter 1

1 Introduction
The Internet has revolutionized our society and impacted the software industry [1], with

knowledge and information sharing becoming a central part of software development, facilitating

the globalization of the software industry [1]. This change in information flow removes

traditional project boundaries and promotes free flow of information, resources, and knowledge

across projects. Globalization in the software industry [2] can have several facets including out-

and crowd-sourcing parts of the development process, the wide spread use of collaborative

environments facilitating resource sharing, and the introduction of completely new software

development paradigms such as open source.

Open source software (OSS) publishes source code and other related artifacts on the Internet

using specialized code and artifact sharing portals such as Sourceforge1, GitHub2, and Maven3,

allowing these artifacts to be shared and reused globally. This reuse can take on different forms,

such as integrating open source projects into existing software ecosystems (e.g., reuse of code

libraries) or extending and customizing available projects to meet specific requirements (e.g.,

creating specialized Linux distributions [3]).

Shared knowledge resources not only facilitate reuse and collaboration; they also introduce

new challenges to the Software Engineering (SE) community. Knowledge and resources are no

longer controlled by a single project or organization, but instead are now distributed across

multiple projects, organizations, or even global software ecosystems. Among the challenges

arising from this knowledge sharing is Information Security (IS), which has emerged as a major

threat to the software development community. At its core, IS promotes the notion that one

should consider different security concepts (e.g., secure coding practices, knowledge about

1 https://sourceforge.net/
2 https://github.com/
3 https://search.maven.org/

2

software security vulnerabilities and their analysis) in the development process. The importance

of IS for the software community is reflected by the fact that it has become an integrated part of

current SE best practices [4].

As part of this IS integration process, developers and other stakeholders require access to

vulnerability related knowledge resources. Security vulnerabilities databases (SVDBs) are an

example of such knowledge resources which can provide software professionals with access to

existing security issues affecting different software products. Access to this information can help

prevent inadvertent (security) mistakes that might damage their systems or reduce the potential

risk their systems might be exposed to. Different public SVDBs (e.g., National Vulnerability

Database - NVD4) have been introduced to track known software vulnerabilities and potential

solutions to resolve them. These SVDBs can be seen as a direct response by the software

industry to the ever-increasing number of software attacks, which are no longer limited to a

particular project or computer but now often affect hundreds of different systems and millions of

computers.

1.1 Problem Statement
In response to the increasing number of software vulnerabilities and attacks, various private and

public organizations have introduced SVDBs. Each of these databases captures not only different

types of vulnerability information but are also of interest to developers and other stakeholders

since they contain valuable information about software flaws, causes of defects, and details on

how vulnerabilities arise, etc. [4].

While the SE research community is becoming increasingly aware of these SVDBs, no

comprehensive literature survey exists that studies how they (i.e., SVDBs) are used in software

development.

Problem Statement 1: Investigating the SE literature will provide insights on how usage of

SVDBs in the SE domain has evolved over the past decade and outline some open challenges

associated with their use.

4 https://nvd.nist.gov/

3

Effective use of security vulnerability information can enhance software productivity, create

economic benefit to software stakeholders (reduce cost and consuming time), and increase

security of the software systems. However, with security vulnerability data growing at

unprecedented rates, SE stakeholders (e.g., developers) are struggling to take full advantage of

available vulnerabilities information. One main reason for this is that vulnerabilities data usually

originates from disparate sources. This can result in vulnerabilities data heterogeneity and

prevent data from being digested easily. Among other techniques developed, Semantic Web

technologies and its supporting ontology based approaches are a promising method for

overcoming heterogeneity and improving vulnerability data interoperability.

Problem Statement 2: Providing a unified knowledge-model for different vulnerabilities

sources (e.g., SVDBs) can be a viable solution to integrate existing vulnerability data sources.

SE developers are often unaware or unfamiliar with SVDBs and the fact that known

vulnerabilities might already be published in these SVDBs. As a result, vulnerabilities affecting

their systems (either directly or indirectly through external vulnerable components used by their

systems) often remain uncovered. For example, in September 2017, the Equifax breach [5] was

caused by the Apache Struts5 vulnerability [6]. The Apache Struts vulnerability CVE-2017-56386

was disclosed on March 7 and patched on the very same day, meaning a secured version of

Apache Struts was available in SVDBs since March 7 for developers to update any vulnerable

version they might have.

However, increasing both awareness and automate accessibility to SVDBs during software

development can improve software reliability and quality. Establishing such required traceability

among vulnerabilities across software artifacts is an essential aspect in identifying and locating

vulnerable code, applying existing fixes, and improving the analysis of potential impacts of

vulnerabilities.

In addition, new vulnerabilities are constantly being found in OSS code and many projects

have no mechanisms in place for locating and fixing these problems. According to a recent Snyk

survey [7] of open source maintainers, 44% have never had a security audit and only 17% said

that they had a high level of security know-how. The survey also showed that 34% of the

5 Apache Struts is a popular open-source framework for developing web applications in the Java programming language.
6 https://nvd.nist.gov/vuln/detail/CVE-2017-5638

4

developers surveyed indicated that they use deprecate, the older, insecure version. Twenty five

percent reported that they make no effort at all to notify users of vulnerabilities, and only 10%

file a CVE7.

A survey conducted by Sonatype [8] further suggests that software reuse through OSS

components has become a de-facto industry norm, with 90% of survey participants relying on

pre-existing open source code in their own implementation. Moreover, deployed OSS polices are

reported to have major shortcomings with only 21% of these policies enforcing the use of secure

OSS code, 63% having no active monitoring of vulnerabilities over time, and lastly, 78% of the

surveyed policies have never banned the usage of certain OSS components. This poor

management of third party artifacts in software systems could be compromised by intruders.

As the use of OSS grows, this risk surface expands. A recent report [9] reveals that there is

no standard way of documenting security on OSS projects. In the top 400,000 public repositories

on GitHub, only 2.4% had security documentation in place.

Problem Statement 3: With known vulnerabilities published in public SVDBs and using

these SVDBs knowledge model in software development, managing the security of OSS

components, tracing the vulnerabilities impacts, and calculating the OSS components

trustworthiness can be automated.

In the next section, we summarize the specific thesis contributions and how these

contributions address the problem statements.

1.2 Thesis Contributions
In this thesis, we make the following contributions:

 We conduct a literature survey; we reviewed 94 articles discussing the use of SVDBs in

the SE domain (Chapter 3). Among the key findings of this survey are:

o An increasing awareness in the research community that describes the use and

application of SVDBs in the SE domain.

7 https://cve.mitre.org/

5

o The majority of the surveyed papers apply SVDBs only to a limited number of SE

activities.

o Most contributions only rely on a single SVDB in their approach.

 We introduce a novel knowledge engineering methodology that applies Formal Concept

Analysis (FCA) to semi-automate the software vulnerabilities knowledge acquisition and

extraction from SVDBs (Chapter 4).

o We conduct a literature review of existing software security vulnerability

ontologies.

o We propose a semi-automated methodology using FCA to create a unified

ontological knowledge model (SEVONT, Software sEcurity Vulnerability

ONTology) that supports knowledge sharing, linking, and inference across

SVDBs boundaries.

o We present alignment rules to facilitate knowledge integration and improve our

overall knowledge design.

o We illustrate the applicability of our modeling approach by providing examples of

how our modeling approach supports vulnerability analysis across individual

SVDBs.

 We developed a Security Vulnerability Analysis Framework (SV-AF) to support

evidence-based vulnerability detection (Chapter 5). The main contributions of this

framework are:

o Integration of different ontologies such as builds systems ontologies, source code

ontologies, version systems ontologies, vulnerabilities ontologies, etc.

o Applying ontologies alignment using Probabilistic Soft Logic (PSL) to establish

weighted links between ontologies.

o Performed two case studies to illustrate the applicability of the presented

approach. We identify that 750 Maven project releases are directly affected by

known security vulnerabilities, and by considering transitive dependencies an

additional 415,604 Maven projects can be identified as potentially affected by

these vulnerabilities.

 Our approach takes advantage of the Semantic Web and its reasoning services, to trace

and assess the impact of security vulnerabilities across project boundaries (Chapter 6).

6

 We introduce a novel Ontological Trustworthiness Assessment Model (OntTAM) which

(1) supports the automated analysis and assessment of quality attributes related to the

trustworthiness of libraries and APIs in open-source systems, and (2) provides developers

with additional insights on the potential impact of reused libraries and APIs on the quality

and trustworthiness of their project. We illustrate the applicability of our approach by

assessing the trustworthiness of libraries in terms of their API breaking changes, security

vulnerabilities, license violations, and their potential impact on client projects (Chapter

7).

1.3 Related Publications
Earlier versions of the work completed in this thesis have been published in the following

papers:

1- S. S. Alqahtani and J. Rilling, "An Ontology-Based Approach to Automate Tagging of

Software Artifacts," 2017 ACM/IEEE International Symposium on Empirical Software

Engineering and Measurement (ESEM), Toronto, ON, 2017, pp. 169-174.

2- S. S. Alqahtani, "Enhancing Trust – Software Vulnerability Analysis Framework," 2017

IEEE International Conference on Software Testing, Verification and Validation (ICST),

Tokyo, 2017, pp. 563-564.

3- S. S. Alqahtani, E. E. Eghan and J. Rilling, "Recovering Semantic Traceability Links

between APIs and Security Vulnerabilities: An Ontological Modeling Approach," 2017

IEEE International Conference on Software Testing, Verification and Validation (ICST),

Tokyo, 2017, pp. 80-91.

4- S. S. Alqahtani, E. E. Eghan and J. Rilling, "SV-AF — A Security Vulnerability

Analysis Framework," 2016 IEEE 27th International Symposium on Software Reliability

Engineering (ISSRE), Ottawa, ON, 2016, pp. 219-229.

5- Sultan S. Alqahtani, Ellis E. Eghan, Juergen Rilling, “Tracing known security

vulnerabilities in software repositories – A Semantic Web enabled modeling approach”,

Science of Computer Programming, Volume 121, 2016, pp. 153-175.

7

1.4 Thesis Organization
The thesis is organized as follows. Chapter 2 introduces core concepts and terminologies used in

this research. Chapters 3, 4, 5, 6, and 7 are dedicated to the main contributions of this thesis,

which were mentioned earlier. The conclusions and some promising avenues for future work are

discussed in Chapter 8.

8

Chapter 2

2 Background

The work presented in this research combines different aspects of multiple fields of study in SE

and software security. In this chapter, we provide a brief overview of the core techniques and

terminologies used in our research. If you are already familiar with these concepts, you can

safely move on to the next chapter as cross-references are provided wherever specific

background information is required.

2.1 The Semantic Web and Ontologies in a Nutshell
The term “ontology” originates from philosophy, where it denotes the study of existence. In

computer science, a widely accepted definition has been introduced by Studer [10]: “an ontology

is a formal, explicit specification of a shared conceptualization.” Ontologies are typically used as

a formal and explicit way to specify concepts and relationships in a domain of discourse. They

can overcome portability, flexibility, and information sharing problems associated with databases

[11]. Compared to relational approaches which assume complete knowledge (closed world

assumption), ontologies support the modeling of incomplete knowledge (open world assumption)

and the extendibility of the ontological model.

The Semantic Web (SW) allows for machine understandable Web resources that can be

shared and processed by both software tools (e.g., search engines) and humans [12]. Ontologies

are an important foundation of the SW as they allow knowledge to be shared between different

agents and the creation of common terminologies for understanding [12]. Moreover, the resulting

data representation format becomes reusable rather than being proprietary to specific tasks. The

current data-model used to represent meta-data in SW is the Resource Description Format (RDF)

9

[13]. RDF is used to formalize meta-models in the form of <subject, predicate, object>, which

are called triples. RDF triples make statements about resources, with a resource in the SW being

anything—a person, project, software, a security bug, etc. In order to make triples persistent,

RDF triples stores are used, with each triple being identified by a Uniform Resource Identifier

(URI) [13].

The Web Ontology Language (OWL) [14] is used on top of the RDF layer (see Figure 1). It

is a standard modeling language put forward by the W3C8 to pursue the vision of the SW. OWL

provides for machine understandable (i.e., capturing semantics) information, allowing Web

resources to be automatically processed and integrated. The widely used OWL sub-language

OWL-DL is based on Description Logics (DLs) [15].

Figure 1: Semantic Web architecture in layers [16].

Description Logic (DL): A DL based knowledge representation system provides typical

facilities to set up knowledge bases and to reason about their content [12]. Figure 2 illustrates a

typical DL based knowledge system.

8 W3C semantic web activity: https://www.w3.org/2001/sw/

10

Knowledge Base

TBox

ABox

Description
Language

Reasoning

Rules
Application
Programs

Figure 2: Description Logics System.

Such a knowledge base (KB) consists of two components—the TBox contains the

terminology (i.e., the vocabulary of an application domain), and the ABox contains assertions

about named individuals in terms of this vocabulary. The terminology is specified using

description languages introduced previously in this section, as well as terminological axioms,

which make statements about how concepts or roles are related to each other. In the most general

case, terminological axioms have the form:

𝐶 ⊑ 𝐷 (𝑅 ⊑ 𝑆) 𝑜𝑟 𝐶 ≡ 𝐷 (𝑅 ≡ 𝑆)

Where 𝐶 and 𝐷 are concepts (𝑅 and 𝑆 are roles). The semantics of axioms are defined as: an

interpretation 𝑰 satisfies 𝐶 ⊑ 𝐷 (𝑅 ⊑ 𝑆) if 𝐶𝑰 ⊑ 𝐷𝑰 (𝑅𝑰 ⊑ 𝑆𝑰) . A Tbox, denoted as 𝑻 , is a

finite set of such axioms. The assertions in an ABox are specified using concept assertions and

role assertions, which have the form 𝐶(𝑎), 𝑅(𝑎, 𝑏), where 𝐶 is a concept, 𝑅 is a role, and 𝑎, 𝑏 are

names of individuals. The semantics of assertions can be given as: the interpretation 𝑰 satisfies

the concept assertion 𝐶(𝑎) if 𝑎𝑰 ∈ 𝐶𝑰, and it satisfies the role assertion 𝑅(𝑎, 𝑏) if (𝑎𝑰, 𝑏𝑰) ∈ 𝑅𝑰.

An Abox, denoted as 𝑨, is a finite set of such assertions.

A DL system not only stores terminologies and assertions, but also offers services that allow

reasoning about them. Typical reasoning services for a TBox are to determine whether a concept

is satisfiable (i.e., non‐contradictory), or whether one concept is more general than another (i.e.,

subsumption). Important reasoning services for an ABox are to find out whether its set of

11

assertions is consistent, and whether the assertions in an ABox entail that a particular individual

is an instance of a given concept description.

A DL knowledge base might be embedded into an application in which some components

interact with the KB by querying the represented knowledge and by modifying them, i.e., by

adding and retracting concepts, roles, and assertions. However, many DL systems, in addition to

providing an application programming interface that consists of functions with well‐defined

logical semantics, provide an escape hatch by which application programs can operate on the KB

in arbitrary ways [12].

In addition to RDF, OWL, and OWL-DL, the SW community provides tools to process OWL

semantics and RDF data. Jena [17] emerged as a Java framework for building applications and

providing a programmatic environment for RDF and OWL. Reasoners (e.g., RDFS++9, Pellet10)

can infer new facts about the designed ontology and form a set of asserted axioms. RDF

databases, such as Virtuoso [18] and Allegrograph [19], are used to materialize and store RDF

triples. SPARQL is a RDF query language, that is, a semantic query language for databases able

to retrieve and manipulate data stored in RDF format.

The SW has been designed from the ground up to address the integration challenges

traditional relational databases are facing, such as [20]: (1) The SW facilitates the creation of

taxonomies using ontologies, which can be shared across applications and domains; this is in

contrast to relational database where schemata sharing and reuse is not natively supported [20].

(2) SW meta-models are extensible, allowing new knowledge to be added without affecting

existing knowledge, unlike relational databases where extending the schema becomes a time-

consuming operation often affecting a complete database. For example, a change of index type

(foreign key) might require dropping and recreating several other dependent database indices. (3)

The SW makes relations explicit. In contrast, relational databases do not provide a consistent

method to obtain the semantics of a relation. A query can join any two table columns as long as

their datatypes match—there is no interpretation of the meaning of the actual relation performed.

As a result, relational databases are not machine interpretable, and the inference of knowledge

(explicit or implicit) requires human interaction. (4) Linking data is a key property of the SW,

with any resource being identified by its Uniform Resource Identifier (URI). These URIs allow

for a consistent identification of the same resource across various knowledge resources. This

9 http://franz.com/agraph/support/learning/Overview-of-RDFS++.lhtml
10 https://www.w3.org/2001/sw/wiki/Pellet

12

contrasts with relational databases where resources are local and not universal, restricting the

ability of relational databases to establish resource links outside their own local schema.

2.2 Ontologies in Software Engineering
Despite ontologies and Knowledge Engineering sharing the same roots, ontologies emphasize

aspects such as inter-agent communication and interoperability [21]. An ontology defines a set of

primitives to model a domain of knowledge or discourse. This set of representational primitives

are typically classes (or sets), attributes (or properties), and relationships (or relations among

class members) [22]. An important aspect of ontologies is that they must be formal and, more

precisely, understandable by a computer or “codified in a machine interpretable language” [23].

Ontologies in SE. Representing software in terms of knowledge rather than data, ontologies can

be more abstract than, say, database schemata, and provide better support for semantics [13].

With the adoption of Description Logic (DL) as a major foundation of the recently introduced

SW and OWL [12], there is a trend to utilize ontologies or introduce taxonomies as conceptual

modeling techniques into the SE domain. These existing approaches support knowledge

representation and sharing, and automated reasoning. For example, in requirement engineering,

ontologies have been used to support requirement management [24], traceability [25], and use

case management [26]. In the software testing domain, KITSS [27] is a knowledge-based system

that can provide assistance in converting a semi-formal test case specification into an executable

test script. In the software maintenance domain, Ankolekar et al. [28] provide an ontology to

model software, developers, and bugs. The authors developed a prototype Semantic Web system,

Dhruv, for OSS communities. Dhruv provides an enhanced semantic interface to bug resolution

messages and recommends related software objects and artifacts. Ontologies have also been used

to describe the functionality of components using a knowledge representation formalism that

allows more convenient and powerful querying. For example, the KOntoR [29] system allows

storing semantic descriptions of components in a knowledge base and performing semantic

queries on it. In [30], Jin et al. discuss an ontological approach of service sharing among

program comprehension tools.

13

Ontologies vs. Models. A model is “an abstraction that represents some view on reality,

necessarily omitting details, and for a specific purpose” [31]. However, in SE, ontologies and

models try to address the same problems (representing software complexity in an abstract

manner) but from very different perspectives. The differences between ontologies and models

often result in different artifacts, uses, and possibilities. For example, modern SE practices

advise developers to look for components that already exist when implementing functionality,

since reuse can avoid rework, save money, and improve overall system quality [32]. In this

example, ontologies can provide clear advantages over models in integrating information that

normally resides isolated in several separate component descriptions. Furthermore, models (e.g.,

UML) rely on the close world assumption, while ontologies (e.g., OWL) support open world

semantics. OWL, an example of ontology languages, is a “computational logic-based language”

that supports full algorithmic decidability in its OWL-DL (description logic) variant. It is not

possible to use algorithms supported by OWL (e.g., subsumption) for modeling languages due to

their different semantics. Additional differences between ontologies and models are reported and

discussed in [33].

2.3 Formal Concept Analysis (FCA)
Formal Concept Analysis (FCA) [34] is a data analysis method that uses mathematical theory to

perform data grouping. It provides a way to find, structure, and display relationships between

concepts which consist of objects with common attributes [35]. Ganter et al. [34] defined a

formal concept analysis as follows:

Definition 1: A context is a triple 𝒞 = (𝒪, 𝒜, ℛ) where 𝒪 and 𝒜 are the set of objects and

attributes respectively, and ℛ ⊑ 𝒪 × 𝒜 is a relation among them.

A context is represented as a relation or context table, where rows represent objects and columns

represent attributes (see Table 1), with “x” indicating that an object has the particular attribute.

14

Table 1: An example of a context table
𝒞𝑜𝑛𝑡𝑒𝑥𝑡 (𝒪, 𝒜, ℛ)

𝐴𝑡𝑡𝑖𝑏𝑢𝑡𝑒𝑠 𝒜

female juvenile adult male

𝑂
𝑏

𝑗𝑒
𝑐𝑡

𝑠
𝒪

 girl x x
woman x x
boy x x
man x x

Definition 2: A concept 𝒸 = (𝒪, 𝒜) of a context (𝒪, 𝒜, ℛ) is part where 𝑂 ⊑ 𝒪 , 𝐴 ⊑ 𝒜 ,

𝛼(𝐴) = 𝑂 and 𝜔(𝑂) = 𝐴. The extent of 𝒸 is 𝜋𝑜(𝑐) ≡ 𝑂 while the intent is 𝜋𝛼(𝑐) ≡ 𝐴. The set of

all concepts of (𝒪, 𝒜, ℛ) is denoted by 𝐵 = (𝒪, 𝒜, ℛ).

A concept lattice of a formal context (table) is a collection of all formal concepts (conceptual

clusters) equipped with a sub-concept and super-concept hierarchy (Figure 3).

Figure 3: Concept lattice (Galois lattice) of Table 1.

FCA has gained popularity due to its: (1) programming language independence, (2) ability to

easily define different views (using different object, attribute combinations), (3) availability of

tools to generate context tables and lattices, and (4) analysis being quite inexpensive, especially

compared with other dynamic dependency and trace analysis techniques.

FCA applications: Within the SE community, FCA has various applications in SE [35], such as

feature interaction, software component retrieval, identifying objects from legacy code, model

15

restructuring, and minimizing test suites. In the knowledge modeling community, FCA has been

used for data analysis and knowledge discovery [36] (e.g., knowledge discovery in databases,

ontology engineering, and machine learning).

In Chapter 4 we will show how FCA contributes to knowledge model engineering in the

literature, and how we adopted this technique in our thesis contribution.

2.4 Vulnerabilities Databases
Security Vulnerability Databases (SVDBs) can be defined as “a platform aimed at collecting,

mailing, and disseminating information about discovered vulnerabilities targeting real computer

systems” [37].

While vulnerability information in existing SVDBs (e.g., National Vulnerability Database -

NVD11) varies, they typically include a detailed description of reported software vulnerabilities

and their potential impacts on existing systems, as well as instructions on how to mitigate these

vulnerabilities and countermeasures (such as patches) to thwart further system exploitations.

However, security engineers face a major challenge when dealing with existing SVDBs due to

the diversity of data models, content, and accessibility of information [38]. For example, many

SVDBs use traditional relational databases, while others rely on mailing lists, newsletters, or

newsgroups to publish their content.

Existing work on mitigating this problem with heterogeneity has focused on standardizing

the publishing of vulnerability information. For example, MITRE12, a not-for-profit organization

that operates research and development centers sponsored by the U.S. federal government, has

introduced several standards to be used by the information security community. Three of their

most popular standards are: Common Vulnerabilities Exposure (CVE), Common Weakness

Enumeration (CWE), and Common Platform Enumeration (CPE). Below, we provide a brief

overview of these standards.

11 https://nvd.nist.gov/
12 https://www.mitre.org/

16

CVE13 is a catalog of publicly known security vulnerabilities and exposures. It is used by

SVDBs to simplify the sharing of vulnerability data across different databases and tools by

providing a common identifier for vulnerabilities.

CWE14 is a community-developed dictionary of software weakness types. It provides a standard

language of common software security terms in an attempt to remove ambiguity in the use and

interpretation of vulnerability information.

CPE15 is a structural naming scheme for IT systems, platforms, and packages. It provides a

standard naming scheme. What CVE and CWE languages both have in common is a need to

refer to IT products and platforms in a standardized way that is suitable for machine

interpretation and processing.

Another well-known standard, Common Vulnerabilities Scoring System (CVSS16), is an

open-standard designed to assess the severity of vulnerabilities. This scoring system allows for a

standardized ranking of vulnerabilities based on their potential impact.

2.5 Vulnerabilities Detection Techniques
In the SE domain, the concept “false sense of security” [39] means that a project manager

believes that their system is secure from vulnerability attacks, when in fact that may not be the

case. However, involving vulnerability detection techniques (tools) during the software life cycle

removes such subjectivity from security vulnerability assessments and gives a project manager

quantitative insight into the effectiveness of a projects’ security controls.

The discovery and disclosure of new vulnerabilities occurs on a regular basis and is an area

of research that is fairly well understood. For example, Liu et. al [40] performed a survey on

techniques of discovering vulnerabilities and outlined a number of techniques: static analysis,

penetration testing, fuzzing, Vulnerability Discovery Models, and more. These techniques are

already deployed in practice while research on new and existing techniques is continuing.

The traditional techniques used to audit software projects against security vulnerabilities are

based on static analysis tools (e.g., FindBugs [41]) and vulnerability scanners (e.g., OWASP

Dependence-Check [42]). Security static analysis, also called security static code analysis, is a

13 http://cve.mitre.org
14 https:cwe.mitre.org
15 https:cpe.mitre.org
16 https://www.first.org/cvss/

17

method of automatic program code debugging without execution. Vulnerability scanner tools

play a different role than traditional static analysis tools by scanning the security vulnerability in

network or system (such as using vulnerable components in software project). These

vulnerability scanners use predefined rules (maintained by security engineers) to identify

security violations on networks or systems. In addition, the vulnerability scanner usually uses

vulnerability databases (vendor vulnerability database, or third party database such as NVD,

SecurityFocus, etc.) to compare the information it finds against known vulnerabilities.

Over the last few years, new versions of vulnerability scanners have taken a different

direction in identifying and tracking security vulnerabilities. A study [43] revealed that, in the SE

domain, software developers include third party libraries in their applications that contain well-

known published vulnerabilities (such as those at NVD) which are hard to detect by traditional

static and dynamic analysis tools. However, the gist of this kind of vulnerability scanner is to

identify project dependencies and check if there are any known, publicly disclosed,

vulnerabilities. These scanners help to validate the inventory of components on the software

project. An inventory includes the open-source libraries (third party libraries), projects

information (e.g., Maven pom.xml), source code, and other applicable project information. In

what follows we give a detailed example of OWASP Dependence-Check [42] (vulnerability

scanner tool), which we used to evaluate our proposed approach discussed in Chapters 5 and 6.

OWASP Dependency-Check [42] is a vulnerability scanner tool that identifies software project

dependencies and checks if there are any known vulnerabilities. The current version of the tool

supports Java and .NET; and additional experimental support has been added for Rube, Node.js,

Python, and limited support for C/C++ build systems (autoconf and cmake).

OWASP Dependency-Track is a web application that allows organizations to document the use

of third party components across multiple applications and versions. Further, it provides

automatic visibility into the use of components with known vulnerabilities.

Dependency-Track embeds the Dependency-Check project which uses public data from the

NVD. Dependency-Check uses evidence-based analysis to match vendor, product, and version to

the CPE’s identified in CVEs. Dependency-Track v1 is essentially an asset management

application for tracking components and their use in each application, along with vulnerabilities.

18

Dependency-Track/Dependency-Check does not rely on a centralized database of additional data

(such as tracking non-disclosed vulnerabilities). Some commercial solutions use these

approaches to offer more comprehensive solutions. However, both Dependency-Track and

Dependency-Check are open-source projects.

Most of the vulnerabilities scanner tools share the same environment of the vulnerability

scanning process. They use what is called Language Type and Evidence Collection

identifications, in order to identify the vulnerable libraries in the third party vulnerability

databases.

Language Type. The tools identify the language of the project under scanning by checking what

build/package manager is being used. This is done by finding the configuration file for a given

build/package manager in the root of the project, or in the location where a configuration file

might typically be found. For example, a pom.xml in the root of a project indicates a Maven

repository. This information is how the tools distinguish coordinates amongst the various

build/package managers.

Evidence Collection. The aforementioned tools collect information about files they scan during

the build process, in combination with the language type. The information collected is a set of

coordinates called Evidence. There are three types of evidence collected: vendor, product, and

version. The evidence for each build/package manager may vary from one to another. For

example, the coordinates (evidences) for each language are the following: Java (Maven) uses

groupId, artifactId, and version, Node.js (NPM) uses library name and version, Python (PyPi)

uses library name and version, and Ruby (Ruby Gems) uses library name and version. However,

by sending these evidences, the aforementioned tools are able to check whether the libraries are

vulnerable or not by matching against the vulnerability database.

Finally, vulnerabilities scanners that depend on evidence identification may suffer from false

positive and false negative results [44].

19

2.6 Chapter Summary
The work presented in this dissertation is a novel fusion of several techniques from disparate

domains. In this chapter, we provided background information to the technologies and concepts

used in our research implementations. We will frequently refer to this chapter in subsequent

chapters, since the provided information will be extensively required.

In the next chapter, we will survey the SE literatures that use SVDBs in software

development, and outline some research opportunities that we are trying to address in this thesis.

20

Chapter 3

3 A Study on the Use of Vulnerability
Databases in Software Engineering

3.1 Introduction
As discussed earlier (in Chapter 1), in response to the constantly increasing number of software

vulnerabilities and attacks, various private and public organizations have introduced software

vulnerabilities databases (SVDBs) such as the National Vulnerabilities Database (NVD17). Each

of these databases captures not only different types of vulnerability information, but are also of

interest to developers and other stakeholders since they contain valuable information about

software flaws, causes of defects, as well as details surrounding how vulnerabilities arise,

vulnerability measurements, and guidelines on secure coding practices, etc.[38].

While the information content in SVDBs varies, they typically include a detailed description

of each vulnerability and any potential impacts these may have on existing software projects.

Additionally, instructions are included on how to mitigate the reported vulnerability, as well as

information surrounding countermeasures (such as patches) to thwart further system

exploitations and violations. However, working with different SVDBs also involves dealing with

heterogeneous data sources since no single repository provides information for all available

disclosed software security vulnerabilities [38]. Furthermore, retrieving relevant vulnerability

information is not always a straight forward task since every organization and vendor publishing

a SVDB relies on proprietary categorization and representation of their vulnerabilities data [38].

While many SVDBs use traditional relational databases to publish their vulnerability

17 https://nvd.nist.gov/vuln/data-feeds

21

information, others rely on mailing lists, newsletters, or newsgroups to provide access to these

datasets.

Software developers are often unfamiliar with SVDBs and the fact that known vulnerabilities

might already be published in these SVDBs. As a result, vulnerabilities affecting their systems

(either directly or indirectly through external vulnerable components used by their systems) often

remain uncovered. In 2017, the Equifax breach18, for example, involved a vulnerability in the

Apache Struts [45] open source software. The patch came out in SVDBs a couple of months

before the breach occurred. Increasing awareness and accessibility of SVDBs, as well as linking

vulnerabilities to software artifacts, are an essential aspect in locating vulnerable code, applying

existing fixes, and improving the analysis of potential impacts of vulnerabilities.

3.1.1 Definitions
SVDBs can be classified into two major categories, private and public vulnerabilities databases:

1. Private SVDBs are typically managed by for-profit organizations, covering vendor

specific product (closed source) vulnerabilities and rarely disclose this information to the

public.

2. Public SVDBs are organized and maintained typically by non-profit organizations (e.g.,

Computer Emergency Response Teams (CERT) 19) and disclose their vulnerability

information to the public. These public SVDBs can be further divided into subcategories:

specialized and general (i.e., common) SVDBs.

a. Specialized SVDBs are databases covering specific vulnerability aspects (e.g.,

Mozilla Foundation Security Advisory (MFSA)20). Many software manufactures

operate their own, highly specialized databases in which publicly known

vulnerabilities of their products are documented [46].

b. Common SVDBs are databases that publish vulnerabilities for a number of

software projects across vendor boundaries. These databases disclose

18 https://www.consumer.equifax.ca/canada/equifaxsecurity2017/en_ca/
19 https://www.cert.org/
20 https://www.mozilla.org/en-US/security/advisories/

22

vulnerabilities to the public after being reviewed by security experts (e.g.,

NVD21).

Also, the following definitions help to clarify the meaning of Software Engineering (SE) tasks

supported by SVDBs, which we used for classifying our literature review.

1. SE tasks: any SE method (described in the paper) the SE researchers used to achieve their

research goals. For example, SE researchers used empirical research methods to study

vulnerability evolution.

2. SE repository: a central place to keep software resources which SE researchers can pull

from when necessary. SE repositories such as issue tracker systems (e.g., JIRA), version

control systems (e.g., GIT), software management repositories (e.g., Maven), etc.

3.1.2 Goals and Outcomes
While the SE community is becoming increasingly aware of these SVDBs, no comprehensive

literature survey exists that studies where (and how) SVDBs are used in SE research. Our

literature survey provides insights into current state-of-the-art usage of SVDBs in software

development activities. Our primary goals are to characterize and quantify:

- Which SVDBs are commonly used in the SE research community,

- Which SE repositories were mined together with SVDBs,

- Which SE task was being supported through using SVDBs.

To achieve these goals we surveyed 94 articles from the SE literature that used SVDBs to

solve SE tasks. Findings from our analysis show that SVDBs are most commonly used for

empirical research (e.g., security [empirical] studies), generating security test cases, or modeling

vulnerabilities detection techniques. We also found that SE researchers discuss a broad range of

security topics, from creating theoretical foundations for new security analysis techniques to

implementing them as part of software development environments.

The outcome of our study can be beneficial to different stakeholders since the study provides

insights on current trends and open challenges related to the use of SVDBs. In particular, our

21 https://nvd.nist.gov/vuln/data-feeds

23

study provides software developers and maintainers the necessary knowledge about the

underlying challenges for fixing security vulnerabilities and developing patches by

understanding the steps and best practices provided by SVDBs. The study also provides a

detailed analysis on how the security vulnerability research landscape has evolved over the past

decade. It should be noted that our dataset and results are available online to facilitate the

replication and reuse of our findings [47].

3.2 Literature Search and Selection
In this section, we describe the process used to find literature, including our scope, considered

venues and search terms, search methodology, and article selection results. We adopt and follow

the mapping study approaches suggested by Chen et al. [48], Martin et al. [49], and Petersen et

al. [50].

3.2.1 Scope
For this paper we were interested in locating articles that used SVDBs information to solve SE

tasks. We focused our attention on articles written between January 2001 and April 2017, more

than a full decade of research results. This period was chosen because the SVDBs (e.g., NVD)

that propelled vulnerability sharing to become widely adopted were launched in 2005.

Our survey is not a Systematic Literature Review (SLR). Our study aims to define, collect,

and curate the disparate literature, arguing and demonstrating that there does, indeed, exist a

coherent area of research in the field that can be termed “using SVDBs information for secure

Software Engineering”. We hope that this will prove to be an enabling study for future SLRs in

this area.

We applied the following inclusion criteria:

i. The paper is related to SE, and may have actionable consequences for software users,

developers, and maintainers.

ii. The paper is related to SVDBs analysis, concerning the use of collections of

vulnerabilities from one or more SVDBs to tackle software issues.

24

We applied the following exclusion criteria:

i. The paper focuses on software vulnerability but does not use vulnerability information

from SVDBs.

3.2.2 Considered Venues and Search Terms
Table 2 lists the journals and conference venues that we included in our initial search for articles.

Table 2: The selected journals and conference venues that we considered in our initial article
selection process

Type Acronym Description

Journal

TSE
TOSEM
EMSE
JSS
JCS
SP&E
IST
JSEP

IEEE Transactions on Software Engineering
ACM transactions on Software Engineering & Methodology
Empirical Software Engineering
Journal of System and Software
Journal of Science of Computer Programming
Software – Practice & Experience
Information and Software Technology
Journal of Software: Evolution and Process

Conference

ICSE
ESE/FSE

ASE
ICSME
ICPC
ISSRE
ICST
ISSTA
ESEM

MSR

International Conference on Software Engineering
European Software Engineering Conference / Symposium on the Foundations of
Software Engineering
International Conference on Automated Software Engineering
International Conference on Software Maintenance
International Conference on Program Comprehension
International Symposium on Software Reliability Engineering
International Conference on Software Testing, Verification and Validation
International Symposium on Software Testing and Analysis
The ACM / IEEE International Symposium on Empirical Software Engineering
and Measurement
International Workshop/Working Conference on Mining Software Repositories

Search Terms. We collected the initial set of articles by performing keyword searches on the

publisher websites for each of our considered venues. We also searched using aggregate search

engines, such as the ACM Digital Library and IEEE Xplore. The keywords and search queries

that we used are listed in Table 3.

25

Table 3: Keyword searches for online library search

3.2.3 Search Methodology
In order to collect all relevant literature to date that met the scope defined in Section 3.2.1, we

performed a systematic search for the terms defined in Table 3, from each repository (defined in

Table 2).

Unique papers were collected into a table, and a decision was made based on the inclusion

criteria in two stages:

Title and Abstract: We inspected the title and abstract, and removed publications which were

clearly irrelevant according to the scope defined in Section 3.2.1.

Body: Results were read fully and a judgement was made on whether the paper (a) meets the key

requirements on what is defined as “using SVDBs information for secure Software Engineering”

in our scope, or b) is very relevant to the field and so should be included as “expanded literature”

to put the main literature into context. Papers matching the requirements of (a) or (b) were

included in this survey.

This yielded an initial set of related articles. For each of the articles in the initial set, we

considered the citations that were contained in each article for additional relevant articles. Then,

we reached our final set of articles.

3.2.4 Snowballing
In addition to the repository searchers specified in Section 3.2.2, we also performed snowballing

[51] on many of the included studies. To do this we inspected the studies cited by the study and

the publications that subsequently cited the study, using Google Scholar and IEEE Xplore. By

Category Terms

General

("vulnerable" OR "vulnerability" OR "vulnerabilities" OR "vulnerability database" OR
"vulnerability databases")
AND
("software engineering")

Domain

("vulnerable" OR "vulnerability" OR "vulnerabilities" OR "vulnerability database" OR
"vulnerability databases")
AND
("software requirement" OR "software design" OR "software coding" OR "software
testing" OR "software verification" OR "software evolution" OR "software maintenance")

26

performing this process in addition to repository keyword searching, we reduced the risk of

omission of relevant literature from this survey.

3.2.5 Article Selection Results
We finally arrived at 94 articles published between 2001 and 2017. Figures 4 and 5 show the

distribution of venues and years for the articles. One of the main findings from our first data

analysis is that there has been a significant increase in the number of publications (per year) that

address vulnerabilities analysis in SE, which is a good indicator for growing research interest in

the domain. Secondly, we observe that the main conferences and journals that consider SVDB

related articles as a relevant topic are top tier conferences such as ICSE and ASE, and journals

such as JSS, IEEE, and TSE.

Figure 4: Percent of articles per venue.

Figure 5: Number of articles per year.

Figure 5 shows that the period between 2001 to 2005 was not included in the final results

because papers in that period did not use SVDBs. Figure 4 shows that 15% of ICSE papers deal

with SVDBs, while 8% of ASE papers use SVDBs. For the journal papers we found 11% of JSS

papers use SVDBs in contrast to 5% of papers in TSE that involved SVDBs in their research.

3.3 Research Trends
In what follows, we report on the major trends which we observed in our literature survey

involving the use of SVDBs in the SE lifecycle. In order to structure our literature review, we

27

define a set of attributes that allow us to characterize each of the surveyed articles. Additionally,

we define three facets of related attributes, summarized in Table 4.

First and foremost, we are interested in which SVDB was primarily used in the study:

specialized or common SVDBs (defined in Section 3.1.1). Second, we document the SE

repository being used together with the SVDB in the article. Finally, we are interested in the SE

task (defined in Section 3.1.1) that was being performed along with using SVDBs information.

These SE tasks were identified and classified manually from surveyed articles (94 articles). We

include a range of tasks to allow a fine-grained view of the literature.

We manually processed each of the articles in our article set and assigned attribute sets to

each. The results allow the articles to be summarized and compared along our three chosen

facets.

Table 4 shows our three facets: which SVDB was used, which repository was used, and

which SE task was being performed. We now analyze the research trends of each facet.

Table 4: The set of attributes we collected on each article
Facet Attribute Description

SVDB
Common Free and open source SVDB which is operated by public organizations that report

known vulnerabilities for different software products.

Specialized
Free and open source SVDB which is operated by private vendors and includes
known vulnerabilities specific for those vendors.

Type of paper –
SE repository used
along with SVDBs

Source code Involves source code or revision control repository.
Requirements/design Involves requirements or design artifacts.
Logging Involves execution or search engine logs.
Bug/vulnerability
reports

Involves issue trackers or vulnerability reports from SVDBs.

Others Involves Q&A sites, build repositories (e.g., maven, nmp, etc.), emailing list, etc.

Type of paper -
SE tasks supported
with SVDBs

Empirical research
Papers in this SE task make use of collections of software artifacts (corpora) plus
SVDBs from which to derive empirical evidence.

Source code:
Vulnerability analysis

Papers in this SE task perform low level analysis (source code and binary code) to
investigate vulnerable code characteristics, develop vulnerability static analysis
tools, reverse engineering analysis, etc.

Security testing
Papers in this SE task introduce vulnerability testing techniques, such as
vulnerability test suit generator, model-based testing approaches (using black-and
white-box methods), etc.

Modeling
Papers in this SE task develop models, for example framework models for
vulnerability traceability, vulnerability prediction and detection models,
knowledge source modeling for interlinking between repositories, etc.

Risk analysis
Papers in this SE task are more focused on vulnerability assessment and impact
during software deployment, for example developing a security assessment
approach in incorporating OSS into commercial software systems.

Other Any papers that did not fit into the aforementioned classes.

28

3.3.1 Facet 1: Which SVDBs are Commonly Used in the SE

Research Community?
Our survey shows that none of the surveyed SE articles reported on the use of common SVDBs

prior to 2006 (see Figure 6). This is due to the fact that the first widely-recognized common

SVDBs (e.g., NVD [38]) became publicly available only in late 2004 and early 2005, with more

specialized public SVDBs emerging in SE articles in late 2010.

Figure 6: Trends of common vs specialized SVDBs use. The cumulative number of usages

indicates the total number of published articles using SVDBs to the year shown on the x-axis.

Our analysis also shows that the majority of surveyed articles (91%) use common SVDBs in

their work, whereas only 9% rely on specialized SVDBs as their primary resource for

vulnerability information. Further analysis of common SVDBs usage in these papers (see Figure

7) shows that most of the surveyed articles (26%) used NVD as their SVDB of choice, followed

by CVE22 (16%). It should be noted that NVD is based on the CVE dictionary augmented with

additional analysis information, a database, and a fine-grained search engine. NVD is

synchronized regularly with CVE such that any CVE update will also be reflected in NVD (after

approval by the NVD security engineers). NVD includes security checklists, security related

software flaws, misconfigurations, affected product names, and impact metrics.

The OWASP is another common SVDB which was used by 14% of the surveyed articles.

OWASP is dedicated to maintaining a list of Web applications with known security incidents and

is commonly used for experiments in testing security vulnerabilities affecting web applications

(e.g., [52]–[54]). The Open Source Vulnerability Database (OSVDB), used by 8% of the

surveyed articles, is one of the earlier publicly available common SVDBs. However, as of April

22 https://cve.mitre.org/

29

2016 the database is no longer maintained and announced to be shut-down by the vendor. Other

popular common SVDBs included are CWE (7%) and SecurityFocus (6%). CWE is maintained

by MITRE23 and provides a classification of vulnerabilities types which are commonly used for

testing and classifying security attacks. SecurityFocus is an online software systems’ security

news portal that obtains its data from the Bugtraq24 mailing list. Bugtraq is an independent

source for security vulnerabilities, alerts, and threats.

Figure 7: Top 6 common SVDBs used in our surveyed articles.

While some articles compare their vulnerability results obtained from one SVDB with results

from other SVDBs, only a few studies (e.g., [55], [56]) combined the usage of different common

SVDBs in their approaches. As shown in [17], combining different common SVDBs data sources

can increase the zero-day detection performance of vulnerability detection and analysis

techniques.

23 https://www.mitre.org/
24 http://seclists.org/bugtraq/

Although the CVE database has been available longer than NVD, most surveyed articles

used NVD in their approach. We believe that one of the reasons for the widespread use of

NVD is the easy access to vulnerability data through supported feeds and the regular

updates to the database. Moreover, we found that little research exists in combining

different SVDBs.

30

3.3.2 Facet 2: Which SE Repositories were Mined Together with

SVDBs?
Among the most common SE repositories used in combination with SVDBs are source code and

bug repositories (see Figure 8). In recent years there has also been increasing research activity in

combining SVDBs with logs, requirements, and “others” knowledge resources. A main reason

for the use of source code and issue tracker repositories in conjunction with SVDBs is that both

are typically part of open source systems and SVDBs often contain explicit traceability links to a

vulnerability’s patch information in either repository. In contrast, requirements and design

documents are normally not part of open source systems. We also observed that since 2013 there

have been an increasing number of publications combining SVDBs and execution logs. One of

the reasons for this is the increasing need to analyze security vulnerabilities that depend on the

execution behavior typically found in ultra-large scale or distributed systems (e.g., vulnerability

due to a certain load, distributed environments).

Figure 8: The SE repositories used with SVDBs. On the right, a stacked bar plot which shows the
trends on the SE mined repositories. On the left, a plot shows the distribution of the literature

survey according to the SE repository used.

The most common SE repositories used and analyzed in combination with SVDBs are

source code and issue trackers. Among the main reasons for their widespread use is their

availability (e.g., open source projects) and the explicit traceability links among these

resources (e.g., commits with cross references to an issue being fixed).

31

3.3.3 Facet 3: Which SE Task was Being Supported Through Using

SVDBs?
The most popular SE tasks in the surveyed articles are empirical research (37% of articles),

modeling (20% of articles), source code analysis (for static/dynamic vulnerability analysis 16%

of articles), and testing (14% of articles).

Empirical research such as a case study is a task well suited for using SVDBs since the goal

of empirical research in SE is to gain knowledge by means of direct and indirect observation or

experience [57]. However in order to achieve that, the SVDBs provide empirical evidence (the

record of one's direct observations or experiences) of software vulnerabilities which can be

analyzed quantitatively or qualitatively.

The modeling task in software security has become popular recently. For example, software

threat modeling (e.g., Berger et al. [58]) has been adapted as a key activity in an organization’s

secure development life cycle (e.g., Microsoft SDL [59]). The modeling task in the surveyed

articles include papers discussing vulnerability prediction/detection models (e.g., Chatzipoulidis

et al. [60], Scandariato et al. [61], and Shar et al. [62]), or vulnerabilities knowledge source

modeling for software ecosystems interrelationships (e.g., Ilo et al. [63], Wu et al. [64], Pham et

al. [65], Anbalagan et al. [66], and Cavusoglu et al. [67]). SVDBs play the important role of

providing SE researchers structured representations of vulnerability information that affects the

security of an application. This helps SE researchers study the vulnerability impacts on the

software systems (i.e., how the vulnerability indirectly affects software system components).

Source code analysis includes static/dynamic vulnerability analysis. Our surveyed articles

classified in this SE task (i.e., vulnerability static/dynamic approaches) used SVDBs to analyze

the system source code for all possible run-time behaviors and seek out coding flaws (e.g.,

Pasaribu et al. [68], Zheng et al. [69], Møller et al. [70], Shahriar et al. [71], and Wassermann et

al. [72]), detecting known vulnerabilities attacks such as SQL injections (e.g., Thome et al. [73])

and buffer-overflow attacks (e.g., Wang et al. [74] and Gao et al. [75]).

For the SE testing task, we find SVDBs as the ideal source for software security testing since

many researchers believe that using SVDBs, which contain a wealth of information of software

security vulnerabilities, helps to validate the proposed testing techniques with existing known

software vulnerability test-cases. The SE testing tasks in the surveyed articles include papers

32

proposing and discussing black-box testing of web-application vulnerabilities (e.g., Ceccato et al.

[76]), fuzzing approaches (e.g., Pham et al. [77]), automatic test-cases generation (e.g., Stivalet

et al. [78]), etc.

Figure 9: A stacked bar plot which shows the trends of the investigated tasks. The y-axis shows

the number of articles published in a given year.

Figure 9 shows a stacked bar plot of the trend of the tasks performed by the surveyed articles

across the years reviewed. We see the emergence of articles that conduct studies on collections

of vulnerable software systems (risk analysis articles) since 2009. The reason for this may be the

increased popularity of common SVDBs and their supporting tools, which give researchers the

right techniques for analysing vulnerabilities impacts on collections of software systems. In

addition, source code vulnerability analysis studies also emerged around 2008, and we noticed

several articles that are published on this task each year since 2008.

The tasks in the “other” category include benchmarking methodology for the security of

software-based systems (e.g., Mendes et al. [56]) and techniques for counteracting web browser

exploits (Min et al. [79]).

Most research that uses SVDBs information performs empirical study, testing, or modeling.

33

3.4 Common Uses of SVDBs on Software Engineering

Tasks
In this section we describe and evaluate in detail the surveyed articles that used SVDBs along

with SE repositories to perform some SE tasks. We organize the work into subsections by SE

task (as is described in Table 4). We provide a brief description of each task, followed by a

presentation of the relevant articles.

3.4.1 Empirical Research
In SE, empirical research is a validating process that compares what the researchers believe to

what they observe [57]. Specifically, empirical research helps the researchers understand how

things (in software systems) work and allows researchers to use this understanding to materially

alter their world. Empirical research takes many forms. It is realized not only as formal

experiments, but also as case studies, surveys, and prototyping exercises as well.

In our survey, among the SE tasks which are supported by SVDBs, empirical research is the

most common. The results are shown in Table 5, which shows summaries of the articles

classified in this SE task, including the reference of each article, publication year, name of the

used SVDB, what the SVDB was used for, and self-classification.

In this SE task, we manually classified the articles under this category based on self-

classification criteria. Note that we do not claim to have surveyed such empirical research

studies in SE research comprehensively as this is not the focus of this study, but it can be a

direction for future work. However, we tried to understand and classify the empirical research

based on self-classification criteria (as it is suggested by [80]). For each paper we manually

captured what words authors used to describe their efforts (e.g., case study, experiment). We

collected explicit self-classification from the author’s keywords mentioned in the paper or we

looked for sentences in the paper such as “we have conducted a case study” and concluded that

the current paper is empirical research and, more specifically, a case study. Some of the self-

classifications were very detailed and not precise (e.g., “empirical analysis,” “empirical

assessment,” or “experiment study”); in such cases we reduced the type to a simpler version

(e.g., an empirical study). As a result, we came up with four sub-categories of the empirical

34

research area: case study, exploratory, comparison, and empirical study. As seen from Table 5,

authors most often used terms such as “exploratory” and “empirical study” to describe their

research. In some cases, papers contained more than one self-classification.

Table 5: Results of SE empirical research articles using SVDBs

Reference Year SVDBs How SVDBs Used Self-classification

Hafiz et al. [81] 2016 SecurityFocus Extracted vulnerabilities’ authors’
information.

Empirical study (survey)

Munaiah et al.
[82] 2016 NVD

Downloaded Chromium project’s
vulnerabilities. Case study (Chromium project)

Ye et al. [83] 2016 CVE Extracted 100 buffer overflow
vulnerabilities.

Empirical study (buffer
overflow attack)

di Biase et al.
[84]

2016 CVE
Downloaded Chromium project’s
vulnerabilities reports.

Case study (modern code
review)

Jimenez et al.
[85]

2016 NVD Downloaded vulnerabilities for Linux
kernel.

Case study (Linux Kernel)

Murtaza et al.
[86]

2016 NVD Mining NVD. Exploratory study (mining)

Camilo et al. [87] 2015 NVD Related to Munaiah et al. [82]

Fang et al. [88] 2014 SecurityFocus
Related to Hafiz et al. [81], but this paper
focused on how buffer overflow attack
types.

Tan et al. [89] 2014 NVD The authors used NVD to find the security
bugs for their analyzed studied systems.

Empirical study (bug
characteristics)

Walden et al. [55] 2014

NVD and
proprietary
vulnerabilities
Datasources

Mining NVD. Comparison study

Stuckman et al.
[90] 2014 CVE The authors used CVE-IDs for traceability. Exploratory study (mining)

Massacci et al.
[91]

2014 NVD and
OSVDB

Extracted vulnerability information. Comparison study

Wijayasekara et
al. [92] 2014

CVE and
Bugzilla

Downloaded vulnerability information for
vulnerable releases of Linux kernel.

Exploratory study (mining bugs
vs vulnerabilities)

Meneely et al.
[93]

2013 NVD
The authors used NVD to trace 68
vulnerabilities using CVE-IDs.

Exploratory study
(vulnerability-contributing
commits)

Meneely et al.
[94]

2013 CWE Studied types of vulnerability attacks. Empirical study (survey)

Lee et al. [95] 2013 CVE
Downloaded CVE vulnerabilities for
Fedora open source. Case study (RedHat Fedora)

Shahzad et al.
[96] 2012

NVD,
OSVDB, and
FVDB

The authors aggregated 46310
vulnerabilities SVDBs.

Exploratory study (vulnerability
life cycle)

Goseva-
Popstojanova et
al. [97]

2012
NVD,
OWASP, and
SecurityFocus

Used for annotating specific vulnerability
classes of attacker activities.

Empirical study (classifying web
systems vulnerabilities)

Liu et al. [98] 2012 NVD
Downloaded 11, 395 vulnerability entries
and related information.

Empirical study (vulnerability
prioritization)

35

Wijayasekara et
al. [99] 2012 CVE Related to Wijayasekara et al. [92]

Austin et al.
[100]

2011 CWE The authors studied the type of
vulnerabilities.

Comparison study (two
electronic health record systems)

Smith et al. [101] 2011 CWE
The authors used SVDB as a source for
vulnerability classifications.

Empirical study (prioritizing
security V&V)

Zhang et al. [102] 2011 NVD Mining NVD. Empirical study (mining NVD
data)

Zaman et al.
[103] 2011

Mozilla
Foundation
Security
Advisory
(MFSA)

Extracting and studying vulnerabilities
reports.

Case study (Firefox
vulnerability vs. bugs)

Huynh et al.
[104]

2010
OSVDB and
SecurityFocus

Studying whether the vulnerabilities share
any common properties or not.

Empirical study (web app
vulnerability characteristics)

Zimmermann et
al. [105] 2010 NVD

The authors extracted vulnerabilities entries
for Windows Vista.

Empirical study (evaluate the
efficacy of pre-defined metrics
predicting vulnerabilities on
Windows Vista)

Neuhaus et al.
[106]

2010 NVD Mining NVD. Exploratory study (vulnerability
trends)

Mauczka et al.
[107]

2010
FreeBSD
adivsory and
OWASP

Studying the security vulnerabilities
behaviour.

Exploratory study (mining)

Wal et al.[108] 2009 NVD and
CVE

Extracting vulnerabilities counts for web
applications.

Empirical study (vulnerability
characteristics in PHP
applications)

Anbalagan et al.
[109] 2009 NVD

Trace open source projects issue trackers to
their security vulnerabilities.

Exploratory study (tracing
vulnerability for Fedora,
Ubuntu, and OpenSuse)

Anba et al. [110] 2009 NVD
Extracting vulnerabilities data for Linux
distributions.

Empirical study (vulnerability
reports characteristics of Linux
Distributions)

Vache [111] 2009 OSVDB
Downloaded vulnerability information to
study the vulnerability life cycle and the
exploit appearance.

Exploratory study (characterized
quantitatively the
vulnerability life cycle and the
exploit appearance)

Telang et al.
[112] 2007 CERT

The authors extracted vulnerabilities
information.

Empirical study (vulnerability
impact on product market price)

Alhazmi et al.
[113]

2006 NVD and
Netcraft

The authors extracted vulnerabilities
information.

Comparison study

Frei et al. [114] 2006 OSVDB,
NVD

The authors downloaded vulnerability
reports.

Exploratory study
(understanding of the
vulnerability lifecycle)

Case Studies. This type of empirical research uses specific open-source projects to study and

analyze the security vulnerability. For example, Munaiah et al. [82] performed an in-depth

analysis of the Chromium project to empirically examine the relationship between bugs and

vulnerabilities. They used NVD as a source of the Chromium vulnerabilities. The bug reports

36

were collected from Google code portal as a source for the Chromium bugs. Towards the same

goal, Zaman et al. [103] used Firefox as a case study to investigate how different types of bugs

(performance and security bugs) differ from each other and from the rest of the bugs in a

software project. These researchers used Mozilla Foundation Security Advisory (MFSA) (i.e.,

specialized SVDB).

The main objective of the study by Jimenez et al. [85] was to determine the effectiveness of

vulnerability prediction models (e.g., Software Metrics, and Text Mining) to distinguish between

vulnerable and non-vulnerable software components of the Linux Kernel under different

scenarios. The case study dataset was based on extracting vulnerabilities reports from the NVD

and the bug/commit-reports from Linux Kernel repository (Bugzilla).

Lee et al. [95] verified the assumption about using software reliability models for security

assessment. They investigated a range of Fedora open source software security problems to see if

some of the basic assumptions behind software reliability growth models hold for discovery of

security problems in non-attack situations. They used CVE identifications to locate security

discussions from open source RedHat Bugzilla data25 for Fedora.

di Biase et al. [84] conducted an empirical case study aimed to fill the gap between Modern

Code Review (MCR) and post-release bugs (software quality). They explored the MCR process

in the Chromium open source project. They used the CVE dataset to correlate the vulnerability

(security) issues of the project to the reported ones in the project’s host portal.

Comparison Studies. We have found comparisons in 4 papers. The comparison is made for the

technique, approach, or tool that was introduced in the study—to evaluate the proposed

technique, approach, or tool. However, in this SE task, we find that all 4 papers (Massacci et al.

[91], Walden et al. [55], Alhazmi et al. [113], and Austin et al. [100]) share the same goal of

performing a comparison study to validate and evaluate vulnerability prediction/discovery

models. For example, Massacci et al. [91] introduced an empirical comparison methodology to

evaluate vulnerability discovery models (e.g., Alhazmi and Malaiya Logistic model [115], and

Logarithmic Poisson [116]), and they evaluated the performance of VDMs with two dimensions

(quality and predictability). The vulnerability data used in the study were extracted from two

sources: (1) common SVDBs (e.g., NVD, OSVDB, etc.), and (2) specialized SVDBs, the

25 https://bugzilla.redhat.com/

37

vulnerability database maintained by the software vendor (e.g., MFSA, Microsoft Security

Bulletin). In some cases, authors used open source and commercial products (e.g., Apache26 and

Microsoft IIS 27 HTTP servers) for measuring and enhancing prediction capabilities of

vulnerability discovery models as described in [113].

Exploratory Studies. In this SE task we noticed exploratory research articles mainly focused on

studying vulnerability evolution (including vulnerabilities trends, patterns, and life cycle). The

studies involved more understating of the nature of vulnerabilities databases by extracting the

vulnerabilities features, and involved mining techniques. We found studies by Murtaza et al. [86]

and Neuhaus et al. [106] in which they mined the vulnerabilities data extracted from NVD to

analyze the security vulnerabilities’ trends and patterns. Anbalagan et al. [109], Stuckman et al.

[90] and Meneely et al. [93] mined SVDBs (e.g., CVE and NVD) to trace security

vulnerabilities. For example, Meneely et al. [93] conducted an exploratory study to explore the

properties of vulnerability-contributing commits in order to check when a software

vulnerabilities patches go bad. In this paper, the authors traced 68 vulnerabilities (extracted from

NVD) in the Apache HTTP server back to the version control commits that contributed to the

vulnerable code originally.

Other exploratory studies involved large scale exploratory analysis of software vulnerability

life cycles (e.g., Shahzad et al. [96], Vache et al. [111], and Frei et al. [114]) and attempted to

understand the security behaviour of certain projects (e.g., [107]). Mauczka et al. [107] used

mining techniques to extract security changes in FreeBSD28. They used the gathered security

changes to find out more about the nature of security in the FreeBSD project, and they tried to

establish a link between the identified security changes and a tracker for security issues (security

advisories). For their study the authors used vulnerability information provided by OWASP and

CWE repositories.

Empirical Studies. The rest of the empirical research articles in our literature survey were

classified as empirical studies. Our further manual analysis of the related articles of these

empirical studies shows that: empirical studies used SVDBs for surveying vulnerability reporters

26 https://httpd.apache.org/
27 https://www.iis.net/
28 https://www.freebsd.org/

38

[81] and studying the security knowledge of SE students [94]. For example, Hafiz et al. [81]

conducted an empirical study on 127 vulnerability reporters to understand the methods and tools

used during the discovery of the software vulnerability and whether the community of

developers exploring security vulnerability differ in their approach from another community of

developers exploring a different vulnerability. The study was based on vulnerability reporters in

the SecurityFocus repository. In addition, the authors analyzed certain types of vulnerability

attack reports (e.g., SQL injection and cross site scripting vulnerabilities) extracted from the

SecurityFocus repository. Similarly to [81], Fang et al. [88] replicated the same experiment but

with a focus only on how buffer overflow attack types are discovered.

Some studies were concerned with comprehending the security bugs’ (vulnerabilities)

characteristics (e.g., Tan et al. [89], Huynh et al. [104], Wal et al. [108], Anba et al. [110], Ye et

al. [83], Wijayasekara et al. [92], and Wijayasekara et al. [99]). For example, Tan et al. [89]

studied the bug characteristics in open-source software (e.g., the Linux kernel, Mozilla, and

Apache). They used bug related vulnerabilities (2,060 vulnerability reports) from the NVD

repository and manually studied these bugs in three dimensions—root causes, impacts, and

components. Some studies focused on analyzing vulnerabilities’ characteristics for web

applications, as discussed in papers [108] and [104]. Some papers studied vulnerabilities

characteristics that affect certain development platforms such as Linux environment [110]. Also,

some studies investigated common vulnerabilities attacks. Ye et al. [83] performed a quantitative

and qualitative study on static buffer overflow detection. The data was collected from buggy and

fixed versions of 100 buffer overflow bugs from 63 real-world projects based on the

vulnerability reports from the CVE dataset.

Wijayasekara et al. [92] and [99] mined bug databases for unidentified software

vulnerabilities. The authors claimed that it has been suggested in previous work that some bugs

are only identified as vulnerabilities long after the bug has been made public. These

vulnerabilities are known as hidden impact vulnerabilities. Wijayasekara et al. presented a

vulnerability analysis from January 2006 to April 2011 for two well-known software packages:

Linux kernel and MySQL. They showed that 32% (Linux) and 62% (MySQL) of vulnerabilities

discovered in this time period were hidden impact vulnerabilities. The study also showed that the

percentage of hidden impact vulnerabilities has increased from 25% to 36% in Linux and from

39

59% to 65% in MySQL in the last two years. They used CVE database as the source of

vulnerabilities for the studied subjects.

Liu et al. [98] presented an empirical study to improve vulnerability rating and scoring

system (VRSS-based) vulnerability prioritization using an analytic hierarchy process. They

analyzed 11, 395 CVE vulnerabilities to expose the differences among three current vulnerability

evaluation systems (IBM Internet Security Systems (ISS) X-Force [117] , Common Vulnerability

Scoring System (CVSS) [118], and Vulnerability Rating Systems (VRSS) [119]).

Papers introduced by Goseva-Popstojanova et al. [97] and Smith et al. [101] used machine

learning algorithms to classify software vulnerabilities. For example, Goseva-Popstojanova et al.

[97] used multiclass machine learning methods to classify malicious behaviors aimed at web

systems—Web 2.0 applications (i.e., a blog and wiki). They used the vulnerability data from

OWASP, NVD, and SecurityFocus. Smith et al. [101] showed a classification method of

detecting different types of web application vulnerabilities (subject systems are WordPress, a

blogging application, and WikkaWiki, a wiki management engine). The authors relied on the

vulnerabilities types extracted from the CWE database.

Last, we found empirical studies that used SVDBs information in investigating

vulnerabilities impacts on the software stock market (e.g., [112]). In their paper, Telang et al.

[112] completed an empirical analysis of the impact of software vulnerability announcements on

firm stock price. They collected data from leading national newspapers and industry sources,

such as the Computer Emergency Response Team (CERT), by searching for reports on published

software vulnerabilities. The researchers showed that vulnerability announcements lead to a

negative and significant change in a software vendor’s market value.

The common use of SVDBs in this SE task is downloading/extracting vulnerability

information for the subject systems. In some cases, exploratory studies were more involved

in comprehending the vulnerability behaviour (e.g., trends and life cycle) by extracting the

vulnerability features provided by SVDBs.

40

3.4.2 Modeling
Modeling in SE research is primarily concerned with reducing the gap between software

problems and implementation through the use of models that describe complex systems at

multiple levels of abstraction and from a variety of perspectives [120]. Table 6 summarizes the

surveyed articles classified in this SE task, showing title of each article, publication year, name

of the used SVDB, and what the SVDB was used for.

Table 6: SE articles using SVDBs in SE modeling task
Reference Title of Paper Year SVDBs How SVDBs Used

Alqahtani et al. [44] SV-AF - A Security Vulnerability
Analysis Framework

2016 NVD Modeling vulnerability
information.

Morrison et al. [121]
A Security Practices Evaluation
Framework

2015
OWASP and
NVD

Modeling secure coding
practices knowledge.

Ilo et al. [63]

Combining Software
Interrelationship Data Across
Heterogeneous Software
Repositories

2015 NVD
Modeling vulnerability
information.

Chatzipoulidis et al.
[60]

Information Infrastructure Risk
Prediction Through Platform
Vulnerability Analysis

2015 NVD
Used vulnerability measures
information.

Scandariato et al. [61]
Predicting Vulnerable Software
Components via Text Mining 2014 NVD

Extracted seven
vulnerability reports related
to Android apps.

Murtaza et al. [122]
Total ADS: Automated Software
Anomaly Detection System 2014 CVE

Downloaded specific
vulnerabilities examples.

Milenkoski et al.
[123]

Experience Report: An Analysis of
Hypercall Handler Vulnerabilities

2014 CVE Downloaded 23
vulnerabilities.

Shar et al. [62]
Mining SQL Injection and Cross
Site Scripting Vulnerabilities Using
Hybrid Program Analysis

2013 CVE and
PMASA

Downloaded vulnerability
information.

Berger et al. [58]
Extracting and Analyzing the
Implemented Security Architecture
of Business Applications

2013 CWE Extracted vulnerability
attacks examples.

Almorsy et al. [124]
Automated Software Architecture
Security Risk Analysis Using
Formalized Signatures

2013 CAPEC
Applying predefined
security pattern attacks.

Shar et al. [125]

Predicting Common Web
Application Vulnerabilities from
Input Validation and Sanitization
Code Patterns

2012 SecurityFocus Downloaded vulnerable
projects.

Almorsy et al. [126]

Supporting Automated
Vulnerability Analysis Using
Formalized Vulnerability
Signatures

2012 OWASP
Downloaded vulnerability
information and attack
types.

Gauthier et al. [127] Fast Detection of Access Control
Vulnerabilities in PHP Applications

2012 OWASP and
CVE

Downloaded specific
number of vulnerability
information.

41

Wu et al. [64]
Empirical Results on the Study of
Software Vulnerabilities (NIER
Track)

2011 CWE, CVE
Modeling vulnerability
attack and relations with
software projects.

Pham et al. [65] Detecting Recurring and Similar
Software Vulnerabilities

2010 CERT and CVE Downloaded and analyzed
2, 598 vulnerabilities.

Anbalagan et al. [66]
Towards a Unifying Approach in
Understanding Security Problems

2009 OSVDB, NVD
Downloaded and analyzed
43, 710 vulnerabilities.

Cavusoglu et al. [67]

Efficiency of Vulnerability
Disclosure Mechanisms to
Disseminate Vulnerability
Knowledge

2007 CERT
Downloaded and studied the
disclosure policy of
vulnerabilities reports.

Xu et al. [128]
Threat-Driven Modeling and
Verification of Secure Software
Using Aspect-Oriented Petri Nets

2006 SecurityFocus
Studied specific
vulnerability attacks.

Byers et al. [129] Modeling Software Vulnerabilities
With Vulnerability Cause Graphs

2006 CVE Used vulnerability
information as a case study.

Table 6 shows articles classified in this SE task. We manually classified these articles based

on their content into four categories: knowledge modeling papers, vulnerability prediction

models papers, threat modeling papers, and others. In what follows, we provide a summary of

each article in each category.

Knowledge modeling. In our survey, this SE task (i.e., modeling) often uses SVDBs as a source

of knowledge modeling for vulnerability analysis and interlinking (e.g., Alqahtani et al. [44],

Morrison et al. [121], Ilo et al. [63], Wu et al. [64], Pham et al. [65], Anbalagan et al. [66], and

Cavusoglu et al. [67]). Alqahtani et al. [44] introduced a vulnerability analysis framework based

on Semantic Web technologies, and used NVD as an example of SVDBs that can be integrated

with SE knowledge sources (e.g., source code repositories, issue tracker systems) to study

software security evolution. In other related work, Ilo et al. [63] introduced abstract research,

which proposed an ontology for the semantic modeling of the relationships between SE

ecosystems as linked data. They also proposed to evaluate their approach by integrating the data

of several ecosystems (Maven29 and NVD) and demonstrated its usefulness by creating tools for

vulnerability notification and license violation detection. Wu et al. [64] proposed organizing the

information in project repositories around semantic templates (semantic templates are

generalized patterns of relationship between software elements and faults, and their association

with known higher level phenomena in the security domain [130]). In this paper the authors

presented preliminary results of an experiment conducted to evaluate the effectiveness of using

29 https://search.maven.org/

42

semantic templates as an aid to studying software vulnerabilities. In the experiment they used

several reported vulnerabilities in the Apache Web Server from NVD.

We found SVDBs used as a knowledge source for software security practices—for example,

Morrison et al. [121] who proposed a security practices evaluation framework. The goal of their

framework is to aid software practitioners in evaluating security practice use in the development

process by defining and validating a measurement framework for software development security

practice use and outcomes. For evaluating the framework they proposed the use of historical data

and industrial projects from different repositories such as OWASP and NVD.

By using vulnerabilities from OSVDB and NVD, Anbalagan et al. [66] discussed a model

that captures software systems vulnerabilities status including the type of vulnerabilities, their

disclosure status, exploit status, and their correction status. They mapped vulnerabilities for

Bugzilla and FEDORA products to the model, with the goal to estimate model parameters in

terms of studying the relationship between security problems and security exploits. In related

work, Pham et al. [65] showed an approach to detecting recurring and similar software

vulnerabilities. They proposed SecureSync, an automatic approach to detect and provide

suggested resolutions for recurring software vulnerabilities on multiple systems sharing/using

similar code or API libraries. They extracted and analyzed vulnerabilities reports from the US-

CERT database. Additionally, the authors used some vulnerability information from the CVE

database.

Cavusoglu et al. [67] studied how vulnerabilities should be disclosed to minimize the

associated social loss. The authors developed a game-theoretical model [67] in which the

coordinator minimizes the societal loss, which includes both damage to vulnerable firms and the

patch development cost to the software vendor. The proposed model consists of four

stakeholders in the vulnerability knowledge dissemination process: software developer (vendor),

software deployers (firms), vulnerability identifier (benign user or hacker), and central

coordinator (CERT30).

Vulnerability Prediction Models (VPM). We also found that the surveyed articles in this SE task

used SVDBs for VPMs (e.g., Chatzipoulidis et al. [60], Scandariato et al. [61], Shar et al. [62],

and Shar et al. [125]). VPM is a field of study which aims at automatically classifying software

30 Computer Emergency Response Team (CERT): https://www.us-cert.gov/

43

entities as vulnerable or not. For example, Shar et al. [62] and [125] showed a machine learning

technique to predict common web application’s vulnerabilities from input validation and

sanitization code patterns. They proposed a set of static code attributes that represent the

characteristics of input validation and sanitization routines for predicting the two most common

web application vulnerabilities—SQL injection and cross site scripting. The test subjects’

vulnerability information was extracted from the SecurityFocus repository and CVE dataset. In

related work, Scandariato et al. [61] presented an approach based on machine learning to predict

which components of a software application contain security vulnerabilities. The approach is

based on text mining the source code of the components.

Chatzipoulidis et al. [60] aimed to provide a complementary approach to existing

vulnerability prediction solutions and launched the measurement of zero-day risk by introducing

a risk prediction methodology for an information infrastructure. The practicality of the risk

prediction methodology is demonstrated with an implementation example from the electronic

banking sector and vulnerability information extracted from NVD.

Threat Modeling. Some of the surveyed articles in this SE task introduced threat modeling

approaches (e.g., Berger et al. [58], Xu et al. [128]) using SVDBs as a knowledge source. Threat

modeling is an approach for analyzing the security of an application [131]. It is a structured

approach that enables you to identify, quantify, and address the security risks associated with an

application [131]. Berger et al. [58] proposed a technique that automatically extracts the

implemented security architecture of Java-based business applications from the source code.

They carried out threat modeling on this extracted architecture to detect security flaws. To create

the proposed approach’s knowledge base containing well-known threats as well as possible

mitigations, the researchers inspected the CWE database which lists a number of security

problems and their consequences, as well as potential mitigations. Xu et al. [128] presented a

formal threat-driven model approach which explores explicit behaviors of security threats as the

mediator between security goals and applications of security features. They demonstrated their

approach through a systematic case study on the threat-driven modeling and verification of a

real-world shopping cart application (using vulnerability information from SecurityFocus

database).

44

Others. Last, we find other papers in this SE task that introduce modeling approaches with help

from SVDBs information. For example the use of SVDBs in modeling specific vulnerabilities for

anomaly detection (e.g., Murtaza et al. [122]), using SVDBs information to model and

understand hypercall 31 handler vulnerabilities (e.g., Milenkoski et al. [123]), defining and

modeling formal vulnerabilities signatures by using vulnerabilities signatures provided by

SVDBs (e.g., Almorsy et al. [124], Almorsy et al. [126]), and locating the vulnerability root

cause by modeling SVDBs vulnerabilities based on the vulnerability cause graph technique (e.g.,

Byers et al. [129]).

3.4.3 Source Code: Vulnerability Analysis
Source code vulnerability analysis is a static/dynamic analysis method destined to analyze the

source code and/or compiled versions of code to help find security flaws [132]. Table 7

summarizes the articles classified in this SE task, showing the title of each article, publication

year, name of the used SVDB, and what the SVDB was used for.

Table 7: SE articles using SVDBs in vulnerability analysis
Reference Title of Paper Year SVDBs How SVDBs Used

Wang et al. [74] deExploit: Identifying Misuses of
Input Data to Diagnose Memory-
Corruption Exploits at the Binary
Level

2017 Exploit-DB Downloaded selected exploit codes.

Sampaio et al. [52] Exploring Context-Sensitive
Data Flow Analysis for Early
Vulnerability Detection

2016 OWASP Investigated vulnerability source code and
security attack examples.

Nguyen et al. [133] An Automatic Method for
Assessing the Versions Affected
by a Vulnerability

2016 NVD The authors downloaded vulnerable releases.

31 Hypercalls are software traps (i.e., interrupts) from a kernel of a fully or partially para-virtualized guest Virtual Machine (VM) to the
hypervisor.

From our surveyed papers, we find that the common use of SVDBs in this SE task manifold

in three reasons: extract vulnerabilities information from SVDBs to improve vulnerability

prediction/detection models, to trace and localize vulnerability in software systems, and to

enrich proposed frameworks for software security practices.

45

Gao et al. [75] BovInspector: Automatic
Inspection and Repair of Buffer
Overflow Vulnerabilities

2016 Selected
Vulnerable
Projects

Selected vulnerable releases, and used CVE
information as motivation example in the
introduction and related work.

Ming et al. [134] StraightTaint: Decoupled Offline
Symbolic Taint Analysis

2016 CVE The authors extracted specific vulnerabilities
from CVE .

Thome et al. [73] Security Slicing for Auditing
XML, XPath, and SQL Injection
Vulnerabilities

2015 OWASP Downloaded vulnerable web applications.

Theisen et al. [135] Approximating Attack Surfaces
with Stack Traces

2015 NVD Downloaded vulnerable releases of
Windows.

Renatus et al.
[136]

Improving Prioritization of
Software Weaknesses Using
Security Models with AVUS

2015 CWE and
CVSS

Used for rating and classification.

Pasaribu et al. [68] Input Injection Detection in Java
Code

2014 CVE and
OWASP

Downloaded vulnerable web applications.

Zheng et al. [69] Path Sensitive Static Analysis of
Web Applications for Remote
Code Execution Vulnerability
Detection

2013 Selected
Vulnerable
Projects

The authors used specialized vulnerable web
apps that suffer from remote code execution.

Coker et al. [137] Program Transformations to Fix
C Integers

2013 SRD and
CWE

Downloaded vulnerable applications and
vulnerability information.

Ofuonye et al.
[138]

Securing Web-Clients with
Instrumented Code and Dynamic
Runtime Monitoring

2013 MS bulletins Use one vulnerability example for case
study.

Møller et al. [70] Automated Detection of Client-
State Manipulation
Vulnerabilities

2012 OWASP The authors downloaded vulnerable web
applications and vulnerability information.

Bernat et al. [139] Structured Binary Editing with a
CFG Transformation Algebra

2012 NVD The authors downloaded CVEs for Apache
subject system.

Shahriar et al. [71] Client-Side Detection of Cross-
Site Request Forgery Attacks

2010 OSVDB Downloaded vulnerable projects.

Wassermann et al.
[72]

Static Detection of Cross-Site
Scripting Vulnerabilities

2008 CVE The authors used CVE vulnerability
examples.

Our survey shows a focus of research activity related to static (and dynamic) analysis

research. Static analysis is performed in a non-runtime environment [140]. Typically static

analysis research will focus on inspecting program code for all possible run-time behaviors and

seek out coding flaws, back doors, and potentially malicious code. Dynamic analysis adopts the

opposite approach and is executed while a program is in operation [140]. SVDBs in this context

are often used as a source of validating the proposed approaches with known vulnerability

attacks, understanding specific types of security attacks, tracking and evaluating the attacks

patterns, and checking and investigating the root cause of the attack in the source code.

We found that articles classified in this SE task are dedicated to static analysis to detect and

analyze known security vulnerabilities (e.g., Thome et al. [73], Pasaribu et al. [68], Zheng et al.

[69], Møller et al. [70], Shahriar et al. [71], Wassermann et al. [72] and Coker et al. [137]). For

46

example, Thome et al. [73] introduced an approach to assist security auditors by defining and

experimenting with pruning techniques to reduce original program slices to what they refer to as

security slices. The approach focused on extracting relevant security vulnerabilities implemented

in web application source code such as XMLi [141], XPathi [142], and SQLi vulnerabilities. The

authors validated their approach on vulnerable web applications downloaded from the OWASP

repository. Pasaribu et al. [68] introduced a tool for input injection (SQL injection, command

injection, and cross-site scripting) detection in java code. The authors extended an existing static

analysis tool—FindBugs32—for input injection detection. The tool was verified on vulnerable

web applications, WebGoat from OWASP and ADempiere 33 vulnerable version from CVE.

Zheng et al. [69] used a static analysis approach to detect Remote Code Execution (RCE) attacks

in web apps. They proposed a path- and context-sensitive interprocedural analysis to detect RCE

vulnerabilities. The authors used selected vulnerable web apps that suffer from remote code

execution. Shahriar et al. [71] and Wassermann et al. [72] used static analysis techniques to

detect Cross-Site Request Forgery (CSRF) and Cross-Site Scripting (XSS) vulnerabilities attacks

in web applications, respectively. Shahriar et al.’s [71] approach relies on the matching of

parameters and values present in a suspected request with a form’s input fields and values that

are displayed on a webpage. They validated their approach on web applications that have been

reported to contain CSRF in OSVDB. Wassermann et al. [72] presented a static analysis for

finding XSS vulnerabilities that directly addresses weak or absent input validation. The proposed

approach combines work on tainted information flow with string analysis. The approach is

evaluated in web applications and finds both known and unknown vulnerabilities using

vulnerabilities information extracted from CVE database.

Møller et al. [70] introduced an approach for automated detection of client-state manipulation

vulnerabilities in web applications. They presented a static analysis for frameworks such as Java

Servlets, JSP, and Apache Struts. Given a web application archive as input, the analysis

identifies occurrences of client state and infers the information flow between the client state and

the shared application state on the server. To validate their proposed approach, the researchers

ran experiments on a collection of open source web applications, some of them introduced as

vulnerable apps from OWASP.

32 http://findbugs.sourceforge.net/
33 http://adempiere.org/site/

47

Coker et al. [137] discussed static program transformations to fix C integers. The paper

describes three program transformations that fix C integer problems—one explicitly introduces

casts to disambiguate type mismatch, another adds runtime checks to arithmetic operations, and

the third one changes the type of a wrongly-declared integer. The authors validated their

proposed approach on dataset from NIST’s SAMATE reference dataset34 and CWE information.

Dynamic analysis research on monitoring web applications security is discussed in [138] and

[139]. Ofuonye et al. [138] introduced an approach to securing web-clients with instrumented

code and dynamic runtime monitoring. The proposed approach seeks to isolate exploitable

security vulnerabilities and enforce runtime policies against malicious code constructs. To

validate their approach the authors used four case studies, and for one of them they used a

publicly available proprietary vulnerability database (Microsoft bulletins). Bernat et al. [139]

introduced a dynamic approach for structured binary editing with control flow graph (CFG)

transformation algebra. They defined an algebra of CFG transformations that is closed under a

CFG validity constraint, thus ensuring that users can arbitrarily compose these transformations

while preserving structural validity. They demonstrated the usefulness of their approach by

creating a patching tool that closes three vulnerabilities (extracted from NVD repository) in a

running Apache HTTPD server without interrupting the server’s execution.

A hybrid vulnerability analysis approach has been discussed in the security topic taint

analysis. Taint analysis approach has been widely applied in ex post facto security applications,

such as computer forensics, attack provenance investigation, and reverse engineering. Ming et al.

[134] developed StraightTaint, a hybrid taint analysis tool that decouples the program execution

and taint analysis. In order to test the accuracy of their approach/tool, they used CVE data to test

the accuracy of the taint analysis task in terms of software attack detection.

Among the surveyed papers, research includes work on locating vulnerable source code,

identifying attack surface, and prioritizing vulnerability impacts using static analysis tools (e.g.,

Nguyen et al. [133], Theisen et al. [135], Renatus et al. [136], and Sampaio et al. [52]). When a

vulnerability is disclosed, it may impact organizations which rely on retro versions of the

software. Nguyen et al. [133] proposed an automated method to determine the code evidence for

the presence of vulnerabilities in retro software versions. Identifying the vulnerable code in retro

versions is based on identifying the lines of code that were changed to fix vulnerabilities. To

34 https://samate.nist.gov/SRD/

48

show the scalability of the method, the authors performed experiments on Chrome and Firefox

(spanning 7, 236 vulnerable files and approximately 9, 800 vulnerabilities) on NVD. Theisen et

al. [135] proposed an approach that approximates attack surfaces with stack traces. An approach

for identifying vulnerable code is to identify its attack surface, the sum of all paths for untrusted

data into and out of a system. The experiments were conducted on datasets collected for

Windows 8. However, the dataset used in this experiment to characterize the vulnerabilities in

Windows is data from NVD. Sampaio et al. [52] discussed context-sensitive data flow analysis

for early vulnerability detection. The authors showed two goals of their proposed approach: (1)

they proposed to perform continuous detection of security vulnerabilities while the developer is

editing each program statement, also known as early detection; and (2) they explored context-

sensitive data flow analysis (DFA) for improving vulnerability detection and mitigating the

limitations of pattern matching. They used the OWASP repository as the source for vulnerability

information for their method implementation. Renatus et al. [136] provided a tool to improve

prioritization of software weaknesses using security models. The authors introduced a

lightweight tool, the Augmented Vulnerability Scoring (AVUS) tool that adjusts context-free

ratings of software weakness according to user defined security model. The tool is based on

information from CWE databases and CVSS scoring schema.

Wang et al. [74] and Gao et al. [75] used static analysis approaches to diagnose and resolve

memory vulnerabilities and to detect buffer-overflow issues, respectively. Wang et al. [74]

proposed an approach for detecting memory corruption at the binary level by identifying the

misuse of input data and presented an exploit diagnosis approach called deExploit. The authors

evaluated their approach with several binary programs extracted from a publicly available

exploits database (Exploit-DB). Gao et al. [75] presented BovInspector, a tool framework for

automatic static buffer overflow warnings inspection and validated bugs repair. The tool takes

two inputs—program source code and vulnerability warning—and performs a warning

reachability analysis. The tool was evaluated against selected vulnerable projects from different

vulnerability sources [75].

49

3.4.4 Security Testing
Testing can be classified utilizing the three dimensions of flow, scales, and characteristics [143]

shown in Figure 10. Test flow explains where tests are derived from, scripting/coding (white-

box) or requirements (black-box). Test scale describes the granularity of the system under test

(SUT) and can be unit testing or anything up to system testing. The test characteristics are the

reason or purpose for designing and executing a test, for example testing the system’s

functionality, robustness, capacity, or usability.

Figure 10: Types of testing in SE [143].

Model-based testing is “the automation of test design”. Tests are generated automatically

from a model of SUT [144]. Because test suites are derived from models and not from source

code, model-based testing is usually seen as a form of black-box testing [144].

Researchers in SE use static and dynamic analysis approaches to locate vulnerable code

and analyze known security vulnerabilities (e.g., XSS and CSRF). A common use of SVDBs

in this context is using application vulnerabilities for validation and to gain security

knowledge.

50

Identifying vulnerabilities and ensuring security functionality by security testing is a widely

applied measure to evaluate and improve the security of software. Software security testing is a

process intended to reveal flaws in the security mechanisms of information systems that protect

data and maintain functionality as intended [145].

Our survey provides an overview of the security testing techniques used in SE research.

Table 8 summarizes the articles classified in this SE task, showing the title of each article,

publication year, name of the used SVDB, and what the SVDB was used for.

Table 8: SE articles using SVDBs in security testing task
Reference Title of Paper Year SVDBs How SVDBs Used

Stivalet et al.
[78]

Large Scale Generation of
Complex and Faulty PHP Test
Cases

2016 CWE and
OWASP

Used vulnerabilities information
for comprehending security
attacks.

Ceccato et al.
[76]

SOFIA: An Automated Security
Oracle for Black-Box Testing of
SQL-Injection Vulnerabilities

2016 CVE Downloaded vulnerable web
applications and web services
affected by SQL injection.

Pham et al.
[77]

Model-Based Whitebox Fuzzing
for Program Binaries

2016 OSVDB and
CVE

Downloaded vulnerable projects.

Palsetia et al.
[53]

Securing Native XML Database-
Driven Web Applications from
XQuery Injection Vulnerabilities

2016 OWASP Used security guidelines.

Bozic et al.
[54]

Evaluation of the IPO-Family
Algorithms for Test Case
Generation in Web Security
Testing

2015 OWASP and
Exploit-DB

Downloaded vulnerable web
applications.

Appelt et al.
[146]

Behind an Application Firewall,
Are We Safe from SQL Injection
Attacks?

2015 OWASP Used the database as a knowledge
source to comprehend SQL
injection attack.

Pham et al.
[147]

Hercules: Reproducing Crashes in
Real-World Application Binaries

2015 CVE Downloaded selected CVEs
vulnerabilities reports.

Aydin et al.
[148]

Automated Test Generation from
Vulnerability Signatures

2014 OWASP Downloaded vulnerable web
applications.

Hossen et al.
[149]

Automatic Generation of Test
Drivers for Model Inference of
Web Applications

2013 OWASP Downloaded vulnerable web
applications.

Blome et al.
[150]

VERA: A Flexible Model-Based
Vulnerability Testing Tool

2013 OWASP Downloaded vulnerable web
applications.

Lebeau et al.
[151]

Model-Based Vulnerability
Testing for Web Applications

2013 CAPEC and
OWASP

Used vulnerability knowledge and
types of security attacks.

Buchler et al.
[152]

SPaCiTE -- Web Application
Testing Engine

2012 OWASP Downloaded Webgoat, a
vulnerable web application.

Zhang et al.
[153]

SimFuzz: Test Case Similarity
Directed Deep Fuzzing

2012 NVD,
SecurityFocus,
and
SecurityTracker

Extracted 100 buffer overflow
vulnerabilities.

Shahriar et al.
[154]

MUTEC: Mutation-Based Testing
of Cross Site Scripting

2009 OSVDB Downloaded five open source web
applications suffering from Cross
Site Scripting (XSS) vulnerability.

51

The surveyed papers in this SE task used SVDBs information to perform security testing and

techniques in different aspects such as black-box testing (including model-based testing) as

discussed in Ceccato et al. [76], Palsetia et al. [53], Appelt et al. [146], Aydin et al. [148],

Hossen et al. [149], Blome et al. [150], Lebeau et al. [151], and Buchler et al. [152].

Black box and model-based testing. Black-box and model-based security testing are testing

techniques that describe how a system securely behaves in response to an action (determined by

a model). Ceccato et al. [76] introduced SOFIA, a security oracle for black-box testing of SQL-

injection vulnerabilities. The main purpose of SOFIA is to detect types of SQLi attacks. The

proposed approach validated vulnerable web applications that use SQL relational database and

has known vulnerabilities published in the CVE dataset.

Palsetia et al. [53] proposed a black-box fuzzing approach to detect different types of

XQuery injection vulnerabilities in web applications driven by “native XML databases”35. The

primary objective of the proposed method for detecting XQuery injection vulnerabilities is based

on OWASP guidelines in native XML database-driven web applications.

Appelt et al. [146] focused on web application firewalls and SQL injection attacks. They

presented a black-box (machine learning-based) testing approach to detect holes in firewalls that

let SQL injection attacks bypass. They developed a tool that implements the approach and

evaluated it on ModSecurity36, a widely used application firewall provided by the OWASP

project.

Aydin et al. [148] showed that vulnerability signatures computed for deliberately insecure

web applications (developed for demonstrating different types of vulnerabilities) can be used to

generate test cases for other applications. Their proposed approach is a black-box specification-

based testing approach. The authors used a deliberately insecure web application called Damn

Vulnerable Web Application (DVWA) listed in the OWASP broken web applications project.

Hossen et al. [149] proposed automatic generation of test drivers for model inference of web

applications. The authors have applied the method on WebGoat. WebGoat is organized in

lessons; the goal of a lesson is to show a type of vulnerability and its corresponding attack. The

35 http://www.rpbourret.com/xml/ProdsNative.htm
36 https://www.modsecurity.org/

52

authors chose the stored cross-site scripting (XSS) lesson, which has a demonstrated

vulnerability in the Top10 within OWASP.

Blome et al. [150] introduced VERA—a flexible model-based vulnerability testing tool. The

proposed method is a tool that allows users to define attacker models where the payloads and the

behavior are separated and that abstract away from low-level implementation details such as

HTTP requests. The researchers give two examples of Injection flaws: Cross Site Scripting and

SQL Injection using information from WebGoat extracted from the OWASP database. Lebeau et

al. [151] introduced model-based vulnerability testing for web applications. The approach is

based on a mixed modeling of the application under test; the specification indeed captures some

behavioral aspects of the web application and includes vulnerability test purposes to drive the

test generation algorithm. This approach is illustrated with the widely-used DVWA example.

Buchler et al. [152] presented a model checking tool called SPaCiTE - Web Application

Testing Engine. The proposed tool relies on a dedicated model-checker for security analyses that

generates potential attacks with regard to common vulnerabilities in web applications. The

authors applied SPaCiTE to Role-Based-Access-Control (RBAC) and Cross-Site Scripting

(XSS) lessons of WebGoat, an insecure web application maintained by OWASP.

Hybrid approaches. We found papers that used a combination of different testing approaches,

such as model-based white box testing approach (e.g., Pham et al. [77]), and an article that

combined different approaches such as black box fuzzing, code analysis, and combination (i.e.,

combinatorial) testing (e.g., Zhang et al. [153]).

Pham et al. [77] presented Model-based Whitebox Fuzzing (MoWF), an automated testing

technique for program binaries that process structured inputs. MoWF is a combination of model-

based black box fuzzing and white box fuzzing. They evaluated their approach on 13

vulnerabilities in 8 program binaries with 6 separate file formats, and compared the explored

vulnerabilities with ones from OSVD and CVE public databases.

Zhang et al. [153] proposed a fuzzing approach aimed to produce test inputs to explore deep

program semantics. The fuzzing process integrates techniques from black-box fuzzing, code

analysis, and combination testing. The main purpose of the approach is to detect memory

corruption vulnerabilities such as buffer overflow and pointer out-of-boundary operations. The

53

authors used top 100 buffer overflow vulnerabilities from searching the vulnerabilities of NVD,

SecurityFocus, and SecurityTracker.

Others. Other papers used SVDBs information in testing approaches such as the combinatorial

testing approach discussed in Bozic et al. [54], and symbolic execution testing explained in Pham

et al. [147]. In this category are also mutation-based testing introduced in Shahriar et al. [154]

and test case generator tool for PHP introduced in Stivalet et al. [78].

Bozic et al. [54] evaluated in-parameter-order (IPO-Family) algorithms, namely the IPOG

and IPOG-F algorithms, for test case generation in web security testing by using a combinatorial

testing approach. They validated the proposed approach on vulnerable web applications

published in the OWASP Broken Project37 and in the Exploit Database38.

Pham et al. [147] presented the design and evaluation of the Hercules approach for finding

test inputs which can reproduce a given crash. The approach is based on symbolic execution and

its distinctive features. The test input generated by their method serves as a witness of the crash.

They illustrated the pertinent aspects of the approach using data from the CVE database.

Shahriar et al. [154] introduced an approach called MUTEC, a Mutation-based Testing of

Cross Site Scripting. The approach tries to address XSS vulnerabilities related to web-

applications that use PHP and JavaScript code to generate dynamic HTML contents. Shahriar et

al. proposed 11 mutation operators to force the generation of an adequate test dataset. The

proposed operators were validated by using five open source applications having XSS extracted

from the OSVDB repository.

Stivalet et al. [78] presented an automated generator of test cases, which are designed to

evaluate source code security analyzers. The tool produces PHP programs with most common

vulnerabilities embedded in various code complexities. The authors used CWE weakness dataset

and OWASP vulnerabilities categories to generate selected PHP programs test cases. The

generated PHP test cases were added to the Software Assurance Reference Dataset (SARD).

37 https://www.owasp.org/index.php/OWASP_Broken_Web_Applications_Project
38 https://www.exploit-db.com/

54

3.4.5 Risk Analysis and Management
Some software development projects still have high failure rates [155]. A diversity of risk

management approaches are suggested by researchers and followed by organizations in order to

minimize the failure rate and ensure project success [155]. In particular, risk management is all

about perception and detection of sources of risks through the different phases of software

development [155]. Table 9 summarizes the articles classified in this SE task, showing the title

of each article, publication year, name of the used SVDB, and what the SVDB was used for.

Table 9: SE articles using SVDBs in risk analysis and management
Reference Title of Paper Year SVDBs How SVDBs Used

Plate et al. [156] Impact Assessment for Vulnerabilities
in Open-Source Software Libraries

2015 NVD Downloaded specific vulnerable releases.

Yu et al. [157] Automated Analysis of Security
Requirements Through Risk-Based
Argumentation

2015 CWE and
CAPEC

Used vulnerability mitigation guidelines.

Cox et al.[158] Measuring Dependency Freshness in
Software Systems

2015 CVE Downloaded and extracted vulnerability
information such as disclosure date.

Kannavara et al.
[159]

Assessing the Threat Landscape for
Software Libraries

2014 CWE and
CAPEC

Downloaded types of vulnerabilities
attacks and patterns.

Kannavara et al.
[160]

Securing Opensource Code via Static
Analysis

2012 NVD Map defined vulnerabilities to known
vulnerabilities in NVD entries.

Houmb et al.
[161]

Quantifying Security Risk Level from
CVSS Estimates of Frequency and
Impact

2010 CVSS The authors used severity score system.

Fruhwirth et al.
[162]

Improving CVSS-Based Vulnerability
Prioritization and Response with
Context Information

2009 NVD Extracted severity scores from sample
number of vulnerabilities reports.

Boldt et al. [163] Software Vulnerability Assessment
Version Extraction and Verification

2007 OSVDB Found publicly disclosed vulnerabilities
for specific projects.

The surveyed articles in this SE task focused on assessing security vulnerability threats and

impacts on software systems.

Among the articles being classified under this SE task (i.e., software security testing), the

common use of SVDBs is to generate security test cases and validate the testing approaches

on real-world vulnerable applications.

55

Open source threat and impact assessment. We found 3 articles (Plate et al. [156], Kannavara et

al. [159], and Kannavara et al. [160]) discussing the risk of adopting open source components

(e.g., libraries) in the development environment. For example, Plate et al. [156] proposed an

approach to support the impact assessment based on the analysis of code changes introduced by

security fixes of open source libraries. For the evaluation, the authors depended on

vulnerabilities from the NVD database. Kannavara et al. [159] sought to assess the threat

landscape associated with software open source libraries and discussed mitigation strategies via

Security Development Lifecycle (SDL). The used datasets in this research were from CWE and

CAPEC for common vulnerability attack patterns. Kannavara et al. [160] attempted to some

extent to address open source code security challenges by applying static analysis on a popular

open source project (i.e., Linux kernel). Based on their analysis, the authors proposed an

alternate workflow that can be adopted while incorporating open source software in a

commercial software development process. For the vulnerability analysis part, the authors used

CVE information for Linux kernel in the NVD repository.

Assessing security requirement. Yu et al. [157] discussed automated analysis of security

requirements through risk-based argumentation. The authors’ earlier work on RISA (RIsk

assessment in Security Argumentation) showed that informal risk assessment can complement

the formal analysis of security requirements. They incorporated an automated search

functionality to match catalogues of security vulnerabilities such as CAPEC and CWE with the

keywords derived from the arguments.

Vulnerability impact and severity assessment systems. We found two articles (Houmb et al. [161]

and Fruhwirth et al. [162]) discussing the CVSS system risk estimation and improvements. The

CVSS aids in such prioritization by providing a metric for the severity of vulnerabilities. For

example, Houmb et al. [161] presented a risk estimation approach that makes use of one such

data source, the CVSS. The CVSS Risk Level Estimation estimates a security risk level from

vulnerability information as a combination of frequency and impact estimates derived from the

CVSS. Fruhwirth et al. [162] introduced an approach for improving CVSS-based vulnerability

prioritization and response with context information. They claim the CVSS scores provided by

56

the NVD alone are of limited use for vulnerability prioritization in practice. They presented a

method that enables practitioners to estimate missing context information (improvements).

Last, we find articles assessing the software versions security and updates (e.g., Boldt et al.

[163] and Cox et al. [158]). Boldt et al. [163] introduced a method for software vulnerability

assessment—version extraction and verification. A tool is proposed for identifying relevant

version information and for verifying potential threats matched against a software vulnerability

database (based on OSVDB). Cox et al. [158] aimed to make prioritization of the software

libraries updates more transparent by introducing metrics to quantify the use of recent versions of

dependencies (i.e., the system’s “dependency freshness”). They validated the usefulness of the

metric using interviews, analyzed the variance of the metric through time, and investigated the

relationship between outdated dependencies and security vulnerabilities reported in the CVE

database.

3.4.6 Other Tasks
Our survey also showed that SE researchers used SVDBs for domains not associated with any of

our manual classes mentioned in the above sub-sections. Mendes et al. [56] proposed a

methodology for benchmarking the security of software-based systems. The vulnerabilities

information for the subject systems were crawled from OSVDB and NVD data sources. Min et

al. [79] proposed a technique for counteracting web browser exploits. The approach was

validated on two vulnerable applications versions (Flash and Adobe Reader) extracted from the

CVE database.

3.5 Study Implications
In this section, we organize the results of our mapping study of the surveyed articles and present

a discussion on the common pitfalls when using SVDBs for SE tasks.

The common use of SVDBs within this SE task is to investigate vulnerabilities impacts on

OSS libraries, to elicit security requirements through risk-based argumentation, and

vulnerability prioritization based on severity impact.

57

3.5.1 How the Surveyed Articles Used SVDBs for Different SE Tasks
For each task, we look at two dimensions: (1) the SVDB that is used, and (2) the repositories that

are used along with the SVDB. In other words, given a SE task, we want to answer the questions

of which SVDB is usually used and which SE repositories are often used along with SVDBs.

The results may help new researchers (and practitioners) determine how to best use SVDBs to a

particular SE task.

Table 10 shows how the surveyed articles support each of the SE tasks. We focus on the six

tasks that we previously identified (see Table 4), and we show the percentage of the surveyed

articles that used each kind of SVDBs and SE repository. We found that most articles reported

on the use of common SVDBs compared to specialized SVDBs. The reasons for this are

manifold such as: (1) Specialized SVDBs contain known security vulnerabilities affecting

specific systems written in a specific programming language (e.g., PHP). Analysis results

obtained from specialized SVDBs are typically not generalized to other systems (e.g., using Java

vs PHP), therefore limiting the potential impact of the published work. (2) Common SVDBs

contain more diverse known security vulnerabilities affecting different types of software systems

and therefore can accommodate different research interests. (3) Among the common SVDBs, we

found NVD to be the most popular SVDB used in the SE community. There are several reasons

for the popularity of NVD including ease of access (e.g., automatic data feeds), updates, size,

and quality of the dataset.

Table 10: Summary of how surveyed articles used SVDBs for different SE tasks. The numbers
are shown in percentage for each category (i.e., SVDBs types, and SE Repo. used).

 Empirical
Research

Modeling Testing Vulnerability
Analysis

Risk
Analysis

Other SE
Tasks

SVDBs
Types

Common 47 22 15 13 9 3
Specialized 2 0 0 2 0 0

SE Repo.
Used

Source Code 15 10 8 13 3 1
Bugs / Vuln. Reports 29 9 2 2 2 2
Logs 2 1 2 0 0 0
Req./Desgin 1 2 0 0 3 0
Other SE dataset 1 0 3 0 1 0

58

Even with the popularity of common SVDBs, studies have shown that developers are often

not aware of known security vulnerabilities affecting their systems [156], [164], [165], resulting

in situations where known vulnerabilities are only late or never patched after the disclosure of a

vulnerability. This implies limited communication between vendors in charge of patching the

vulnerabilities and common SVDBs providers, since vendors are expected to provide a new

(patched) version of components with known vulnerabilities or at least provide users with patch

information on how to fix the vulnerabilities.

A limitation of many common SVDBs is that they do not include the actual code causing the

security vulnerability, which is in contrast to specialized SVDBs that often share the code of

known security vulnerabilities. Having direct access to this vulnerable code fragment simplifies

the work of SE researchers evaluating their security analysis approaches.

We find that most tasks only analyze source code and bugs/vulnerability reports (i.e., issue

tracker data) and rarely use other repositories. With the open source community and its

supporting ecosystem providing access to its source code and bug repositories, the security

research community takes advantage of these available knowledge resources to analyze known

vulnerabilities reports and link vulnerabilities reported in SVDBs with available open source

issue tracker or version control systems.

We reviewed SE tasks discussed in SE articles that used SVDBs in their research

methodology to identify how these SVDBs are used. We classified the articles based on

describing SE tasks for a more fine-grained analysis. Our findings reveal that empirical research

such as security studies (e.g., case studies, comparison studies) are among the most common

research activities covered by our reviewed articles. Although some research has shown that

combining multiple SVDBs can improve vulnerability detection coverage and performance [91],

[166], we found most articles cited only a single SVDB. Also we found most SVDBs host

vulnerabilities affecting commercial (or closed-source) applications, but most of the use case

studies were conducted on open source applications such as Apache project 39 , Chromium

project40, and Mozilla open source project41. We believe the reason for this is that the open

source project provides rich information resources (e.g., issue tracker data, source code and

version history, email archive, etc.) which can be used along with SVDBs information. This

39 https://projects.apache.org/
40 https://www.chromium.org/
41 https://developer.mozilla.org/en-US/docs/Mozilla/Developer_guide/Introduction

59

helps to study the complete development environment for analyzing security vulnerability (i.e.,

evolution). This advantage of gaining such application’s information is not always available for

commercial (or closed-source) applications.

The second most common SE task covered by our reviewed articles is modeling. The

common use of SVDBs in this task (e.g., [129]) is to apply a vulnerability model to a number of

well-known vulnerabilities. In general, this has resulted in comprehensive understanding of the

vulnerabilities and the measures required to prevent them.

Lastly, testing task is also a common SE task covered by our survey articles. Most of the

testing approaches were conducted on web-applications (e.g., [54], [76], [151], [152]) and, more

specifically, validating testing approaches on injection attack (e.g., [73], [76], [146]). One of the

reasons the injection attack is classified as 1st most critical web application security risk is that it

has been confirmed as an OWASP Top 10 42 attack type. However, SVDBs attracted SE

researchers in this domain (testing) due to the rich information provided by SVDBs regarding

this type of attack. For example, in 2018 NVD host 6.09% injection attack, ranging from SQL

injection 2.56% (inject SQL commands that can read or modify data from a database) to OS

command injection 0.66% (full system compromise).

3.5.2 Common Pitfalls when Using SVDBs in Software Engineering

Tasks
In Section 3.4, we discussed how SVDBs are commonly used in different SE tasks. In this

subsection, we further discuss the common pitfalls when using SVDBs in SE tasks.

42 https://www.owasp.org/index.php/Category:OWASP_Top_Ten_Project

Summary: The common use of SVDBs in these SE tasks is extracting vulnerability

examples for validating the assumptions proposed by authors and comprehending the

security vulnerability affecting the software system. Also, studies on vulnerability

repositories focus on harvesting statistical trends or creating vulnerability models and

using them for prediction. Other studies focus on the vulnerability reporters who possess

the most important information.

60

3.5.2.1 Vulnerability disclosure date

Although researchers in SE have proposed several approaches ranging from empirically studying

the vulnerability evolution to vulnerability prediction models, we see very few studies that

consider the various vulnerability sources in order to avoid bias threats to the validity of their

approaches. Determining the public disclosure date of a vulnerability is vital to understanding the

timeline of a vulnerability’s life cycle. Previous studies (e.g., [102], [167], [168], [106], and

[169]) relied on a single SVDB (e.g., NVD) as a source for their empirical studies on

vulnerability life cycle and security patches. But SVDBs entries contain a CVE publication date

that corresponds to when the vulnerability was published in the database, not necessarily when it

was actually publicly disclosed. For example in our surveyed articles, Munaiah et al. [82] and

Murtaza et al. [86] relied on a single SVDB source for their vulnerability empirical analyses.

Munaiah et al. [82] used NVD and relied on the vulnerability disclosure date provided by NVD

only. In the same way, Murtaza et al. [86] used NVD vulnerabilities release dates without

considering other SVDBs. However, this may affect the proposed approaches on vulnerability

lifetime analysis, which would in turn affect the authors’ conclusions.

Current studies usually use SVDBs as a black box and do not consider the effect of using

different SVDBs information on the SE task. As a result, future studies may want to examine the

effect of different SVDBs information on SE tasks. For example, there is no clear guideline on

how estimating the vulnerability disclosure date may affect the result of vulnerability prediction

models. Providing such a guideline can help SE researchers choose better vulnerability

disclosure dates.

3.5.2.2 Vulnerability information noise

When using SVDBs for tasks such as tracing security vulnerabilities, unstructured vulnerability

information in some SVDBs may affect the vulnerability extraction and linking process. For

example, unstructured vulnerability information in SVDBs requires text mining techniques and

human labor in order to detect patch information and locate vulnerability causes in the source

code. Since this relies on the vulnerability auditors and reporters themselves, we do not currently

see a way to enforce this. Other vulnerability representation-related solutions include those that

61

synthesize exploit code examples for specific vulnerability or those that try to present existing

vulnerability online resources in ways more useful to developers (e.g., [165]).

3.5.2.3 Lack of knowledge

Sometimes researchers may not be aware of different existing public SVDBs. Due to that lack of

knowledge, researchers might miss important vulnerability information which is already known.

For example, Scandariato et al. [61] showed detailed background about SVDBs (i.e., NVD);

however, they used the Fortify SCA tool to identify vulnerabilities via static source code analysis

rather than using the vulnerabilities reported in a database such as the NVD. For that, the authors

claimed that “the choice was obligatory, as there are no public databases with sufficient

numbers of vulnerabilities to analyze for Android application”. Although Android vulnerabilities

were rarely published in NVD at the time, they were published and discussed in other SVDBs

very often; for example, Exploit-DB 43 and vulnerability-lab 44 host over 200 android apps

vulnerabilities.

However, relying on vulnerability scanner tools to extract vulnerabilities without (or instead

of) using known vulnerabilities published in different SVDBs may increase the threats to validity

of a researcher’s approach and increase the effort in evaluation.

3.6 Threats to Validity
In what follows we discuss external and internal threats to validity for our study and how we

attempted to mitigate them.

External Threats: Literature search and selection process. Our online library search is based

on keyword queries that include terms related to vulnerabilities databases and SE. It is possible

that our search omitted some studies that either implicitly used vulnerabilities databases without

mentioning the term ‘vulnerability’, or papers that described the use of vulnerabilities databases

in SE activities which were not covered by our search terms. To mitigate this threat, in addition

to the online search we performed a manual issue-by-issue search covering articles published in

43 https://www.exploit-db.com/
44 https://www.vulnerability-lab.com/

62

major SE conferences and journals between 2001 and 2017. The manual search allowed us to

identify those implicit ‘vulnerabilities database’ papers and those papers that leverage

vulnerabilities database for SE activities not covered by our Web-based keyword search. We also

used citations in relevant papers to further extend our dataset to include other relevant articles.

Internal Threats: Literature classification. We manually classified all 94 papers into 6

categories based on their study types and their targeted SE domains/tasks. There is no ground

truth labelling for such classification. Even though we referred to the ACM Computing

Classification System, the IEEE Taxonomy of Software Engineering Standards, and the 2014

IEEE Keywords Taxonomy, there is no well-defined standard methodology of classification

regarding the used schemes. To minimise any potential classification error, we carefully analysed

the full text of the collected papers and had three Ph.D. students from our lab perform a cross

validation of the classification, reaching an average inter-rater agreement of 91%. The

disagreed/controversial papers were resolved through further discussion.

3.7 Future Research Opportunities
In this section, we discuss some opportunities for future work on using SVDBs to support SE

tasks.

Using SVDBs beyond just being information silos. Our results show that a majority of SE

researchers use SVDBs to gain security related knowledge. In fact, developers already use

SVDBs to identify security vulnerabilities and determine features (e.g., vulnerability patch

information) that they want to implement. Presently, the role of SVDBs is mostly as a repository

for reporting known security vulnerabilities. However, we envision that future versions of

SVDBs will play an increasing role as an integrated knowledge source for guiding secure

software development, providing security testing, and refining software security design. Hence,

we believe that future versions of SVDBs need to incorporate a mechanism through which SE

researchers can link and trace vulnerability information directly across knowledge resources.

Another interesting finding is that SE researchers reuse vulnerability information usually

only from one source (single SVDB), thus limiting their analysis approach to the data available

63

in this SVDB. One approach to address this problem is to improve the accessibility of

information across SVDBs boundaries. Providing users with standardized access to these

knowledge resources, where queries will retrieve information across SVDBs boundaries, will

represent a first step to performing new types of vulnerability analyses (e.g., global security

impact). While linking these knowledge resources is an important initial step, additional

semantic modelling will be needed to ensure the consistency and quality of knowledge across

SVDBs boundaries. For example, threats to consistency and ambiguity across these knowledge

resources will have to be addressed to ensure that a vulnerability reported in two databases is

actually the same (or different) instance. One approach would be to replace current proprietary

knowledge modelling approaches used by SVDB providers and agree upon a standardized

knowledge modelling approach, which would include the ability to semantically link query

SVDBs across the repository boundaries and to provide each vulnerability with a global, unique

identifier, similar to the Universal Resource Identifier used by the SW.

Linking Security Commit Changes to SVDBs. With more widespread use of SVDBs in software

development, we believe that SVDBs should become an integrated part of current software

development processes and best practices. Similar to the current practice of adding an issue

number to a commit message, a commit message also should include a link to the vulnerability in

the SVDB where it is reported. Such vulnerability traceability can provide additional insights and

documentation to QA45 and future maintainers when analyzing and comprehending the code

patch. Furthermore, a bi-directional link from the vulnerabilities to the known and patched code

would be desirable. We further believe that next generation IDEs should not only facilitate this

linking process, but also take advantage of these links to recommend patches or identify potential

impacts of these vulnerabilities on other parts of the system.

Vulnerability scanner tools using SVDBs. The existing vulnerability detection tools provide too

much detail about the vulnerability issue and these details, sometimes, are unnecessary to the

regular developer which affects the vulnerability comprehension. We do not see this as

something that can be enforced, but at least guidelines can be developed to help regular

developers achieve vulnerability patches easily.

45 Quality Assurance

64

The unified model for the public SVDBs (suggested above) can be used to enhance the

vulnerability scanner tools to reduce false positive and negative results. Thereby, we suggest the

following list of tool features that encourage future tools or solutions design to be considered:

 Support at least the following tasks: tracing the same vulnerability from different

SVDBs, summarized report about the vulnerability and its impacts, provide patch

information if it exists, automatically deploy the patch to the vulnerable project if

needed, vulnerability dependencies and its global impact (find relevant libraries that

might be affected with the same vulnerability).

 Given a piece of code that introduces the vulnerability, identify any internal or external

calls for this vulnerable code.

3.8 Chapter Summary
While the SE research community is increasingly focusing on security and reliability, no

comprehensive literature survey exists that studies how SVDBs are used and integrated in the SE

life cycle. Knowing how researchers use SVDBs may also help future studies improve software

security. In this study, we surveyed 94 articles from the SE literature that used SVDBs. We

found that:

 there is an increasing awareness of SVDBs in the research community in terms of papers

being published describing the use and application of SVDBs in the SE domain;

 the majority of the surveyed studies applied SVDBs only to a limited number of SE

activities;

 most studies relied on only one SVDB for their contribution.

We have also discussed potential directions for future work on using SVDBs for different SE

tasks, which also were the motivation for our research presented in Chapters 4–7 of this thesis.

In the next chapter, we discuss in more detail the knowledge engineering process we applied

to create a unified ontological representation for SVDBs, which forms the basis for a more

seamless integration of SVDBs into existing SE development tasks.

65

Chapter 4

4 A Unified Ontology-based Modeling
Approach for Software Vulnerabilities
Data Sources

The ultimate goal of constructing a vulnerability’s knowledge base is to enable stakeholders

(e.g., developers) to realize their tasks, through automatically linking SVDBs to allow for an

effective use of software vulnerability information. Developing such a vulnerabilities’

knowledge base is a complex task, since the ontologies used for the data representation have to

be sufficiently expressive and flexible to allow for knowledge reuse and sharing, as well as

support for different SE tasks. In this chapter, we explain our knowledge engineering

methodology which we applied to the construction of our unified vulnerability information

knowledge base and the design decisions we made to address some of the open research

challenges identified in our literature review (Chapter 3).

4.1 Introduction
Vulnerabilities in software systems are one of the primary causes for security threats and

breaches. These vulnerabilities not only affect the usability of these affected systems, but

software productivity and competitiveness are also increasingly dependent on the successful

management of vulnerability information. In order to address the removal and management of

security threats, the security community has introduced several vulnerability knowledge sources,

such as Security Vulnerabilities Databases (SVDBs) that capture information about software

vulnerabilities. However, with the amount of security vulnerability data available and with this

66

information being spread across heterogeneous SVDBs, software developers are struggling to

take full advantage of these SVDBs. The situation is further complicated by the fact that these

SVDBs also introduce ambiguity into their datasets, not only in terms of what but also how this

vulnerability information is modeled in the databases. The heterogeneity and ambiguity of

SVDBs leads to diverse data modeling results and has become a major challenge for

organizations managing both disclosure and access to vulnerability information. In addition,

while individual SVDBs provide access to their information through APIs, RSS feeds, or

notification services, the sharing and integration of the information across these resources

remains an open challenge.

The Semantic Web (SW) and its enabling technology stack have been introduced to address

knowledge sharing across heterogeneous data resources using ontologies. Such a unified

ontological representation forms the basis for queries and data analysis across knowledge

boundaries, removing some of the traditional information silos that existing vulnerability

knowledge resources have maintained. However, the security domain currently lacks ontologies

that can be readily reused, shared, and deployed to conceptualize and standardize the domain of

software vulnerabilities. The few existing ontologies (e.g., [170]–[172]) are limited in terms of

their modeling, by focusing mostly on modeling system level (proprietary) vulnerability

information related to a particular information resource rather than trying to capture software

vulnerability information as a domain of discourse.

In this chapter we introduce a semi-automated approach for the development of a software

security vulnerabilities domain ontology, which is based on the discovery, reuse, and integration

of knowledge from existing vulnerability SVDBs. More specifically, our methodology takes

advantage of Formal Concept Analysis (FCA) [34] to guide knowledge engineers during the

modeling process. We also deal with the ambiguity and inconsistencies found in existing

vulnerability information by introducing a set of primitive operations to support the ontology

alignment. In our modeling approach, we furthermore take advantage of SW inference services

to infer implicit vulnerability information. We illustrate the applicability of our modeling

approach by instantiating a vulnerability ontology for unifying vulnerability information from

several open source SVDBs.

The main contributions of our work are as follows:

 A literature review of existing security vulnerability ontologies.

67

 Existing SVDBs can be considered as information silos which only allow limited data

and knowledge sharing across SVDB boundaries. We propose a semi-automated

methodology using FCA to create a unified ontological knowledge model that supports

knowledge sharing, linking, and inference across SVDB boundaries.

 We present alignment rules to facilitate knowledge integration and improve our overall

knowledge design.

 We illustrate the applicability of our modeling approach by providing examples of how

our modeling approach supports vulnerability analysis across individual SVDBs.

4.2 Literature Review
In what follows, we present a detailed literature review on the use of ontologies to model

software vulnerabilities. Our literature review focused on two core aspects: (1) research articles

that propose, create, or use software security ontologies; and (2) articles that propose ontology

development and integration using formal methods (e.g., formal concept analysis).

4.2.1 Software Security Ontologies
In this section, we review research involving software security ontologies by classifying software

security ontologies based on their usage context, and the tools and methods used to develop these

ontologies (i.e., the knowledge engineering they followed). The review is based on review

guidelines suggested by Petersen et al. [50].

While existing literature surveys have reviewed software security ontologies for particular

applications (e.g., Souag et al. [173], Blanco et al. [174], and Sicilia et al. [175]), our survey

focuses on the methodologies used by existing work for creating these ontologies and how these

ontologies are then applied in the software engineering domain.

Data collection. For the data collection process, we defined a set of inclusion criteria which

papers had to meet to be included in our survey. The main selection criterion was that a paper

must discuss the use of software security vulnerabilities ontologies. Among the other criteria

which we applied during the selection process were that an article be written in English and

68

published as a conference paper, journal paper, technical report, or book in a reputable venue.

For our survey we only considered articles published between January 2005 and December 2017,

more than a full decade of research results.

For our survey we conducted two online searches: (1) we used existing library and scholarly

search engines (e.g., ACM Digital Library, IEEE Xplore Digital Library, Google Scholar, etc.),

and (2) we performed an additional manual inspection of selected venues and papers published at

these venues to identify additional papers not covered by the search engines.

For the two online searches we used the following search terms: "vulnerability", "security",

"software", and "ontology". The results of the online search left us with a total of 70 unique

articles. As part of our data cleaning, we manually reviewed the title and abstract (and in some

cases the introduction) of the paper to verify that an article met our main inclusion criteria—a

paper must discuss the use of software security ontology. Papers not meeting our inclusion

criteria where omitted from further processing. After completing this manual review process, 44

of the initial 70 articles were considered for a more detailed review.

During the detailed review we manually verified that each paper actually discussed the use of

security ontologies. Papers which did not explicitly describe the use of security ontologies for SE

were removed from the set, leaving us with a total of 22 articles to be included in our final

dataset. For these 22 publications we extracted and published online [176] the meta-data for each

article. The extracted meta-data includes: the author(s) names, article title, publication year,

publication type (academic, industry, or both), the ontology artifact created (OWL files or URL

links if exist), the vulnerability data source used (i.e., SVDBs), information on the venue the

paper was published, and keywords used by the article.

Results: Most papers describe different aspects of modeling, integrating, and applying software

security ontologies. We classified the papers into the following categories:

(1) Software security ontologies applied in software development: This category uses

security ontologies to capture and integrate empirical knowledge about vulnerabilities in

the system development process.

(2) Ontologies for software cybersecurity: Cybersecurity domain ontologies are used to

support information integration and cyber situational awareness in cybersecurity systems.

69

(3) Ontologies for information security management: Discuss the use of ontologies in the

iterative process of identifying, classifying, remediating, and mitigating vulnerabilities.

While other classification criteria exist (e.g., software versus hardware 46 security

vulnerabilities), we consider such classification categories outside the scope of our work since

we are only focused on software vulnerabilities.

4.2.1.1 Category 1: Software security ontologies applied in software

development

A significant body of work exists that discusses how ontologies in general can be integrated into

software development processes. In [177], a systematic review of the application of ontologies in

SE has been introduced. In [178], the authors reported on the use of ontologies in SE for

different phases of the software development process (e.g., the use of ontologies to reduce

ambiguity, and inconsistency in requirements). In [24], the use of ontologies to support software

evolution is presented. The authors created ontologies for different software artifacts.

However, only very few papers discussed how security ontologies (knowledge) can be

integrated in software engineering processes.

Kang et al. [179] presented a security ontology for identifying security requirements using an

approach that combines MDA (Model-Driven Architecture) and ontologies. In their work, the

authors introduced ontologies to provide security analysis at the PIM (Platform Independent

Model), PSM (Platform Specific Model), and source code level.

Elahi et al. [180] proposed a vulnerability modeling ontology to integrate empirical

knowledge about vulnerabilities into the system development process. The paper identifies basic

concepts for modeling and analyzing vulnerabilities and their effects on the system, and uses

these criteria to compare and evaluate security frameworks (such as CORAS [181] and Tropos

[182]).

Souag et al. [183] introduced an ontology to support security requirements elicitation based

on an earlier conducted survey [173]. The authors evaluated their approach using 10 security

experts to determine whether their ontology is sufficient to support security requirements

46 Currently, hardware vulnerabilities modeling are not in the scope of this work.

70

elicitation. Their study showed that providing just a security ontology might not be sufficient and

that additional traceability links between requirements and a security ontology are needed.

Khoury et al. [184] presented an approach to detect security patterns using ontologies. The

authors proposed a security pattern approach based on ontological mappings between

requirement and design, as well as at the implementation level between threat models and bugs

in the source code.

4.2.1.2 Category 2: Ontologies for software cybersecurity

In what follows, we discuss the use of ontologies as a modeling language for the cybersecurity

domain. Cybersecurity is concerned with technologies, processes, and practices designed to

protect networks, computers, programs, and data from attacks, damages, or unauthorized access

[185].

Undercoffer et al. [186] and [187] introduced an ontology for intrusion detection systems.

The proposed ontology was created based on the evaluation of 4000 vulnerabilities and the attack

strategies used to exploit them. The ontology was specified using the DARPA Agent Markup

Language (DAML47) and prototyped using DAMLJessKB [188]. The authors included several

use case scenarios based on common attacks such as: Denial of Service – Syn Flood48, the

Classic Mitnick Type Attack49, and Buffer Overflow Attack50.

More et al. [189] presented a situation-aware intrusion detection model that integrates

systems security data sources (e.g., networks logs) to create a semantically rich knowledge-base

for the detection of cyber threats/vulnerabilities. The authors collected data streams from

network monitors, host monitors, sensor data, and other Intrusion Detection Systems (IDS)

modules, which are asserted as facts in their knowledge base (introduced by [186] and [187]).

For the intrusion detection, the authors take advantage of SW reasoning services to infer whether

there is an indication of an attack.

Joshi et al. [171] extracted cybersecurity-related entities, concepts, and relations, and

captured them in their IDS ontology (introduced by [186] and [187], and further enhanced by

[189]). As part of their approach, the authors also mapped these concepts to objects in the

47 http://www.daml.org/
48 https://en.wikipedia.org/wiki/SYN_flood
49 http://wiki.cas.mcmaster.ca/index.php/The_Mitnick_attack
50 https://en.wikipedia.org/wiki/Buffer_overflow

71

DBpedia51 knowledge base using DBpedia Spotlight [190]. The approach creates a RDF linked

data representation of cybersecurity concepts and vulnerability descriptions. The security

information is extracted from both structured vulnerability databases and unstructured text. Their

approach supports vulnerability identification and vulnerability mitigation efforts.

Syed et al. [191] introduced the Unified Cybersecurity Ontology (UCO) to support

information integration and cyber situational awareness. The ontology integrates data and

knowledge schema from both cybersecurity systems and commonly-used cybersecurity standards

to allow for data exchange among these resources. The UCO ontology has also been mapped to a

number of other existing cybersecurity ontologies ([186] and [187]) and resources on the Linked

Open Data cloud ([189] and [171]).

Iannacone et al. [192] extended the existing cybersecurity ontologies from [186], [187], and

[191] to provide a schema to incorporate additional information from a variety of structured and

unstructured data sources.

Kamongi et al. [193] introduced VULCAN, a vulnerability assessment framework for cloud

computing systems. The framework consists of two main components: an Ontological

Vulnerability Assessment introduced by [194] and an Ontology Vulnerability Database [195]

component. These two components provide access to known vulnerability information published

by NVD. For the vulnerability assessment, the approach takes advantage of advanced reasoning

capabilities to support a semantic search for vulnerabilities.

Gyrard et al. [196] and [197] introduced an ontology-based Security Toolbox for Attack and

Countermeasure (STAC) to guide software developers in selecting the appropriate security

mechanisms to secure Internet of Things (IoT) applications (more specifically, securing ETSI52

Machine to Machine [M2M] architecture).

4.2.1.3 Category 3: Ontologies for information security management

Information security management approaches often rely on security ontologies for risk

management, which can include automated security controls based on the Security Control

Automation Protocol (SCAP53) to verify security compliance and security configurations.

51 http://wiki.dbpedia.org/
52 http://www.etsi.org/images/files/ETSITechnologyLeaflets/MachinetoMachineCommunications.pdf
53 https://csrc.nist.gov/projects/security-content-automation-protocol

72

Wang et al. [172] and [198] proposed a vulnerability impact analysis using an ontology for

vulnerability management (OVM). The ontology establishes the relationships between IT

products, vulnerabilities, attackers, security metrics, countermeasures, and other relevant

concepts. The authors illustrated the advantages of their ontologies in terms of being able to

model, manage, and reason over the vulnerability information.

Wang et al. [199] and [200] proposed an approach to measure and assess how secure

software products are by analyzing if they meet certain security requirements. For the

assessment, the authors reused the vulnerability management ontology introduced in ([172] and

[198]) to calculate an overall environmental score54 for software products.

Wang et al. [201] introduced a ranking approach for attack patterns, which analyzes CAPEC

(Common Attack Pattern Enumeration and Classification) associated with 14 types of CWEs.

The vulnerability information is extracted from the OVM knowledge base ([172], [198]) which is

populated with vulnerabilities published by NVD.

Wang et al. [202] proposed a vulnerability similarity measurement that compares different

vulnerabilities based on the similarity of structural hierarchies and dependencies. The

information is extracted from the NVD and OVM [198] knowledge base. The similarity measure

can be applied as part of different vulnerability management applications such as vulnerability

classification, mitigation, and patching.

Kotenko et al. [203] and Fedorchenko et al. [204] introduced a hybrid modeling approach

which extracts relationships between parts of vulnerabilities databases to create a domain

ontology.

Montesino et al. [205] provided an analysis of the automation possibilities in information

security management. The analysis takes into account the potential of using (i) security

ontologies in risk management, (ii) hard- and software systems for the automatic operation of

certain security controls, and (iii) SCAP for automating to check for compliance and security

configurations.

4.2.1.4 Discussion

Literature surveys are an important aspect to understanding state of the art research in a given

area, while at the same time providing directions for further studies. Our survey shows that many

54 Environmental score represents the characteristics of a vulnerability that are relevant and unique to a particular user’s environment.

73

such potential avenues exist for advancing the software vulnerability domain in ontology

engineering. In what follows, we provide a comparison of the ontologies in the reviewed articles,

using the following three comparison criteria: (1) availability of ontologies, (2) the use of a

systematic knowledge engineering process for developing the ontology, and (3) the use of

existing vulnerability knowledge sources (i.e., SVDBs) during the ontology development

process.

Table 11: Summary of recent works on software security domain ontologies engineering

Category Reference Available Knowledge engineering
process Use of SVDBs

Software security
ontologies applied
in software
development

[179] no no no
[180] no no no
[184] yes no no
[183] no no no

Ontologies for
software
cybersecurity

[171], [189],
[186], [187],
[191]

yes no yes

[192] yes no yes
[193] yes no yes
[196], [197] yes no yes

Ontologies for
information security
management

[202], [201],
[199], [198],
[172], [200]

no no yes

[203], [204] no no yes
[205] yes no yes

Our comparison (Table 11) shows that only 50% of the reviewed ontologies are publicly

available online via URL links (e.g., IDS55 owl by Joshi et al. [171]) or as a repository (e.g.,

cybersecurity56 ontology by Syed et al. [191]). Based on our review, none of the surveyed

ontologies specified that they used a systematic knowledge engineering approach while

developing their ontologies. Most of the presented ontologies are based on the authors

experience in the vulnerability domain. Our survey also shows that most papers refer to public

advisories (e.g., SVDBs) as their main source of vulnerability information. However, none of the

papers explain in detail how the SVDB(s) is used in their knowledge engineering methodology.

Our survey also shows that SVDBs in general are not integrated in software development.

55 http://ebiquity.umbc.edu/ontologies/cybersecurity/ids/v2.3/IDSOntology.owl
56 https://github.com/Ebiquity/Unified-Cybersecurity-Ontology

74

Articles only refer to SVDBs indirectly, while describing their background section. On the other

hand, SVDBs are actively used for conceptualizing software vulnerability ontologies and

ontologies involved in vulnerability management. However, they are only concerned with the

integration of data from different SVDBs and not on the reuse and inference of new knowledge,

therefore limiting their potential applicability.

4.2.2 Ontology Development Using FCA
While work exists on describing knowledge engineering approaches using FCA for creating

ontologies, these approaches have been applied to domains other than the software vulnerability

domain. For example, context-based ontology building support in clinical domains using FCA

[206], FCA-based ontology development for environment data integration (e.g., utility

infrastructure) [207], products management and purchases control [208], information system

management [209], [210], etc.

In addition, many of these formal knowledge engineering approaches either focus on

knowledge reuse, knowledge integration, or just conceptualization of a domain discourse. For

example, the surveyed FCA knowledge modeling approaches (e.g., [208] and [207]) are used to

extract sharable knowledge in the form of upper ontologies, while our approach focuses also on

the integration of software vulnerability knowledge across knowledge resource boundaries and at

different abstraction levels.

4.3 Development of an Initial Software sEcurity

Vulnerability ONTology (SEVONT)
Different knowledge engineering methodologies have been discussed in the literature (e.g., Noy

et al. [211] and Uschold et al. [21]). For our knowledge modeling approach, we adopt a similar

modeling methodology as the one presented by Noy et al. [211]. In their knowledge-engineering

approach for ontology development they propose the following seven core steps: (1) determining

the domain and scope of the ontology, (2) considering the reuse of existing ontologies, (3)

enumerating essential terms in the ontology, (4) defining the classes and class hierarchy, (5)

75

defining the properties of class-slots, (6) defining the facets of the slots, and (7) creating

instances.

Similarly, we first conducted a thorough review of existing work on ontologies in the

software vulnerability domain to help us define and determine the domain and scope of our

knowledge model. As part of this review we identified and extracted key concepts from existing

software vulnerability ontologies discussed in the 22 papers of our dataset using the same

classification as in Section 4.2.1. Table 12 summarizes the core concepts used by the authors to

construct their software security domain ontologies.

Our analysis shows that articles in the software development process category include mostly

concepts related to software security requirements and requirements elicitation (e.g.,

dependability, confidentiality). There are cybersecurity ontologies mostly focused on Internet

attacks, which typically involve different software assets that can be exploited by vulnerabilities.

Ontologies used mainly for vulnerability management focus on modeling vulnerabilities

knowledge sources (e.g., vulnerability databases, malware activities datasets, intrusion detections

tools results, etc.) to enrich and link these knowledge resources [175].

For establishing our initial domain ontology for software vulnerabilities, we further manually

identified shared (common) concepts used by these reviewed ontologies (Table 12). For

example, a more detailed analysis of the ontologies and their supporting documentation shows

that the security and vulnerability concepts share a similar meaning across the surveyed

ontologies. These concepts are used to describe security vulnerability issues affecting software

products. Also, threat, attack, weakness, and risk are concepts commonly found in these

ontologies to classify software security vulnerability attacks. Based on these common concepts,

we derived our initial core SEVONT ontology which includes the following concepts (Figure

11):

76

Table 12: Core concepts (classes) defined in the surveyed vulnerabilities ontologies
Category Reference Core concepts

Software security
ontologies applied in
software development

[179]
Security concerns, attack, frauds, asset, prevention, threats,
auditing

[180] Vulnerability, effect, security impact, malicious action,
attacker, attack, malicious goal

[184]
Security requirements terms (confidentiality, integrity,
dependability, availability, authenticity, non-repudiation, ...),
security exploits, bugs, attack models

[183]
Asset, location, organization, person, threat, vulnerability, risk
severity, impact, threat agent, attack tool, attack method,
security goal, security criterion, security requirement, control

Ontologies for software
cybersecurity

[171],
[189],
[186],
[187],
[191]

Vulnerability, vulnerability source, product, software,
hardware, operating system, web browser, consequences,
means, weakness, other terms

[192]
Software, vulnerability, malware, attack, flow, attacker, user,
account, host, address, IP, port, domain name, service, address
range

[193]

Vulnerability, CVSS metric, consequences, countermeasure, IT
product category, IT product, IT vendor, software, hardware,
privileged program, unprivileged program, cloud type, attacker,
attack intent, attack mechanism, attack

[196],
[197]

Security mechanism, security tool, security protocol,
cryptographic concept, technology, attack

Ontologies for
information security
management

[202],
[201],
[199],
[198],
[172],
[200]

Active location, introduction phase, vulnerability, IT product,
IT vendor, attacker, attack, countermeasure, consequence,
attack intent, attack mechanism

[203],
[204]

Weakness, attack, vulnerability, platform, countermeasure,
configuration, exploit

[205]
Control type, organization, asset, security attribute, standard
control, control, threat, threat source, severity scale,
vulnerability, threat origins

77

Countermeasures

- Security patch, ..., etc

Vulnerability

has

Score

has

ActionImpacts

-Type

has

achieve

isResultOf

Author

- AttackerproducedBy

Severity

measuredBy

Weakness

has

Software

- Product affects

References

- SVDBs

hasDate

- Release date,...,etc

has

Figure 11: Initial software security vulnerability domain ontology (high-level overview).

Vulnerability. In software security, a vulnerability refers to “an instance of a flaw, caused by a

mistake in the design, development, or configuration of software such that it can be exploited to

violate some explicit or implicit security policy” [212]. Software vulnerabilities are introduced in

a system by adopting a vulnerable software product, inadvertent coding mistakes by developers

(e.g., bad coding practices), executing vulnerable external services (e.g., libraries), etc.

Product. This concept is used for eliciting software vulnerability information. Software product

is an Asset—“anything that has value to the organization” [213], including stakeholder,

information, hardware, and artifacts.

Attackers (or malicious actor) can be considered either internal or external entities of the system

who attack a product. They perform malicious Actions which attempt to break the security of a

software system or its components. Security databases are capturing a Vulnerability that has an

associated Action and Impact, with an attacker exploiting a vulnerability to produce an Action

which has an Impact on the system.

78

An Attack is a set of intentional unwarranted (malicious) actions designed to compromise and

violate software security policies [214]. By analyzing such an attack or vulnerability pattern,

analysts can study the behavior of attackers, estimate the cost of attacks, and determine their

impact on overall system security.

Security analysts often rely on References found in SVDBs to identify vulnerable system

components and to evaluate the potential Impact of such vulnerabilities on other parts of an

ecosystem. This information is used to decide on cost-effective Countermeasures to eliminate a

risk. When the risk of an attack is higher than the risk tolerance of stakeholders, analysts need to

take an adequate Countermeasure to mitigate such risks.

A countermeasure therefore is a protection mechanism employed to secure a software system

[197] (e.g., patch development, encryption/decryption enhancement, and updated system security

configurations). Available information about the Author of a vulnerability can be used by

security analysts to develop countermeasures to protect the system.

Weakness has been proposed as a concept to evaluate the impact of such an attack on the

software system. Score is used to capture the probability of a successful attack and its severity on

the system.

Finally, incorporating the concept of Date as part of a vulnerability analysis knowledge base

allows for modeling the sequence of actions and exploits employed by attackers. Security

analysts can take advantage of this information when designing and evaluating adequate

countermeasures.

4.4 SEVONT: Knowledge Modeling and Engineering
Next, we will illustrate how our knowledge engineering approach extends on our initial

SEVONT domain ontology by focusing on the reuse of existing ontologies, enumerating

essential terms in the ontology, and defining classes and class hierarchies of software

vulnerability concepts, relations, and properties. The outcome of this knowledge modeling

79

process is a comprehensive ontology, capturing the domain of software vulnerability knowledge

to facilitate not only the integration of heterogeneous resources but also allows for its seamless

integration with other software artifacts.

D1

D2

D3

Dn

Vulnerabilities
information

Acquisition and
Pruning

Ontologies
Mapping using

FCA

Concept
Hierarchy

Formulation
using FCA

lattice

Ontology
Derivation
(concepts

ontological
structure
mapping)

O
b

je
ct

Attribute

O
b

je
ct

Attribute

concept

concept

concept

concept

Objects O

Attributes A
K:= (O,A,R)

Rule Eliciting

Rule Deployment

Information
Extraction

Vulnerabilities
Data-sources

Initial system-
specific

ontologies

...

D1

D2

D3

Dn

1 2 3 4 5

Figure 12: An overview of our knowledge modeling methodology.

Overview: Our methodology consists of five major steps (Figure 12), based on the modeling

steps presented by Noy et al. [211]. First, we extract vulnerabilities reports and meta-data

published by SVDBs based on an Internet search we conduct. We then refine the scope of our

model to include only “software” security vulnerabilities, therefore excluding hardware and

configuration vulnerabilities from our model. As outlined, our knowledge modeling follows a

bottom-up approach for which we take advantage of FCA to identify and abstract shared

concepts from the different SVDBs. Next, we extract meta-data (attributes) from each surveyed

SVDB (e.g., IDs, types, patch, timeline, etc.). For the extraction, we manually inspect concepts

and properties for each SVDB and create their initial system-specific ontologies. After creating

these initial system-specific ontologies, we use a combination of FCA and ontology mapping to

identify and extract shared vulnerability concepts and attributes from these system-specific

ontologies by creating a context table. Given this formal context table, we can now generate a

concept lattice graph to visualize formal concepts which can be used by a knowledge engineer to

identify shared and reusable concepts among system level ontologies. In addition, we apply a

stability measure to be used by a knowledge engineer (domain expert) when deciding if a

concept should remain at the system level or should be promoted to the upper levels (e.g.,

domain level). Finally, during the last step of our methodology, we populate our newly created

knowledge base.

80

The model itself is based on a meta-meta model approach (e.g., Object Management Group

(OMG)57), where the top layer captures the core elements, which are extended and refined

throughout the abstraction hierarchy. Figure 13 presents an overview of the different ontology

abstraction layers in SEVONT. For a complete description of these ontologies, we refer the

reader to [215].

Domain Spanning Concepts

General
Concepts

Software Security Advisories

National Vulnerabilities
Database (NVD)

Security Focus
(SF)

Exploit
Database (ED)

 Concepts Relations

Domain Specific Concepts

System Specific Concepts

Measurements

Software
Security Assessment

Software
Security Patches

Software
Security Traceability

Vulnerability Notes
Database (VND)

World Laboratory
of Bugtraq (WLB) ...

Figure 13: The software security vulnerability analysis ontology.

Within our knowledge hierarchy, the General Concepts layer captures the omnipresent core

concepts related to software evolution and software vulnerabilities. The Domain-Spanning

Concepts layer builds upon the General Concepts layer and captures concepts that span across a

number of subdomains in our model (e.g., security databases, version control systems, and

source code). The concepts at the Domain-Specific layer are common to resources in a domain,

such as software security advisory concepts. Finally, the System-Specific layer’s concepts

represent knowledge that is specific to a given data source or system and not commonly shared

57 http://www.omg.org/

81

across the domain. In Chapter 5, we discuss in detail how SEVONT can be integrated with other

SE knowledge sources such as version control systems, build systems, and source code

ontologies with vulnerabilities ontologies.

In what follows, we describe in detail the five steps of our knowledge modeling approach.

Note, ontologies and FCA both use ‘concepts’ as part of their terminologies. In order to avoid

ambiguity between these terms, we refer to FCA concepts as “formal concept” and concepts used

in ontology designs as “class”.

4.4.1 Step 1: Vulnerabilities Information Acquisition and Pruning
Since the objective of this research is to identify and model information relevant to software

security vulnerabilities; we conducted another survey of publicly (and free of charge) available

SVDBs that model software vulnerabilities from different vendors and systems. The SVDBs

were identified through an Internet search using the following two keywords, ‘vulnerability’ and

‘database’. We then manually inspected the top 100 search results returned by the search engine,

to verify that they actually reference available SVDBs and to eliminate duplicate results. After

the analysis of the search results we found 11 SVDBs that met our selection criteria. The

selection criteria were: (1) the database host software known vulnerabilities, and (2) the

vulnerability entry in the database is in the English language.

An overview of these 11 SVDBs is provided in Table 13 and Table 14, which include general

statistics of these SVDBs and report on the vulnerability identification scheme used by these

SVDBs.

While all surveyed SVDBs use some form of a vulnerability ID generation scheme, only the

NVD dataset (Table 14 - D1) relies on a standardized identifier ID format (CVE-ID). The

remaining SVDBs generate their own proprietary vulnerability IDs, with some SVDBs including

the CVE-ID in their proprietary vulnerability ID generation.

Some SVDBs list affected products using the global standard naming scheme CPE, as shown in
D1 and D9 where both use CPE’s well-formed name (WFN) (e.g., wfn:part="a",
vendor="Microsoft", product="internet_explorer", version="8.0", update="beta"). The remaining
SVDBs rely on unstructured text descriptions to identify and describe products affected by a
vulnerability.

82

Table 13: 11 Security vulnerability databases

ID# Name Maintainer URL
archived
entries

D1 National Vulnerabilities Database (NVD) NIST https://nvd.nist.gov/ 94,657
D2 Exploit Database (ED) Offensive Security https://www.exploit-db.com/ 38,415
D3 SecurityFocus (SF) Security Focus http://www.securityfocus.com/bid 95,460
D4 Vulnerability Notes Database (VND) CERT/CC http://www.kb.cert.org/vuls 94,735
D5 World Laboratory of Bugtraq (WLB) CXSecurity https://cxsecurity.com/wlb/about/ 2,839
D6 Packet Storm Security (PSS) Packet Strom https://packetstormsecurity.com/ N/A*
D7 Vulnerability Lab (VL) Evolution Security GmbH https://www.vulnerability-lab.com/ 882
D8 rapid7 Rapid7 https://www.rapid7.com/db/vulnerabilities 121,128
D9 VulDB Scip AG https://vuldb.com/ 109,956
D10 Skybox Vulnerability Database (SVD) Skybox Security https://www.vulnerabilitycenter.com/#home 73,838
D11 Snyk Vulnerability DB Snyk https://snyk.io/vuln?packageManager=all 3,684
* The database presents the vulnerabilities information as HTML pages on the website, and does not provide a downloadable link to
their archived entries.

Table 14: Vulnerabilities databases ID schemas and standards usages
ID# Vulnerability ID scheme CVE CWE CVSS CPE
D1 CVE-{YYYY}-{NNNN...} (4 digit year, Variable length arbitrary digits) yes yes yes yes
D2 EDB-ID:{NNNNN} (5 fixed digits) yes no no no
D3 NNNNN {5 fixed digits} yes no no no
D4 VU#{NNNNNN} (6 fixed digits) yes yes yes no
D5 WLB-{YYYYMMNNNN} (4 digit year, 2 digit month, 4 fixed digits yes yes no no
D6 {NNNNNN} (6 fixed digits) yes no no no
D7 VL-{NNNN} (4 digits) yes no yes no
D8 {SSSS...} (Variable length arbitrary strings) yes no yes no
D9 {NNNNNN} (6 fixed digits) yes yes yes yes
D10 VUL={NNNN…} (Variable length of digits) yes no yes no
D11 SNYK-{L-P-NNNN..} (Programming language - product name -variable length digits) yes yes no no

83

A commonality of the surveyed SVDBs is that they include the release date of a

vulnerability. D7 also provides a popularity indicator for disclosed vulnerabilities (in terms of

number of views), and 6 out of the 11 SVDBs include information about the person/organization

who discovered a vulnerability. Also six SVDBs (D1, D4, D7, D8, D9, and D10) use the

vulnerability scoring system (CVSS) to indicate the criticality of a reported vulnerability, while

three other SVDBs rely on their own proprietary benchmarks (D5, D7, and D11).

Among other information provided by SVDBs are links to detailed vulnerability descriptions

(D2, D3, D5, D7, D8, and D9), and status indicators (D2 and D7) showing if a vulnerability has

been addressed and fixed (e.g., a software update availability). Mitigation measurements are

provided by D2, D3, and D7-D10. All reviewed SVDBs include cross-references to entries in

other SVDBs as well as links to software vendors describing a vulnerability. Descriptions to

resolve the vulnerability are often references to patches provided by the vendor of the vulnerable

software.

Accessibility to these public SVDBs and their vulnerability data is provided through web

interfaces, with some of these SVDBs also including XML feeds (e.g., D1). Most of the

databases update their vulnerabilities information on a daily basis, except for D3 and D4 which

provide only weekly/monthly updates.

4.4.2 Step 2: Initial System-Specific Ontologies
Next, we apply different types of manual data pre-processing steps to identify and extract

concepts and their attribute definitions from the raw data extracted from the 11 SVDBs. A main

challenge we had to deal with was the heterogeneity and ambiguity of the SVDBs data in terms

of the underlying data models. Figure 14 (NVD - D1) and Figure 15 (ED - D2) illustrate

examples of such schemata and information representation differences.

84

Affected
Releases

Vulnerability ID

Publication and
modifications

dates

Severity scores
(CVSS)

Vulnerability type
Vulnerability references

(vendor, other adversaries, etc.)

Vulnerability
summary text

Figure 14: NVD vulnerability entry - CVE-2017-10932 attributes.

“D” for Download “A” for Application

“V” for Verified

Vulnerability meta-data: release date,
CVE-ID relations, affected products,
exploit code, vulnerable app if exist,
etc.

Row data, include explanation
of the exploit code, etc.

Figure 15: Vulnerabilities entries’ attributes and information from exploit-database website.

As part of this knowledge modeling step, we extracted system-specific ontologies for each

SVDB using their schemata and documentation. Figure 16 shows an example of the two system-

specific ontologies we extracted for D1 and D2.

85

Description Original
release date

Modification
date

URL links
(advisory, patch, etc.)

Type

(based on CWE)

Vulnerability
(based on CVE-ID)

Vulnerable
software
(based on CPE)

Impact
(based on CVSS)

NVD - D1

Title Platform

Author/
Finder

Date added

Exploit

(identified by EDB-ID

Vulnerable
App

(download link zip)

Verification
status

Text Report

ExploitDB - D2

CVE-ID
(if available)

References
(Advisory, source,

etc.)

Exploit Type
(remote, local, web-

app, etc.)

Change
history

(not included in XML)

Tags

Classes 9 # Classes 12

Description class

Date class Consequence class

Reference classVulnerability class Weakness class

Status classCredit class

Exploit class

Tag class

Legends

Product class

Figure 16: The main classes extracted from D1 (left) and D2 (right) to create their system-
specific ontologies.

It should be noted that each class can include sub-classes that are extracted based on

descriptions provided by the SVDB, such as original release date and modification date, which

will become subclasses of the date class. Similarly, we extract properties for all classes/sub-

classes which are used to describe the system-specific ontologies. In total, we extracted 131

classes and 201 properties from the 11 SVDBs (see Figure 17).

The quite large number of classes and properties are due to the fact that the same class or

property may exist several times under different names in these SVDBs. For example, the

representation of vulnerability modification date information varies across the SVDBs; in D1 and

D8 it is referred to as modified date, whereas in D3 update date, in D4 date last update, and in

D10 last modified date are used to capture modification date. In the following section, we

describe the process which we applied to remove some of this ambiguity during the mapping of

our system-level ontologies.

86

Description Original
release date

Modification
date

URL links
(advisory, patch, etc.)

Type

(based on CWE)

Vulnerability-
ID

(based on CVE-ID)

Vulnerable
software
(based on CPE)

Impact
(based on CVSS)

D1 - # classes 9

Title Platform

Author/
Finder

Date added

Exploit

(identified by EDB-ID

Vulnerable
App

(download link zip)

Verification
status

Text Report

D2 - # classes 12

CVE-ID
(if available)

References
(Advisory, source,

etc.)

Exploit Type
(remote, local, web-

app, etc.)

Change
history

(not included in XML)

Tags

Bugtraq-Id Class

Type
(remote ‘yes’ or ‘no,

local ‘yes’ or ‘no)

Publish date

CVE-ID

(if available)

Update date

Vulnerable
products

Discussion

D3 - # classes 12

Solution
References
(Advisory, source,

etc.)

Credit
(author or finder)

Exploit

Title
(include vulnerable

product name)

Description
(include vulnerable
products info. CWE

type, etc.)

Vulnerability
(vendor specific id

and name)

Vendor
information

(date notified, status,

date update)

Impact

CVSS metrics
(base, temporal,

environmental)

Credit
Document

(status, and revision)

D4 - # classes 16

References
(US-CERT alert, CERT
advisory, other urls)

CVE-ID Date public

Date last
updated

Date first
published

Feedback Solution

Overview

Title Publish date

Risk
(labeled high,
medium, low)

Type
(local ‘yes’ or ‘no’,

remote ‘yes’ or ‘no’)

Credit

CVE-ID
(if available)

Report
(submitted by credit/

finder)

Vulnerability
-Id

(vendor specific)

D5 - # classes 12

History
References
(Advisory, source,

etc.)

CWE-ID
(if available)

Status
(bug, bogus, trick,

exploit)

Title Posted date

Tags
Systems

(affected platform)

Summary

Advisory
(usually links to CVE-

IDs)

Security
tools

(used for protection)

D6 - # classes 8

Report
(text format and
downloadable)

Title Date
(release date)

Vulnerability
-ID

(vendor specific)

Introduction

References

Abstract
(summary)

Status

D7 - # classes 19

Report
timeline

Exploitation
technique
(remote, local)

Severity
Affected

(product names and
versions)

Details
(technical details)

Proof of
concept
(exploit code)

Solution
Risk

(described by author,
and colored ‘red,
yellow, orange,

green’)

Credit DisclaimerAttachment

Views

Vulnerability Exploit

Severity Publish date

Title

Added date

CVSS metric Description

D8 - # classes 10

Solution

Modified
date

Title Description

Vulnerability
(vendor specific id)

Exploit

CVSS

(version 2 and 3)

Vulnerable
products

(based on CPE)

Timeline
Sources

(advisories, CVEs urls,

etc.)

D9 - # classes 10

Entry status
(created date, %

complete)

Countermea
sures

CVE-ID
Vulnerability

– ID
(vendor specific id)

Vulnerable
product
vendor

Reporting
date

Severity

Last modified
date

Affected
products

Solution

D10 - # classes 10

External
references

Description

Vulnerability
(vendor specific id)

Type

Title Overview

Severity

(labelled H, M, L)

References

CVE-ID
Disclosed

date

D11 - # classes 13

Publish date

Credit

Remediation CWE
(sometimes)

Affects
(product name and

versions)

Total concepts ~ 131 classes
Total properties ~ 201 properties
Total SVDBs = 11

Figure 17: Manually identified vulnerabilities concepts from 11 SVDBs.

4.4.3 Step 3: Ontology Mapping Using FCA
In this step of our knowledge modeling approach we used the extracted system level ontologies

data from the previous modeling step to create and update our initial software vulnerability

domain ontology. More specifically, we focus on classifying any attribute (e.g., concept,

property, or relation) that can be promoted in our knowledge model from the System to the

Domain layer. The Domain layer not only promotes such reuse of concepts across system level

ontologies, but also improves traceability among system level ontologies by unifying the overall

knowledge representation. In our modeling approach we take advantage of FCA for identifying

potential domain concepts using (1) context formation and (2) context composition. For the

context formation we use the vulnerability information of the system-specific ontologies as input

87

to generate a one valued context table for each SVDB. These generated contexts are then

combined during the context composition step to create a new merged formal context table for

all SVDBs. In what follows, we describe each of these two processing steps using our dataset D1

and D2 (from Table 13) as an illustrative example.

Context formation: The input data for the FCA algorithm is a cross-table, which describes the

relationships between objects (represented by table rows—in our case, the SVDBs data sources)

and attributes (represented by table columns—in our case, all elements from the system-specific

ontology). For example, in Table 15 the “x” for K1.A8 indicates that data source D1 uses CVE-

ID in its data model.

Table 15: D1 context table K1
Context K1.A1 K1.A2 K1.A3 K1.A4 K1.A5 K1.A6 K1.A7 K1.A8 K1.A9
D1 x x x X x x x X x
K1.A1: Original release date K1.A2: Modified date K1.A3: Change history
K1.A4: Description summary K1.A5: URL links K1.A6: Uses CPE
K1.A7: Uses CWE K1.A8: Uses CVE-ID K1.A9: Uses CVSS

Table 16: D2 context table K2
Context K2.A1 K2.A2 K2.A3 K2.A4 K2.A5 K2.A6 K2.A7 K2.A8 K2.A9 K2.A10 K2.A11 K2.A12
D2 x x x x x X x x x x x x
K2.A1: Title K2.A2: Platform K2.A3: Exploit – vendor-id K2.A4: Author

K2.A5: Date added K2.A6: Vulnerable app link K2.A7: Exploit type – ‘remote,
local’ K2.A8: Verification status

K2.A9: Text report K2.A10: Related CVE-ID K2.A11: References K2.A12: Tags

Context Composition: Given the two contexts 𝐾1: = (𝑂1, 𝐴1, 𝑅1) and 𝐾2: = (𝑂2, 𝐴2, 𝑅2), the

integrated context 𝐾 ≔ (𝑂, 𝐴, 𝑅) is computed by performing a disjoint union of object sets of the

two contexts:

O = O1 ∪∗ O2 (1)

A and R are assigned 𝐴1 and 𝑅1 from 𝐾1 at this stage, i.e., A = 𝐴1 and R = 𝑅1. Table 17 shows

the context K after the above operations.

Table 17: The context table after object union operation
Context K1.A1 K1.A2 K1.A3 K1.A4 K1.A5 K1.A6 K1.A7 K1.A8 K1.A9
D1 x x x X x x x X x
D2

88

K1.A1: Original release date K1.A2: Modified date K1.A3: Change history
K1.A4: Description summary K1.A5: URL links K1.A6: Uses CPE
K1.A7: Uses CWE K1.A8: Uses CVE-ID K1.A9: Uses CVSS

For the mapping process we introduce three integration rules to guide the domain expert while

incrementally combining the individual system-level context tables into our new merged context

table for all 11 SVDBs.

Rule #1 Identical attributes: If 𝑎𝑖 ∈ 𝐴1 AND 𝑎𝑗 ∈ 𝐴2 AND 𝑎𝑖 ≡ 𝑎𝑗 . For example, date added

(K2.A5 in K2—see Table 16) is identical in its semantic meaning to the original release date

(K1.A1 in K1—see Table 15). By applying rule #1, both attributes will be merged under a new

common name (i.e., label) entry_release_date (as shown in Table 18—K.A1 in K) which has a

relation (x) for both (D1 and D2) in the context table K. Table 18 displays the results after

applying rule #1, showing the unified attributes K1.A1 and K1.A5 from context K1, and K2.A5

and K2.A6 from context K2, which become K.A1 and K.A5 in the merged context K.

Table 18: The context table K after an equivalent match
Context K.A1 K1.A2 K1.A3 K1.A4 K.A5 K1.A6 K1.A7 K1.A8 K1.A9
D1 x x x x x x x x x
D2 x x
K.A1: entry_release_date K1.A2: Modified date K1.A3: Change history
K1.A4: Description summary K.A5: entry_URL links K1.A6: Uses CPE
K1.A7: Uses CWE K1.A8: Uses CVE-ID K1.A9: Uses CVSS

It should be noted these new attributes are labeled with entry_ (as shown in Figure 18) followed

by the actual attribute name.

D1 – change history
D5 – history
D7 – report timeline
D9 – timeline

entry_change_history

D1 – type uses CWE-ID
D5 – CWE-ID
D11 – CWE-ID

entry_classification_related_CWE-ID

Figure 18: Example of unifying the attributes names from the system-specific data sources.

89

Rule #2 Attribute subsumption hierarchies: If (𝑎𝑖 ∈ 𝐴1 AND 𝑎𝑗 ∈ 𝐴2) AND (𝑎𝑖 ⊃ 𝑎𝑗 OR 𝑎𝑖 ⊂

𝑎𝑗). For example, Description summary (K1.A4 in K1) is a super-class of Text report (K2.A9 in

K2). By applying rule #2, the two attributes will be included in the combined context table K,

entry_description_summary as a common attribute name (K.A4) and entry_text_report (K.A10)

reflecting the extension used in K2. The updated context table K (Table 19) after applying this

rule is as follows:

Table 19: The context table after the second mapping type
Context K.A1 K1.A2 K1.A3 K.A4 K.A5 K1.A6 K1.A7 K1.A8 K1.A9 K.A10
D1 x x x x x x x x x
D2 x x x x
K.A1: entry_release_date K1.A2: Modified date K1.A3: Change history
K.A4: entry_description summary K.A5: entry_URL links K1.A6: Uses CPE
K1K1.A7: Uses CWE K1.A8: Uses CVE-ID K1.A9: Uses CVSS
K.A10: entry_text_report

Rule #3 Unique attributes. If 𝑎𝑖 ∈ 𝐴1 AND 𝑎𝑗 ∈ 𝐴2 AND 𝑎𝑖 ≢ 𝑎𝑗. In the case that neither rule

#1 nor rule #2 are applicable, then both attribute instances will be automatically inserted into the

combined context table K (Table 20).

Table 20: The context table after the third mapping type
Context K.A1 K1.A2 K1.A3 K.A4 K.A5 K1.A6 K1.A7 K1.A8 K1.A9 K.A10 K2.A11 K2.A12 …
D1 x x x x x x x x x
D2 x x x x x x …
K.A1: entry_release_date K1.A2: Modified date K1.A3: Change history
K.A4: entry_description
summary K.A5: entry_URL links K1.A6: Uses CPE

K1.A7: Uses CWE K1.A8: Uses CVE-ID K1.A9: Uses CVSS
K.A10: entry_text_report K2.A11: Title K2.A12: Platform

This incremental mapping between individual context tables and the combined context table

continues until a complete merged context table for all 11 SVDBs is created (see Table 21). As a

result of this integration process, we obtain a final context table with 23 attributes of which 16

are shared among different SVDBs and 7 (K7.A4, K2.A5, K1.A8, K3.A12, K6.A16, K7.A25,

and K4.A28) are unique by being only used in individual SVDBs.

90

Table 21: Final context table K
 K.A1 K.A2 K.A3 K7.A4 K2.A5 K.A6 K.A7 K1.A8 K.A9 K.A10 K.A11 K3.A12 K.A13 K.A14 K.A15

D1 x x x x x x x
D2

x x

x

x

D3

x

x x x x x
D4 x x x x x x x x
D5 x x

x

x

x x x

D6

x

x
D7 x x x x x x
D8

x

x

x x x

x

D9 x x x x x
D10 x x x x x
D11

x x

x x

x

x

x

K.A1: entry_change_history
K.A2: entry_classification_related_CWE-ID
K.A3: entry_description_summary
K7.A4: disclaimer
K2.A5: exploit_vendor_specific_id

K.A6: entry_finder
K.A7: entry_first_release_date
K.1A8: id_uses_CVE-ID
K.A9: entry_impact _uses_CVSS
K.A10: entry_impact_vendor_specific

K.A11: entry_modified_date
K3.A12: related_bugtraq-id
K.A13: entry_related_CVE-ID
K.A14: entry_related_exploit
K.A15: entry_related_external_url_links

 K6.A16 K.A17 K.A18 K.A19 K.A20 K.A21 K.A22 K.A23 K.A24 K7.A25 K.A26 K.A27 K4.A28 K.A29 K.A30
D1

x

x

D2 x x x x x x x x
D3 x x x x x
D4

x x

x x x

x

x

D5 x x x x x
D6 x x

x x x

x

x

D7

x x x

x x

x x x

x

D8 x x x x
D9

x x x

x

x

x

D10

x x

x

x x

D11 x x x x x x
K6.A16: related_security_tools
K.A17: entry_release_date
K.A18: entry_solution
K.A19: entry_status
K.A20: entry_tags

K.A21: entry_title
K.A22: entry_unstructured_text_report
K.A23: entry_users_feedback
K.A24: entry_vendor_specific_classification
K7.A25: views

K.A26: entry_vulnerability_vendor_specific_id_name
K.A27: entry_vulnerable_platform
K4.A28: vulnerable_product_vendor_information
K.A29: entry_vulnerable_products
K.A30: entry_vulnerable_products_uses_CPE

91

4.4.4 Step 4: Establishing Concept Hierarchy Using FCA Lattice
After having established our merged context table K for all SVDBs, we can now create an FCA

lattice for Table 21. This lattice can provide knowledge engineers with some additional visual

guidance while classifying concepts into system and domain level concepts (see Figure 19).

Designers

Domain Spanning Concepts

General
Concepts

Software Security Advisories

National Vulnerabilities
Database (NVD)

Security Focus
(SF)

Exploit
Database (ED)

 Concepts Relations

Domain Specific Concepts

System Specific Concepts

Measurements

Software
Security Assessment

Software
Security Patches

Software
Security Traceability

Vulnerability Notes
Database (VND)

World Laboratory
of Bugtraq (WLB) ...

Figure 19: Concept lattice for the merged context table to guide classification of concepts in

domain and system level concepts.

The main challenge for this modeling step is to determine what constitutes a good domain

concept/attribute. Ideally any domain concept/attribute should be shared among all system level

ontologies, therefore providing maximum reuse of this concept and improving traceability

among the system level ontologies. However, when dealing with multiple system ontologies, it

becomes increasingly difficult to identify such concepts. We therefore relax our original

objective of a domain concept by allowing a concept to be promoted from a system level concept

to the domain level concept if it: (a) captures the core of the domain of discourse, (b) is a formal

concept that is further extended by other concepts, and (c) is a formal concept in the FCA lattice

that is shared by other formal concepts. In our modeling approach, we therefore introduce a

semi-automated approach which (1) uses a stability measure to identify potential domain level

concepts, and (2) a domain-expert who makes the final modeling decision by determining which

concept should be promoted to the domain level or should remain at the system level.

The FCA stability measure assesses how close a concept’s intent depends on other objects it

extents. In other words, it reflects the probability of preserving its intent after removing an

92

arbitrary number of objects. Thus, a high stability value indicates that a concept represents a

cohesive set of resources or, equally, it can represent a concept that occurs commonly in a

domain. The stability measures we apply were first introduced by [216], and later extended to

formal concepts [217]. We use Equation (2) to calculate the stability of a given formal concept,

according to the definition in Kuznetsov et al. [217], as shown. Given a concept C, concept

stability Stab(C) is defined as

Stab(C) =
|{s ∈ ℘(Ext(C)) | s′ = Int(C)}|

2|Ext(C)| (2)

Where the relative number of subsets of the concept extent (denoted by Ext(C)), whose

description (i.e., the result of (.)′) is equal to the concept intent (denoted by Int(C)) where ℘(𝑃)

is the power set of P.

Figure 20: Stability measure applied on the combined concept lattice.

For generating the FCA lattice and the computation of the stability measure we use the

ConExp58 tool for our SVDBs context table (Table 21). Figure 20 shows the lattice graph and the

stability values produced by the tool. The stability measure values are 1 (minimum) and 2

(maximum), with only 7 out the 159 formal concepts having the maximum stability value of 2.

We use a stability measure threshold to promote a system level to a domain level concept. The

domain expert will then decide whether one of these seven formal concepts will be mapped to a

58 ConExp tool at http://www.sf.net/projects/conexp/

93

new domain concept in our domain ontology or become an attribute of an existing domain

concept (object or data property).

Figure 21: Vulnerability related dates concepts and sub-concepts.

Example: Why is the entry_release_date attribute promoted (based on the stability measure) to

the domain-specific layer as a property for the vulnerabilities’ Date class?

As shown in Figure 21, the entry_release_date is shared among all databases creating the

formal concept ({D1,…, D11},{entry_release_date}). At the same time it has the highest

stability value when compared with other date attributes in the lattice (Figure 21, e.g.,

entry_change_history, entry_modified_date, and entry_first_release_date). However,

entry_release_date will be promoted to the upper levels (domain layer), and the other attributes

entry_change_history, entry_modified_date, and entry_first_release_date will remain in the

system-specific layer.

4.4.5 Step 5: A Unified Knowledge Representation
The last step of our approach is to instantiate our knowledge model, with each of its layers

corresponding to a separate ontology artifact (OWL file). Table 22 provides an overview of key

statistics of these layers, including the number of axioms (#of axioms), number of classes (#of

classes), number of object properties (#of object-properties), and number of data properties (#

data-properties) found in each abstraction layer.

94

Table 22: Ontologies artifacts metrics
Layer Ontology Name # Axioms # Classes # Object Properties # Data Properties
General main.owl 130 10 14 11

Domain-spanning
vulnerabilitis.owl 41 17 6 0
measurement.owl 55 10 5 0

Domain-specific securityDB.owl 176 28 18 19

System-specific

securityDB-nvd.owl 41 9 0 9
securityDB-exploitdb.owl 26 5 2 8
securityDB-SF.owl 4 5 0 0
securityDB-VND.owl 7 5 2 0
securityDB-WLB.owl 6 3 0 0
securityDB-PSS.owl 12 4 0 3
securityDB-VL.owl 15 7 2 1
securityDB-rapid7.owl 2 2 0 0
securityDB-VulDB.owl 2 2 0 0
securityDB-SVD.owl 0 0 0 0
securityDB-SnykVDB.owl 8 4 0 2

Total 525 111 49 53

Ontologies at the system level can now extend classes from the upper layers either directly

(Domain layer) or indirectly (from the Domain-spanning and General layers). For example, D1

(securityDB-nvd.owl) can now extend higher-level classes such as the domain-specific

(securityDB.owl), domain-spanning (vulnerabilities.owl and measurement.owl), and the general

layers (main.owl). In some cases (e.g., D10 - securityDB-SVD.owl) all vulnerability concepts are

already covered by the domain-specific ontology and no system-specific ontology extensions are

needed; the securityDB-SVD.owl will be empty.

Given our ontological modeling approach and the support for inference services, we can now

use rules (see Listing 1) to infer missing information (through implicit relations). For example,

given an exploit attack published in D259 which states:

“The Enterprise version of SyncBreeze is affected by a Remote Denial of Service vulnerability.

The web server does not check bounds when reading server request in the Host header on

making a connection, resulting in a classic Buffer Overflow that causes a Denial of Service. To

exploit the vulnerability only is needed use the version 1.1 of the HTTP protocol to interact with

the application”.

While most of the relevant vulnerability information is provided, other information such as

severity score, attack impact, and attack classification are not mentioned in the D2 record for this

59 https://www.exploit-db.com/exploits/43344/

95

attack. However, D1 60 contains this additional vulnerability information (e.g., has attack

classification, Buffer Errors (CWE-119), and vulnerability impact, CVSS score 7.5 out of 10 -

high). Using the semantic rule in Listing 1, we can now infer the missing information in D2 from

D1.
IF (𝐷𝑥 has CVE-ID && CWE-ID && CVSS) AND (𝐷𝑦 has CVE-ID) THEN 𝐷𝑦has CWE-ID, CVSS
IF (𝐷𝑥 has CVE-ID && Author) AND (𝐷𝑦 has CVE-ID) THEN 𝐷𝑦 has Author
IF (𝐷𝑦 has CVE-ID && exploit code) AND (𝐷𝑥 has CVE-ID) THEN 𝐷𝑥 has exploit code

Listing 1: Semantic rules to infer vulnerabilities representations standards.

4.5 Use Cases Scenarios
In this section, we illustrate the applicability of our knowledge model through examples that take

advantage of our unified ontological representation. The results demonstrate that our knowledge

model cannot only unify these heterogeneous vulnerability data-sources but can also enable new

and more flexible types of vulnerability analysis.

Implementation: For both of our examples, we reuse again our previous NVD (D1) and

Exploit-DB (D2) datasets. NVD is arguably the world’s largest database of publicly known

vulnerabilities in software systems [38], and Exploit-DB61 is a CVE compliant archive of public

exploits and software being affected by these exploits. Exploit-DB is mainly used by penetration

testers and vulnerability researchers. Common to both data sources is that they can be considered

to be information silos, with no unified representation that would allow for a seamless

information exchange or exploration facilities across these two SVDBs. For example, when a

CVE designation is assigned to a reported vulnerability in D1, details about this vulnerability are

often not published until a technical review of the vulnerability is completed. Such a review

typically also includes assigning a severity score and additional CWE classification information.

On the other hand, D2 publishes the CVE-ID of a vulnerability together with its description and

a proof of concept exploit. These information differences can not only result in situations where

the same vulnerability (CVE-ID) might be published with a different reporting date, but also

each SVDB provides different information details about the same vulnerability. In what follows,

we show how our unified knowledge representation can eliminate the traditional information

60 https://nvd.nist.gov/vuln/detail/CVE-2017-17088
61 https://www.exploit-db.com/about-exploit-db/

96

silos these SVDBs have preserved and improve the accessibility and traceability of information

among these SVDBs.

Data collection, extraction, and population: For the data collection, we downloaded and

parsed all available XML data feeds from D1 and populated them in our D1-system-specific

ontology. For the D2 dataset, we implemented a Java script to scrape D2’s website to extract the

meta-data for each published exploit (CVE-IDs if exist, author, links, etc.) and populated the

downloaded facts in our D2-system-specific ontology. It should be noted that for all of our

system- and domain-specific ontologies we use the same URI generator to create unique,

dereferenceable URIs for each fact in our knowledge base (Figure 22 shows the URIs

namespaces for each ontology and the nomenclature used).

owl: <http://www.w3.org/2002/07/owl#>
rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
main: <http://se-on.org/ontologies/general/2012/02/main.owl#>
sevont: <http://aseg.cs.concordia.ca/segps/ontologies/domain-specific/2015/02/securityDBs.owl#>
exploitdb:<http://aseg.cs.concordia.ca/segps/ontologies/domain-specific/2017/01/securityDBs-exploitdb.owl#>
nvd: <http://aseg.cs.concordia.ca/segps/ontologies/domain-specific/2015/02/securityDBs-nvd.owl#>

Figure 22: Overview of namespaces and nomenclature used.

The results of our fact extraction and population step are two system-ontologies, which consist of

94,657 vulnerabilities (D1) and 38,415 exploit entries (D2) ; see Table 23.

Table 23: Dataset statistics
ID Name Total entries # triples

D1 National Vulnerabilities Database (NVD) 94,657 1,793,393,3

D2 Exploit Database (ED) 38,415 453,236

Next, we illustrate how our modeling approach can benefit SVDB users by: (1) identifying

inconsistency among disclosure dates of vulnerabilities, and (2) enriching SVDB system level

ontologies with missing vulnerability information from other SVDBs.

97

4.5.1 Use Case Scenario #1: Identifying Inconsistencies in

Vulnerability Public Disclosure Dates
Determining the public disclosure date of a vulnerability is vital to understanding the life cycle

of a vulnerability. Previous studies (e.g., [102], [167], [168], [106], and [169]) have relied in

their analysis on only a single SVDB (e.g., NVD) as their information source. While the CVE

publication date used in these studies corresponds to the publication date in NVD, it is not

necessarily the date the vulnerability was publicly disclosed [218]. In our approach we compare

the publication dates of vulnerabilities in different SVDBs to identify inconsistencies among the

dates and to provide security engineers with more accurate reporting date results.

Results and discussion: For our analysis, we take advantage of our ontological representation

which allows us to create a simple SPARQL query (Listing 2) that links all exploits based on

their CVE-IDs from the two databases (D1 and D2) and returns the release date for each

vulnerability recorded in the individual dataset.

PREFIX[…]

SELECT DISTINCT ?exploit ?expDate ?vulnerability ?vulDate

WHERE{

 ?exploit rdf:type sevont:Exploit.

 ?vulnerability rdf:type sevont:Vulnerability.

 ?exploit sevont:hasEntryReleaseDate ?expDate.

 ?vulnerability sevont:hasEntryReleaseDate ?vulDate.

 ?vulnerability sevont:hasExploit ?exploit.

}

Listing 2: Query to retrieve publish (Release) dates between vulnerabilities (D1)

The query results show that 21,654 CVEs appear in both datasets and that of these 16,337

(75%) are disclosed in D2 prior to being published in D1 (with a median number of seven days

between the two reports). On the other hand, 3,848 (18%) of vulnerabilities were published first

in D1 before they were included in D2. Only 7% of the vulnerabilities show the same publication

date in both SVDBs. Table 24 shows an example of the retrieved data from our knowledge base

for the vulnerabilities publication dates for D1 and D2.

98

Table 24: Example information retrieved from our Knowledge Base for NVD and Exploit-DB as
denoted in Query 1

Exploit-DB entry Release Date NVD entry Release Date

Exploit-DB: 43376 20/12/2017 NVD: CVE-2017-17692 21/12/2017

Exploit-DB: 43363 14/12/2017 NVD: CVE-2017-17411 21/12/2017

Exploit-DB: 43378 20/12/2017 NVD: CVE-2017-17752 20/12/2017

Exploit-DB: 18818 01/05/2012 NVD: CVE-2012-2576 20/12/2017

Exploit-DB: 43377 20/12/2017 NVD: CVE-2017-17759 19/12/2017

Exploit-DB: 43355 18/12/2017 NVD: CVE-2017-15048 19/12/2017

Exploit-DB: 43354 18/12/2017 NVD: CVE-2017-15049 19/12/2017

Exploit-DB: 43344 15/12/2017 NVD: CVE-2017-17088 19/12/2017

For example, CVE-2012-2576 is a vulnerability in SolarWinds Storage manager 5.1.0 and

earlier 62 that was first discussed and assigned a CVE-ID in D2 in May 2012. The same

vulnerability was not published in D1 until December 2017. Our results show that users who rely

only on D1 and are unaware of exploits reported in D2 will not receive any alerts from D1 until

December 2017. However, once a vulnerability becomes public (in this case May 2012), its

likelihood for being exploited increases significantly, since the vulnerability is now publicly

announced.

4.5.2 Use Case Scenario #2: Enriching Vulnerability Data
As we discussed earlier, SVDBs are a rich data source that can be used for mining and analysis

of security issues and their fixes. However, the level of details, the completeness, and the quality

of vulnerability information may differ significantly among SVDBs. For example, a security

engineer relying only on D2 would have to rely on CVE-ID to identify a vulnerability. While

CVE-IDs are widely used to describe reported vulnerabilities, alternative or supplementary

information might exist in other SVDBs.

Results and discussion: Query 2, an extension of the SPARQL query (Listing 2), establishes a

semantic link between D1 and D2 using the CVE-ID captured by both SVDBs. Given SPARQL

query (Listing 3), we can now automatically infer missing vulnerability information in D2 such

as the exploit type (described by CWE standard) and the exploit severity score (described by

CVSS standard).

62 https://www.offensive-security.com/0day/solarshell.txt

99

PREFIX[…]

SELECT DISTINCT ?exploit ?vulnerability ?weakness

 ?severityLevel ?CVSSscore

WHERE{

 ?exploit rdf:type sevont:Exploit.

 ?vulnerability rdf:type sevont:Vulnerability.

 ?vulnerability sevont:hasExploit ?exploit.

 ?vulnerability sevont:hasSeverity ?severityLevel.

 ?vulnerability sevont:hasWeakness ?weakness.

 ?vulnerability sevont:hasSeverityScore ?CVSSscore .

}

Listing 3: Query to retrieve the missing vulnerability information between vulnerabilities (D1)

and related exploits (D2).

Figure 23: Distribution of CVSS severity scores, which are on a scale of 0 to 10, rounded to the

nearest integer.

CVSS scores assigned to D2 exploits. The results from query (Listing 3) can now, for example,

be used to classify exploits in D2 based on their CVSS severity scores. CVSS severity scores

range from 0 to 10. Our query results (see Figure 23) show that vulnerabilities reported in D2

data consist mostly of vulnerabilities with a severity score of 5-10 (medium to high severity).

CWEs information assigned to D2 exploits. Based on Listing 3, we can now use the CWE

standard (captured in D1) for an additional classification of software exploits in D2 using the

CVE-ID link we established among the two datasets. The results of our query show that for 54%

of exploits a CWE-ID can be identified and classified based on the CWE standard. Table 25 lists

the most common software weaknesses, including the frequency with which they occur in D2.

SQL injection, buffer overflow errors, and cross-site scripting vulnerabilities are among the top

three weaknesses.

100

Table 25: Top 10 CWE software weaknesses by the number of Exploits (D2)
 CWE-ID Weakness Summary Num. Exploits

1. 89 SQL Injection 2825

2. 119 Buffer Overflow 2075

3. 79 Cross-site Scripting 1775

4. 94 Code Injection 1033

5. 22 Path Traversal 927

6. 20 Improper Input Validation 703

7. 264 Access Control Error 647

8. 399 Resource Management Error 301

9. 200 Information Disclosure 249

10. 352 Cross-Site Request Forgery 222

4.6 Chapter Summary
In this chapter we have presented a semi-automated method for developing a unified

vulnerability knowledge base, i.e., SEVONT: a pyramid of software security vulnerabilities

analysis ontologies, which allows us to reconcile and integrate heterogeneous vulnerability data

from several SVDBs. Our knowledge modeling approach takes advantage of FCA to guide

knowledge engineers in abstracting and reusing concepts across system level ontologies, while at

the same time improving knowledge integration and reuse. We illustrated the applicability of our

knowledge model through two examples that take advantage of our unified representation to

verify the consistency of data in these SVDBs and to enrich existing SVDB knowledge resources

by linking them to other resources.

In the next chapter we introduce SV-AF, a framework for integrating SEVONT with other

SE ontologies (e.g., source code, build repositories, issue tracker). The objective of SV-AF is to

provide a comprehensive, interlinked knowledge base that allows for novel types of cross artifact

vulnerability analysis.

101

Chapter 5

5 SV-AF – A Security Vulnerability
Analysis Framework

5.1 Introduction
While software vulnerabilities databases (SVDBs) are knowledge rich resources, they have often

remained information silos, disconnected from other knowledge in the software development

domain, such as code or issue tracker repositories. Several reasons exist for these information

silos: (1) A lack of standardized formalism for representing knowledge in the SE domain. (2)

The inability to integrate seamlessly heterogeneous knowledge resources that would allow for

both establishing semantic links across existing knowledge and inferring new knowledge. (3) No

uniform resource identifiers across knowledge resources that support fact and analysis results

sharing for consumption by either humans or machines.

Given the growing importance of IS for the software domain and the challenges the software

community faces in integrating heterogeneous knowledge resources, this chapter introduces a

modeling approach that addresses this traceability challenge. More specifically, our approach

takes advantage of the SW and its supporting technologies (e.g., ontologies, Linked Data,

reasoning services) to establish a unified representation that supports knowledge integration

across repository boundaries. In addition, by using ontologies and Linked Data we can now

enrich these repositories with explicit and implicit semantic links and take advantage of SW

reasoning services to create true information hubs.

In this chapter, we introduce a Security Vulnerabilities Analysis Framework (SV-AF) which

not only establishes traceability links between SVDBs and SE repositories, but also enables

practitioners to be notified about potential security vulnerabilities introduced due to the indirect

102

dependencies within their systems. Two case studies are presented to illustrate the applicability

of our presented approach. In these case studies we link the NVD vulnerability databases and the

Maven build repository to trace vulnerabilities across repository and project boundaries. In our

analysis, we identify that 750 Maven project releases are directly affected by known security

vulnerabilities and by considering transitive dependencies, an additional 415,604 Maven projects

can be identified as potentially affected by these vulnerabilities.

Related work: In a related study, Ilo et al. [63] presented their Software Relationship Ontology

(SWREL) to model information about software interrelationships across different ecosystems.

However, their ontology design focuses on the conceptualization rather than the inference of new

knowledge. In addition, the semantic linking in SWREL is based on the dependencies relations

existing in the Maven repository and Debian63 package repository. In contrast, our approach has

more abstracted and generalizable features which can capture knowledge of different build-

systems and package management repositories.

Mircea et al. [164] introduced their Vulnerability Alert Service (VAS) tool to notify users if a

vulnerability is reported for a software system. VAS depends on the OWASP Dependency-

Check tool which we compare with our SV-AF approach in Section 5.4. VAS reports the

vulnerable projects identified by the OWASP tool without further investigation; and just like

OWASP, VAS does not support transitive dependencies analysis of vulnerable components.

Note: Earlier versions of the work have been published in the 27th IEEE International

Symposium on Software Reliability Engineering (ISSRE 2016) [44] and in the journal Science of

Computer Programming, Volume 121, 2016 [165].

5.2 A Security Vulnerability Analysis Framework

5.2.1 Knowledge Modeling
One of the key premises of the SW is its ability to share and extend existing knowledge. Our

knowledge modeling approach builds upon this premise by reusing and extending the SE

63 https://www.debian.org/distrib/packages

103

ontologies introduced in [20]. More specifically, we extend these ontologies by focusing not only

on the semantic integration of additional traditional software repositories (e.g., build

management) and specialized repositories (e.g., vulnerability databases), but also an ontology

design that goes beyond the conceptualization of a domain of discourse by focusing on the

inference of new knowledge. We followed a bottom-up modeling approach, where we first

model system-specific concepts and iteratively abstracted higher-level shared concepts in upper-

ontologies (see Figure 24). The resulting four layer modeling hierarchy is similar to a metadata

modeling approach introduced by the Object Management Group (OMG)64. Each of these layers

differ in terms of their purpose and their design rationale. To improve the readability, we denote

OWL classes in italic, individuals are underlined, and a dashed underline is used for properties.

For a complete description of our ontologies, we refer the reader to [215].

Domain Spanning Concepts

General
Concepts

 Concepts
Relations &
Attributes

Measurements

Sec. Vuln.
Traceability

APIs Sec.
Assessments

Sec. Patches
Dependencies

Change
Couplings

Domain Specific Concepts
Build

Systems
Software

Engineering
Security

Vulnerabilities

IvyAntMavenHistory
Issue

Tracking
Source
CodesVLNVD

Exploits
DB

System Specific Concepts

Figure 24: The SV-AF Ontologies Abstraction Hierarchies.

General Concept Layer – Classes in the top-layer model correspond to meta-meta level

concepts—core concepts shared and extended by the lower modeling layers. Examples of such

64 http://www.omg.org/

104

core concepts are: Product, Reference, Activity, Stakeholder, and Artifact. All concepts in this

layer are subclasses of the SeonThing class (a subclass of owl:Thing, which captures the set of all

individuals within our framework). Similarly the datatype properties and object properties in this

layer are generic and shared across the abstraction layers. For example, the dependsOn object

property captures the generic relationship between things—one Product dependsOn another

Artifact.

Domain-Spanning Concepts – In this layer, concepts describe knowledge that is typically

inferred from two or more ontologies. For example the measurements ontology acts as a general

linking mechanism between ontologies. The ontology provides two basic concepts, BaseMeasure

or DerivedMeasure. Adequate BaseMeasure instances are the size and numberOfDependencies

in a Product. DerivedMeasure captures an aggregation of values from different subdomains. For

example, the DerivedMeasure class includes the numberOfVulnerabilitiesPerApi instance, which

is computed from measures collected from the source code, history, build system, and the

vulnerability ontologies. SimilarityMeasure, which is a subclass of DerivedMeasure, captures the

similarity ([0,1]) between any two SeonThing instances.

Domain-Specific Concepts – The third layer in our knowledge model captures domain-specific

aspects—concepts that are common and reused across resources in a particular domain (e.g.,

domain of issue trackers). At the core of the domain specific layer we have several domain

ontologies: (1) SEVONT, (2) Software Evolution ONtologies (SEON) [20], and (3) Software

Build Systems ONtologies (SBSON). For example, security databases are capturing a

Vulnerability that has an associated Event. An event often can be further divided into Action and

Impact—an attacker exploits a Vulnerability to produce an Action, which has an Impact.

System-Specific Concepts – The bottom layer defines system-specific concepts by extending

the domain specific concepts to capture knowledge specific to a particular knowledge resource.

For example, the system specific ontology for NVD extends the general SEVONT ontology with

NVD specific information on the severity of vulnerabilities by adding a Severity concept.

105

5.2.2 Knowledge Engineering and Integration
The SW is characterized by decentralization, heterogeneity, and lack of central control or

authority. These new features have greatly contributed to the success of the SW, but at the same

time they have also introduced several new challenges.

Knowledge base engineering: In contrast to the top-down approach often used by knowledge

engineers, we follow a data-driven, bottom-up approach in our framework (Figure 25).

Re-use existing
concept

Is it already
covered by an

ontology of the
upper layers?

Potentially new concept
encountered

Do other
system-specific

ontologies contain
similar

concepts?

Queue ontology/
concept for

consolidation

Define system-specific ontology
and include the new concept

(temporarily)
No

YesYes

Figure 25: Knowledge engineering process to support result integration.

When modeling a new knowledge resource or integrating new analysis results, during the

interception phase we first conceptualize the domain of discourse by identifying its major

concepts and relations. Before adding a concept to the knowledge base, we verify that a similar

concept has not been previously modeled in any of the upper SV-AF’s layers (e.g., the domain-

specific layer) and re-use the existing concepts whenever possible. If no similar concept exists,

we temporarily add the concept to its system-specific ontology before considering consolidating

it with other existing concepts. This consolidation process usually is postponed until we reach a

sufficient understanding of the problem domain.

For the knowledge modeling and integration of SE resources, we follow a similar approach

as we used for SEVONT. For example, given two similar concepts found in different SE

repositories (e.g., issue tracker and build systems), we will first create two distinct system-

106

specific concepts in both ontologies. We then compare these system ontologies and move

commonalities to the domain-specific layer, in order to improve knowledge reuse and

traceability. Concepts modeled in more than one domain are promoted from the domain-specific

to the domain-spanning layer.

5.2.3 An Example Scenario: Modeling global vulnerability impacts

using bi-directional dependencies
Currently, there are a number of build systems which provide users with support for managing

both internal components and external API dependencies. However, while such a unidirectional

dependency model works well for managing build dependencies, it restricts a user’s ability to

further reason upon this knowledge. For example, using Maven, it is currently not possible for a

user to identify all components or projects that depend either directly or indirectly on a specific

project (see Figure 26).

D

EA

B

C

F

G

 Target project

 Dependency coverage
(Traditional build)

 Extra Dependency
coverage (SV-AF)

uni-directional
dependsOn link

Inferred Transitive
dependency link

LEGEND

Figure 26: Unidirectional vs. bi-directional dependencies.

To overcome this challenge, we take advantage of the SW and its standardized knowledge

modeling approach by introducing our SBSON ontology to capture the dependencies in the

Maven repository.

Using SBSON we are now able to create a global bi-directional project dependency graph

which supports extra semantic analysis by taking advantage of semantic reasoning services. For

example, in Figure 26, using SBSON we can extend the Maven supported impact analysis on

project C by not only identifying all components on which project C depends on (projects D and

E), but also all projects which might depend on project C (projects A, F, and G).

107

Vulnerability

Weakness

Countermeasures

classifiedAs

has

Score

Severity

has

calculatedBy

Measurement

Measure

with

Stakeholder

Artifact

File

Developer

Sec. Engineer

measures

high

medium

low

Organization

Product

Release

hasbelongsTo

BuildRelease

dependsOn

sameAs

measures

Sy
ste

m-
sp

ec
ifi

c

SEVONT – nvd.owl

Do
ma

in-
sp

ec
ifi

c
Do

ma
in-

Sp
an

nin
g

Ge
ne

ra
l

SEVONT- SecurityDBs.owl

SEVONT- vulnerabilities.owl

SBSON – build.owl

SEON- main.owl

OWL classes OWL individivuals object property subclass ofinstance of

….

….

….

….
….

….

….

….

….

VulnerableRelease

affects

DependencyLink

optional
scope

type

SBSON – maven.owl

Group

BuildProject

belongsToGroup

BuildRepository

hosts

hasDependee

Repository

inferred
Relation

VulnerabilityAssessment

measures

∑ CVSS

excludes

hasDependant

hosts

VulnerableCode

SecurityPatch

identify

manifestIn

has

Figure 27: SV-AF’s ontologies and concepts involved in software vulnerability dependencies
analysis.

As discussed before, our SV-AF knowledge modeling approach allows analysis approaches

to take advantage of the bi-directional dependencies in our knowledge model. In what follows,

we not only illustrate how the Maven repository can be seamlessly integrated with NVD by

modelling relevant concepts and their relations across the different abstraction layers in our

knowledge modeling approach, we also provide a concrete usage scenario showing how our

unified representation can now support, for example, impact analysis of known vulnerabilities

across heterogeneous software repositories (NVD and Maven). The OWL classes and object

properties used for the impact analysis example are shown in Figure 27 (data properties have

been omitted to improve readability of the figure).

Modeling Vulnerable Release Dependencies: A VulnerableRelease is a software Release

within the NVD database with a known Vulnerability. A BuildRelease is a software release

108

within the Maven ecosystem. Using our ontology alignment process, we infer that a given

VulnerableRelease is sameAs a specific BuildRelease. As such, the VulnerableRelease inherits

the properties of the original BuildRelease, for example, the VulnerableRelease now dependsOn

other BuildRelease. Given the support for bi-directional links in our model, a Project hosted in

an ecosystem’s Repository can now be identified as being potentially affected by a vulnerability

when it directly or indirectly reuses a VulnerableRelease.

5.3 Methodology

5.3.1 Overview
Next, we introduce in more detail our overall methodology (Figure 28) which consists of three

major steps: (i) fact extraction and population, (ii) ontology alignment, and (iii) tracing

vulnerabilities across knowledge boundaries using knowledge inferencing/reasoning.

Build Systems
 Data Sources

Security Vulnerabilities
 Data sources

SPARQL End-PointSV-AF Knowledge Base

XML feeds

POM xml
 files

Domain Spanning Concepts

General
Concepts

 Concepts
Relations &
Attributes

Measurements

Sec. Vuln.
Traceability

APIs Sec.
Assessments

Sec. Patches
Depedencies

Change
Couplings

Domain Specific Concepts
Build

Systems
Software

Engineering
Security

Vulnerabilities

IvyAntMavenHistory
Issue

Tracking
Source
CodesOSVDBNVD

Exploits
DB

System Specific Concepts

Ontologies Modeling And
Engineering Module

B A

UserUser

UserUser

Figure 28: SV-AF system overview.

5.3.2 Fact Extraction and Population
Our SV-AF framework depends on several endogenous and exogenous data sources.

Endogenous data sources, such as source code, issues trackers, and build repositories, are

109

internal to a software development environment. In contrast, exogenous data sources, such as

vulnerability databases and Q&A sites, are external to a software development environment.

The fact extraction process itself consists of extracting facts from the Maven POM files and

the NVD XML update feeds (see Figure 28–B). For the ontology population, we use the Jena65

framework to populate the corresponding artifact ontologies and materialize them using a triple-

store.

Literal
Information

Pre-matchDumps Extraction

Instance Pairs

Labeled
Similarity
Instances

Manual
labeling

Existing
Marches

Training Data
PSL Classifier

Learning
 Model

Testing

New
 Matches Output

Figure 29: Instances matching approach.

5.3.3 Ontology Instances Alignment
For the alignment of instance in our ontologies, we take advantage of the Probabilistic Soft Logic

(PSL) framework [219] which establishes weighted links between ontologies (Figure 29).

PSL uses continuous variables to represent truth values, relaxing the standard Boolean values

[219] traditionally used. The resulting probability distribution over literals is captured in a graph

model which can then be reasoned upon. The majority of the rules in PSL are soft-weighted

rules, like rules stating that instances are similar if their names or their classes are similar (see

Listing 4).

65 https://jena.apache.org/

110

1. 𝑅𝑢𝑙𝑒 − 1: 𝑡𝑦𝑝𝑒(𝐴, 𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒) ∧ 𝑡𝑦𝑝𝑒(𝐵, 𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒) ∧ 𝑛𝑎𝑚𝑒(𝐴, 𝑋)

∧ 𝑛𝑎𝑚𝑒(𝐵, 𝑌) ∧ 𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝐼𝐷(𝑋, 𝑌)
∧ 𝐴. 𝑠𝑜𝑢𝑟𝑐𝑒 ≠ 𝐵. 𝑠𝑜𝑢𝑟𝑐𝑒
⇒ 𝑠𝑖𝑚𝑖𝑙𝑎𝑟(𝐴, 𝐵) wight: 0.5

2. 𝑅𝑢𝑙𝑒 − 2: 𝑡𝑦𝑝𝑒(𝐴, 𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒) ∧ 𝑡𝑦𝑝𝑒(𝐵, 𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒) ∧ 𝑛𝑎𝑚𝑒(𝐴, 𝑋)

∧ 𝑛𝑎𝑚𝑒(𝐵, 𝑌) ∧ 𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝐼𝐷(𝑋, 𝑌)
∧ 𝐴. 𝑠𝑜𝑢𝑟𝑐𝑒 ≠ 𝐵. 𝑠𝑜𝑢𝑟𝑐𝑒
∧ 𝑣𝑒𝑟𝑠𝑖𝑜𝑛(𝐴, 𝑍) ∧ 𝑣𝑒𝑟𝑠𝑖𝑜𝑛(𝐵, 𝐾)

∧ 𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝐼𝐷(𝑍, 𝐾)

⇒ 𝑠𝑖𝑚𝑖𝑙𝑎𝑟(𝐴, 𝐵) wight: 0.8

Listing 4: PSL rules.

For example, in Listing 4 – Rule 1, the rule states that two instances A, B with similar names

defined in different source ontologies are likely to be similar. “similarID” is a similarity function

implemented using the Levenshtein similarity metric. Rules in PSL are labeled with non-

negative weights. In Listing 4 – Rule 2, the rule weights are used to indicate that projects with

same names and versions are more likely to be similar than projects with same names only

(Listing 4 – Rule 1).

Using PSL we can establish owl:sameAs relations between similar instances found in the

SEVONT and SBSON ontologies. In this example, two system-specific ontologies, NVD and

Maven, and their corresponding instances |𝑁𝑉𝐷| and |𝑀𝑎𝑣𝑒𝑛| are used as data sources. The

number of possible instance pairs for these two ontologies is |𝑁𝑉𝐷| × |𝑀𝑎𝑣𝑒𝑛|. In our example,

similarity among instance pairs is determined based on the extracted literal information such as

name, version, and vendor. We used the PSL framework classifier to compute the similarity

weights for the owl:sameAs links. For training purposes, we created a training dataset with

manually labeled instance links to train the PSL classifier to establish the weights for the pre-

defined rules. Having derived the semantic similarity weights for each instance pair, we can now

assign these weights to the owl:sameAs (see Figure 30) links between the aligned instances and

then materialize the alignment results to our knowledge base. Having the weighted alignment

links between the two ontologies, a SPARQL query can now be written to retrieve the

vulnerability information from the NVD ontology and their corresponding instances in Maven

ontology based on a given similarity threshold. For this query, we take advantage of RDFS++66

66 http://franz.com/agraph/support/learning/Overview-of-RDFS++.lhtml

111

reasoning to not only retrieve explicit but also infer implicit facts from the knowledge base.

More specifically, our ontology design not only supports transitive but also subsumption

reasoning, which is not supported by traditional relational databases.

measure:SimilarityMeasure

weight

sbson:instance sevont:instance
owl:sameAs sevont:vuln.owl

#VulnerableRelease

sbson:build.owl
#BuildRelease

rdf:typerdf:type

measure:measureThing measure:measureThing

measure:hasMeasureValue

instance class

Defined RelationInferred Relation

Literal

Figure 30: Weighted similarity modeling.

5.3.4 Knowledge Inference and Reasoning
A key feature of many triples-stores is to provide scalability reasoning by materializing

reasoning results. In this section, we discuss how such reasoning capabilities are used in our

approach to trace vulnerabilities across knowledge boundaries.

owl:sameAs inference: A commonly used predicate for inferring new knowledge is

owl:sameAs, which is used to align two concepts. An example from our SBSON and SEVONT

ontologies is shown in Listing 5.

𝑠𝑒𝑣𝑜𝑛𝑡: 𝑃𝑟𝑜𝑗𝐴 𝑟𝑑𝑓: 𝑡𝑦𝑝𝑒 𝑠𝑒𝑣𝑜𝑛𝑡: 𝑉𝑢𝑙𝑛𝑒𝑟𝑎𝑏𝑙𝑒𝑅𝑒𝑙𝑒𝑎𝑠𝑒
𝑠𝑏𝑠𝑜𝑛: 𝑃𝑟𝑜𝑗𝐵 𝑟𝑑𝑓: 𝑡𝑦𝑝𝑒 𝑠𝑏𝑠𝑜𝑛: 𝐵𝑢𝑖𝑙𝑑𝑅𝑒𝑙𝑒𝑎𝑠𝑒
𝑠𝑒𝑣𝑜𝑛𝑡: 𝑃𝑟𝑜𝑗𝐴 𝑠𝑒𝑣𝑜𝑛𝑡: ℎ𝑎𝑠𝑉𝑢𝑙𝑛𝑒𝑟𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑠𝑒𝑣𝑜𝑛𝑡: 𝐶𝑉𝐸 − 𝐼𝐷
𝑠𝑒𝑣𝑜𝑛𝑡: 𝑃𝑟𝑜𝑗𝐴 𝒐𝒘𝒍: 𝒔𝒂𝒎𝒆𝑨𝒔 𝑠𝑏𝑠𝑜𝑛: 𝑃𝑟𝑜𝑗𝐵.

Listing 5: owl:sameAs rules example

Given is the following SPARQL query (Listing 6), which takes advantage of the owl:sameAs

predicate if inference is enabled

112

REFIX[…]

SELECT ?vulnerability ?release

WHERE{

 ?release rdf:type sbson:BuildRelease.

 ?release sevont:hasVulnerability ?vulnerability

}

Listing 6: SPARQL query returning same as projects vulnerabilities

 Without inferencing, the query result set would be empty since no triple has as subject

sbson:ProjB and predicate sevont:hasVulnerability. However, with inference enabled, it can now

be inferred that ProjB has a vulnerability (CVE-ID67) through the reasoner being able to establish

a link between sbson:ProjB and sevont:ProjA using the owl:sameAs property.

owl:TransitiveProperty inference: A relation R is said to be transitive if R(a,b) and R(b,c)

implies R(a,c); this can be expressed in OWL through the owl:TransitiveProperty construct. We

define seon:dependsOn to be a bi-directional transitive property of type owl:TransitiveProperty

(e.g., seon:dependsOn rdf:type owl:TransitiveProperty). Through this transitive construct we are

now able to retrieve a list of all projects that have a direct and transitive dependency on the

vulnerable library and vice versa (see Listing 7).

PREFIX[…]

SELECT ?project

WHERE{

 ?release rdf:type sbson:BuildRelease.

 ?release sevont:hasVulnerability ?vulnerability.

 ?project seon:dependsOn ?release.

}

Listing 7: SPARQL query returning transitive vulnerable dependencies.

5.4 Case Studies
This section introduces the two case studies we use to evaluate the applicability of our

knowledge modeling approach. More specifically, in case study #1 we identify semantically

67 Every CVE-ID is uniquely identified by the letters ’CVE’, followed by eight digits. For example, CVE-2015-0235.

113

similar software projects that exist in Maven and contain known security vulnerabilities

disclosed in the NVD database. The objective of this case study is to evaluate the applicability of

our alignment process by comparing it against a specialized, existing dependency analysis tool

[42]. For the second case study, we illustrate how semantic reasoning can enable semantic richer

analysis services. More specifically, we show that our semantic rules can infer explicit and

implicit security vulnerabilities by inferring transitive dependencies by traversing the bi-

directional links.

5.4.1 Case Studies Data
For the data collection and extraction in our case studies, we relied on two data sources: the

NVD database and the Maven build repository. We downloaded the latest version of the

repository from the Maven.org website (Table 26) and downloaded all NVD vulnerability xml

feeds from 1990 and 2016 (Table 27). For case study #1, the number of releases and unique

vulnerable products were used to evaluate our alignment approach for integrating these two

ontologies.

Table 26: Maven Repository statistics
Repository Projects Releases Last Update
Maven [220] 130,895 1,219,731 2016-01-28 16:34:07 UTC

Table 27: Maven Repository statistics

Repository # unique vulnerabilities # unique vulnerable products Period
NVD [221] 74945 109212 1990 - 2016

For case study #2, the objective was to identify the potential transitive impact set of some

vulnerable components on other systems. For this study we selected five Apache projects (Table

28) hosted in the Maven repository. The main criteria for selecting these projects was that at least

some of their releases contain known vulnerabilities (identified in case study #1) and the

functionalities these products provide are widely reused by other projects. These five subjects

vary in size (classes and methods) and application domain. Wss4J68 is a Java implementation of

the primary security standards for Web Services, Httpclient 69 is responsible for providing

reusable components for client-side authentication, HTTP state management, and HTTP

68 https://ws.apache.org/wss4j/
69 https://hc.apache.org/httpcomponents-client-ga/

114

connection management. Apache Derby70 is an open source relational database implemented

entirely in Java, Hibernate Validator71 allows expression and validation of application constraints

using annotation-based constraints, and Apache OpenJPA72 is a Java persistence project that can

be used as a stand-alone plain old Java object (POJO) persistence layer or can be integrated into

any Java EE compliant container.

Table 28: Subject systems and sizes for transitive dependencies analysis

ID Subject Systems Version
Size
Classes Methods

P1 Wss4j 1.6.16 167 1610
P2 Httpclient 4.1 209 1180
P3 Derby 10.1.1.0 967 16354
P4 Hibernate-validator 4.1.0.Final 325 2642
P5 Openjpa 1.1.0 1201 18640

5.4.2 Case Studies Results
Case Study 1: Identifying open source components that are directly susceptible to known

security vulnerabilities.

Objective: The goal of this study is to evaluate the performance of our semantic similarity

linking approach used to align two domain specific ontologies.

Approach: In order to align (link) these two ontologies (SEVONT and SBSON), we use the PSL

framework to align project specific information found in both ontologies. We trained PSL using

a corpus of 500 randomly selected project instance pairs for which we manually created links.

We then executed our PSL alignment rules on this training dataset to train our approach. As a

result of this training, two concept instances in these ontologies can now be aligned with a

degree of certainty, if A and B, with same names are defined in different ontologies

(¬𝑆𝑎𝑚𝑒𝑆𝑜𝑢𝑟𝑐𝑒) and have similar Vendors and same Version numbers. SameName,

SimilarVendor, and SameVersion are similarity functions implemented using a Levenshtein

distance metric. In this example, the SameProject(A,B) is given a weight of 0.9 (Listing 8),

which is based on results from the PSL training set. Figure 31 shows the PSL inference results

70 https://db.apache.org/derby/
71 http://hibernate.org/validator/
72 http://openjpa.apache.org/

115

for our training dataset, with the weights for the 𝑆𝑎𝑚𝑒𝑃𝑟𝑜𝑗𝑒𝑐𝑡(𝐴, 𝐵) alignment ranging from a

minimum of 0.04 to a maximum of 0.42.

Using the semantic rule (Listing 8), PSL can now perform maximum a posteriori (MPE)

reasoning [219] to infer the most likely values for a set of propositions and observed values for

the remaining (evidence) propositions.

𝑆𝑜𝑢𝑟𝑐𝑒(𝐴, 𝑆𝑛𝐴) ∧ 𝑆𝑜𝑢𝑟𝑐𝑒(𝐵, 𝑆𝑛𝐵)

∧ ¬𝑆𝑎𝑚𝑒𝑆𝑜𝑢𝑟𝑐𝑒(𝑆𝑛𝐴, 𝑆𝑛𝐵)

∧ 𝑁𝑎𝑚𝑒(𝐴, 𝑋1) ∧ 𝑁𝑎𝑚𝑒(𝐵, 𝑌1)

∧ 𝑆𝑎𝑚𝑒𝑁𝑎𝑚𝑒(𝑋1, 𝑌1)

∧ 𝑉𝑒𝑛𝑑𝑜𝑟(𝐴, 𝑋2) ∧ 𝑉𝑒𝑛𝑑𝑜𝑟(𝐵, 𝑌2)

∧ 𝑆𝑖𝑚𝑖𝑙𝑎𝑟𝑉𝑒𝑛𝑑𝑜𝑟(𝑋2, 𝑌2)

∧ 𝑉𝑒𝑟𝑠𝑖𝑜𝑛(𝐴, 𝑋3) ∧ 𝑉𝑒𝑟𝑠𝑖𝑜𝑛(𝐵, 𝑌3)

∧ 𝑆𝑎𝑚𝑒𝑉𝑒𝑟𝑠𝑖𝑜𝑛(𝑋3, 𝑌3)

⇒ 𝑆𝑎𝑚𝑒𝑃𝑟𝑜𝑗𝑒𝑐𝑡(𝐴, 𝐵) weight: 0.9

Listing 8: SameProject Rules.

For a full discussion on MPE reasoning, we refer the reader to [219]. The results of the PSL

inference are a set of 𝐴 × 𝐵 SameProject weights that range from [0..1], with 0 two concept

instances having no similarity and 1 corresponding to 100% similarity among instances.

Figure 31: PSL similarities results.

As part of our knowledge modeling approach, we materialized the inferred semantic instance

links (owl:sameAs) between the SEVONT and SBSON ontology, making this inferred

knowledge a persistent part of our knowledge model. We add weights for each link based on the

inferred similarity values using the domain spanning similarity measure (SimilarityMeasure)

class in our model (Section 5.2.1).

116

Findings. Our study showed that 0.062% of all Maven projects contain known security

vulnerabilities that have been reported in the NVD database. An example for such a vulnerability

is shown in Table 29.

Table 29: Example of linked vulnerability
SEVONT fact SBSON fact Corresponding Vulnerability

Sevont-
securityDB.owl#sonatype

:nexus:2.3.1

Sbson-
build.owl#org.sonaty
pe.nexus:nexus:2.3.1

Sevont-securityDB.owl#CVE-2014-0792

A further results analysis showed that projects might often suffer from multiple

vulnerabilities. We also observed that 48.8% of the 750 identified vulnerable project releases

suffer from multiple security vulnerabilities, with PostgreSQL 7.4.1 being the most vulnerable

project in our dataset, containing 25 known vulnerabilities. Providing this additional insight can

guide system update decisions and help avoid the reuse of APIs/components with known security

vulnerabilities or components that might be prone to these types of vulnerabilities.

For example, in December 2010, Google released its Nexus S smartphone73. The phone was

originally running on Android 2.3.3—an Android version that already contained the security

vulnerability discussed in Table 30. While the Nexus S received regular Android OS updates up

to Android Version 4.2, an actual fix of the reported vulnerability (CVE-2013-4787) was only

introduced with Android 4.2.2. However, this new Android version is not supported and

distributed for the Nexus S, leaving existing users of the phone susceptible to attacks. Our

analysis also showed that the same vulnerability can affect multiple releases of a product. For

example, security vulnerability CVE-2013-478774 has been reported for five different Android

versions (Table 30). For product maintainers this information can help to ensure consistent

patching and regression testing across product lines or different versions of a product.

Table 30: Critical Vulnerabilities for Android Project
Android Version CVE-IDs # of direct dependencies
SBSON#com.google.android:android:2.2.1 CVE-2013-4787 360
SBONS#com.google.android:android:2.3.1 CVE-2013-4787 176
SBSON#com.google.android:android:2.3.3 CVE-2013-4787 351
SBSON#com.google.android:android:3.0 CVE-2013-4787 34
SBSON#com.google.android:android:4.2 CVE-2013-4787 1

73 https://en.wikipedia.org/wiki/Nexus_S
74 https://web.nvd.nist.gov/view/vuln/detail?vulnId=CVE-2013-4787

117

Evaluation: We evaluate the linking accuracy when aligning project instances (owl:sameAs)

between our Maven and NVD ontologies.

During the first step of our evaluation, we compared the impact of the similarity weight

thresholds (w = 0.1, w = 0.2, w = 0.3, and w = 0.4) in terms of precision, recall, and F1

measure on the inferred links created by the PSL alignment process. Precision is calculated with

true positives being the number of project instance pairs correctly classified as similar, while

false positives correspond to the number of non-similar instance pairs that are incorrectly

classified as same projects. For Recall, false negatives correspond to the number of non-similar

instance pairs that are incorrectly classified as being similar projects. The F1-score is the

harmonic mean of precision and recall, giving equal weight to both measures.

Table 31: owl:sameAs link (w) evaluation
 Precision
Data Size w=0.0 w=0.1 w=0.2 w=0.3 w=0.4

500

0.77 0.88 0.98 0.93 0.75
Recall
0.77 0.68 0.30 0.03 0.01
F1-score
0.77 0.77 0.46 0.05 0.01

Our analysis (Table 31) showed that an increase in the similarity threshold from 0.1 (low

similarity) to 0.4 (higher similarity) had limited effect on the precision (decrease from 0.98 to

0.75), recall was significantly lower (down from 0.68 to 0.01).

A manual inspection of the inferred links showed that the low recall for the higher threshold values is

due to the inconsistent capturing of vendor information within the two ontologies. NVD relies on the

common name to identify a vendor, whereas Maven uses the fully qualified package name as the vendor

name. For example, using a w=0.0, org.apache.cxf:cxf:3.0.1,org.apache.geronim.configs:cxf:3.0.1 and

org.apache.geronimo.plugins:cxf:3.0.1 in SBSON will be considered the same instance as

apache:cxf:3.0.1 in SEVONT and therefore correctly linked. However using a higher similarity threshold,

these instances will no longer be linked. We use the similarity weight of w = 0.1 in all subsequent

experiments due to its high F1-score.

We further evaluated the link quality by comparing our approach against the OWASP

Dependency-Check tool [42], a specialized tool which identifies direct dependencies between

projects and publicly disclosed vulnerabilities. For the study, we apply the OWASP dependency

check tool as our gold standard and compare the detected dependencies against the links

118

generated by our approach (Table 32). The low OWASP recall is because OWASP requires JAR

files to be available to be able to map the files to the vulnerabilities. However, not all projects

hosted in Maven are distributed with their JAR files.

Table 32: SV-AF vs. OWASP Dependency Check tool accuracy evaluation

Data Size
SV-AF w=0.1 OWASP
Precision Recall F1-score Precision Recall F1-score

500 0.88 0.68 0.77 0.81 0.26 0.40

Case Study 2: Identifying open source components that are directly and indirectly dependent on

vulnerable components.

Objective: In this study we evaluate how our framework can support the analysis of potential

security vulnerability impacts on dependent software components. Furthermore, the case study

illustrates the flexibility of our knowledge modeling approach and highlights how additional

knowledge resources can be seamlessly integrated and reasoned upon.

Approach: For this case study, we extend our analysis to include transitive closure dependencies

(Figure 32) that not only identify components that are directly but also indirectly affected by

known vulnerabilities. For this impact analysis, we selected 5 open source Java projects (Table

28) with known security vulnerabilities for which we do not distinguish if a component actually

makes use (calls) a vulnerable component or not.

Project #1 Project #2 Project #3 Project #ndependsOn dependsOn

Level #1 Level #2

dependsOn

Level #n

Inferred relation Declared relation

dependsOn

Figure 32: Inferred project dependencies in SBSON.

Findings: In what follows, we summarize the findings from our case study. We report on our

transitive dependency analysis which highlights also the benefits of our knowledge modeling

approach, the ability to integrate knowledge resources while taking advantage of inference

services provided by the SW. Given the bi-directional links we established between the NVD

119

and the Maven repository, our analysis is no longer limited to identifying whether a project

depends on a vulnerable component. Instead, given a vulnerable component we can now also

provide a more holistic analysis by identifying in a global context which other projects

potentially directly or indirectly depend on this vulnerable component.

Table 33 provides a summary of our analysis. In order to keep the results simple and

readable, we consider only three levels of transitivity. For example, the vulnerable project

Hibernate-validator 4.1.0 (P4) has a potential impact set of 3,805 direct dependent projects (level

1) and 128,109 dependent projects when we consider an additional two levels of transitivity

(level 3).

Table 33: Transitive dependencies on vulnerable components

ID Component Name # Vulner-
abilities

CVE-IDs
Number of dependent components

based on transitivity level (L)
L1 L2 L3

P1 Wss4j
1.6.16

2 CVE-2015-0227
CVE-2014-3623

336 639 73

P2 Httpclient 4.1 2
CVE-2011-1498
CVE-2014-3577

685 4,961 41,326

P3 Derby 10.1.1.0 3
CVE-2005-4849
 CVE-2006-7216
CVE-2006-7217

385 37,999 66,147

P4 Hibernate-validator
4.1.0.Final

1 CVE-2014-3558 3,805 39,295 128,109

P5 Openjpa 1.1.0 1 CVE-2013-1768 74 49,460 141,303

Figure 33 illustrates a typical usage scenario for our modeling approach. While the Geronimo-

jetty6-javaee5 (version 2.1.1) itself has no known vulnerabilities reported, the project depends on

several components (level 1 dependencies) with known security issues (5 Java projects with a

total of 15 known security vulnerabilities), thus potentially making Geronimo-jetty6-javaee5 a

very vulnerable component.

120

Dojo
(version 1.0.2)

CVE-2010-
2276

affects

uses

CVE-2010-
2274

CVE-2010-
2275

CVE-2010-
2273

affects
affects

affects

Openjpa
(versions 1.0.2 &

2.1.1)

CVE-2013-
1768

affects
uses

Myfaces
(version 2.1.1)

CVE-2011-
4367

affectsuses

Cxf
(version 2.1.1)

CVE-2011-
4367

affectsuses

Jetty
 (version 6.1.7)

CVE-2009-
4612

CVE-2009-
1524

CVE-2009-
1523

CVE-2009-
4461

CVE-2009-
4610

CVE-2009-
4609

CVE-2009-
4611

affects

affects

affects

affects

affects

affects

affects

uses

Geronimo-jetty6-javaee5
(version 2.1.1)

Medium SeverityHigh Severity External APIs

Figure 33: Geronimo-jetty6-javaee5 uses 5 projects (external APIs) from level 1 dependency and

each project suffers from security vulnerabilities.

5.5 Discussion and Threats to Validity
As our experiments illustrate, a unified and formal knowledge model can indeed help eliminate

existing information silos by seamlessly linking and integrating knowledge resources. For the

linking, we take advantage of a probabilistic semantic similarity measure to link instances in our

ontologies (e.g., projects in SEVONT and SBSON). Moreover, unlike traditional mining

software repositories techniques, our approach allows for analysis results and inferred knowledge

to become part of the knowledge base and allow for their later consumption (processing) by

either humans or machines. In addition, rather than relying on proprietary analysis solutions, our

modeling approach takes advantage of the SW technology stack, including standardized

knowledge representation and inference services.

5.5.1 Case Study 1
Identifying known security vulnerabilities in software projects has been widely discussed in the

literature [43], [164], [165], [222]. However, our approach differs from these existing works in

that: (1) it unifies two heterogeneous knowledge resources (software security repositories and

121

build system repositories) using a standardized knowledge representation; (2) it supports

semantic relationships (e.g., owl:sameAs) and RDFS++ reasoning to infer new knowledge (e.g.,

identify vulnerable transitive dependencies) which is not explicitly found in any of these

resources; and (3) given the bi-directional links, our analysis can go beyond traditional inter-

project dependencies and include intra-project dependencies. The results from our case study

show that the problem of depending on vulnerable third party components with known security

vulnerabilities is a common and widespread problem [165].

5.5.2 Case Study 2
The case study illustrates that vulnerabilities can no longer be treated in a project specific

context. With the globalization of the software industry promoting the sharing and integration of

knowledge across knowledge borders, vulnerabilities might have a wide spread impact on the

software ecosystem. In our second experiment, the use of transitive properties and reasoning

capabilities allow the transformation of a typical proprietary analysis implementation into a

simple, customizable (SPARQL) query approach which offloads much of the processing to the

semantic reasoners. For example, the query in Listing 7 will not only return all projects that

directly depend on a vulnerable component, but also those that are indirectly dependent on that

component.

5.5.3 Threats to Validity
A threat to the internal validity of the study is that the instance pair matches for our training set

were manually created and thus potentially prone to human error. In order to mitigate this, we

conducted a cross validation of the annotation, where the links were evaluated by another person.

Finally, the size of the dataset used to evaluate our approach might not be considered large

enough. To mitigate this threat, we evaluated our approach on dataset sizes to study the effect of

the dataset size on our results. Table 34 shows a standard deviation of 0.04 and 0.09 for the

precision and recall, respectively. With the exception of the smallest evaluation size (50 instance

pairs), our precision and recall for the various evaluation sizes are very close to the mean,

indicating that increasing the dataset size will most likely have little adverse effect on our results.

122

Table 34: Dataset size evaluation

Data Points
SV-AF (w=0.1)
Precision |Distance from Average| Recall |Distance from Average |

50 0.76 0.11 0.38 0.26
100 0.87 0.00 0.62 0.02
150 0.88 0.01 0.69 0.05
200 0.9 0.03 0.69 0.05
250 0.89 0.02 0.68 0.04
300 0.86 0.01 0.63 0.01
350 0.87 0.00 0.66 0.02
400 0.87 0.00 0.68 0.04
450 0.88 0.01 0.67 0.03
500 0.88 0.01 0.68 0.04
Avg: 0.87 - 0.64 -
SD (σ) 0.04 - 0.09 -

Other threats to validity related to the ontology’s design quality are discussed in detail in Chapter

8.

5.6 Chapter Summary
In this chapter, we introduced a Security Vulnerabilities Analysis Framework (SV-AF) which

introduces a unified ontological representation to establish bi-directional traceability links

between security vulnerabilities databases and traditional software repositories. This framework

not only eliminates some of the traditional information silos in which data resources have

resided, but also enables different types of dependency analysis. More specifically, our

framework currently supports the linking of vulnerabilities reported by NVD to projects captured

by the Maven build repository. Given the expressiveness of our ontological knowledge

representation, we can now take advantage of semantic inference services to determine both

direct and transitive dependencies between reported vulnerabilities and potentially affected

Maven projects. Through two experiments we showed the applicability of our framework,

highlighting the potential impact of reusing vulnerable components in a global software

ecosystem context. We also provided a discussion on how our framework differs from related

work in the domain.

In the next chapter, we discuss how SV-AV supports the recovery of traceability links

between APIs and vulnerability information.

123

Chapter 6

6 Recovering Semantic Traceability
Links between APIs and Security
Vulnerabilities

6.1 Introduction
Vulnerabilities found in APIs no longer affect only individual projects but instead might spread

across projects and even the global software ecosystem. Tracing such vulnerabilities at a global

scale becomes an inherently difficult task since many of the resources required for such analysis

still rely on proprietary knowledge representation. A report [43] shows that 88% of the code in

today’s applications comes from OSS libraries and frameworks; with 26% of these OSS

frameworks/libraries having known vulnerabilities which often remain undiscovered. In 2017,

“Using Components with Known Vulnerabilities” [223] was ranked 9th in the OWASP Top Ten

[224] list of software security flaws.

Current approaches for ensuring secure software fall into two main categories. The first

category requires organizations to create barriers that prevent developers and end-users from

performing potentially risky actions, e.g., runtime protection. While this approach can reduce

exposure to vulnerabilities, it does not address the fundamental cause of such vulnerabilities. The

other category involves techniques that avoid or reduce the introduction of potential

vulnerabilities already at the development stage, by introducing and applying best secure coding

practices, e.g., black-box testing and static analysis. Unfortunately, most of these analysis

techniques are limited to artifacts created within a project context and do not consider in their

124

analysis the reuse and sharing of third party components outside their original development

scope.

In our research, we introduce a novel approach for automatically tracing source code

vulnerabilities at the API level across project boundaries. More specifically, we take advantage

of the SW and its technology stack (e.g., ontologies, Linked Data, reasoning services) to

establish a unified knowledge representation that can link and analyze vulnerabilities across

project boundaries. Through this unified representation we can eliminate information silos that

current analysis approaches must contend with and introduce new types of vulnerability analysis

at a global scale.

In Chapter 5 we introduced SV-AF, our modeling approach to establish traceability links

between SE repositories and SVDBs. In this chapter, we extend our previous SV-AF with

knowledge from version control systems (VCS) repositories to provide additional analysis

services such as: (1) identifying and tracing the use of vulnerable code in APIs to projects; and

(2) provide notifications about vulnerabilities found in APIs (and their dependent component)

that can affect a specific project.

Related work: Several approaches for static vulnerability analysis and vulnerability detection in

source code exist (e.g., [156], [133]). Plate et. al [156] proposed a technique that supports the

impact analysis of vulnerability based on code changes introduced by security fixes. Their

approach relies on dynamic analysis to determine if a vulnerable code was executed within a

given project. While our approach relies on static analysis and might be less precise, it delivers a

more holistic approach which not only considers all possible executions but also supports a more

general intra- and inter-project dependency analysis. Furthermore, our approach allows us to take

advantage of semantic reasoning services to infer implicit facts about vulnerable code usages and

supports bi-directional dependency analysis —including impacts to external dependencies.

Nguyen et. al [133] proposed an automated method to identify vulnerable code based on

older releases of a software system. Their approach scans the code base of each prior version for

code containing vulnerable code fragments. In contrast our approach takes advantage of multiple

knowledge resources, providing a greater flexibility in the analysis.

125

6.1.1 Motivating Example
Existing research on recommending APIs to developers (e.g., [225]) has focused on

recommending potentially useful APIs to developers to reduce development and testing time.

IDE

Components you
integrated into your

application

Your application Deep transitive
dependency with high risk

vulnerability

ProjectZ

Class A

foo()

Has Method

Class X

bar()
Has Method

Has Class

Inferred API call

 Local project
(ProjectX)

Has Class

projectY

Depends On

Depends On

A.java

Has File

Include Class

Has disclosed
vulnerability

has Source Code
 File

Class A{
public void foo(){

...
}

}

has Build File <dependencies>
 ...
 <dependency>
 <groupId>com.projectY</groupId>
 <artifactId>projectY</artifactId>
 <version>1.0</version>
 </dependency>
 ...
</dependencies>

Projects packages Source codes

components
Inferred Relations Established Relations

Build systems
Knowledge Sources

(e.g., Maven)

Vulnerabilities
Knowledge Sources

(e.g., NVD)

ProjectX.pom

A.java

Modeled in
KB

Figure 34: Integrating code and build information with knowledge from other heterogeneous
resources.

For example, in [225] the authors explicitly recommend developers use an older version of

Apache Derby (version 10.1.1.0) due to its widespread usage/popularity. However, like any other

software project, Apache Derby is also susceptible to security vulnerabilities. By recommending

this particular older version of Derby, the authors in [225] actually recommended a version of

Apache Derby which has two known security vulnerabilities (Table 35). These known

vulnerabilities had already been published in the National Vulnerability Database (NVD)

repository.

Table 35: Sample Derby Versions with Reported Vulnerabilities
Derby version Release Year Reported vulnerabilities in NVD

10.1.1.0 2005 3
10.5.3.0 2009 1

As the example illustrates, the authors of the paper were most likely unaware of these reported

vulnerabilities since this information is not readily available to developers. Making this

information readily available to maintainers and security experts would allow for seamless

knowledge integration and sharing. Furthermore by using standardized and formal knowledge

representation techniques (e.g., SW and its technology stack), novel analysis approaches across

knowledge boundaries at both the intra- and inter-project level can be introduced.

126

For example, Figure 34 shows an example of an IDE with an open Maven 75 POM

(ProjectX.pom) and Java file (A.java). In our approach, we extend a developer’s accessible

knowledge from local project’s pom and Java files to knowledge resources outside the current

project boundaries. Using an ontology-based knowledge modeling approach we can now

integrate, share, and reason upon these heterogeneous resources (even at a global scale). In this

example, such a knowledge base includes project-specific resources (e.g., issue tracker,

versioning repositories) as well as resources external to the project, such as NVD and Maven

build dependencies from other projects. Using the reasoning services provided by the SW, we

can now infer direct and indirect dependencies for the local project (ProjectX in Figure 34). In

addition, giving the bi-directional links in our modeling approach, we can expand our analysis to

a global scale to answer questions like: Which projects might be directly or indirectly affected by

a vulnerable component/library? In our example, ProjectX has an indirect dependency on

ProjectZ (via ProjectY’s transitive dependencies) and makes use of a vulnerable ProjectZ

component using method X.bar() within that component.

As our example illustrates, integrating source code information with other knowledge

resources (e.g., vulnerability and build repositories) can support new types of analysis even at a

cross-project boundary (global) scale. In addition, these analysis results can now be used to

further enrich existing analysis tools. For example, existing tools can be extended to not only

recommend suitable APIs but to now recommend suitable APIs with no known direct/indirect

vulnerabilities or to automatically notify developers when an already used API becomes exposed

to a potential vulnerability.

Note: An earlier version of the work done in this chapter was published in the 10th IEEE

International Conference on Software Testing, Verification and Validation (ICST 2017) [166].

6.2 Modeling API Vulnerabilities

It is generally accepted that inadvertent programming mistakes can lead to software security

vulnerabilities and attacks [43]. Mitigating these vulnerabilities can become a major challenge

75 http://search.maven.org/

127

for developers since not only their own source code might contain exploitable code, but so might

the code of third-party APIs or external components used by their system. In what follows, we

introduce a methodology to guide developers in identifying the potential impact of vulnerabilities

at both the system and global levels (Figure 35). Our methodology consists of three major steps:

knowledge modeling, alignment of ontologies, and knowledge inferences and reasoning.

SV-AF Knowledge Base SPARQL End-Point
Users

Ontologies
Modeling and
Engineering

Module

Ontologies
Alignment

Module

Knowledge
Inference and

Reasoning
ModuleCBA

Figure 35: System overview.

6.2.1 Knowledge Modeling
A key premise of ontologies is their ability to share and extend existing knowledge. Our

approach builds upon this premise by reusing and extending the integrated software security and

engineering ontologies introduced in Chapters 4 and 5. In our modeling approach we extend

these ontologies through semantic integration (linking) with other repositories (e.g., code

repositories, VCS systems). We then further enrich the semantics of our model by not only

capturing domains of discourse but also including semantic relations and properties that allow us

to take advantage of inference services provided by the SW.

For our model we followed a bottom-up modeling approach, where we first extracted system

specific concepts and then iteratively abstracted shared concepts in upper ontologies (see Chapter

5).

To improve the readability of the chapter, we denote OWL classes in italic, individuals are

underlined, and a dashed underline is used for properties. For a complete description of our

ontologies, we refer the reader to [215]. Figure 36 provides an overview of our knowledge model

used for tracing API vulnerabilities. The core concepts used for our vulnerability analysis are

128

Vulnerabilities, SecurityPatches, and APIs. Whenever a Project is identified to be affected by a

Vulnerability, a SecurityPatch is developed by its project vendors. A Committer commits a new

Version of a VersionedFile containing the security patch through a version system (e.g., SVN).

VersionedFiles are Files managed by a version control system. Files are among the Artifacts that

are produced when software is created. A project version which is released to the public or

customer is referred to as a BuildRelease (a BuildRelease can dependOn APIs from other

BuildReleases). A SecurityPatch corresponds to code changes introduced to fix some existing

VulnerableCode, which is part of a CodeEntity such as ComplexType (i.e., a Class, Interface,

Enum, etc.) or a Method. For example, if a class or method is modified during a security patch,

then this code change can be used to locate the original VulnerableCode. The OWL classes,

SecurityPatch and VulnerableCode, are linked in our model through the object property

identifies.

6.2.2 Ontologies Instances Alignment
For further knowledge integration among the individual ontologies, we take advantage of

ontology alignment techniques to establish semantic traceability links. These links allow us to

reduce the semantic gap between ontologies and are essential pre-requisites for supporting

seamless knowledge integration.

SecurityPatch

CodeEntity

ComplexTypeMethodVisibility

LOC

declares

has

public

default

protected

private

Vulnerability

Weakness

Countermeasures

classifiedAs
has

has

Score

Severity

has

calculatedBy

Measurement

Measure

with

Activity

Stakeholder

Artifact

File

Developer

Sec. Engineer

Committer Commit

VersiondFileVersion

commits adds

performs

has

ChangeSet

committedIn

contains

measures

contains

measures

measures

high

medium

low

Organization

Product

Release

has belongsTo

affects

BuildRelease

dependsOn

sameAs

releasedIn

measures

Sy
ste

m
-sp

ec
ifi

c

SEVONT – nvd.owl SEON – java.owl

Do
m

ai
n-

sp
ec

ifi
c

Do
m

ai
n-

Sp
an

ni
ng

G
en

er
al

SEVONT- SecurityDBs.owl

SEVONT- vulnerabilities.owl

SEON – code.owl SEON – history.owl SBSON – build.owl

SEON- main.owl

OWL classes

OWL individivuals

object property subclass of

instance of

…. ….
…. ….

…. ….

….
….

….

….
….

….

….

….

VulnerableCode

contains

identify

measures

introduce
doneBy

VulnerableRelease affects

Figure 36: The SV-AF’s ontologies concepts involved in an API.

129

Alignment of SEVONT and SBSON Ontologies. In uncertain graphs [226], edges are

associated with uncertainties; edges measure the strength of connectivity between nodes and/or

edges. An uncertain directed graph is defined as 𝐺 = (𝑉, 𝐸, 𝜔), where 𝑉 is a set of nodes, 𝐸 is a

set of edges (x, y), and ω: E → [0, 1] is the weight assignment function (e.g., ω(x, y) = 0.3 means

the associated value on edge (x, y) is 0.3). Uncertainty values are interpreted as probabilities.

In our model the knowledge base is treated as an uncertain graph, where 𝑉 represents the

modeled projects from security vulnerability databases and build repositories, 𝐸 represents

𝑜𝑤𝑙: 𝑠𝑎𝑚𝑒𝐴𝑠 relations (edges) between projects’ instances, and ω: E → [0,1] is the weight

assignment function used by Probabilistic Soft Logic (PSL) framework [219]. For example, in

Figure 37, the project instance 𝑉𝑚from SBSON graph is similar to vulnerable product instance

𝑉𝑛 from SEVONT graph through 𝑜𝑤𝑙: 𝑠𝑎𝑚𝑒𝐴𝑠 (ω(e)) edge.

SBSON Graph

Vm
Vn

SEVONT Graph

ω(e)

ω(e)

ω(e)

Project instance
Project details (name, vedor, and version)

Figure 37: SV-AF knowledge base similarity graphs.

Note that 𝑚 and 𝑛 represent the projects original data sources, Maven and NVD respectively.

Additional explanations of how the 𝑜𝑤𝑙: 𝑠𝑎𝑚𝑒𝐴𝑠 weights are created and how PSL is

implemented and tested to establish the sematic links are discussed in Chapter 5.

Alignment of SEVONT and SEON Ontologies. For this alignment, we extend the process

discussed in Chapter 5 to also include information from our versioning ontology. Disclosed

vulnerabilities often contain references to patch information, such as explicit revisions/commits

in which the vulnerability has been fixed. Having this information available, we can perform

terminology matching to align instances from both data sources. For the alignment process, we

take advantage of reasoning services provided by the SW to infer implicit relationships between

vulnerabilities and commits. More specifically, for the alignment we take advantage of Semantic

130

Web Rule Language (SWRL)76 rules (Listing 9) to establish links between vulnerability and

commit instances. This alignment will take place if any of the following two semantic rules will

be satisfied:

Rule 1: Vulnerability ID is explicitly mentioned in a commit message.

Rule 2: Commit/revision ID is explicitly mentioned in the patch reference of a vulnerability.

SWRL rule 1:
𝐶𝑜𝑚𝑚𝑖𝑡(? 𝑐), 𝑓𝑖𝑥𝑁𝑉𝐷𝐼𝑠𝑠𝑢𝑒(? 𝑐, ? 𝐼𝐷),

𝑉𝑢𝑙𝑛𝑒𝑟𝑎𝑏𝑖𝑙𝑖𝑡𝑦(? 𝑣), ℎ𝑎𝑠𝑉𝑢𝑙𝑛𝑒𝑟𝑎𝑏𝑖𝑙𝑖𝑡𝑦𝐼𝐷(? 𝑣, ? 𝐼𝐷)

→ 𝑣𝑢𝑙𝑛𝑒𝑟𝑎𝑏𝑖𝑙𝑖𝑡𝑦𝐹𝑖𝑥𝑒𝑑𝐼𝑛(? 𝑣, ? 𝑐)

SWRL rule 2:
𝑉𝑢𝑙𝑛𝑒𝑟𝑎𝑏𝑖𝑙𝑖𝑡𝑦(? 𝑣), ℎ𝑎𝑠𝑃𝑎𝑡𝑐ℎ(? 𝑣, ? 𝑝),

ℎ𝑎𝑠𝐹𝑖𝑥𝑅𝑒𝑣𝑖𝑠𝑖𝑜𝑛(? 𝑝, ? 𝐼𝐷), 𝐶𝑜𝑚𝑚𝑖𝑡(? 𝑐),

ℎ𝑎𝑠𝐶𝑜𝑚𝑚𝑖𝑡𝐼𝐷(? 𝑐, ? 𝐼𝐷) → 𝑣𝑢𝑙𝑛𝑒𝑟𝑎𝑏𝑖𝑙𝑖𝑡𝑦𝐹𝑖𝑥𝑒𝑑𝐼𝑛(? 𝑣, ? 𝑐)

Listing 9: SWRL rules for aligning CVE facts with the version ontology.

Finally, it should be noted that there is no guarantee that any two ontologies in the same domain

will align through shared concepts, due to ambiguity or lack of such shared concepts [44].

6.2.3 Knowledge Inferencing and Reasoning
The SW stack includes a scalable, persistent knowledge storage infrastructure. Triple-stores77 not

only provide data persistence but also support some basic scalable inference on big data (e.g.,

RDFS, RDFS++) [44]. In this section, we discuss how we take advantage of such inferences to

(a) trace APIs and their vulnerabilities across knowledge boundaries, and (b) infer implicit

knowledge from these links. It should be noted that we omitted the ontology namespace prefixes

(summarized in Table 35) from our illustrative queries and rules to improve their readability.

Table 36: Ontology Namespaces
Namespace URL

RDF http://www.w3.org/1999/02/22-rdf-syntax-ns#
OWL http://www.w3.org/2002/07/owl#

SBSON http://aseg.cs.concordia.ca/segps/ontologies/domain-spanning/2015/02/build.owl#
SEON http://se-on.org/ontologies/domain-specific/2012/02/code.owl#

SEVONT http://aseg.cs.concordia.ca/segps/ontologies/domain-spanning/2015/02/vulnerabilities.owl#

76 https://www.w3.org/Submission/SWRL/
77 Triple-store or RDF store is a purpose-built database for the storage and retrieval of triples through semantic queries. A triple is a data entity
composed of subject-predicate-object [13].

https://en.wikipedia.org/wiki/Database
https://en.wikipedia.org/wiki/Semantic_triple
https://en.wikipedia.org/wiki/Semantic_triple
https://en.wikipedia.org/wiki/Semantic_Query
https://en.wikipedia.org/wiki/Predicate_(grammar)

131

Same-As inference: As we discussed in Chapter 5 (section 5.3.4), having the weighted

alignment links between two ontologies, a SPARQL query can now be used to retrieve

information across ontology boundaries. We align vulnerability information from the SEVONT

ontology and their corresponding instances in SBSON ontology based on a similarity threshold.

Using the following SPARQL query (Listing 10), we can now take advantage of the

𝑜𝑤𝑙: 𝑠𝑎𝑚𝑒𝐴𝑠 predicate (if inference is enabled):

PREFIX[…]

SELECT ?vulnerability ?release

WHERE{

 ?release rdf:type sbson:BuildRelease.

 ?release sevont:hasVulnerability ?vulnerability

}

Listing 10: SPARQL query returning same as projects vulnerabilities.

Transitive closure inference: The transitive closure of a binary relation 𝑅 on a set of concepts 𝐶

is the minimal transitive relation 𝑅′ on 𝐶 that contains 𝑅. Thus 𝑎 𝑅′𝑏 for any instances 𝑎 and 𝑏

of 𝐶 provided that there exist 𝑚0, 𝑚1, … , 𝑚𝑘 with 𝑚0 = 𝑎 , 𝑚𝑛 = 𝑏 , and 𝑚𝑟 𝑅 𝑚𝑟+1 for all

0 ≤ 𝑟 < 𝑘 . The transitive closure 𝐶(𝐺) of a graph is a graph which contains an edge {𝑢, 𝑣}

whenever there is a direct path from 𝑢 to 𝑣 [227], [228]. However, this can be expressed in OWL

through the owl:TransitiveProperty construct. We define code: invokesMethod to be a bi-

directional transitive property of type owl:TransitiveProperty (e.g., code:invokesMethod rdf:type

owl:TransitiveProperty). Through this transitive construct we are now able to retrieve a list of all

methods that have a direct and transitive invocation dependency to a specified method, and vice

versa (see Listing 11).

PREFIX[…]

SELECT ?method

WHERE{

 ?method rdf:type code:Method.

 ?method code:invokesMethod <subjectMethodURI> option(transitive).

}

Listing 11: SPARQL query returning transitive method calls.

Subsumption inference: A crucial aspect of an ontology model is the availability of a

subsumption hierarchy between its concepts [229]. For example, a Method or Class is a sub-

132

concept of a CodeEntity. Subsumption hierarchies add significant power to ontologies in global

source code (APIs) analysis [25] because many of the attributes of an entity (concept or instance)

are attached to its super concepts. Given a set of concepts C, the goal of the inference engine is

to discover all subsumption relationships among pairs of concepts in C. More formally, we can

denote that concept 𝑐1 is a subconcept of 𝑐2 by 𝑐1 ⊑ 𝑐2. Subsumption is directional [229]: if

𝑐1 ⊑ 𝑐2, then 𝑐2 ⋢ 𝑐1unless 𝑐1 and 𝑐2 are synonyms. A similar subsumption can be inferred

from OWL properties that can subsume each other.

In our approach, we create a simple hierarchy of object properties to support such

subsumption inference. Figure 38 shows the property hierarchy we use to model source code

dependencies. Given this property hierarchy and the subsumption inference, a simple query

(Listing 12) can now identify all code entities that transitively depend on a given code entity

independent of their type (property) (e.g., method invocations, interface implementation). Note,

subsumption differs from the IsA relationship that typically holds between an instance and a

concept (e.g., ClassX IsA CodeEntity).

hasSuperClass

invokesConstructor

dependsOn

hasDataTypehasReturnTypeimplementsinterfaceinstantiatesClass

usesComplexType

hasSuperType hasSubType

hasSubInterfacehasSubClasshasSuperInterface

invokesMethod accessesField

Figure 38: Hierarchy of code properties.

PREFIX[…]

SELECT ?entity

WHERE{

 ?entity rdf:type code:CodeEntity.

 ?entity main:dependsOn <subjectEntityURI> option(transitive).

}

Listing 12: dependsOn subsumption query.

133

6.3 Case Study
In the next sections, we discuss the applicability of our modeling approach in tracing and

analyzing known vulnerabilities at intra- and inter-project levels.

6.3.1 Case Study: CVE-2015-0227
Objective: The objective of our case study is to show how our modeling approach can support

the analysis and tracing of potential security vulnerability impacts across software components

(APIs). Furthermore, the study also highlights the flexibility of our modeling approach in terms

of its seamless knowledge and analysis result integration, as well as the use of SW reasoning to

infer new knowledge.

Approach: For the case study, we take advantage of same-as and transitive inferences to identify

projects that are directly and indirectly affected by known security vulnerabilities. In addition,

we also take advantage of transitive and subsumption inferences applied at the source code level

to identify vulnerable APIs and trace their impact to external dependencies. The inferences

consider both dependencies within and across software project boundaries (Figure 39).

SBSON Graph

Vm0Vn

SEVONT Graph

Project instance

dependsOn

dependsOn

dependsOn

owl:sameAs

Project
Dependencies

sub-graph

Vm2

Vm1

owl:sameAs

Inferred
Relations

dependsOn

Vm3

dependsOn

Vmk

owl:sameAs

Figure 39: Inferred project dependencies in SBSON.

Case study setting: We use a publicly disclosed vulnerability which has been reported in the

NVD repository as CVE-2015-0227 and describes the following vulnerability for Apache

134

WSS4J78: “Apache WSS4J before 1.6.17 and 2.x before 2.0.2 allows remote attackers to bypass the

requireSignedEncryptedDataElements configuration via a vectors related to ‘wrapping attacks’”.

This vulnerability affects the management of permissions, privileges, and other security

features that are used to perform access control to Apache WSS4J versions before 1.6.17 and to

version 2.x before 2.0.2.

Apache WSS4J is an API which provides a Java implementation of the primary security

standards for Web Services and is commonly used by projects as an external component. In this

example, a vulnerability is disclosed for this API. Developers using Apache WSS4J in their

project must now determine whether their application is affected by this vulnerability or not.

Existing source code analysis tools are capable of identifying whether a vulnerable code

fragment (e.g., code fragment or variable), which has been reported in the NVD vulnerability, is

used directly within a project. However, they are not capable of identifying whether the external

libraries used by the developer’s project might have been affected by this vulnerability.

In what follows, we discuss how our approach takes advantages of originally heterogeneous

knowledge resources, NVD, VCS (for only Apache WSS4J), and Maven, and integrates these

resources to determine direct and indirect dependencies to vulnerable components. In the

process, we extract and populate facts from (a) NVD: information for the CVE-2015-0227

vulnerability (including patch references); (b) VCS: source code and commit messages for

Apache WSS4J (version 1.6.16 and 1.6.17); and (c) Maven repository: all build dependencies on

Apache WSS4J 1.6.16 (242 dependencies).

Tracing vulnerability patch information to commit: Security databases provide descriptions of

vulnerabilities, their potential effects, and corresponding patches (if applicable). The objective of

our study is to establish a traceability link between the unique vulnerability identifier (CVE) and

the commit which fixes this vulnerability. For establishing these links we apply a two-step

process by first mining the NVD repository for patch links that include a reference to an entry in

a versioning repository. We then extract all commit logs within the versioning repository that

have a reference to a CVE-ID. Figure 40 shows an example of such a commit log message entry:

“[CVE-2015-0227] Improving required signed elements detection.”

78 https://ws.apache.org/wss4j/

135

 (a) Report detail for CVE-2015-0227 from NVD

 (b) A Wss4j bug-fix commit detail for CVE-2015-0227 from SVN

Figure 40: Extracting patch relevant information from NVD and commit messages.

Identify vulnerable code fragments in APIs: A vulnerable code fragment corresponds to a set of

lines of code (LoC) which has been modified to fix a vulnerability [133]. In our approach, we

use the standard diff command to identify the vulnerable code fragments by comparing it with its

unpatched version. Figure 41 shows an excerpt of the diff output for WSSecurityUtil.java

revisions r1619358 and r1619359. The example shows that method verifySignedElement

can be identified to contain the vulnerable code fragment. Using the same approach we can now

populate any method or class that has been either deleted or modified as part of a vulnerability

fix (commit) in our sevont:VulnerableCode class (see Figure 36).

136

--- webservices/wss4j/trunk/ws-security-dom/src/main/java/org/apache/wss4j/dom/util/WSSecurityUtil.java2014/08/21
11:11:12 1619358
+++ webservices/wss4j/trunk/ws-security-dom/src/main/java/org/apache/wss4j/dom/util/WSSecurityUtil.java2014/08/21
11:12:58 1619359

@@ -24,6 +24,7 @@
 ...

+import org.apache.wss4j.dom.WSDocInfo;
 ...

- public static void verifySignedElement(Element elem, Document doc, Element securityHeader)
+ public static void verifySignedElement(Element elem, WSDocInfo wsDocInfo)
 throws WSSecurityException {
- final Element envelope = doc.getDocumentElement();
- final Set<String> signatureRefIDs = getSignatureReferenceIDs(securityHeader);

 ...

old revision

new revision
start line index and number of lines of

the old, and new revisions
added line is

preceded by a `+`

deleted line is
preceded by a `-`

Figure 41: Diff output for WSS4J r1619358 and r1619359.

Given our populated ontologies, we can now infer a similarity link between instances of the

vulnerable product (e.g., Apache WSS4J 1.6.16) in SEVONT and SBSON (Build repository),

and links between the vulnerability patch reference (CVE-2015-0227) and SEON (using the rules

in Listing 9) to the commit containing the patch.

Vulnerability

Reference SecurityPatch

CVE-2015-0227

url

Committer

Commit

Commit log

FixedIssue

FixedNVDIssue

CVE-2015-0227

Revision ID

Commit ID

ChangeSet

VersionedFile

ChangedCodeEntityFile name

Entity name

...

...

 (a) vulnerabilities.owl (b) code.owl & versioning.owl

Individuals concepts Inferred
Links

Established
Relations

Figure 42: Inferred links between vulnerabilites.owl, code.owl, and versioning.owl.

Based on the inferred links (see Figure 42) and using the SPARQL query in Listing 13, we

can now further restrict our transitive dependency analysis to include only those components that

have an actual call dependency to the vulnerable source code.

137

PREFIX[…]

SELECT ?project ?code

WHERE{

 ?project rdf:type <sevont:VulnerableRelease>.

 ?project code:containsCodeEntity ?code.

 ?vulnerableCode rdf:type <code:VulnerableCode>.

 ?code main:dependsOn ?vulnerableCode.

}

Listing 13: Query to retrieve vulnerable code fragments across project boundaries.

Findings: Table 36 summarizes the results from our case study for CVE-2015-0227. We report

on the manually verified results obtained from executing our SPARQL queries (Listings 12 and

13). Table 37 shows that 15 of the 242 crawled dependent projects actually use the API from our

vulnerable project. The results highlight that there are still systems (6.19%) that rely on libraries

with known security vulnerabilities. Moreover, 10 of these 15 dependent projects not only

include the API but also call the class WSSecurityUtil, which contains the vulnerable code.

However, it should be noted that for our specific case study none of the projects actually called

and executed the vulnerable method (verifySignedElement) within the WSSecurityUtil.

Table 37: Results
Project Crawled Dependencies Actual usage Vuln. Classes usage Vuln. Methods usage

Apache WSS4J 1.6.16 242 15 10 0

In order to evaluate if our approach is capable of correctly identifying calls to vulnerable

methods, we conducted an additional controlled experiment. For this experiment, we manually

seeded a method call in Apache CXF-bundle 2.6.15 that invokes the vulnerability in Apache

WSS4J API. More specifically, we downloaded the source code for Apache CXF-bundle 2.6.15 and

modified its org.apache.cxf.ws.security.wss4j. policyhandlers package. Figure 43

shows the partial class diagram of the modified packages. We modified the includeToken method

of the AbstractBindingBuilder class to include a direct call to the vulnerable

WSSecurityUtil.verifySignedElement method. We also added the

SVAFSymmetricBindingHandler and SVAFAsymmetricBindingHandler to extend

SymmetricBindingHandler and AsymmetricBindingHandler to be able to see if our

approach also supports the transitive call dependency analysis correctly. We then re-populated

138

the source code ontologies with the new (modified) code facts and again invoke the same query

we used earlier in the case study.

Main

+ test2()

calls: 1

+ test1()

calls: 1

SVAFSymmetricBindingHandler

+ doSVAFAction(...)

calls: 1

getSignatureBuilder(...)

calls: 1

SVAFAsymmetricBindingHandler

+ doSVAFAction(...)

calls: 1

Overrides method in super class

AbstractBindingBuilder

- includeToken(...)

calls: 1

getSignatureBuilder(...)

calls: 1

+verifySignedElement(...)

calls: 1

Call to WSSecurityUtil’s

vulnerable

verifySignedElement(...) method

Figure 43: Class diagram for our modified package.

The results of this query are shown in Table 38 which includes the classes within our

modified project that directly or indirectly invoke the vulnerable method

WSSecurityUtil.verifySignedElement.

Table 38: Results of Direct and Indirect Usage of the Vulnerable Method
Wssecurityutil.Verifysignedelement

Class
Indirect

Vulnerable
Methods

Indirect Vulnerable Methods

AbstractBindingBuilder.java 4

handleSupportingTokens(.SupportingToken,boolean,Map, Token, Object)
getSignatureBuilder(TokenWrapper, Token, boolean, boolean)
getSignatureBuilder(TokenWrapper, Token, boolean)
doSVAFAction()

Main.java 1 test1()

139

For the sake of simplicity and readability, we only include public and protected methods in the

result set. We observed that the vulnerability introduced in

AbstractBindingBuilder.includeToken propagates through several methods. More

specifically, the doSVAFAction method in this example is indirectly affected due to its usage of

the getSignatureBuilder method. SVAFAsymmetricBindingHandler extends

AbstractBindingBuilder and overrides the getSignatureBuilder method. When the

method doSVAFAction is invoked from test2, the overridden method from subclass

SVAFAsymmetricBindingHandler is called and method test2 is correctly identified by

our approach as not being affected by the vulnerability.

6.3.2 Comparison Against Existing Tools
We further evaluated our approach by comparing it against existing tools that detect known

security vulnerabilities in source code across project boundaries. For our comparison we

consider the following tools: OWASP Dependency-Check (DC) [42], which is an open source

tool, and a closed-source tool from SAP labs [156].

OWASP DC performs a static dependency analysis to determine if libraries with known

vulnerabilities are included in an application. During the analysis, the tool collects information

about the vendor, product, and version. The information is then used to identify the Common

Platform Enumeration (CPE). If a CPE is identified, a listing of associated Common

Vulnerabilities and Exposure (CVE) entries are reported.

 <entry id=" CVE-2016-9878 ">
 ...

 <vuln:vulnerable-software-list>

 <vuln:product> cpe:/a:pivotal_software:spring_framework:3.2.2 </vuln:product>
 <vuln:product> cpe:/a:pivotal_software:spring_framework:3.2.3 </vuln:product>
 <vuln:product> cpe:/a:pivotal_software:spring_framework:3.2.4 </vuln:product>
 ...

The SAP tool relies on a dynamic source code level analysis to identify if a vulnerable piece

of code is either used directly or indirectly. The tool uses execution traces which are collected

after instrumenting the code and all bundled libraries. Since we did not have direct access to the

SAP tool, we replicated their experiments to compare our results with the ones reported in [156].

140

Given that the OWASP DC tool does distinguish whether a vulnerable library code is used or

not, we limit our comparison to: “identify if a project depends on libraries with disclosed

vulnerabilities independent of the use of the vulnerable source code”. Table 39 reports the

results from our comparison, which include true positives (TP), false negatives (FN), false

positives (FP), and true negatives (TN). The results show that for CVE-2013-2186, both our

approach and OWASP DC did not report the vulnerable API. This miss is due to the fact that

NVD did not include FileUpload 1.2.2 in the list of affected products. The vulnerability,

however, is reported in several JBoss projects which make use of the DiskFileItem class in

Apache FileUpload. Our approach currently models only products explicitly mentioned to be

affected in NVD.

OWASP DC reported CVE-2014-9527 as a vulnerability in POI 3.11 Beta 1. A manual

inspection of the patch showed that the class “org.apache.poi.hslf.HSLFSlideShow” contains the

patch for the vulnerable code but is not used by “poi-3.11.beta1.jar”. Instead, this patch is

distributed as part of the POI-HSLF component.

For the vulnerability CVE-2013-0248, the patch is located in the default configuration file

“using.xml” and the comment of the Java class “DiskFileItemFactory” (but not any executable

code). As a result, the SAP tool does not identify the archive as being affected by vulnerable

code.

Table 39: Comparison of Analysis Results

Vulnerability Library Our Approach SAP tool OWASP DC

CVE-2014-0050
Apache FileUpload 1.2.2

TP TP TP
CVE-2013-2186 FN TP FN
CVE-2013-0248 TP FN TP

CVE-2012-2098 Apache Compress 1.4 TP TP TP

CVE-2014-3577 Apache HttpClient 4.3 TP TP TP

CVE-2014-9527
Apache POI 3.11 Beta 1

TN TN FP
CVE-2014-3574 TP TP TP
CVE-2014-3529 TN TN TN

141

6.4 Findings
As our case study illustrates, our ontology-based knowledge modeling approach can integrate

information originating from different heterogeneous knowledge resources. Next, we discuss

how our approach overcomes a number of challenges identified with the OWASP and SAP tools.

Data integration challenges. Vulnerability and dependency management make use of different

naming schemes and nomenclatures. There exist many language-dependent approaches for

referencing entities, often making the linking of entities across knowledge resources a difficult

task. Consider the following example: Mapping the Spring Core 4.0.3.RELEASE between Maven and NVD.

Maven GAV identifier represents this component as groupId=org.springframework; artifactId=spring-core;

version=4.0.3.RELEASE, while the CPE for the same component in NVD is: vendor=pivotal;

product=spring_framework; version=4.03

As a result of this identifier naming inconsistency, the automatic mapping between GAV

identifiers in Maven with their corresponding CPE in NVD becomes a major challenge, e.g., the

vendor in our example should be Pivotal and not springframework. While a human can

easily recognize the correct mapping, this is not the case for an automated solution. Both

OWASP DC and the SAP tool compute the SHA-1 of the archives and perform a lookup in

Maven central to address this problem. While this approach improves the recall (number of

correct mappings found), it also introduces many false positives and false negatives which affect

the accuracy of these tools. Moreover, both tools are limited in their ability to match

vulnerabilities and CPEs, making them not only prone to errors but also limit the scope of the

analysis to direct dependencies. In contrast, our approach addresses these challenges by taking

advantage of the PSL alignment framework. This eliminates the need for one-to-one assignments

and establishes weighted links between instances of different modeled ontologies for different

data sources. Moreover, our semantic approach takes advantage of semantic reasoning to infer

transitive dependencies.

Flexibility. While the use of run-time information (traces) can improve precision (e.g., SAP

tool), this type of analysis depends on the quality and coverage achieved by these traces.

Furthermore, the SAP tool focuses on intra-project analysis, whereas our approach also supports

inter-project analysis. As we further show in our case study, by taking advantage of automated

142

reasoning we are able to infer sub-properties (subsumption) and transitive closure dependencies.

Using these inferences, we can transform often complex and proprietary source code analysis

tasks to simpler and easy to write SPARQL queries. For example, the isSubClassOf,

isSubInterfaceOf, invokesMethod, and invokesConstructor are all sub-properties of the transitive

dependsOn property. As such, a simple query (Listing 13) can now identify all code entities that

transitively depend on a given vulnerable code entity independent of the type, method

invocations, or inherited classes/interfaces (via subsumption). As we showed in our controlled

study, vulnerable classes can create a backdoor (e.g., through inheritance) for the invocation of

vulnerable methods if these methods are not overridden within the client. With the growing

popularity of using 3rd-party APIs [230], the risk of such transitive vulnerable method

invocations increases.

Information silos challenges. Although both analysis tools SAP and OWASP DC link different

data sources, these resources still remain information silos. They still lack the standardization,

knowledge sharing, and analysis result integration required to make them true information hubs.

In contrast, our approach introduces a unified standardized representation using ontologies which

support seamless knowledge integration, interoperability, and sharing even on a global scale.

RDF based triple-stores ensure not only persistence of the data but also provide scalability and

the use of unique resource identifiers (URIs), facilitating integration with other knowledge

resources, even at a global scale.

6.5 Chapter Summary
This chapter presented an ontological-based modeling approach that allows us to trace API

security impact within application boundaries and its global dependencies. Using multi-layers of

abstraction, our modeling approach can not only provide a generic analysis approach but also

supports the seamless integration of other knowledge resources in the SE domain. This formal

knowledge representation allows us to take advantage of inference services provided by the SW,

providing additional flexibility compared to traditional proprietary analysis approaches.

143

In the next chapter we will present another application of using SV-AF; it is an extension

contribution of this chapter, in which we propose a semantic trustworthiness model for

measuring APIs security impacts.

144

Chapter 7

7 API Trustworthiness: An Ontological
Approach For Software Library
Adoption

This chapter introduces another application of our SEVONT model, this time focusing on

assessing the trustworthiness of software systems. This Ontology-Based Trustworthiness

Assessment Model (OntTAM) is a continuation of our previous SE-EQUAM assessment model

[231]. For the context of this research we extend the original SE-EQUAM model for the domain

of software library trustworthiness. More specifically, we show how the SV-AF can be extended

to integrate with vulnerability trustwothiness measurement to assess libraries in terms of their API

breaking changes, security vulnerabilities, license violations, and their potential impact on client

projects.

7.1 Introduction
Traditional software development processes, with their focus on closed architectures, platform-

dependent tools, and software, restrict potential code reuse. With the introduction of the Internet

these restrictions have been removed, allowing for global access, online collaboration,

information sharing, and internationalization of the software industry [232]. Software

development and maintenance tasks can now be shared amongst team members working across

and outside organization boundaries. Code reuse through resources such as software libraries,

components, services, design patterns, and frameworks published on the Internet have become an

essential aspect of this global code reuse and sharing among developers and organizations within

145

the SE industry. Most of today’s software projects increasingly depend on the use of external

libraries which allow software developers to take advantage of features provided by Application

Programming Interfaces (APIs) without having to reinvent the wheel. Unfortunately, even though

third-party libraries are readily available, developers are faced with new challenges with this new

form of code reuse, such as being unaware of the existence of libraries, selecting the most relevant

library among several possible alternatives, and how to use features provided by these libraries

[233], [234].

 Several software library recommendation approaches have been proposed to address these

challenges. These approaches fall into two main categories: (1) recommendation systems for

libraries and APIs based on characteristics such as popularity [230], frequency of migration [235],

[236], and stability [237], without considering the context of use of these libraries; and (2)

techniques that take a client’s context into account when recommending libraries (e.g., using the

history of method usages by developers [238]).

 However, reused software libraries should not only satisfy a client’s functional requirements;

they must also satisfy non-functional requirements (NFR) such as security, safety, and

dependability [239], which are critical to the success of software systems. NFRs are often referred

to as system qualities and can be divided into two main categories: (1) execution qualities—

qualities which are observable at run time (e.g., performance and usability); and (2) evolution

qualities, such as testability, trustworthiness, maintainability, extensibility, and scalability, which

are embodied in the static structure of a software system. NFRs often play a critical role in the

acceptance and trust users will have in a final software product. However, assessing and

evaluating trustworthiness of today’s software systems and software ecosystems remains a

challenge due to issues ranging from a lack of traceability among software artifacts to limited tool

support.

 Trustworthiness is also an inherently subjective and ubiquitous term since its interpretation

depends on the assessment context of the stakeholder, which might be different among

stakeholders, and the context of use in which the library is used. Assessment models, therefore,

should provide the flexibility and customizability to take into account such specific application

contexts and the particular assessment needs of stakeholders [231].

146

 The work in this chapter is a continuation of our previous work on semantic modeling and

tracing of software security vulnerabilities (Chapter 5), semantic analysis (Chapter 6), and quality

assessment (SE-EQUAM) [231]. In what follows, we present our Ontology-Based

Trustworthiness Assessment Model (OntTAM) which is an instantiation and extension of our SE-

EQUAM assessment model [10] for the domain of software library trustworthiness.

 More specifically, we illustrate how OntTAM can be instantiated to take advantage of our

existing unified knowledge representation of different SE related knowledge resources and

support an automated analysis and assessment of trustworthiness quality attributes of libraries. We

argue that ontologies not only promote and support the conceptual representation of knowledge

resources in software ecosystems, but also let us take advantage of semantic reasoning during the

assessment of trustworthiness quality factors. Furthermore, our modeling approach allows for the

customization of the trustworthiness assessment model to reflect specific assessment needs while

at the same time facilitates the comparison of trustworthiness across projects by defining a

standard set of measures and sub-factors.

Our research is significant for several reasons:

1) We introduce OntTAM, a novel trustworthiness assessment model that takes advantage

of both our previous generic SE-EQUAM software assessment model [231] and our

unified ontological knowledge representation of different SE related knowledge

resources (discussed in Chapters 5, 6, and [231]), while supporting the customization of

the model to meet a stakeholder’s assessment needs.

2) We introduce, as part of OntTAM, novel trustworthiness measures which measure API

breaking changes, security vulnerabilities, and license violations. These measures take

advantage of our ontologies and semantic reasoning services to allow for a

trustworthiness analysis across the boundaries of individual artifacts and projects.

3) We report on a case study that illustrates how our approach can be applied to assess the

trustworthiness of OSS libraries, and discuss the potential impact of these libraries on

the trustworthiness of the overall system.

147

7.1.1 Motivation Example
Here, we introduce a motivating example (Figure 44) which is an extension of our example used

in Chapter 6, describing how our fictional software developer (Bob) attempts to re-use external

libraries while facing several challenges in selecting the best library for his project and trying to

reduce their negative effect on the trustworthiness of his own project.

General
Concepts

 Concepts Relations &
Attributes

SV-AF

OntTAMSE-EQUAM
Measurements

Domain Spanning Concepts

License
Information IvyAntMavenHistory

Issue
Tracking

Source
CodesVLNVD

Exploits
DB

System Specific Concepts

Domain Specific Concepts
Build

Systems
Software

Engineering
Security

Vulnerabilities

License
Information

C

B

E D

Components’ Bob
integrated into his

application

Bob’s application Deep transitive
dependency with high risk

vulnerability

Build systems
Knowledge Sources

(e.g., Maven)

Bob

Query

Vulnerabilities Knowledge
Sources (e.g., NVD)

Derby
10.1.1.0

LGPL 2.1MPL 1.1

Licenses ontology knowledge source

C
License violation

with B

Derby
10.1.1.0 Vulnerable

B
No license violation

or vulnerabilities

Results

Figure 44: Motivating Example – How OntTAM can assist developers in trust assessment.

Bob is currently developing an application which requires an embedded database. Bob tries

to reduce his development effort by searching the Internet for possible third-party libraries and

components which meet his work context. His search leads return Apache Derby79, an open

source embedded DBMS implemented entirely in Java. However, Bob is now faced with the

dilemma of deciding upon which version of Derby he should use—the most recent (Derby

version 10.11.1.1) or the most widely used one (Derby version 10.1.1.0). Following the

recommendations published in existing research (e.g., Mileva et al. [225]), Bob decides to use an

older version of Apache Derby (version 10.1.1.0) due to its widespread usage/popularity.

However, this recommendation results in the reuse of a component which contains three known

security vulnerabilities that are already reported in the National Vulnerability Database (NVD)

(Table 40). In contrast, the newer version of Derby (version 10.11.1.1) would not have contained

any known vulnerabilities.

79 db.apache.org/derby/

148

Table 40: Example of Derby versions and their depedent projects in Maven

Derby version Release Year Reported vulnerabilities in NVD Direct dependencies in Maven Repository
10.1.1.0 2005 3 382
10.5.3.0 2009 1 0
10.11.1.1 2014 0 36

However, this is not the only risk Bob is susceptible to when selecting a library. Derby is

licensed under the Apache 2 copyright license; for Bob not to introduce any license violation or

incompatibility, he has to make sure that the selected library is compliant with his project

license. For example, one cannot combine code released under the Apache 2 license with code

released under the GNU GPL 2 [240].

As this example illustrates, several quality-related issues with the reuse of a third-party

library can arise and they are often difficult to discover by the user since the relevant information

is spread across multiple knowledge resources. The problem is further exaggerated by the large

number of additional transitive dependencies which are introduced by these third-party libraries

and their dependencies. A vulnerability or license violation might not only occur directly

between Bob’s project and the Derby library, but also between Bob’s project and one of the

libraries the Derby library depends on.

7.2 Background

7.2.1 External Library Re-Use and its Implications on Project

Quality
As previously discussed, reuse of functionality provided by third-party (external) software

libraries is a growing trend in the software development industry. Automated dependency

management features have been introduced in modern build systems to simplify the integration

and reuse of external libraries during development. Developers no longer have to manually

manage their dependencies on software libraries. Build systems and dependency management

tools automatically download and manage all required dependent components (including

transitive dependencies) and perform any necessary dependency mediation (conflict resolution)

when multiple versions of a dependency are encountered. Although this relieves developers of

149

some dependency management, there remains an increasing risk of including libraries which can

negatively affect a project’s overall quality and trustworthiness. In our research, we particularly

consider the following quality risks introduced by software libraries: API breaking changes,

security vulnerabilities, and license violations. In what follows, we briefly introduce background

information about API breaking changes and license violations.

7.2.1.1 API Breaking Changes

Software libraries take advantage of visibility modifiers (e.g., public and protected modifiers in

Java) to provide reusable and extendable APIs to other applications. However, these software

libraries, as other software components, are subject to change as they evolve over time.

Unfortunately, the cost of evolving libraries may become higher, since such changes might

impact many external clients. API changes can be classified into breaking and non-breaking

changes (see Table 41) and can be defined as follows [241]:

 Breaking changes. Any change that breaks backward-compatibility through removal

or modification of API elements, resulting in compilation errors in client projects after

the API update.

 Non-breaking changes. Changes that preserve compatibility and usually involve the

addition of new functionalities to the library. Thus, allowing migration between API

versions which include only non-breaking changes does not cause negative effects to

client applications.

Table 42 shows the top 10 breaking and non-breaking changes in the Maven repository as

reported by [242]. These breaking changes are obtained from 126,070 pairs of current and next

versions of software libraries hosted in the Maven repository. The most frequently observed

breaking changes are method removals (177,480 observed occurrences). A method removal is

considered to be a breaking change if the removal leads to compilation errors in places where

this method is used. The most common non-breaking API changes are method additions, with

518,690 occurrences. Although performing a change to a library might be a straightforward task,

resulting breaking changes can have a significant ripple effect which often will not only affect a

single dependent class but even the complete ecosystem.

150

Table 41: Breaking and non-breaking changes
Category API Element List of Changes

Breaking

Type Removal, Visibility Loss, Super-type change

Field
Removal, Visibility Loss (e.g., public to private), Type change (e.g., double to integer),
Default value change

Method Removal, Visibility Loss, Return type change (e.g., boolean to void), Parameter list
change, Exception list change

Non-breaking All
Addition, Visibility gain (e.g., from private to public or protected), Deprecation (e.g.,
deprecated method removal)

Table 42: The most common breaking and non-breaking changes in the Maven Repository [242]
Breaking changes Non-breaking changes

Change type Frequency # Change type Frequency
1 Method removed 177,480 1 Method added 518,690
2 Class removed 168,743 2 Class added 216,117
3 Field removed 126,334 3 Field added 206,851
4 Parameter type change 69,335 4 Interface added 32,569

5 Method return type change 54,742 5
Method removed, inherited still
exists 25,170

6 Interface removed 46,852 6 Field accessibility increased 24,954

7 Number of arguments changed 42,286 7 Value of compile-time constant
changed

16,768

8 Method added to interface 28,833 8 Method accessibility increased 14,630
9 Field type changed 27,306 9 Addition to list of superclasses 13,497
10 Constant field removed 12,979 10 Method no longer final 9202

7.2.1.2 License Violations

While dependency management tools such as RubyGems80, Maven81, or CocoaPods82 have been

introduced to automate the downloading and importing of libraries into projects, these libraries

still originate from various authors and come with a plethora of OSS licenses (horizontal

increase). One library can utilize another library, leading to hierarchies of libraries and license

dependencies. All of these libraries’ licenses must be compatible and compliant with each other.

License violations and incompatibilities are an often-overlooked factor when recommending

licenses and therefore can significantly impact the trustworthiness of software systems. When

incompatible licenses are used together, a license violation occurs. A license violation is defined

80 https://rubygems.org/
81 search.maven.org
82 https://cocoapods.org/

151

as “the act of making use of a (licensed) work in a way that violates the rights expressed by the

original creator” [243]. That is, not following the legal terms and conditions set out in the source

license. Software authors who commit a license violation open themselves up to the possibility

of being sued; sometimes this risk can amount to millions of dollars.

7.2.2 Evolvable Quality Assessment Metamodel (SE-EQUAM)
Quality is a widely-used term to evaluate the maturity of development processes within an

organization. Defining quality allows organizations to specify and determine if a product has met

certain non-functional and functional requirements. However, as Kitchenham [244] states:

“quality is hard to define, impossible to measure, easy to recognize.” Unlike functional

requirements, where a single analysis technique (e.g., use case modeling) is sufficient to identify

essentially all requirements, the same analysis is not appropriate for all quality requirements.

Quality, as defined by ISO 9000:2000 [244], is the “degree to which a set of inherent

characteristics fulfills requirements”, where a requirement is a “need or expectation that is

stated, generally implied or obligatory”.

Assessing the evolvability of software systems has been addressed in existing research

through the introduction of software quality models, e.g., McCall [245], ISO/IEC 912683, and

QUALOSS [246]. These models share a common, while informal (not machine-readable),

structural representation of software qualities (Figure 45).

Figure 45: Generic structure of quality assessment models[244].

83 https://www.iso.org/obp/ui/#iso:std:39752:en

152

While these models are capable of assessing qualities in a given context, they lack the

required formalism and semantics to allow them to evolve to meet the modeling requirements of

different assessment contexts. The ability to adjust to change assessment needs was a main

motivation for SE-EQUAM, an Evolvable QUAlity Meta-model that derives a formal (machine-

readable) domain model that can adapt to changes in the assessment needs in terms of both:

artifacts being assessed and their assessment criteria [231]. SE-EQUAM addresses these

challenges by taking advantage of the SW and its supporting technologies. SE-EQAM uses

ontologies to model and conceptualize quality factors, sub-factors, attributes, measures, weights,

and relationships used to assess software quality. Input artifacts for the assessment model are

various software artifacts such as version control system and issue tracker; and its outputs are

quality assessment scores based on the different assessment criteria. Ontologies not only provide

a formal way to represent knowledge but can also eliminate ambiguity, enable validation, and

provide a consistency-checking approach [177]. SE-EQUAM uses semantic reasoners to infer

hidden relationships between domain model attributes. Given its formal representation SE-

EQUAM allows for its reuse by simplifying the instantiation of new domain-specific instances of

the model. More details about semantic reasoning are provided in [231].

Figure 46 illustrates the reuse and instantiation of our SE-EQAM model. The generic

syntactic meta-model, which is a generic model that forms the basis for all quality models, can

be instantiated by a domain model (e.g., ISO/IEC 9126). Furthermore, SE-EQUAM allows for a

semantic mapping between the syntactical meta-model and a semantic ontology meta-model,

which can then be instantiated as domain model ontology based on user-defined assessment

criteria.

The SE-EQUAM Process. The general SE-EQUAM process (Figure 46) represents a set of tasks

and activities which we followed to allow for deriving a generic quality assessment method that

can be used to customize and instantiate the generic model to meet a stakeholder’s specific

quality assessment context.

153

Figure 46: SE-EQUAM ontology meta-model reuse to instantiate a domain model ontology
(OntEQAM)[231].

The inputs to the SE-EQUAM process are software artifacts and a set of core quality

measurements applicable for these artifacts. In the next step, a common ontological

representation for these artifacts has been established by re-using existing models or customizing

existing models to meet the requirements of these artifacts. As part of the model adjustment

activity, quality metrics and measurements included in the core model can be customized and

extended to reflect a specific model context. The output of this process is an instantiated

assessment model which meets specific user and project assessment requirements by providing

quality assessment at both individual artifact and overall product levels. Figure 47 illustrates the

high-level activities and major tasks involved in the SE-EQUAM instantiation method.

Figure 47: SE-EQUAM process to instantiate evolvability model.

1
Artifact Selection

Define project

Identify artifacts
information

Provide extraction
mechanisms

Identify trustworthy
measurements

2
Modeling

Reuse/customize
ontological models

Enrich the knowledge
base with new rules,

contraints and concepts
(if applicalbe)

3
Model Adjustment

Select/create ontological
queries for semantic

analysis

Adjust model and
weights to reflect these

metrics and
measurements

4
Assessment

Artifact specific
assessment

Assessment across
artifact boundaries

Assessment at system
level

154

In the next section we introduce OntTAM, which illustrates a concrete instantiation of the

SE-EQUAM process to create a semantic enriched trustworthiness quality assessment model for

software libraries.

7.3 Ontology-based Trustworthiness Assessment

Model (OntTAM)
OntTAM, an instantiation of the SE-EQUAM [231] ontology meta-model, illustrates how our

modeling approach can take advantage of the unified ontological representation of both software

artifacts and the generic SE-EQUAM quality assessment model. OntTAM instantiates a domain

specific quality model to assess the trustworthiness of software projects and, more specifically,

the trustworthiness of external libraries. OntTAM reuses SE-EQUAM’s core quality model

structure which is based on quality factors, sub-factors, attributes, measures, weights, and

relationships, and extends them with trustworthiness specific aspects. Inputs to OntTAM are

knowledge resources such as: version control systems, build systems, project license

information, and security vulnerabilities information. The output of OntTAM is a trustworthiness

assessment score for either an individual metric or an aggregation of sub-factors and factors for

the overall product/library quality. The model thereby takes advantage of the OWL 84 and

RDF/RDFS 85 semantic reasoning capabilities to infer hidden relationships between domain

model attributes and to ensure consistency among these attributes.

Figure 48 provides an overview of the knowledge model framework and its organization in

terms of ontologies and their abstraction levels. While these ontologies may be derived, modeled,

and used independently, a key objective of our approach is knowledge integration across

ontology boundaries, using both ontology alignments and semantic linking to create a unified

ontological knowledge representation.

84 https://www.w3.org/OWL/
85 https://www.w3.org/TR/rdf-schema/

155

General
Concepts

 Concepts Relations &
Attributes

SV-AF

OntTAMSE-EQUAM
Measurements

Domain Spanning Concepts

License
Information IvyAntMavenHistory

Issue
Tracking

Source
CodesVLNVD

Exploits
DB

System Specific Concepts

Domain Specific Concepts
Build

Systems
Software

Engineering
Security

Vulnerabilities

License
Information

Figure 48: The Software Security and Trustworthy Ontology Hierarchy.

In what follows, we present our OntTAM methodology to further demonstrate how we

instantiate different trustworthiness sub-factors (i.e., security, reliability, and legality) to

establish a trustworthiness assessment for OSS products (e.g., external libraries). More

specifically, we discuss in detail the four major steps involved in instantiating our customized

OntTAM trustworthiness assessment model (Figure 47): artifact selection, modeling, model

adjustment, and the assessment process.

7.3.1 Artifact Selection
The inputs to OntTAM are artifacts relevant to the reuse of software libraries within projects.

These software artifacts can be categorized into endogenous and exogenous data (discussed in

Chapter 5, section 5.3.2). Extracting and populating facts from these artifacts is often based on

techniques commonly used by the MSR community [247]–[249]. It should be noted that

unstructured or semi-structured information (e.g., vulnerability descriptions and license

information) often requires several preprocessing steps such as natural language analysis (NLP),

156

as well as data cleansing to improve the quality of the data prior to the ontology population.

More details about our data preprocessing and ontology population process can be found in

Chapters 5 and 6.

7.3.2 Model and Model Adjustment
In this section, we discuss our knowledge modeling process in detail. It should be noted that in

order to improve readability, we will be using the following prefixes as substitutes for the fully-

qualified names of our ontologies:

 rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>

 owl: <http://www.w3.org/2002/07/owl#>

 seon: <http://se-on.org/ontologies/general/2012/02/main.owl#>

 sevont: <http://aseg.cs.concordia.ca/segps/ontologies/domain-

spanning/2015/02/vulnerabilities.owl#>

 sequam: <http://aseg.cs.concordia.ca/segps/ontologies/domain-

spanning/2017/09/sequam.owl#>

 onttam: <http://aseg.cs.concordia.ca/segps/ontologies/domain-

spanning/2017/09/onttam.owl#>

 sbson: <http://aseg.cs.concordia.ca/segps/ontologies/domain-

specific/2015/02/build.owl#>

 code: <http://aseg.cs.concordia.ca/segps/ontologies/domain-specific/2015/02/code.owl#>

 oswaldo: <http://aseg.cs.concordia.ca/segps/ontologies/domain-

specific/2017/09/license.owl#>

7.3.2.1 Modeling Project Trustworthiness

Since OntTAM is based on the generic SE-EQUAM model, OntTAM is an extension and

specialization of our core SE-EQUAM software quality assessment model. OntTAM is extended

to provide a syntactical trustworthiness quality model that includes and defines a set of sub-

factors, attributes, and metrics required for the assessment of trustworthiness. Many of these

trustworthiness factors, attributes, and metrics are derived from existing work on trustworthiness

157

assessment of open and closed source projects [231], [244]. The OntTAM specific

trustworthiness assessment is based on the two general quality dimensions, the community and

product dimension. The community dimension assesses the adoption of a software product by the

community over an extended period of time by considering the popularity in terms of downloads,

rankings, and activity of the development community. The product dimension assesses the

internal structure of the product and the development processes that impact its reusability, which

is the focus for this paper.

Project

Trustworthiness
Dimension

- dimension 1
- dimension 2
- ...
- dimension n

Trustworthiness
Factors

- factor 1
- factor 2
- ...
- factor n

Trustworthiness
Sub-factors

- sub-factor 1
- sub-factor 2
- ...
- sub-factor n

Trustworthiness
Attributes

- attribute 1
- attribute 2
- ...
- attribute n

Trustworthiness
Measures

- measure 1
- measure 2
- ...
- measure n

hasFacor
hasAttributehasSubFacor

hasFacor
hasSubFacor hasAttribute

hasMeasure

hasMeasure

Project

Trustworthiness
Dimension

- dimension 1
- dimension 2
- ...
- dimension n

Trustworthiness
Factors

- factor 1
- factor 2
- ...
- factor n

Trustworthiness
Sub-factors

- sub-factor 1
- sub-factor 2
- ...
- sub-factor n

Trustworthiness
Attributes

- attribute 1
- attribute 2
- ...
- attribute n

Trustworthiness
Measures

- measure 1
- measure 2
- ...
- measure n

has
hasFactor hasSubFacor

hasSubFacor
hasFacor

hasSubFacor

hasSubFacor
hasMeasure

hasMeasure

Project

Trsutworthiness
Dimension

- Product
- Community

Trsutworthiness
Factors

- Reusability

Trsutworthiness
Sub-factors

- Security
- Reliability
- Legality
...

Trsutworthiness
Attributes

- Exploitability
- Impact
- Popularity
- Stability
-

Trsutworthiness Measures

- Attack Vector
- Access Complexity
- Authentication
- Confidentiality Impact
- Integrity Impact
- Availability Impact
- # Dependents
- # Dependency Migrations
- # Breaking Changes
- Vulnerability Density
- License Violation Density
- Size
....

hasMeasure

hasMeasure
hasSubFactorhasFactor

hasFactor

Syntactic SE-EQUAM Model Semantic Ontology SE-EQUAM Model
Semantic
Mapping

Syntactic OntTAM Model Semantic OntTAM Domain Ontology In
st

a
n

ti
a

te

In
st

a
n

ti
a

te

Defined Relation
Inferred Relation

hasAttribute

hasMeasure

Project

Trsutworthiness
Dimension

- Product
- Community

Trsutworthiness
Factors

-Reusability

Trsutworthiness
Sub-factors

- Security
- Reliability
- Legality
...

Trsutworthiness
Attributes

- Exploitability
- Impact
- Popularity
- Stability
-

Trsutworthiness Measures

- Attack Vector
- Access Complexity
- Authentication
- Confidentiality Impact
- Integrity Impact
- Availability Impact
- # Dependents
- # Dependency Migrations
- # Breaking Changes
- Vulnerability Density
- License Violation Density
- Size
....

hasMeasure

hasMeasure
hasSubFactorhasFactor

hasFactor
hasAttribute

hasMeasure

Figure 49: Reuse of the SE-QUAM meta-model to instantiate the OntTAM domain model

ontology.

Figure 49 provides an overview of the complete model instantiation process which provides

as its output a formal (machine redable) and semantic enriched trustworthiness assessment

model. The process involves applying both a syntactic and semantic mapping from SE-EQUAM

to OntTAM. While the syntactical model allows us to answer basic queries such as: What are the

sub-factors associated with product trustworthiness? The semantic mapping enables the use of

DL axioms (such as the property chain axiom) to infer new implicit relationships (dashed lines in

Figure 49 – semantic OntTAM model) from explicitly modeled relationships in OntTAM (solid

lines in Figure 49).

158

Dimension

Factor

SubFactor

Attribute

hasFactor

hasSubFactor

hasAttribute

Reusability

Reliability

Popularity

hasSubfactor

hasAttribute

Score rdf:type

rdf:type

rdf:type

hasScore

hasScore

hasScore

hasScore

…. etc

Measure

hasMeasure

hasScore

…. etc DependencyCountrdf:type

ProductDimensionrdf:type

hasFactor

hasMeasure

Metamodel
Ontology

(SE-EQUAM)

OntTAM domain
Ontology

25

hasScore

ProjectX

hasDimension

Figure 50: An example defining the associated trustworthiness concepts and measures for a

sample project.

Figure 50 illustrates the main steps which are applied to associated trustworthiness concepts

and measures for a sample project (ProjectX):

1. Define the product and community dimensions.

<onttam:ProductDimension><rdfs:type><sequam:Dimension> and

<onttam:CommunityDimension><rdfs:type><sequam:Dimension>.

2. Define reusability as a factor that is associated with the product dimension.

<onttam:ProductDimension><sequam:hasFactor><onttam:Reusability> and

<onttam:Reusability><rdfs:type><sequam:Factor>.

3. Following the same approach, OntTAM defines reliability as a sub-factor of reusability

which is associated with the popularity attribute.

<onttam:Reusability><sequam:hasSubfactor><onttam:Reliability>,

<onttam:Reliability><rdfs:type><sequam:Subfacor>,

<onttam:Reliability><sequam:hasAttribute><onttam:Popularity> and

<onttam:Popularity><rdfs:type><sequam:Attribute>.

4. Assuming that OntTAM assesses a product’s reusability through the popularity

trustworthy attribute using the DependencyCount measure, we can now define this as:

<onttam:Popularity><seon:hasMeasure><sbson:DependencyCount>and

<sbson:DependencyCount><rdfs:type><seon:Measure>.

159

Finally, we enrich OntTAM’s syntactical model to become a semantic model by establishing

additional semantic relationships by adding property chain axioms (e.g., hasDimension

relationship with hasSubfactor and hasMeasure). The following are examples of OWL 2 property

chain axioms which we added to be able to take advantage of RDFS reasoning during the

assessment process.

 Project-related OWL 2 property chain constructs:

o SubPropertyOf(ObjectPropertyChain(:Project :hasFactor) :Factor)

o SubPropertyOf(ObjectPropertyChain(:Project :hasSubfactor) :Subfactor)

o SubPropertyOf(ObjectPropertyChain(:Project :hasAttribute) :Attribute)

o SubPropertyOf(ObjectPropertyChain(:Project :hasMeasure) :Measure)

 Dimension-related OWL 2 property chain constructs:

o SubPropertyOf(ObjectPropertyChain(:Dimension :hasSubfactor) :Subfactor)

o SubPropertyOf(ObjectPropertyChain(:Dimension :hasAttribute) :Attribute)

o SubPropertyOf(ObjectPropertyChain(:Dimension :hasMeasure) :Measure)

 Factor-related OWL 2 property chain constructs:

o SubPropertyOf(ObjectPropertyChain(:Factor :hasAttribute) :Attribute)

o SubPropertyOf(ObjectPropertyChain(:Factor :hasMeasure) :Measure)

 Subfactor-related OWL 2 property chain constructs:

o SubPropertyOf(ObjectPropertyChain(:Subfactor :hasMeasure) :Measure)

7.3.2.2 Integration with Other Knowledge Artifacts

Assessing the overall trustworthiness of a software library requires us not only to instantiate

OntTAM but also to integrate it with other ontological software knowledge artifacts to be able to

derive and integrate novel trustworthiness measures. For the integration we take advantage of

software artifact ontologies we have created and refined over the years [166], [250], [251], and

reuse existing ontologies [20] that model different software artifacts. Figure 51 provides an

overview of the unified ontological representation of software artifacts which we integrate with

OntTAM. These artifacts include, but are not limited to: (a) Software Evolution Ontologies

(SEON) which model SE repositories such as source code, version control systems, issue tracker

systems, licenses, etc.; (b) the Build Systems ONtology (SBSON) which captures knowledge

160

about build management systems (e.g., Maven); and (c) the SEVONT for modeling software

security vulnerability information such as severities, impacts, vulnerabilities types, and patch

information found in different security databases.

The integration of these heterogeneous knowledge resources allows us to introduce different

trustworthiness measures related to the reuse of software libraries. More specifically, in this

research we introduce the following three trust criteria: API breaking changes, security

vulnerabilities, and license violations. Figure 51 shows the core concepts and object properties,

distributed across the different abstraction layers of our knowledge modeling framework (Figure

48). It should be noted that we omitted data properties to improve readability of the figure.

SecurityPatch

CodeEntity

ComplexType

Method

LOC

declares

Measurement

Measure

with

Artifact

contains

measures

D
om

ai
n-

sp
ec

ifi
c

D
om

ai
n-

Sp
an

ni
ng

G
en

er
al

SEVONT- SecurityDBs.owl

SEVONT- vulnerabilities.owl

SEON – code.owl

SEON- main.owl

Measurement
Subclasses object propertysubclass of

VulnerableCode

contains

identify

LinesOfVulnerableCode

Base Measure Derived Measure

WeightedVulnerabilityDensity

BuildRelease

dependsOn

SBSON – build.owl

Vulnerability

has

VulnerableRelease

affects

has

sameAs

Dimension

Factor

SubFactor

Attribute

hasFactor

hasSubFactor

hasAttribute

Reusability

Security

Exploitability

Measurement_Result

introduces

AttackVector

Authentication

AccessComplexity

Weight

OntTAM.owl

has

has

has

has …. etc

…. etc

…. etc

…. etc

…. etc

…. etc

Project has Release

has

OSWALDO – license.owl

BreakingChangeDensity

MigrationDensity

DependencyCount

ProductDimension CommunityDimension

LegalityReliability

Impact

Popularity

Stability

has

has

has

OWL classes

License

incompatibleWith

hasLicense

hasLicense

LicenseViolationCount

has

…. etc

has

hasMeasure

Figure 51: Integrating OntTAM ontology into SV-AF model and reusing SE-QUAM concepts.

Among the core concepts used from these ontologies are the BuildRelease from the SBSON

build ontology, which is a subclass of the Release concept that also captures the fact that a

project can have several releases (including library releases). A Release has a License, and

defines its dependencies on other releases. Each release contains a set of CodeEntity elements

such as Field, Method, and Class. A release can be affected by a Vulnerability, leading to the

161

release of a new version containing a SecurityPatch. A security patch corresponds to code

changes introduced to fix some existing VulnerableCode, which is part of a CodeEntity. For

example, if a class or method is modified during a security patch, then this code change can be

used to locate the original VulnerableCode. The OWL classes, SecurityPatch and

VulnerableCode, are linked in our model through an object property. For a complete description

of the ontologies, how they are built, the alignment processes, and reasoning, we refer the reader

to Chapters 5 and 6.

All of these core concepts have metrics used by the OntTAM assessment process. Measures

have a unit and are expressed on a scale, e.g., an ordinal or nominal scale. Information about

units and scales can be used to perform conversions [252]. Many base measures, such as number

of lines of vulnerable code (LOVC), number of known vulnerabilities, vulnerabilities severities

(scores), and number of license violations, provide only limited insights when viewed in

isolation. Additional derived measures are needed to support further analysis and assessment of

software artifacts. These derived measures represent an aggregation of values from different

subdomains, for example, the number of vulnerabilities per class is an aggregation of measures

derived from source code and the vulnerability repositories. While the abstract measurement

concepts are defined in the general upper layer of our integrated model (Figure 51), many Base

Measures (e.g., Size) and Derived Measures (e.g., Weighted Vulnerability Density) are

modeled in the domain-specific layer.

7.3.3 Measures and Metrics
An essential feature of our modeling approach is to allow users to customize the OntTAM model

through user defined queries which might introduce different metrics, ranging from simple

metrics to semantic rich metrics queries that take advantage of implicit knowledge inferred by

ontological reasoners. Given our ontology based modeling approach, these analysis results can

also be materialized to enrich our knowledge base and to promote reuse of existing analysis

results. Next, we introduce some metrics to be used later for the assessment of the

trustworthiness of systems. These metrics take advantage of not only our unified representation,

but also inference services provided by the SW.

162

Weighted Vulnerability Density (WVD) Metric compares software systems (or their

components) based on severity scores of known vulnerabilities. The objective of WVD is to

measure the impact of known vulnerabilities on a product’s quality, with the most severe

vulnerabilities having the greatest impact. The metric can be applied, for example, to prioritize

the patching of vulnerabilities based on their severity. To account for both direct and indirect

impacts of vulnerabilities, we introduce the WVDdirect and WVDinherit measures. Although a

project can have a WVDdirect score of 0 since no known security vulnerability has been reported

for the core project, it is still possible that the project is exposed to indirect vulnerability found in

external (third party) dependencies (components) that are included in the parent project. Such a

potential security risk will be assessed by the WVDinherit measure.

𝑊𝑉𝐷𝑑𝑖𝑟𝑒𝑐𝑡(𝑟𝑒𝑙𝑒𝑎𝑠𝑒) =
∑ 𝑤𝑖

𝑉
𝑖=1

𝑆
 (2)

where S is the size of the software (in KLOC), 𝑤𝑖 is the weight (severity score) of a known

vulnerability affecting the system, and 𝑉 is the number of known vulnerabilities in the system.

𝑊𝑉𝐷𝑖𝑛ℎ𝑒𝑟𝑖𝑡(𝑟𝑒𝑙𝑒𝑎𝑠𝑒) = ∑ {(
𝑣𝑢𝑙𝑛𝑒𝑟𝑎𝑏𝑙𝑒 𝐴𝑃𝐼𝑠 𝑖𝑛 𝑑𝑖 𝑢𝑠𝑒𝑑 𝑏𝑦 𝑟𝑒𝑙𝑒𝑎𝑠𝑒

𝑡𝑜𝑡𝑎𝑙 𝑣𝑢𝑙𝑛𝑒𝑟𝑎𝑏𝑙𝑒 𝐴𝑃𝐼𝑠 𝑖𝑛 𝑑𝑖
) ∗ 𝑊𝑉𝐷𝑑𝑖𝑟𝑒𝑐𝑡(𝑑𝑖)}𝑛

𝑖=1 (3)

where n is the number of dependencies used by release, and 𝑑𝑖 is the ith dependency.

𝑊𝑉𝐷𝑜𝑣𝑒𝑟𝑎𝑙𝑙(𝑟𝑒𝑙𝑒𝑎𝑠𝑒) = 𝑊𝑉𝐷𝑑𝑖𝑟𝑒𝑐𝑡(𝑟𝑒𝑙𝑒𝑎𝑠𝑒) + 𝑊𝑉𝐷𝑖𝑛ℎ𝑒𝑟𝑖𝑡(𝑟𝑒𝑙𝑒𝑎𝑠𝑒) (4)

License Violation Count (LVC) is a measure that assesses the number of license violations that

exist within a given project. This measure can indicate potential long-term risks associated with

intellectual rights violations that exist within a project. A license violation occurs if any of the

dependent components of a parent project include components with non-compatible licenses.

Open source code license violations are often due to the fact that many software developers are

simply neither aware nor well-versed in open source license compliance. For example, in 2008

the Free Software Foundation (FSF) claimed that various products sold by Cisco under

the Linksys brand had violated the licensing terms of many programs on which FSF

held copyright86. These FSF programs were under the GNU General Public License, a copyleft

license which allows users to modify a piece of software as long as the derivative work is under

the same license.

86 https://en.wikipedia.org/wiki/Free_Software_Foundation,_Inc._v._Cisco_Systems,_Inc.

163

In this work, we identify three main categories of license violations: simple violations,

transitive violations, and compound violations (see Figure 52). LVCsimple, LVCtransitive, and

LVCcompound are base measures associated with each category. Details on how license violations

are identified are presented in Section 7.4.3.

 𝐿𝑉𝐶𝑜𝑣𝑒𝑟𝑎𝑙𝑙(𝑟𝑒𝑙𝑒𝑎𝑠𝑒) = 𝐿𝑉𝐶𝑠𝑖𝑚𝑝𝑙𝑒(𝑟𝑒𝑙𝑒𝑎𝑠𝑒) + 𝐿𝑉𝐶𝑡𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑣𝑒(𝑟𝑒𝑙𝑒𝑎𝑠𝑒) + 𝐿𝑉𝐶𝑐𝑜𝑚𝑝𝑜𝑢𝑛𝑑 (5)

Project 1 Project 2uses

incompatibleWith

Project 1 Project 2uses

compatibleWith

Project 3uses

compatibleWith

incompatibleWith

Project 1

Project 2

uses

compatibleWith

Project 3

uses

compatibleWith

incompatibleWith

(a) Type 1 - Simple
Violations

(b) Type 2 - Transitive Violations (c) Type 3 - Compound
Violations

Figure 52: Categories of license violations.

Breaking Change Density (BCD) Metric is a normalized measure which represents the ratio

between breaking and non-breaking API changes that are introduced in a project. API changes

often occur as a project and its components evolve inconsistently, resulting in incompatibilities

of APIs and API calls. This measure can be used to determine the stability of an API over time—

how often do breaking changes occur. Details on how we identify breaking changes are

presented in Section 7.4.4. The BCD metric can be represented formally as follows:

𝐵𝐶𝐷 =
𝑏𝑟𝑒𝑎𝑘𝑖𝑛𝑔 𝐴𝑃𝐼 𝑐ℎ𝑎𝑛𝑔𝑒𝑠

𝑛𝑜𝑛𝑏𝑟𝑒𝑎𝑘𝑖𝑛𝑔 𝐴𝑃𝐼 𝐶ℎ𝑎𝑛𝑔𝑒𝑠
 (6)

Breaking Change Impact (BCI) measures the impact of breaking changes on client applications

by assessing a client application and its use of APIs with a changed contract. The impact of

breaking changes on clients can be both direct and indirect. While there exists a significant body

of work on the direct impact of changes ([253], [237], [242], [254], [255]), very little research has

been conducted on indirect breaking changes. Indirect breaking changes occur, for example,

when different versions of the same API are introduced by any of the client’s other

dependencies. By default, the Java Virtual Machine is unable to differentiate between multiple

164

versions of the same API. In cases where multiple versions of a dependency are encountered, the

first occurrence of an API version in a project’s class-path is chosen. We introduce two measures

that capture both direct and indirect breaking changes.

We represent the BCI metrics formally as follows:

𝐵𝐶𝐼𝑑𝑖𝑟𝑒𝑐𝑡(𝐶, 𝐷) =
𝑏𝑟𝑒𝑎𝑘𝑖𝑛𝑔 𝐴𝑃𝐼 𝑐ℎ𝑎𝑛𝑔𝑒𝑠 𝑖𝑛 𝐷 𝑢𝑠𝑒𝑑 𝑏𝑦 𝐶

𝑏𝑟𝑒𝑎𝑘𝑖𝑛𝑔 𝐴𝑃𝐼 𝐶ℎ𝑎𝑛𝑔𝑒𝑠 𝑖𝑛 𝐷
 (7)

𝐵𝐶𝐼𝑖𝑛𝑑𝑖𝑟𝑒𝑐𝑡(𝐶, < 𝐷1, … , 𝐷𝑛 >) =
𝑏𝑟𝑒𝑎𝑘𝑖𝑛𝑔 𝐴𝑃𝐼 𝑐ℎ𝑎𝑛𝑔𝑒𝑠 𝑖𝑛 <𝐷1,… ,𝐷𝑛> 𝑢𝑠𝑒𝑑 𝑏𝑦 𝐶

𝑏𝑟𝑒𝑎𝑘𝑖𝑛𝑔 𝐴𝑃𝐼 𝐶ℎ𝑎𝑛𝑔𝑒𝑠 𝑎𝑐𝑟𝑜𝑠𝑠 <𝐷1,… ,𝐷𝑛>
 (8)

where C is the client project, D is the reused library, and <D1, …, Dn> is the set of (direct and

transitive) different library releases being reused by the client.

7.3.4 Assessment Process
Given that assessment needs differ among stakeholders and assessment contexts, our OntTAM

assessment process allows for the customization of trustworthiness assessment model in terms of

sub-factors and attributes being assessed as well as the individual weights assigned to them.

While the default weight for all sub-factors and attributes are equal, users can customize these

weights to more closely match their assessment objective and context. Furthermore, while most

existing assessment approaches rely on crisp boundaries (e.g., based on thresholds), this

approach can lead to inaccuracy in the assessment process. It is not always feasible or desirable

to use crisp values, especially when one deals with values which are close to crisp value

boundaries. For example, let us assume a project X with a reported number of 5 known

vulnerabilities, a binary scale for trustworthiness which is trustworthy or non-trustworthy, and a

crisp value threshold of 4 known vulnerabilities. Based on this crisp boundary, the project will be

assessed as being non-trustworthy, even if it can be considered almost borderline trustworthy. To

further exemplify the problem, by using the crisp boundary values there would not be any

difference between project X with 5 known vulnerabilities and project Y with 100

vulnerabilities; both projects would be considered equally non-trustworthy. Furthermore, the

problem can occur not only at the individual measurement level but also at other assessment

levels (e.g., sub-factor, factor). To address this challenge we apply a fuzzy logic assessment and

inference approach to eliminate the need for crisp value boundaries.

165

Figure 53 shows the set of transformation steps which are performed during the fuzzification

of the assessment process, with details of each step discussed more thoroughly throughout the

section.

 Knowledge Base

Measurement
Calculation

Fuzzification

Measurement_ResultWeight

Weight & Measure
fuzzy scales

Assessment
(Inferencing)

Weight

Fire
Inference

Rules

Weighted Score

Knowledge
Enrichment

Crisp input

Non-fuzzy
values

Un-weighted
Measure

Scores

2

3

41
Crisp output

Figure 53: Fuzzy Assessment Process Steps.

 (1) Measure Calculation: Inputs to this step are raw values from the populated ontologies.

Measures are calculated by querying our populated knowledge base for the base and derived

measures introduced in the previous section (e.g., WVD).

(2) Fuzzification: The extracted quality measures and weight values are used to create fuzzy

scales in the fuzzification step. As part of the fuzzification step, fuzzy scales are created for the

different measures, the assessment weights (provided by stakeholders of the assessment model to

assign a level of importance to different measures), and the overall assessment result. These

results are converted to linguistic variables, which are variables whose values are expressed as

words or sentences (e.g., high, not very high, low) [256]. These linguistic variables are the

building blocks of Fuzzy Logic and become the input for the fuzzification inference engine.

166

Figure 54: WVD measure fuzzy scale and Weight Fuzzy Scale for WVD measure.

Figure 54 shows an example of a fuzzy scale created for the WVD measure and its

assessment weights. The x-axis represents the measurement results range and the y-axis the

membership degree (range is 0–1). The higher the membership value, the stronger the

measurement’s relation to its fuzzy result scales. The overlap between boundaries of categories

in the fuzzy scale demonstrates the uncertainty in interpreting boundary measurement results.

Since high WVD, LVC, and BCD measures lower the overall quality and trustworthiness

score of a project, we made the following three assumptions to automate the fuzzy inference

rules for these measures: (1) In cases when the user-specified weight is high then the individual

measure score is one level lower. VeryPoor scores will keep their values (e.g., a high weight will

change an Excellent score to VeryGood). (2) The opposite holds for low weights, which reflects

that their scores are less relevant to the overall assessment, their scores are adjusted by one level

higher. Excellent scores keep their values. (3) With medium weights, scores keep their values.

167

These assumptions reflect the fact that when a measure is of high importance to the assessment

(high weight), its score should be more sensitive to a low measure value.

(3) Inference and Assessment: Input for this step is the fuzzified measure and weight values in

the form of linguistic variables. These linguistic results are now transformed into the final

assessment score by executing a set of fuzzy inference rules. The de-fuzzification is based on a

set of fuzzy inference rules, which are expressed in the Fuzzy Control Language (FCL)[257]

using the JFuzzyLogic inferencing engine [258]. The inference engine fires the relevant fuzzy

rules based on the provided input. Firing rules will calculate the final weighted overall

measurement result which is a combination of all the different measures. Using the Center of

Gravity (COG) method, considered one of the most popular de-fuzzification methods [259], the

overall fuzzy measurement result is de-fuzzified back into a numerical assessment measurement

result in order to be populated back to the knowledge base. As part of our assessment, we created

a Fuzzy Control Language (FCL) file for each measure. The complete set of FCL files for all

measures can be found online87.

(4) Knowledge Enrichment: This optional step allows for the integration of the assessment

results at the individual attribute, sub-factor, and overall assessment levels. Our ontological

representation enables us to seamlessly integrate these assessment results into the knowledge

base, therefore not only supporting reuse of analysis results but also allowing their use for further

semantic analysis.

7.4 Case Study
The objective of this section is to demonstrate the applicability of our modeling approach to

support the assessment of trust within OSS software libraries by highlighting the flexibility of

our modeling approach, in terms of its seamless knowledge and analysis results integration, as

well as the use of SW reasoning services to infer new knowledge (measures). In Section 7.4.1,

we present the setup for our study, including the selection process for the 4 projects used to

illustrate our approach; Sections 7.4.2 to 7.4.4 describe how we identify and measure security

87 https://github.com/segps/segps-code

168

vulnerabilities, license violations, and API breaking changes. Section 7.4.5 describes how these

individual identified measures can be integrated for a holistic trustworthiness assessment.

7.4.1 Study Setup
For the data collection and extraction in our case study (see Figure 55), we rely on four data

sources: the NVD database, GitHub, SVN, and the Maven build repository.

130,895 projects

1,219,731 releases

Project Code + Version
history

Generating triples
Triple store with

reasoning
User

Triples
populated

queries

74,945 unique CVEs
109,212 vulnerable projects

Ontology alignment

Detection of breaking changes
with VTracker

Figure 55: Overview of case study setup process.

For our study we downloaded the latest versions of the Maven and NVD repositories—which

include 1,219,731 project releases in Maven and 74,945 vulnerabilities affecting 109,212

releases in NVD. For our study, we limited the assessment scope to 4 projects. The projects were

selected based on the following criteria: (a) at least some of their releases contained known

vulnerabilities, (b) license details were provided, (c) releases varied in their major version

numbers, and (d) the functionalities these products provide are widely reused by other projects

(see Table 43 for details). The four subject systems vary in size (classes and methods) and

application domain. Commons Fileupload88 adds file upload capabilities to web applications.

CXF WS Security89 provides reusable components for client-side authentication, security, and

encryption. Struts90 is an open source framework for creating Java web applications, and ASM91

is a Java bytecode manipulation library. We further extract the complete source code and history

information of these four projects. The extracts facts used to populate the corresponding

ontologies and made persistent in our triple store.

88 https://commons.apache.org/proper/commons-fileupload/
89 http://cxf.apache.org/docs/ws-security.html
90 https://struts.apache.org/
91 http://asm.ow2.org/

169

Table 43: Overview of selected case study projects
Project # Releases analyzed # of Dependencies
Commons Fileupload 6 68854
Apache CXF WS Security 5 4570
Struts 3 3170
ASM 20 8109

7.4.2 Identifying and Measuring Software Security Vulnerabilities
Approach. In what follows, we show some of the main rules and queries used to derive the

WVD measures (overall, direct, and inherited). These rules are of interest since they highlight

the flexibility and power of our modeling approach, allowing users to define and customize their

own derived measures without the need for any additional proprietary algorithms

implementations or modelling.

WVDdirect inference: In order to derive the WVDdirect score for the projects, we define rules using

the Semantic Web Rule Language (SWRL), similar to the one shown in Listing 14. The rule

states that if some project release has a LOC and OverallSeverityScore measure, then the release

has a WVDdirect score (obtained by dividing the overall severity score by LOC).

Listing 14: The rules to infer the direct WVD measure.

WVDinherit inference: For us to be able to infer the WVDinherit measure of a project release, we

had to first determine the raio of vulnerable APIs that are reused in a particular release. The

OntTAM knowledge model not only captures the required information to derive this measure,

but also includes all semantics to be able to take advantage of the SW reasoners to infer the

measure value. More specifically, once the required ontologies (e.g., SEVONT, SEON,

OntTAM) are populated, a SPARQL query can be created to retrieve the number of vulnerable

API elements in a given release (see Listing 15).

Release(?r), hasLOC(?r, ?loc), hasOverallSeverityScore(?r, ?score),

divide(?wvdDirect, ?score, ?loc) → hasDirectWVD(?r, ?wvdDirect)

170

Listing 15: SPARQL query for inferring the total number of vulnerable code entities in a project.

Using Listing 16 we can also determine the number of such vulnerable API elements being

reused in client applications. For a more detailed description on how we detect vulnerable code

elements, the reader is referred to Chapter 6, section 6.3.1.

Listing 16: The SPARQL query for inferring the vulnerable code entities used by different

dependent projects.

The SPARQL query (Listing 17) exemplifies how we take advantage of analysis results from

the inference rules in Listing 14 to infer the final WVDinherit measure for a particular release of a

component.

CONSTRUCT{?release sevont:hasVulnerableCodeCount ?totalVulnerableCodeCount}

WHERE{

{

 SELECT ?release count(?vulnerableCode) as ?totalVulnerableCodeCount

 WHERE{

 ?vulnerableCode rdf:type code:VulnerableCode.

 ?release code:containsCodeEntity ?vulnerableCode

 }GROUP BY ?release

}}

CONSTRUCT{?link sevont:hasReusedVulnerableCodeCount ?usedVulnerableCodeCount}

WHERE{

{

 SELECT ?link count(?vulnerableCode) as ?usedVulnerableCodeCount

 WHERE {

 #?link represents the ?client dependency on ?release

 ?link a build:DependencyLink.

 ?link build:hasDependencySource ?client.

 ?link build:hasDependencyTarget ?release.

 ?client code:containsCodeEntity ?codeEntity.

 ?codeEntity main:dependsOn ?vulnerableCode.

 {

 SELECT ?vulnerableCode

 WHERE {

 ?vulnerableCode rdf:type code:VulnerableCode.

 ?release code:containsCodeEntity ?vulnerableCode.

 }

 }

 }GROUP BY ?link

}}

171

Listing 17: SPARQL query for inferring inherited WVD measures in clients’ projects.

Findings and Discussion. Table 44 provides the analysis results for our case study in terms of

known vulnerabilities, size, and WVD scores for selected project releases. Using the WVD

measure we can now compare two releases of the same project in terms of their weighted

vulnerability density. For example, based on the WVD measure, we can consider Struts 1.2.9 to

be more trustworthy than earlier versions of Struts (e.g., version 1.2.4 and 1.2.8, which both have

higher WVD scores).

Table 44: Vulnerability densities of selected projects
Project # vulnerabilities Aggregated Vuln. Scores Size (Kloc) WVD

commons-fileupload 1.0 2 10.8 1.23 8.78
commons-fileupload 1.1 2 10.8 1.28 8.46
commons-fileupload 1.2 2 10.8 1.78 6.05

commons-fileupload 1.2.1 2 10.8 1.97 5.49
commons-fileupload 1.2.2 2 10.8 2.04 5.31
commons-fileupload 1.3 1 7.5 2.39 3.14

Apache CXF WS Security 2.4.1 4 23.6 18.92 1.25
Apache CXF WS Security 2.4.4 4 23.6 21.30 1.11
Apache CXF WS Security 2.4.6 5 27.9 23.10 1.21
Apache CXF WS Security 2.6.3 8 39.4 26.43 1.49
Apache CXF WS Security 2.7.0 10 49.4 26.43 1.87

Struts 1.2.4 5 30 24.04 1.25
Struts 1.2.8 8 49.6 24.61 2.02
Struts 1.2.9 4 25.7 24.76 1.04

We further analyzed the WVD results to see whether developers actually migrate their

applications to library versions which are less vulnerable (e.g., a newer version of the same

library with patched vulnerabilities). Table 45 provides an overview of the number of dependent

CONSTRUCT{?client sevont:hasInheritWVD ?inheritWVD }

WHERE{

{

 SELECT ?client count(?indirectWVD) as ?inheritWVD

 WHERE {

 ?link a build:DependencyLink.

 ?link build:hasDependencySource ?client.

 ?link build:hasDependencyTarget ?release.

 ?client sevont:hasReusedVulnerableCodeCount ?usedVulnerableCodeCount.

 ?release sevont:hasVulnerableCodeCount ?totalVulnerableCodeCount.

 ?release sevont:hasDirectWVD ?directWVD.

 BIND((?usedVulnerableCodeCount/?totalVulnerableCodeCount) AS ?vulnerableCodeRatio).

 BIND((?vulnerableCodeRatio * ?directWVD) AS ?indirectWVD).

 }

}}

172

applications which change their build dependency to a more trustworthy release (based on the

lower WVD score). Our analysis results show that 45.1% of client applications switched their

library dependencies and of these, 63.29% switched to a more trustworthy library release.

Surprisingly, the remaining 36.71% switched to library releases which are either equal or less

trustworthy (higher WVD score), even if more trustworthy library versions were available.

Table 45: Clients who switched from a vulnerable API in later release

Project Vulnerability

% clients
switched

versions of
the library

% clients
switched to less

vulnerable
release (WVD)

% clients
switched to a
release with

equal or higher
WVD score

commons-fileupload 1.0

CVE-2014-0050

29.36% 74.26% 25.74%
commons-fileupload 1.1 6.28% 58.33% 41.67%
commons-fileupload 1.2 70.54% 100.00% 0.00%

commons-fileupload 1.2.1 38.97% 97.55% 2.45%
commons-fileupload 1.2.2 46.79% 99.99% 0.01%
commons-fileupload 1.3 40.62% 0.00% 100.00%

Apache CXF WS Security 2.4.1

CVE-2013-0239

94.93% 100.00% 0.00%
Apache CXF WS Security 2.4.4 95.00% 0.23% 99.77%
Apache CXF WS Security 2.4.6 95.24% 63.10% 36.90%
Apache CXF WS Security 2.6.3 98.08% 85.29% 14.71%
Apache CXF WS Security 2.7.0 92.75% 97.26% 2.74%

Struts 1.2.4
CVE-2016-1181

0.00% n/a n/a
Struts 1.2.8 44.44% 100.00% 0.00%
Struts 1.2.9 0.00% n/a n/a

7.4.3 Identifying and Measuring License Violations
Approach. License violations originating from external libraries and components can cause a

major long-term liability for client applications in terms of intellectual property and the

trustworthiness of these libraries. In our study we first evaluate if such license violations (non-

compliances) occur in general in project dependencies managed by the Maven repository. In the

second part of our study we revisit our 4 projects used in our trustworthiness assessment study to

assess their trustworthiness in terms of license violations. For the study we created SPARQL

queries that analyze all dependency relationships in Maven and identified three (3) main

categories of license violations: simple violations, transitive violations, and compound violations

(see Section 7.3.3). The queries take advantage of both our open source license ontology and the

build ontology. Listings 18, 19, and 20 below illustrates the queries we used to identify these

violations.

173

Listing 18: SPARQL query for inferring the total number of breaking changes in a project.

Listing 19: SPARQL query for inferring the total number of breaking changes in a project.

Listing 20: SPARQL query for inferring the total number of breaking changes in a project.

Findings and Discussion. This section presents and discusses the results obtained in our license

violation experiment for the Maven repository. Figure 56 shows the distribution of common

SELECT distinct *

WHERE {

 ?link a build:DependencyLink.

 ?link build:hasDependencyTarget ?project2.

 ?link build:hasDependencySource ?project1.

 ?project1 markosLicense:coveringLicense ?license1.

 ?project2 markosLicense:coveringLicense ?license2.

 ?license1 markosCopyright:incompatibleWith ?license2.

}

SELECT distinct *

WHERE {

 ?linkA a build:DependencyLink.

 ?linkA build:hasDependencyTarget ?project2.

 ?linkA build:hasDependencySource ?project1.

 ?linkB a build:DependencyLink.

 ?linkB build:hasDependencyTarget ?project3.

 ?linkB build:hasDependencySource ?project2.

 ?project1 markosLicense:coveringLicense ?license1.

 ?project2 markosLicense:coveringLicense ?license2.

 ?project3 markosLicense:coveringLicense ?license3.

 ?license1 markosCopyright:compatibleWith ?license2.

 ?license2 markosCopyright:compatibleWith ?license3.

 ?license1 markosCopyright:incompatibleWith ?license3.

}

SELECT distinct *

WHERE {

 ?linkA a build:DependencyLink.

 ?linkA build:hasDependencyTarget ?project2.

 ?linkA build:hasDependencySource ?project1.

 ?linkB a build:DependencyLink.

 ?linkB build:hasDependencyTarget ?project3.

 ?linkB build:hasDependencySource ?project1.

 ?project1 markosLicense:coveringLicense ?license1.

 ?project2 markosLicense:coveringLicense ?license2.

 ?project3 markosLicense:coveringLicense ?license3.

 ?license1 markosCopyright:compatibleWith ?license2.

 ?license1 markosCopyright:compatibleWith ?license3.

 ?license2 markosCopyright:incompatibleWith ?license3.

}

174

project licenses in the Maven repository. Table 46 reports on the license violations, classified by

the type of violation, which we observed in our study of the Maven repository.

Figure 56: License distribution in the
Maven repository.

Table 46: Totals of each type of violation
found by querying the data store

License Violation Types Count
Type 1 - Simple Violations 131 996
Type 2 - Embedded Violations 288 153
Type 3 - Compound Violations 654 964

Our study identified over 131,000 simple violations and numerous transitive license

violations of various types. We note that Type 3 is seemingly the most popular type of violation,

followed by Type 2, then Type 1. In what follows, we report on some of the license violations or

incompatibilities which we observed in our study.

Figures 57, 58, and 59 summarize the most common license violation pairs which occurred

for all three license violation categories. The most common, Type 1, violation which we

observed is code published under the Apache 2 license being incorporated into GPL 2 licensed

code. This violation is not surprising for two reasons. First, many software developers are simply

not aware nor well-versed in open source license compliance, and as these are two of the most

popular licenses in the world, this pairing reflects their usage in the wild. Second, there is likely

some confusion about Apache 2’s compatibility with the GPL. On the GNU website, the Free

Software Foundation publishes a list of licenses that are compatible with the GPL. This page

shows Apache 2 in green (meaning compatible), but in the license discussion the authors explain

that Apache 2 is only compatible with GPL 3, not GPL 2 [240].

82%

5%

4%
3%

3% 1% 1% 1%
Apache-2.0

LGPL-2.1

EPL-1.0

AGPL-3.0

MIT

GPL-3.0

LGPL-3.0

BSD-3-Clause

175

Figure 57: Most Popular Type 1 License Violation Pairs.

Figure 58: Most Popular Type 2 License Violation Pairs.

1
1
8
8
11
15
25
38
49
66
76
122
152
375
667
870
1037
1345
2140
2368
2970

12024
16939

25584
65105

0 10000 20000 30000 40000 50000 60000 70000

EUPL 1.1 ► GPL 3
MPL 1 ► LGPL 2.1
MPL 1.1 ► LGPL 2

AGPL 3 ► GPL 2
Apache 2 ► MPL 1

MPL 1 ► AGPL 3
Artistic 1 ► GPL 3

CPL 1 ► GPL 3
Apache 1.1 ► GPL 2

MPL 1 ► GPL 2
EUPL 1.1 ► Apache 2

MPL 1.1 ► GPL 2
Apache 1.1 ► GPL 3

GPL 3 ► GPL 2
MPL 1.1 ► LGPL 3
MPL 1.1 ► GPL 3

AGPL 3 ► Apache 2
Apache 2 ► MPL 1.1

MPL 1.1 ► AGPL 3
MPL 1.1 ► LGPL 2.1

EPL 1 ► GPL 2
EPL 1 ► GPL 3

GPL 2 ► Apache 2
GPL 3 ► Apache 2
Apache 2 ► GPL 2

Number of Violations

Li
ce

ns
e

P
ai

r

2
5
130
704
6404

26461
254447

0 50000 100000 150000 200000 250000 300000

Apache 2 ► MPL 2 ► MPL 1
GPL 3 ► LGPL 3 ► Apache 2

CPL 1 ► Apache 2 ► GPL 3
Apache 2 ► MPL 2 ► GPL 2

Apache 1.1 ► Apache 2 ► GPL 3
MPL 1.1 ► Apache 2 ► GPL 3

EPL 1 ► Apache 2 ► GPL 3

Number of Violations

Li
ce

ns
e

Tr
ip

le

176

Figure 59: Most Popular Type 3 License Violation Pairs.

A more detailed analysis of the reasons why the number of transitive license violations is

significantly larger compared to direct violations revealed: (1) Type 1 license

compatibility/incompatibility are easier to verify/detect. That is, it is much more likely that a

developer will check for license compliance, when only two licenses are involved. (2) Transitive

violation types on the other hand, have not been considered in the research community prior to

this work, and may very well be acceptable or be clearly identifiable as such. For example, the

European Union Public License (EUPL) explicitly states which licenses it is compatible with.

This is a known compatibility. Whereas for transitive interactions, the EUPL may then be

imported into an intermediary project, say a project under the Licence Libre du Québec –

Réciprocité (LiLiQ-R), which is then imported into a tertiary project under Common

Development and Distribution License (CDDL). Each step (EUPL to LiLiQ, and LiLiQ to

CDDL) is known to be compatible. But the EUPL does not explicitly state that it is compatible

with the CDDL. This chain of licenses may be flagged as a violation by our approach. Yet this

chain could in fact be perfectly lawful (a false-positive, verifiable by a lawyer). Our approach

will however flag such a dependency chain as a potential violation. This triple is neither a known

compatibility nor known incompatibility, and thus is one of the reasons why there are more Type

2 violations found.

Identification of Type 3 violations becomes even more difficult to detect since their detection

largely depends on how licenses define derivative works and conditions for reusing these

libraries. Libraries can be used by either including the actual source code or through linking (e.g.

through a jar file). Linking of a library can be static (compile-time) or dynamic (run-time). For

example, LGPL requires each project to be an “independent work that stands by itself, and

16
32
34
688
839

21975
21975
24821
37495

547089

0 100000 200000 300000 400000 500000 600000

Apache 1.1 + MPL 1 ► Apache 2
Apache 2 + MPL 1 ► MPL 2

Apache 2 + MPL 1.1 ► MPL 2
MPL 1 + LGPL 2.1 ► Apache 2

Apache 1.1 + MPL 1.1 ► Apache 2
GPL 2 + Apache 2 ► GPL 3
Apache 2 + GPL 2 ► GPL 3

MPL 1.1 + LGPL 3 ► Apache 2
AGPL 3 + Apache 2 ► GPL 3

MPL 1.1 + LGPL 2.1 ► Apache 2

Number of Violations

Li
ce

ns
e

Tr
ip

le

177

includes no source code from [the other].” In this scenario, however, it is perfectly acceptable to

combine compiled code [260]. So basically, the question is whether a derivative work is created

or not when combining dependencies into a new project. Derivative works come into play only

when the licensed software is copied, distributed, or modified. Additional research is needed to

further clarify legal and license compliance issues when using these open source licenses.

However, as can be noted, all three types of violations can exist in projects. Thus, simple,

transitive, and complex license violations are a problem that occur in open source projects and

can potentially affect the trustworthiness of components and libraries being reused in software

projects.

Next, we report on license violations results which we observed for the selected 4 projects of

our trustworthy study. Table 47 provides an overview of the number of license violations

detected in these projects. Only four (4) releases of Commons-Fileupload introduced violations

in client applications. No license violations are reported for the projects due to the lack of license

information in the analyzed client applications. Results, although incomplete, confirm our

previous claim that violations are problems that occur in open source projects.

Table 47: Licence Violation Counts in selected projects.

Project
Simple

Violations
Transitive
Violations

Compound
Violations

commons-fileupload 1.0 0 0 0
commons-fileupload 1.1 0 0 0
commons-fileupload 1.2 4 0 0

commons-fileupload 1.2.1 14 0 0
commons-fileupload 1.2.2 19 0 0
commons-fileupload 1.3 4 0 0

Apache CXF WS Security 2.4.1 0 0 0
Apache CXF WS Security 2.4.4 0 0 0
Apache CXF WS Security 2.4.6 0 0 0
Apache CXF WS Security 2.6.3 0 0 0
Apache CXF WS Security 2.7.0 0 0 0

Struts 1.2.4 0 0 0
Struts 1.2.8 0 0 0
Struts 1.2.9 0 0 0

7.4.4 Identifying and Measuring API Breaking Changes
Approach. As previously mentioned in our study setup (Section 7.4.1, Figure 55), we extract the

source code and versioning information of the four projects from GitHub and SVN. For each

successive pair of releases of a given project, we then identify the introduced breaking and non-

178

breaking changes using the VTracker92 tool. In order to be able to reuse the analysis results for

further analysis, we take advantage of our ontological knowledge modeling approach and extend

our knowledge base to include the analysis results. Developers can now access this information,

using SPARQL queries, to derive potential direct and indirect impacts of breaking changes on

their client applications. In what follows, we show some of the main rules and queries used to

derive the BCD and BCI measures.

BCD inference: For computing the BCD scores of the projects in our dataset, we define a SWRL

rule (see Listing 21) which infers the BCD score from the breaking and non-breaking change

counts. Listings 22 and 23 detail the queries for computing the breaking and non-breaking

change measures of a project.

Listing 21: The rules to infer the BCD measure.

Listing 22: SPARQL query for inferring the total number of breaking changes in a project.

92 https://users.encs.concordia.ca/~nikolaos/vtracker.html

Release(?r), hasBreakingChangeCount(?r, ?bcc),

hasNonBreakingChangeCount (?r, ?nbcc), divide(?bcd, ?bcc, ?nbcc)

→ hasBCD(?r, ?bcd)

CONSTRUCT{?release code:hasBreakingChangeCount ?totalBreakingChanges }

WHERE{

{

 SELECT ?release count(?breakingChange) as ?totalBreakingChanges

 WHERE{

 ?breakingChange rdf:type code:BreakingChange.

 ?breakingChange code:hasCurrentAPI ?api.

 ?release code:containsCodeEntity ?api.

 }GROUP BY ?release

}}

179

Listing 23: SPARQL query for inferring the total number of non-breaking changes in a project.

BCIdirect and BCIindirect inference: The queries in Listings 24 and 25 take advantage of the

inference services to deriv both the direct and indirect BCI scores from a project and its

dependencies. The query in Listing 22 first identifies two unique releases of the same project for

which breaking changes have been populated into the triple-store. It then identifies any usage of

the found binary incompatible APIs within the client. These queries are based on Equations 7

and 8 in Section 7.3.3.

Listing 24: SPARQL query for inferring the BCIdirect measure in a project.

CONSTRUCT{?release code:hasNonBreakingChangeCount ?totalNonBreakingChanges

}

WHERE{

{

 SELECT ?release count(?nonbreakingChange) as ?totalNonBreakingChanges

 WHERE{

 ?nonbreakingChange rdf:type code:NonBreakingChange.

 ?nonbreakingChange code:hasCurrentAPI ?api.

 ?release code:containsCodeEntity ?api.

 }GROUP BY ?release

}}

CONSTRUCT{?release code:hasDirectBCI ?directBCI }

WHERE{

{

 SELECT ?release ?directBCI

 WHERE {

 BIND((?usedBreakingChanges/?bcc) AS ?directBCI).

 {

 SELECT ?release count(?breakingApi) as ?usedBreakingChanges ?bcc

 WHERE{

 ?breakingChange rdf:type code:BreakingChange.

 ?breakingChange code:hasCurrentAPI ?breakingApi.

 ?dependent code:containsCodeEntity ?breakingApi.

 ?dependent code:hasBreakingChangeCount ?bcc.

 ?client code:containsCodeEntity ?api.

 ?api main:dependsOn ?breakingApi.

 }GROUP BY ?release

 }

 }

}}

180

Listing 25: SPARQL query for inferring the BCIindirect measure in a project.

Findings and Discussion. Figure 60 shows an example of a bug93 reported in Eclipse Orbit94.

Orbit depends on ASM95 , a Java bytecode manipulation library. ASM introduced breaking

changes in its later releases, such as ClassVisitor being changed from an interface (version 3.X)

to a class in version 4.0. This change is a major change in the API and therefore breaking the

older 3.X API releases.

93 https://dev.eclipse.org/mhonarc/lists/cross-project-issues-dev/msg10487.html

94 https://www.eclipse.org/orbit/

95 http://asm.ow2.org/

CONSTRUCT{?client code:hasIndirectBCI ?indirectBCI }

WHERE{

{

 SELECT ?client ?indirectBCI

 WHERE {

 BIND((?usedBreakingChanges/?bcc) AS ?indirectBCI).

 {

 SELECT ?client count(?clientAPIEntity) as ?usedBreakingChanges count(?breakingChange) as ?bcc

 WHERE{

 #identify use of breaking change entity in clien

 ?client code:containsCodeEntity ?clientAPIEntity.

 {?clientAPIEntity main:dependsOn ?currentAPIElement} UNION

 {?clientAPIEntity main:dependsOn ?priorAPIElement}.

 {

 SELECT ?client, ?dependency ?asm1, ?asm2

 WHERE {

 #Identify different releases of the same project for which breaking changes exist

 ?client build:hasBuildDependencyOn ?dependency1; build:hasBuildDependencyOn ?dependency2.

 ?breakingChange a code:BreakingCodeChange.

 ?breakingChange code:hasPriorAPI ?priorAPIElement; code:hasCurrentAPI ?currentAPIElement.

 ?dependency1 code:containsCodeEntity ?currentAPIElement.

 ?dependency2 code:containsCodeEntity ?priorAPIElement.

 FILTER(?dependency1 != ?dependency2).

 }

 }

 }

 }

}}

181

Figure 60: An example of a reported bug showing how a breaking change in the ASM library
impacts Orbit and its dependent projects.

We illustrate how our ontology-based API dependency measures can aid developers in

detecting and dealing with such breaking changes. For the analysis, we extract and populate facts

about the breaking changes between different versions of ASM releases and the source code of

all projects which depend on ASM releases (81,09 dependencies in total). Based on the extracted

source code and dependency information, the earlier introduced SPARQL queries can now be

used to identify the potential direct and indirect impacts of ASM breaking changes on client

applications.

182

(a) Number of breaking changes

(b) Number of non-breaking changes

(c) BCD of ASM libraries

(d) BCI of the ClassVisitor API in ASM libraries

Figure 61: Distribution of breaking changes and their impacts in the analyzed ASM libraries.

Figure 61 shows the distribution of (a) breaking changes, (b) non- breaking changes, and (c)

breaking change densities (BCD) across all selected 20 ASM releases. Figure 61(d) reports on

the impact of the ClassVisitor API breaking change on client applications. Furthermore, this

particular change can potentially affect on average 50 different API elements, and as many as

225 elements in a single client application. The reported impact set returned by our approach

would include clients which reuse the ClassVisitor API either directly (through an

implementation of the interface) or indirectly (through transitive inheritance or method

invocations).

7.4.5 Assessment Process
The above sub-sections described how we can identify and measure different attributes of

trustworthiness by taking advantage of our unified ontological knowledge representation and SW

reasoning services. The OntTAM assessment process further integrates these scores across

attributes and sub-factors. For the actual assessment process, we first compute the fuzzy score for

each measure individually and then aggregate these scores to calculate the attribute, sub-factors,

factors, and dimension assessment scores. Figure 62 below gives a complete overview of how

the sub-factors, attributes, and measures are related and used to derive our trustworthiness

assessment. It should be noted that we do not report on actual trustworthiness scores, since these

183

scores would require a particular assessment context and an instantiation of our OntTAM

assessment model with more measures, attributes and sub-factors.

Project

Trustworthiness
Dimension

- Product
- Community

Trustworthiness
Factors

-Reusability

Trustworthiness
Sub-factors

- Security
- Legality
- Reliability
- ...

Trustworthiness
Attributes

- Exploitability
- Impact
- Stability
- Popularity
-

Trustworthiness Measures

- # Vulnerabilities
- aggregated Severity scores
- WVDdirect

- WVDinherit

- WVDoverall

- # License Violations
- LVD
- direct BCI
- indirect BCI
- BCD
- # breaking changes
- # nonbreaking changes
- # switched dependencies
- # dependencies
- Size
....

hasDimensions
hasFactors hasSubFactors

Defined Relation
Inferred Relation

Figure 62: Overview of relations in the semantic OntTAM domain model.

The effect of the fuzzification on the assessment scores typically increases with assessment

abstraction levels (e.g., quality dimension scores vs attribute scores). Listing 26 shows the rules

we used to create the fuzzified score for the WVD measure, and Listing 27 provides example

rules we used to combine the fuzzified LVC and WVD scores into a score for the Impact

attribute.

FUNCTION_BLOCK WVD
VAR_INPUT
 WVD_Measure: REAL;
 WVD_Weight: REAL;
END_VAR
VAR_OUTPUT
 WVD_Score: REAL;
END_VAR
FUZZIFY WVD_Measure
 TERM VERYLOW := (0.0,1.0) (1.04,1.0) (2.11,0.0) ;
 TERM LOW := (1.90,0.0) (2.975,1.0) (4.14,0.0) ;
 TERM AVERAGE := (3.73,0.0) (4.91,1.0) (6.17,0.0) ;
 TERM HIGH := (5.55,0.0) (6.845,1.0) (8.20,0.0) ;
 TERM VERYHIGH := (7.38,0.0) (8.78,1.0) (11.29,1.0)
;
END_FUZZIFY
FUZZIFY WVD_Weight
 TERM LOW := (0.0,1.0) (0.5,1.0) (2.69,0.0) ;
 TERM MEDIUM := (2.56,0.0) (4.75,1.0) (7.05,0.0) ;
 TERM HIGH := (6.69,0.0) (9.0,1.0) (12.0,1.0) ;

RULEBLOCK WVD_SCORE_RULES
RULE 0 : IF WVD_Measure IS VERYLOW AND
WVD_Weight IS LOW THEN WVD_Score IS
EXCELLENT ;
RULE 1 : IF WVD_Measure IS VERYLOW AND
WVD_Weight IS MEDIUM THEN WVD_Score IS
EXCELLENT ;
RULE 2 : IF WVD_Measure IS VERYLOW AND
WVD_Weight IS HIGH THEN WVD_Score IS VERYGOOD ;
RULE 3 : IF WVD_Measure IS LOW AND WVD_Weight IS
LOW THEN WVD_Score IS EXCELLENT ;
RULE 4 : IF WVD_Measure IS LOW AND WVD_Weight IS
MEDIUM THEN WVD_Score IS VERYGOOD ;

RULE 5 : IF WVD_Measure IS LOW AND WVD_Weight IS
HIGH THEN WVD_Score IS AVERAGE ;
RULE 6 : IF WVD_Measure IS AVERAGE AND
WVD_Weight IS LOW THEN WVD_Score IS VERYGOOD ;
RULE 7 : IF WVD_Measure IS AVERAGE AND
WVD_Weight IS MEDIUM THEN WVD_Score IS AVERAGE

184

END_FUZZIFY
DEFUZZIFY WVD_Score
 TERM VERYPOOR := (6.5,0.0) (7.5,1.0) (9.0,1.0) ;
 TERM POOR := (5.31,0.0) (6.25,1.0) (7.22,0.0) ;
 TERM AVERAGE := (4.14,0.0) (5.0,1.0) (5.9,0.0) ;
 TERM VERYGOOD := (2.95,0.0) (3.75,1.0) (4.6,0.0) ;
 TERM EXCELLENT := (0.0,1.0) (2.5,1.0) (3.28,0.0) ;
 METHOD : COG;
END_DEFUZZIFY

;
RULE 8 : IF WVD_Measure IS AVERAGE AND
WVD_Weight IS HIGH THEN WVD_Score IS POOR;
RULE 9 : IF WVD_Measure IS HIGH AND WVD_Weight IS
LOW THEN WVD_Score IS AVERAGE ;
RULE 10 : IF WVD_Measure IS HIGH AND WVD_Weight IS
MEDIUM THEN WVD_Score IS POOR ;
RULE 11 : IF WVD_Measure IS HIGH AND WVD_Weight IS
HIGH THEN WVD_Score IS VERYPOOR;
RULE 12 : IF WVD_Measure IS VERYHIGH AND
WVD_Weight IS LOW THEN WVD_Score IS POOR ;
RULE 13 : IF WVD_Measure IS VERYHIGH AND
WVD_Weight IS MEDIUM THEN WVD_Score IS
VERYPOOR ;
RULE 14 : IF WVD_Measure IS VERYHIGH AND
WVD_Weight IS HIGH THEN WVD_Score IS VERYPOOR ;
END_RULEBLOCK
END_FUNCTION_BLOCK

Listing 26: Sample FCL file for creating fuzzy scores for the WVD measure.

RULEBLOCK IMPACT _SCORE_RULES
RULE 0 : IF LVC_Score IS EXCELLENT AND WVD_Score IS VERYPOOR
THEN IMPACT_Score IS AVERAGE ;
RULE 1 : IF LVC_Score IS VERYGOOD AND WVD_Score IS VERYPOOR
THEN IMPACT_Score IS POOR ;
RULE 2 : IF LVC_Score IS AVERAGE AND WVD_Score IS VERYPOOR THEN
IMPACT_Score IS POOR ;
RULE 3 : IF LVC_Score IS POOR AND WVD_Score IS VERYPOOR THEN
IMPACT_Score IS VERYPOOR ;
RULE 4 : IF LVC_Score IS VERYPOOR AND WVD_Score IS VERYPOOR
THEN IMPACT_Score IS VERYPOOR;
…
END_RULEBLOCK
END_FUNCTION_BLOCK

Listing 27: Sample FCL file for integrating the LVC and WVD fuzzy scores for the Impact

attribute.

Using the property chain axioms explained in Section 7.3.2.1, one can now automatically

infer trustworthiness scores from the populated measures of any given project. Listing 28

provides a list of sample queries used for integration and fuzzification.

185

Listing 28: SPARQL query illustrating the inference of overall trustworthiness scores.

7.5 Chapter Summary
In summary, we introduced OntTAM, a trustworthiness assessment model which is an

instantiation of our SE-EQUAM assessment model. OntTAM takes advantage of our SV-AF, a

unified knowledge representation of different SE knowledge resources and SVDBs, and extends

these knowledge bases to allow for an automated analysis and assessment of trustworthiness

quality attributes. We further presented a concrete instantiation of our assessment model that not

only provides a formal modeling of trustworthy quality attributes but can also be

extended/customized to specific stakeholder needs. We illustrated how a concrete instantiation of

OntTAM for a small subset of sub-factors, attributes, and measures related to the trustworthiness

of reusable components can be created. The measures which we included in the study are: API

breaking changes, security vulnerabilities, and license violations.

In the next chapter, we conclude the thesis and discuss some possible future works.

Query 1: At attribute level

SELECT distinct ?project ?impactScore

WHERE {

 ?impactAttribute a onttam:Impact.

 ?project onttam:hasAttribute ?impactAttribute.

 ?impactAttribute onttam:hasScore ?impactScore.

 FILTER (?impactScore = “EXCELLENT”).

}

Query 2: At factor level

SELECT distinct ?project ?factorScore

WHERE {

 ?factorAttribute a onttam:Factor.

 ?project onttam:hasFactor ?factorAttribute.

 ?factorAttribute onttam:hasScore ?factorScore.

 FILTER (?factorScore = “EXCELLENT”).

}

186

Chapter 8

8 Conclusions and Future Work

In this chapter, we summarize the findings of this research and discuss some promising

directions for future work.

8.1 Summary of the Findings
 We conducted a comprehensive review of the SE literature which focused on the

question: “to what extent do SE researchers use the vulnerabilities information hosted in

public SVDBs in their research”. From our survey we observed that:

o There is an increasing awareness of SVDBs in the research community in terms

of papers being published describing the use and application of SVDBs in the SE

domain.

o The majority of surveyed articles (91%) used common SVDBs in their work,

whereas only 9% relied on specialized SVDBs.

o Common SE repositories used in combination with SVDBs are source code and

bug repositories.

o Most of the surveyed studies applied SVDBs only to a limited number of SE

activities. We found the most popular SE tasks in the surveyed articles were

empirical research (37% of articles), modeling (20% of articles), source code

analysis (for static/dynamic vulnerability analysis 16% of articles), and testing

(14% of articles).

187

o Most studies relied on only one SVDB for their contribution. The common use of

SVDBs in these SE tasks was extracting vulnerability examples for validating the

assumptions proposed by authors and comprehending the security vulnerability

affecting the software system. Also, studies on vulnerability repositories focused

on harvesting statistical trends or creating vulnerability models and using them for

prediction. Other studies focused on the vulnerability reporters who possess the

most important information.

 We introduced a novel knowledge engineering methodology using Formal Concept

Analysis (FCA) to semi-automate the software vulnerabilities knowledge acquisition and

extraction from SVDBs.

o We conducted a literature survey of existing software security vulnerability

ontologies.

 Our comparison shows that only 50% of the reviewed vulnerabilities

ontologies are publicly available online.

 None of the surveyed ontologies specified that they used a systematic

knowledge engineering approach while developing their ontologies. Most

of the presented ontologies are based on the author’s experience in the

vulnerability domain.

 Our survey also shows that most papers refer to public advisories (e.g.,

SVDBs) as their main source of vulnerability information. However, none

of the papers explained in detail how the SVDB(s) was used in their

knowledge engineering methodology.

 Many articles only referred indirectly to SVDBs while describing their

general background section and did not include an actual use of the

SVDBs.

o We proposed SEVONT, an abstraction hierarchy of software security

vulnerabilities analysis ontologies. We proposed a semi-automated methodology

using FCA to create a unified ontological knowledge model (SEVONT) that

supports knowledge sharing, linking, and inference across SVDB boundaries.

o We presented alignment rules to facilitate knowledge integration and improve our

overall knowledge design.

188

o We illustrated the applicability of our modeling approach by providing examples

of how our modeling approach supports vulnerability analysis across individual

SVDBs.

 Use case #1: Showed the benefit of using our knowledge modeling

approach to link different SVDBs and investigate the vulnerability

disclosure date issue. The study shows that 21,654 CVEs appear in two

different SVDBs (D1 and D2) and that of these, 16,337 (75%) are

disclosed in D2 prior to being published in D1 (with a median number of

seven days between the two reports). On the other hand, 3,848 (18%) of

vulnerabilities were published first in D1 before they were included in D2.

Only 7% of the vulnerabilities show the same publication date in both

SVDBs. Our results show that users who rely only on D1 and are unaware

of exploits reported in D2 will not receive any alerts from D1.

 Use case #2: Is an extension of use case #1, which showed that our

approach can automatically infer missing vulnerability information in D2

such as the exploit type (described by CWE standard) and the exploit

severity score (described by CVSS standard).

 We developed a Security Vulnerability Analysis Framework (SV-AF) to support

evidence-based vulnerability detection. The framework has the following achievements:

o Integrate different knowledge sources ontologies such as build systems

ontologies, source code ontologies, version systems ontologies, etc.

o Implement ontologies alignment using Probabilistic Soft Logic (PSL) framework

which establishes weighted links between ontologies.

o Evaluated with two case studies to illustrate the applicability of the presented

approach. We identified that 750 Maven project releases are directly affected by

known security vulnerabilities and by considering transitive dependencies, an

additional 415,604 Maven projects can be identified as potentially affected by

these vulnerabilities.

 We introduced a novel approach for automatically tracing source code vulnerabilities at

the API level across project boundaries.

189

o We extended our previous SV-AF framework with knowledge from other

repositories, such as version control systems (VCS) and build systems to provide

additional analysis services such as: (1) identifying and tracing the use of

vulnerable code in APIs to projects, and (2) providing notifications about

vulnerabilities found in APIs (and their dependent component) that can affect a

specific project.

 We introduced a novel Ontological Trustworthiness Assessment Model (OntTAM) which

is integrated with SV-AF to 1) support the automated analysis and assessment of quality

attributes related to the trustworthiness of libraries and APIs in open-source systems, and

2) provide developers with additional insights into the potential impact of reused libraries

and APIs on the quality and trustworthiness of their projects. We illustrate the

applicability of our approach by assessing the trustworthiness of libraries in terms of their

API breaking changes, security vulnerabilities, license violations, and their potential

impact on client projects.

8.2 Future Work

8.2.1 Current Limitations
Users studies. While we performed several case studies to show the applicability of the

proposed knowledge model, the fact that we did not incorporate developers’ opinions in our

designed model and the lack of conducted studies remains a limitation of our work. For example,

a controlled user-study should be performed to evaluate how easy it is to integrate our

knowledge model into current software development processes. In addition, a user study

involving developers of open source projects should be performed to evaluate the usefulness of

our vulnerability dependency analysis in improving the trustworthiness of these systems.

The presented approach for identifying transitive dependencies in Chapters 5, 6, and 7 might

not be generalizable for non-Maven projects since the case studies we conducted were limited to

the use of the Maven dependency management system. However, given the flexibility and

190

openness of our knowledge modeling approach, dependency information from build repositories

or resources other than Maven can also be integrated into our approach. The quality of our

analysis will however depend on the ability to extract these dependencies accurately. While the

fact extraction process for other build systems (e.g., Ant96, Gradle97, and MSBuild98) differs from

the one we used for Maven, the core domain concepts remain the same for these repositories.

Another threat to the validity of our research is that our evaluation has mainly focused on a

quantitative analysis of the results from the case studies, limiting our ability to generalize the

applicability and validity of the approach.

Design Quality. One of the major benefits of our unified vulnerability metamodel approach

SEVONT (Chapter 4) is its underlying formalism (machine-readable) and the resulting ease of

reuse. While machine readable, the reuse of ontologies can be only partially automated and still

requires an ontology expert in order to extend and validate the new ontology design. In

particular, modeling new constraints and relations or support for inferring knowledge that is not

explicitly modeled in the metamodel requires expertise in ontology modeling and reasoning. We

believe that this threat is not unique to our domain and can be observed in other modeling

domains (e.g., software design, database design), where the quality of the final model/design

similarly depends mostly on the expert performing the design/modeling step. However, we

partially mitigate this threat by using FCA theory for our SEVONT’s system and domain

ontologies integration, and predefined semantic rules for knowledge integration (discussed in

Chapter 4).

Another major benefit of our approach is its ability to seamlessly integrate and reuse

ontologies while maintaining the quality of the resulting knowledge model. While assessing the

quality of an ontology design, or even any design in general, is an inherently difficult problem

since what constitutes a quality design will depend on different non-functional requirements

(e.g., reuse, usability, extensibility, expressiveness, and reasoning support). We partly addressed

this threat by using existing reasoners (such as Pellet, Hermit, and JFact) and tools (OOPS!99 and

the Neon Toolkit100) to check our ontology design for taxonomic, syntactical, and consistency

96 https://ant.apache.org/
97 https://gradle.org/
98 https://docs.microsoft.com/en-ca/cpp/build/msbuild-visual-cpp
99 http://oops.linkeddata.es/advanced.jsp
100 http://neon-toolkit.org/wiki/Download/2.5.2.html

191

problems. To determine if our ontology constraints were sufficient to identify incorrect data, we

incrementally populated the ontologies with facts during the evaluation process. While the

reasoners did not report any inconsistencies in our ontologies, OOPS! reported a few problems in

our ontologies referring to some violations of design rules found in the OOPS! rule catalogue.

However, these identified violations were only related to some missing license information and

annotations (such as rdfs:label and rdfs:comment) for some of our ontology elements.

Another potential threat to our research is whether the set of concepts we considered in SV-

AF is sufficient to capture the semantics of the analyzed domains. There is always a trade-off in

the design of knowledge bases in terms of their expressivity and their usefulness; an equilibrium

should be established between the amount of information that is sufficient to accomplish a task

and the granularity of the knowledge that should be available to produce useful results. We

addressed this threat by showing that our modeled concepts are sufficient to provide flexible

analysis services through the described case study experiments.

Validating the correctness of the newly inserted knowledge (e.g., Chapter 7), such as adding

a vulnerable project that is not actually a vulnerable project is yet another potential threat. This

threat can only be partially mitigated by adding rules and constraints against the populated

concepts, since much of the interpretation of what constitutes a vulnerable project in an

assessment model is subjective to human interpretation and the specific assessment context.

A potential threat to the trustworthiness approach (Chapter 7) is whether the set of measures

we considered in our assessment as part of OntTAM evaluation is sufficient to capture

trustworthiness as a factor. We addressed this threat by selecting our trustworthiness measures

from a well-established subset of existing trustworthiness models, such as PAS 754:2014,

QualiPSo [261], and Boland et. al. [262]. While we only selected a very small subset of these

trustworthiness attributes, we believe this subset is sufficient to illustrate the applicability of our

assessment model. The objective of our study was not to verify the assessment model for its

completeness but rather to demonstrate that OntTAM can be instantiated to a given (user

specific) assessment context. The study also shows that instantiating and extending OntTAM to

support other requirements including new measures, attributes, or sub-factors is a straightforward

task.

192

Mining SVDBs and SE Repositories. The research presented in this thesis relies on the ability

to mine facts from the vulnerabilities databases and SE repositories to populate our ontologies. A

common problem with mining software repository is that these repositories often contain noise in

their data due to ambiguities, inconsistencies, or incompleteness. For our studies, we were able to

mitigate this threat since vulnerabilities published in SVDBs (e.g., NVD) are manually validated

and managed by security experts. Also the SE data we used in Chapter 5, 6, and 7 was based on

the Maven repository that captures dependencies related to a particular build file. A key premise

of Maven is that its dependencies are fully specified and available, therefore eliminating

ambiguities and inconsistency in the dataset.

Other threats to the mining of these repositories are related to the fact that we only extracted

vulnerabilities reported from 2002 to 2017 from the SVDBs (e.g., NVD) datasets. While our

selected data range may not be generalizable for all vulnerabilities, it does cover the majority of

all published vulnerabilities. Furthermore, the dataset also covers a broad range of projects and

vulnerabilities, ensuring that the dataset can be considered large enough to avoid any bias

towards certain vulnerabilities or affected libraries.

Vulnerability Patches and Usage. The change-list of programming constructs used to identify

the usage of vulnerable code fragments in vulnerable components depends on the availability of

patch information. In NVD, however, not all identified vulnerabilities include a complete

reference to their related patches. Furthermore, we also observed cases where these references

exist only as a textual description of the patch instead of a URL to the actual source commit,

limiting our ability to automatically extract the source code information related to such a

particular patch.

The case studies introduced in this research are limited in their scope to open source Java

projects, and the results obtained from these studies might therefore not be generalizable to other

programming languages or system types. Given that our modeling approach is based on different

levels of abstraction, we also abstract common aspects of source code and build dependencies in

our knowledge model. Currently, we do model object-oriented programming languages, software

vulnerabilities, software licenses, and build repositories at the domain-specific layer of our

knowledge model. In our modeling approach, these ontologies can be easily extended to specific

193

system level ontologies to model and capture knowledge specific to any object-oriented

language, build repository, or vulnerability database.

8.2.2 Opportunities for Future Research
The presented research involves different areas of computer science, including SW technologies,

knowledge model, mining software repositories, and source code analysis. This diversity of

topics also leads to multiple research directions in which the work presented in this thesis can be

extended as part of future work.

8.2.2.1 An Ontology-based Approach to Automate Tagging of Software

Artifacts

SE repositories contain a wealth of textual information such as source code comments,

developers’ discussions, commit messages, and bug reports. These free form text descriptions

can contain both direct and implicit references to security concerns. The goal is to derive an

approach to extract security concerns from textual information that can yield several benefits,

such as bug management (e.g., prioritization), bug triage, or capturing zero-day attack. As part of

our ongoing research we have already proposed an automated tagging approach which relies on a

semantic ground for the tagging process. More specifically, we introduce a methodical approach

for automatically classifying and tagging security concerns found in free-form SE artifacts (e.g.,

bug reports) using an optimized topic model algorithm [263]. Our approach relies on a variation

of the original Latent Dirichlet Allocation (LDA) [264] machine learning algorithm, the Seeded-

LDA[263]. Seeded-LDA improves topic detection accuracy by incorporating previous

information, by using seeds (known set of concepts) that bear a positive or negative polarity for a

given topic domain. These seeds can be obtained from various resources, such as paradigm word

lists, a full subjectivity lexicon, or filtered subjective lexica. In our case, we take advantage of a

specialized lexicon of security terms provided by the Common Weakness Enumeration (CWE101)

dictionary. This dictionary describes publicly known information related to security

vulnerabilities and exposures. The main contribution of our approach is that it can extract such

101 https://cwe.mitre.org/

194

security concerns from free-form text descriptions without requiring any supervised training

data. More specifically, we map all words in a software document (e.g., bug reports), not just

entities, to a set of ontological concepts. Using the word-concept distributions we can now apply

an entirely unsupervised labeling approach to our dataset. Our preliminary experiments involving

the tagging of bug reports show that our approach can extract relevant security concepts, thus

reducing the manual effort required in classifying bug reports while at the same tagging them

automatically with more representative and standardized security tags. As part of these studies,

we mapped these extracted security concepts (cybersecurity ontology) to SV-AF (Chapter 5).

Given this unified ontology representation, we can now take advantage of SW [13] reasoners to

further infer both implicit and explicit semantic links between the extracted cybersecurity

information and other software artifacts. Furthermore, the ontological representation also allows

for both extensibility and reuse of our knowledge model for different application contexts.

Note: An earlier version of the work completed in this section has been published in the 11th

ACM / IEEE International Symposium on Empirical Software Engineering and Measurement

(ESEM 2017) [265].

As part of our future work, the attack pattern ontology can be developed and combined with

cybersecurity tagging ontology and integrated with SV-AF. This will lead to a more powerful

vulnerability analysis model; we plan to investigate potential vulnerability patterns based on the

usage of vulnerable components. These patterns will provide us with additional insights into

assessing and predicting the quality of software systems.

8.2.2.2 SE-GPS: Semantic Global Problems Scanner Visualization Tool

One future research direction is developing a tool that is able to visualize both direct and indirect

vulnerable dependencies. In particular, this future work proposes a tool to better understand how

much security vulnerabilities affect APIs directly, with the aim of providing more insights into

how such API dependencies may be affected by security vulnerability indirectly. We partially

implemented some of the suggestions provided by our study from Chapter 3. Our proposed

visualization tool provides two visualizations addressing two viewpoints, specifically:

195

1. Direct vulnerabilities visualization, which helps to identify the security vulnerabilities that

affect the specified APIs and shows the severity levels along with their disclosure dates.

2. Transitive vulnerable dependencies visualization, which provides some insights about how

the analyzed API depends on other vulnerable APIs components and shows the security

vulnerabilities attached to these components.

We implemented SE-GPS, a web-based tool available online [215], that integrates with our

SV-AF framework introduced earlier in this thesis. The tool focuses on the visualization

vulnerabilities (published by NVD) in the form of direct and indirect affected components.

Web Browser

SE-GPS Website

HML/Ajax CSS
JavaScript

D3

Server Container

SE-GPS Web Services

SPARQL Manager Servlets

Client Side

Knowledgebase

Server Side

Figure 63: Tool Architecture.

Figure 63 depicts the main components of SE-GPS architecture. As can be seen, SE-GPs is

decomposed into a server side, which includes the knowledge base SPARQL102 engine and the

web services, and a client side with the website. Figures 64 and 65 show the current

visualizations that SE-GPS offers.

Figure 64 shows the transitive vulnerable dependencies for a given project (e.g., Geronimo-

jetty6-javaee5 version 2.1.1). In fact, Geronimo-jetty6-javaee5 version 2.1.1 itself has no

reported vulnerability but some of the external APIs contain vulnerabilities that might affect the

project.

Figure 65 shows the vulnerabilities associated with a component (in this example Tomcat

version 7.0.42) and the node color indicating the number of vulnerabilities affecting a node (e.g.,

dark color corresponding to a large number of vulnerabilities; in this case Tomcat 7.0.42 is

affected by 10 security vulnerabilities). In future work we plan to further extend SE-GPS by

creating an Eclipse as a plugin which will provide developers contextual vulnerability

notifications within their development process.

102 Short definition for SPARQL

196

Figure 64: Visualizing indirect vulnerable dependencies.

Figure 65: Direct vulnerable dependencies.

197

Bibliography

[1] P. Vermesan, Ovidiu and Friess, Internet of things: converging technologies for smart
environments and integrated ecosystems. River Publishers, 2013.

[2] C. Jones, “Globalization of software supply and demand,” IEEE Softw., pp. 17--24, 1994.
[3] E. and A. Dolstra, “NixOS: A purely functional Linux distribution,” ACM Sigplan Not.,

vol. 43, pp. 367--378, 2008.
[4] P. T. Devanbu and S. Stubblebine, “Software engineering for security,” in ICSE ’00

Proceedings of the Conference on The Future of Software Engineering, 2000, pp. 227–
239.

[5] I. Gutzmer, “Equifax Announces Cybersecurity Incident Involving Consumer
Information,” 2017. [Online]. Available: https://investor.equifax.com/news-and-
events/news/2017/09-07-2017-213000628. [Accessed: 01-Jun-2018].

[6] A. Goldestein, “The Equifax Breach: Who’s to Blame?,” 2017. [Online]. Available:
https://resources.whitesourcesoftware.com/blog-whitesource/the-equifax-breach-who-s-to-
blame. [Accessed: 01-Jun-2018].

[7] Snyk, “The State of Open Source Security,” 2017. [Online]. Available:
https://snyk.io/stateofossecurity/. [Accessed: 01-Jun-2018].

[8] Sonatype, “2018 DevSecOps Community Survey,” 2018. [Online]. Available:
https://www.sonatype.com/2018survey. [Accessed: 01-Jun-2018].

[9] M. Korolov, “Open source software security challenges persist,” 2018. [Online].
Available: https://www.csoonline.com/article/3157377/application-development/open-
source-software-security-challenges-persist.html. [Accessed: 01-Jun-2018].

[10] T. R. Gruber, “A translation approach to portable ontology specifications,” Knowl.
Acquis., vol. 5, no. 2, pp. 199–220, Jun. 1993.

[11] R. Laurini, “Pre-consensus Ontologies and Urban Databases,” 2007, pp. 27–36.
[12] F. Baader, I. Horrocks, and U. Sattler, “Description Logics as Ontology Languages for the

Semantic Web,” in Mechanizing Mathematical Reasoning, 2005, pp. 228–248.
[13] T. Berners-Lee, J. Hendler, and O. Lassila, “The Semantic Web,” Sci. Am., vol. 284, no. 5,

pp. 34–43, May 2001.
[14] W. O. W. Group, “OWL 2 Web Ontology Language Document Overview (Second

Edition),” 2012. [Online]. Available: http://www.w3.org/TR/owl2-overview/. [Accessed:
01-Dec-2014].

[15] C. J. H. Mann, “The Description Logic Handbook – Theory, Implementation and
Applications,” Kybernetes, vol. 32, no. 9/10, Dec. 2003.

[16] S. Chabot, “A Review of ‘A Semantic Web Primer,’” J. Web Librariansh., vol. 4, no. 1,
pp. 97–98, Mar. 2010.

[17] Apache, “Apache Jena,” 2000. [Online]. Available: https://jena.apache.org/. [Accessed:
10-Jan-2015].

[18] O. Software, “OpenLink,” 1992. [Online]. Available: http://virtuoso.openlinksw.com/.
[Accessed: 10-Jan-2015].

[19] J. Aasman, “Allegro graph: RDF triple database,” 2006. [Online]. Available:
http://franz.com/agraph/allegrograph/. [Accessed: 10-Jan-2015].

[20] M. Würsch, G. Ghezzi, M. Hert, G. Reif, and H. C. Gall, “SEON: a pyramid of ontologies

198

for software evolution and its applications,” Computing, vol. 94, no. 11, pp. 857–885,
Nov. 2012.

[21] M. Uschold and M. Gruninger, “Ontologies: principles, methods and applications,”
Knowl. Eng. Rev., vol. 11, no. 02, p. 93, Jun. 1996.

[22] O. Corcho, M. Fernández-López, and A. Gómez-Pérez, “Ontological Engineering:
Principles, Methods, Tools and Languages,” in Ontologies for Software Engineering and
Software Technology, Springer Berlin Heidelberg, 2006, pp. 1–48.

[23] F. Ruiz and J. R. Hilera, “Using Ontologies in Software Engineering and Technology,” in
Ontologies for Software Engineering and Software Technology, Springer Berlin
Heidelberg, 2006, pp. 49–102.

[24] B. Decker, J. Rech, E. Ras, B. Klein, and C. Hoecht, “Selforganized Reuse of Software
Engineering Knowledge Supported by Semantic Wikis,” in Proceedings of the Workshop
on Semantic Web Enabled Software Engineering (SWESE), 2005, p. 76.

[25] Y. Zhang, J. Rilling, and V. Haarslev, “An Ontology-Based Approach to Software
Comprehension - Reasoning about Security Concerns,” in 30th Annual International
Computer Software and Applications Conference (COMPSAC’06), 2006, pp. 333–342.

[26] B. Wouters, D. Deridder, and E. Van Paesschen, “The use of ontologies as a backbone for
use case management,” in European Conference on Object-Oriented Programming
(ECOOP 2000), Workshop: Objects and Classifications, a natural convergence, 2000.

[27] U. Nonnenmann and J. K. Eddy, “KITSS-a functional software testing system using a
hybrid domain model,” in Proceedings Eighth Conference on Artificial Intelligence for
Applications, pp. 136–142.

[28] A. Ankolekar, K. Sycara, J. Herbsleb, R. Kraut, and C. Welty, “Supporting online
problem-solving communities with the semantic web,” Proc. 15th Int. Conf. World Wide
Web - WWW ’06, p. 575, 2006.

[29] H. Hans-Jörg, A. Korthaus, S. Seedorf, and P. Tomczyk, “KOntoR: An Ontology-enabled
Approach to Software Reuse,” in Proceedings of 18th International Conference on
Software Engineering and Knowledge Engineering, 2006.

[30] D. Jin and J. R. Cordy, “A service sharing approach to integrating program
comprehension tools,” in Proceedings of the European Software Engineering Conference,
Helsinki, Finland, 2003.

[31] B. Henderson-Sellers, “Bridging metamodels and ontologies in software engineering,” J.
Syst. Softw., vol. 84, no. 2, pp. 301–313, Feb. 2011.

[32] R. Witte, Y. Zhang, and J. Rilling, “LNCS 4519 - Empowering Software Maintainers with
Semantic Web Technologies,” pp. 37–52.

[33] and K. K. A. C. M. Gutheil, “On the Relationship of Ontologies and Models,” in
Proceedings of the 2nd International Workshop on Meta-Modelling (WoMM), 2006, pp.
47–60.

[34] B. Ganter and R. Wille, Formal Concept Analysis. Berlin, Heidelberg, Heidelberg:
Springer Berlin Heidelberg, 1999.

[35] M. Shiri, J. Hassine, and J. Rilling, “A Requirement Level Modification Analysis Support
Framework,” in Third International IEEE Workshop on Software Evolvability 2007, 2007,
pp. 67–74.

[36] S. O. Kuznetsov and J. Poelmans, “Knowledge representation and processing with formal
concept analysis,” Wiley Interdiscip. Rev. Data Min. Knowl. Discov., vol. 3, no. 3, pp.
200–215, May 2013.

199

[37] J. Vacca, Computer and Information Security Handbook. elsevier, 2013.
[38] M. Karlsson, “The Edit History of the National Vulnerability Database and similar

Vulnerability Databases,” 2012.
[39] Carlos Vazques, “Auditing Using Vulnerability Tools to Identify Today’s Threats to

Business Performance,” 2014.
[40] B. Liu, L. Shi, Z. Cai, and M. Li, “Software Vulnerability Discovery Techniques: A

Survey,” in 2012 Fourth International Conference on Multimedia Information Networking
and Security, 2012, pp. 152–156.

[41] T. U. of Maryland., “FindBugs,” 2004. [Online]. Available:
http://findbugs.sourceforge.net/. [Accessed: 10-Mar-2015].

[42] S. S. Jeremy Long, “OWASP Dependency Check,” 2015. [Online]. Available:
https://www.owasp.org/index.php/OWASP_Dependency_Check. [Accessed: 10-Mar-
2015].

[43] A. Williams, Jeff and Dabirsiaghi, “The unfortunate reality of insecure libraries,” Asp.
Secur. Inc, no. March, pp. 1--26, 2012.

[44] S. S. Alqahtani, E. E. Eghan, and J. Rilling, “SV-AF — A Security Vulnerability Analysis
Framework,” in 2016 IEEE 27th International Symposium on Software Reliability
Engineering (ISSRE), 2016, pp. 219–229.

[45] J. Luszcz, “Apache Struts 2: how technical and development gaps caused the Equifax
Breach,” Netw. Secur., vol. 2018, no. 1, pp. 5–8, Jan. 2018.

[46] Schumacher, M. and Haul, C. and Hurler, M. and Buchmann, and Alejandro, “Data
Mining in Vulnerability Databases,” Comput. Sci., vol. 12, 2000.

[47] S. S. Alqahtani and J. Rilling, “Survey Dataset,” 2018. [Online]. Available:
https://github.com/isultane/Survey-dateset. [Accessed: 10-May-2018].

[48] T.-H. Chen, S. W. Thomas, and A. E. Hassan, “A survey on the use of topic models when
mining software repositories,” Empir. Softw. Eng., vol. 21, no. 5, pp. 1843–1919, Oct.
2016.

[49] W. Martin, F. Sarro, Y. Jia, Y. Zhang, and M. Harman, “A Survey of App Store Analysis
for Software Engineering,” IEEE Trans. Softw. Eng., vol. 43, no. 9, pp. 817–847, Sep.
2017.

[50] K. Petersen, R. Feldt, S. Mujtaba, and M. Mattsson, “Systematic Mapping Studies in
Software Engineering,” in 12th International Conference on Evaluation and Assessment
in Software Engineering (EASE), 2008, pp. 68--77.

[51] C. Wohlin, “Guidelines for snowballing in systematic literature studies and a replication in
software engineering,” in Proceedings of the 18th International Conference on Evaluation
and Assessment in Software Engineering - EASE ’14, 2014, pp. 1–10.

[52] L. Sampaio and A. Garcia, “Exploring context-sensitive data flow analysis for early
vulnerability detection,” J. Syst. Softw., vol. 113, pp. 337–361, Mar. 2016.

[53] N. Palsetia, G. Deepa, F. Ahmed Khan, P. S. Thilagam, and A. R. Pais, “Securing native
XML database-driven web applications from XQuery injection vulnerabilities,” J. Syst.
Softw., vol. 122, pp. 93–109, Dec. 2016.

[54] J. Bozic, B. Garn, D. E. Simos, and F. Wotawa, “Evaluation of the IPO-Family algorithms
for test case generation in web security testing,” in 2015 IEEE Eighth International
Conference on Software Testing, Verification and Validation Workshops (ICSTW), 2015,
pp. 1–10.

[55] J. Walden, J. Stuckman, and R. Scandariato, “Predicting Vulnerable Components:

200

Software Metrics vs Text Mining,” in 2014 IEEE 25th International Symposium on
Software Reliability Engineering, 2014, pp. 23–33.

[56] N. Mendes, H. Madeira, and J. Duraes, “Security Benchmarks for Web Serving Systems,”
in 2014 IEEE 25th International Symposium on Software Reliability Engineering, 2014,
pp. 1–12.

[57] D. E. Perry, A. A. Porter, and L. G. Votta, “Empirical studies of software engineering,” in
Proceedings of the conference on The future of Software engineering - ICSE ’00, 2000,
pp. 345–355.

[58] B. J. Berger, K. Sohr, and R. Koschke, “Extracting and Analyzing the Implemented
Security Architecture of Business Applications,” in 2013 17th European Conference on
Software Maintenance and Reengineering, 2013, pp. 285–294.

[59] J. D. Meier, A. Mackman, and B. Wastell, “Threat Modeling Web Applications,”
Microsoft Corporation, 2005. .

[60] A. Chatzipoulidis, D. Michalopoulos, and I. Mavridis, “Information infrastructure risk
prediction through platform vulnerability analysis,” J. Syst. Softw., vol. 106, pp. 28–41,
Aug. 2015.

[61] R. Scandariato, J. Walden, A. Hovsepyan, and W. Joosen, “Predicting Vulnerable
Software Components via Text Mining,” IEEE Trans. Softw. Eng., vol. 40, no. 10, pp.
993–1006, Oct. 2014.

[62] L. K. Shar, H. Beng Kuan Tan, and L. C. Briand, “Mining SQL injection and cross site
scripting vulnerabilities using hybrid program analysis,” in 2013 35th International
Conference on Software Engineering (ICSE), 2013, pp. 642–651.

[63] N. Ilo, J. Grabner, T. Artner, M. Bernhart, and T. Grechenig, “Combining software
interrelationship data across heterogeneous software repositories,” in 2015 IEEE
International Conference on Software Maintenance and Evolution (ICSME), 2015, pp.
571–575.

[64] Y. Wu, H. Siy, and R. Gandhi, “Empirical results on the study of software
vulnerabilities,” in Proceeding of the 33rd international conference on Software
engineering - ICSE ’11, 2011, p. 964.

[65] N. H. Pham, T. T. Nguyen, H. A. Nguyen, X. Wang, A. T. Nguyen, and T. N. Nguyen,
“Detecting recurring and similar software vulnerabilities,” in Proceedings of the 32nd
ACM/IEEE International Conference on Software Engineering - ICSE ’10, 2010, vol. 2, p.
227.

[66] P. Anbalagan and M. Vouk, “Towards a Unifying Approach in Understanding Security
Problems,” in 2009 20th International Symposium on Software Reliability Engineering,
2009, pp. 136–145.

[67] H. Cavusoglu, H. Cavusoglu, and S. Raghunathan, “Efficiency of Vulnerability Disclosure
Mechanisms to Disseminate Vulnerability Knowledge,” IEEE Trans. Softw. Eng., vol. 33,
no. 3, pp. 171–185, Mar. 2007.

[68] E. S. Pasaribu, Y. Asnar, and M. M. I. Liem, “Input injection detection in Java code,” in
2014 International Conference on Data and Software Engineering (ICODSE), 2014, pp.
1–6.

[69] Y. Zheng and X. Zhang, “Path sensitive static analysis of web applications for remote
code execution vulnerability detection,” in 2013 35th International Conference on
Software Engineering (ICSE), 2013, pp. 652–661.

[70] A. Møller and M. Schwarz, “Automated Detection of Client-State Manipulation

201

Vulnerabilities,” ACM Trans. Softw. Eng. Methodol., vol. 23, no. 4, pp. 1–30, Sep. 2014.
[71] H. Shahriar and M. Zulkernine, “Client-Side Detection of Cross-Site Request Forgery

Attacks,” in 2010 IEEE 21st International Symposium on Software Reliability
Engineering, 2010, pp. 358–367.

[72] G. Wassermann and Z. Su, “Static detection of cross-site scripting vulnerabilities,” in
Proceedings of the 13th international conference on Software engineering - ICSE ’08,
2008, p. 171.

[73] J. Thome, L. K. Shar, and L. Briand, “Security slicing for auditing XML, XPath, and SQL
injection vulnerabilities,” in 2015 IEEE 26th International Symposium on Software
Reliability Engineering (ISSRE), 2015, pp. 553–564.

[74] R. Wang, P. Liu, L. Zhao, Y. Cheng, and L. Wang, “deExploit: Identifying misuses of
input data to diagnose memory-corruption exploits at the binary level,” J. Syst. Softw., vol.
124, pp. 153–168, Feb. 2017.

[75] F. Gao, L. Wang, and X. Li, “BovInspector: automatic inspection and repair of buffer
overflow vulnerabilities,” in Proceedings of the 31st IEEE/ACM International Conference
on Automated Software Engineering - ASE 2016, 2016, pp. 786–791.

[76] M. Ceccato, C. D. Nguyen, D. Appelt, and L. C. Briand, “SOFIA: an automated security
oracle for black-box testing of SQL-injection vulnerabilities,” in Proceedings of the 31st
IEEE/ACM International Conference on Automated Software Engineering - ASE 2016,
2016, pp. 167–177.

[77] V.-T. Pham, M. Böhme, and A. Roychoudhury, “Model-based whitebox fuzzing for
program binaries,” in Proceedings of the 31st IEEE/ACM International Conference on
Automated Software Engineering - ASE 2016, 2016, pp. 543–553.

[78] B. Stivalet and E. Fong, “Large Scale Generation of Complex and Faulty PHP Test
Cases,” in 2016 IEEE International Conference on Software Testing, Verification and
Validation (ICST), 2016, pp. 409–415.

[79] B. Min and V. Varadharajan, “A New Technique for Counteracting Web Browser
Exploits,” in 2014 23rd Australian Software Engineering Conference, 2014, pp. 132–141.

[80] E. Pek and R. Lammel, “A Literature Survey on Empirical Evidence in Software
Engineering,” Comput. Res. Repos., vol. abs/1304.1, 2013.

[81] M. Hafiz and M. Fang, “Game of detections: how are security vulnerabilities discovered
in the wild?,” Empir. Softw. Eng., vol. 21, no. 5, pp. 1920–1959, Oct. 2016.

[82] N. Munaiah, F. Camilo, W. Wigham, A. Meneely, and M. Nagappan, “Do bugs
foreshadow vulnerabilities? An in-depth study of the chromium project,” Empir. Softw.
Eng., Aug. 2016.

[83] T. Ye, L. Zhang, L. Wang, and X. Li, “An Empirical Study on Detecting and Fixing
Buffer Overflow Bugs,” in 2016 IEEE International Conference on Software Testing,
Verification and Validation (ICST), 2016, pp. 91–101.

[84] M. di Biase, M. Bruntink, and A. Bacchelli, “A Security Perspective on Code Review:
The Case of Chromium,” in 2016 IEEE 16th International Working Conference on Source
Code Analysis and Manipulation (SCAM), 2016, pp. 21–30.

[85] M. Jimenez, M. Papadakis, and Y. Le Traon, “Vulnerability Prediction Models: A Case
Study on the Linux Kernel,” in 2016 IEEE 16th International Working Conference on
Source Code Analysis and Manipulation (SCAM), 2016, pp. 1–10.

[86] S. S. Murtaza, W. Khreich, A. Hamou-Lhadj, and A. B. Bener, “Mining trends and
patterns of software vulnerabilities,” J. Syst. Softw., vol. 117, pp. 218–228, Jul. 2016.

202

[87] F. Camilo, A. Meneely, and M. Nagappan, “Do Bugs Foreshadow Vulnerabilities? A
Study of the Chromium Project,” in 2015 IEEE/ACM 12th Working Conference on Mining
Software Repositories, 2015, pp. 269–279.

[88] M. Fang and M. Hafiz, “Discovering buffer overflow vulnerabilities in the wild,” in
Proceedings of the 8th ACM/IEEE International Symposium on Empirical Software
Engineering and Measurement - ESEM ’14, 2014, pp. 1–10.

[89] L. Tan, C. Liu, Z. Li, X. Wang, Y. Zhou, and C. Zhai, “Bug characteristics in open source
software,” Empir. Softw. Eng., vol. 19, no. 6, pp. 1665–1705, Dec. 2014.

[90] J. Stuckman and J. Purtilo, “Mining Security Vulnerabilities from Linux Distribution
Metadata,” in 2014 IEEE International Symposium on Software Reliability Engineering
Workshops, 2014, pp. 323–328.

[91] F. Massacci and V. H. Nguyen, “An Empirical Methodology to Evaluate Vulnerability
Discovery Models,” IEEE Trans. Softw. Eng., vol. 40, no. 12, pp. 1147–1162, Dec. 2014.

[92] D. Wijayasekara, M. Manic, and M. McQueen, “Vulnerability identification and
classification via text mining bug databases,” in IECON 2014 - 40th Annual Conference of
the IEEE Industrial Electronics Society, 2014, pp. 3612–3618.

[93] A. Meneely, H. Srinivasan, A. Musa, A. R. Tejeda, M. Mokary, and B. Spates, “When a
Patch Goes Bad: Exploring the Properties of Vulnerability-Contributing Commits,” in
2013 ACM / IEEE International Symposium on Empirical Software Engineering and
Measurement, 2013, pp. 65–74.

[94] A. Meneely and S. Lucidi, “Vulnerability of the Day: Concrete demonstrations for
software engineering undergraduates,” in 2013 35th International Conference on Software
Engineering (ICSE), 2013, pp. 1154–1157.

[95] D. Y. Lee, M. Vouk, and L. Williams, “Using software reliability models for security
assessment - Verification of assumptions,” in 2013 IEEE International Symposium on
Software Reliability Engineering Workshops (ISSREW), 2013, pp. 23–24.

[96] M. Shahzad, M. Z. Shafiq, and A. X. Liu, “A large scale exploratory analysis of software
vulnerability life cycles,” in 2012 34th International Conference on Software Engineering
(ICSE), 2012, pp. 771–781.

[97] K. Goseva-Popstojanova, G. Anastasovski, and R. Pantev, “Using Multiclass Machine
Learning Methods to Classify Malicious Behaviors Aimed at Web Systems,” in 2012
IEEE 23rd International Symposium on Software Reliability Engineering, 2012, pp. 81–
90.

[98] Q. Liu, Y. Zhang, Y. Kong, and Q. Wu, “Improving VRSS-based vulnerability
prioritization using analytic hierarchy process,” J. Syst. Softw., vol. 85, no. 8, pp. 1699–
1708, Aug. 2012.

[99] D. Wijayasekara, M. Manic, J. L. Wright, and M. McQueen, “Mining Bug Databases for
Unidentified Software Vulnerabilities,” in 2012 5th International Conference on Human
System Interactions, 2012, pp. 89–96.

[100] A. Austin and L. Williams, “One Technique is Not Enough: A Comparison of
Vulnerability Discovery Techniques,” in 2011 International Symposium on Empirical
Software Engineering and Measurement, 2011, pp. 97–106.

[101] B. Smith and L. Williams, “Using SQL Hotspots in a Prioritization Heuristic for Detecting
All Types of Web Application Vulnerabilities,” in 2011 Fourth IEEE International
Conference on Software Testing, Verification and Validation, 2011, pp. 220–229.

[102] S. Zhang, D. Caragea, and X. Ou, “An Empirical Study on Using the National

203

Vulnerability Database to Predict Software Vulnerabilities,” 2011, pp. 217–231.
[103] S. Zaman, B. Adams, and A. E. Hassan, “Security versus performance bugs,” in

Proceeding of the 8th working conference on Mining software repositories - MSR ’11,
2011, p. 93.

[104] T. Huynh and J. Miller, “An empirical investigation into open source web applications’
implementation vulnerabilities,” Empir. Softw. Eng., vol. 15, no. 5, pp. 556–576, Oct.
2010.

[105] T. Zimmermann, N. Nagappan, and L. Williams, “Searching for a Needle in a Haystack:
Predicting Security Vulnerabilities for Windows Vista,” in 2010 Third International
Conference on Software Testing, Verification and Validation, 2010, pp. 421–428.

[106] S. Neuhaus and T. Zimmermann, “Security Trend Analysis with CVE Topic Models,” in
2010 IEEE 21st International Symposium on Software Reliability Engineering, 2010, pp.
111–120.

[107] A. Mauczka, C. Schanes, F. Fankhauser, M. Bernhart, and T. Grechenig, “Mining security
changes in FreeBSD,” in 2010 7th IEEE Working Conference on Mining Software
Repositories (MSR 2010), 2010, pp. 90–93.

[108] J. Wal, M. Doyle, G. A. Welch, and M. Whelan, “Security of open source web
applications,” in 2009 3rd International Symposium on Empirical Software Engineering
and Measurement, 2009, pp. 545–553.

[109] P. Anbalagan and M. Vouk, “On mining data across software repositories,” in 2009 6th
IEEE International Working Conference on Mining Software Repositories, 2009, pp. 171–
174.

[110] P. Anba and M. Vouk, “An empirical study of security problem reports in Linux
distributions,” in 2009 3rd International Symposium on Empirical Software Engineering
and Measurement, 2009, pp. 481–484.

[111] G. Vache, “Vulnerability analysis for a quantitative security evaluation,” in 2009 3rd
International Symposium on Empirical Software Engineering and Measurement, 2009, pp.
526–534.

[112] R. Telang and S. Wattal, “An Empirical Analysis of the Impact of Software Vulnerability
Announcements on Firm Stock Price,” IEEE Trans. Softw. Eng., vol. 33, no. 8, pp. 544–
557, Aug. 2007.

[113] O. Alhazmi and Y. Malaiya, “Measuring and Enhancing Prediction Capabilities of
Vulnerability Discovery Models for Apache and IIS HTTP Servers,” in 2006 17th
International Symposium on Software Reliability Engineering, 2006, pp. 343–352.

[114] S. Frei, M. May, U. Fiedler, and B. Plattner, “Large-scale vulnerability analysis,” in
Proceedings of the 2006 SIGCOMM workshop on Large-scale attack defense - LSAD ’06,
2006, pp. 131–138.

[115] O. H. Alhazmi and Y. K. Malaiya, “Modeling the Vulnerability Discovery Process,” in
16th IEEE International Symposium on Software Reliability Engineering (ISSRE’05),
2005, pp. 129–138.

[116] J. D. Musa and K. Okumoto, “A logarithmic poisson execution time model for software
reliability measurement,” in ICSE ’84 Proceedings of the 7th international conference on
Software engineering, 1984, pp. 230–238.

[117] X.-F. Team, “IBM Internet Security Systems X-Force Threat Insight Quarterly,” 2009.
[118] FIRST SIG, “Common Vulnerability Scoring System SIG,” 2018. [Online]. Available:

https://www.first.org/cvss/. [Accessed: 10-May-2018].

204

[119] Q. Liu and Y. Zhang, “VRSS: A new system for rating and scoring vulnerabilities,”
Comput. Commun., vol. 34, no. 3, pp. 264–273, Mar. 2011.

[120] R. France and B. Rumpe, “Model-driven Development of Complex Software: A Research
Roadmap,” in Future of Software Engineering (FOSE ’07), 2007, pp. 37–54.

[121] P. Morrison, “Building a security practices evaluation framework,” in Proceedings of the
2015 Symposium and Bootcamp on the Science of Security - HotSoS ’15, 2015, pp. 1–2.

[122] S. S. Murtaza, A. Hamou-Lhadj, W. Khreich, and M. Couture, “Total ADS: Automated
Software Anomaly Detection System,” in 2014 IEEE 14th International Working
Conference on Source Code Analysis and Manipulation, 2014, pp. 83–88.

[123] A. Milenkoski, B. D. Payne, N. Antunes, M. Vieira, and S. Kounev, “Experience Report:
An Analysis of Hypercall Handler Vulnerabilities,” in 2014 IEEE 25th International
Symposium on Software Reliability Engineering, 2014, pp. 100–111.

[124] M. Almorsy, J. Grundy, and A. S. Ibrahim, “Automated software architecture security risk
analysis using formalized signatures,” in 2013 35th International Conference on Software
Engineering (ICSE), 2013, pp. 662–671.

[125] L. K. Shar and H. B. K. Tan, “Predicting common web application vulnerabilities from
input validation and sanitization code patterns,” in Proceedings of the 27th IEEE/ACM
International Conference on Automated Software Engineering - ASE 2012, 2012, p. 310.

[126] M. Almorsy, J. Grundy, and A. S. Ibrahim, “Supporting automated vulnerability analysis
using formalized vulnerability signatures,” in Proceedings of the 27th IEEE/ACM
International Conference on Automated Software Engineering - ASE 2012, 2012, p. 100.

[127] F. Gauthier and E. Merlo, “Fast Detection of Access Control Vulnerabilities in PHP
Applications,” in 2012 19th Working Conference on Reverse Engineering, 2012, pp. 247–
256.

[128] D. Xu and K. E. Nygard, “Threat-driven modeling and verification of secure software
using aspect-oriented Petri nets,” IEEE Trans. Softw. Eng., vol. 32, no. 4, pp. 265–278,
Apr. 2006.

[129] D. Byers, S. Ardi, N. Shahmehri, and C. Duma, “Modeling Software VulnerabilitiesWith
Vulnerability Cause Graphs,” in 2006 22nd IEEE International Conference on Software
Maintenance, 2006, pp. 411–422.

[130] Y. Wu, R. A. Gandhi, and H. Siy, “Using semantic templates to study vulnerabilities
recorded in large software repositories,” in Proceedings of the 2010 ICSE Workshop on
Software Engineering for Secure Systems - SESS ’10, 2010, pp. 22–28.

[131] OWASP, “Application Threat Modeling,” 2017. [Online]. Available:
https://www.owasp.org/index.php/Application_Threat_Modeling. [Accessed: 10-May-
2018].

[132] OWASP, “Source Code Analysis Tools,” 2018. [Online]. Available:
https://www.owasp.org/index.php/Source_Code_Analysis_Tools. [Accessed: 10-May-
2018].

[133] V. H. Nguyen, S. Dashevskyi, and F. Massacci, “An automatic method for assessing the
versions affected by a vulnerability,” Empir. Softw. Eng., Dec. 2015.

[134] J. Ming, D. Wu, J. Wang, G. Xiao, and P. Liu, “StraightTaint: decoupled offline symbolic
taint analysis,” in Proceedings of the 31st IEEE/ACM International Conference on
Automated Software Engineering - ASE 2016, 2016, pp. 308–319.

[135] C. Theisen, K. Herzig, P. Morrison, B. Murphy, and L. Williams, “Approximating Attack
Surfaces with Stack Traces,” in 2015 IEEE/ACM 37th IEEE International Conference on

205

Software Engineering, 2015, pp. 199–208.
[136] S. Renatus, C. Bartelheimer, and J. Eichler, “Improving prioritization of software

weaknesses using security models with AVUS,” in 2015 IEEE 15th International Working
Conference on Source Code Analysis and Manipulation (SCAM), 2015, pp. 259–264.

[137] Z. Coker and M. Hafiz, “Program transformations to fix C integers,” in 2013 35th
International Conference on Software Engineering (ICSE), 2013, pp. 792–801.

[138] E. Ofuonye and J. Miller, “Securing web-clients with instrumented code and dynamic
runtime monitoring,” J. Syst. Softw., vol. 86, no. 6, pp. 1689–1711, Jun. 2013.

[139] A. R. Bernat and B. P. Miller, “Structured Binary Editing with a CFG Transformation
Algebra,” in 2012 19th Working Conference on Reverse Engineering, 2012, pp. 9–18.

[140] N. DuPaul, “Static Testing vs. Dynamic Testing,” veracode, 2017. [Online]. Available:
https://www.veracode.com/blog/2013/12/static-testing-vs-dynamic-testing. [Accessed: 10-
May-2018].

[141] R. Auger, “XML Injection,” Web Application Security Consortium Project, 2010.
[Online]. Available: http://projects.webappsec.org/w/page/13247004/XML Injection.
[Accessed: 10-May-2018].

[142] R. Auger, “XPath Injection,” Web Application Security Consortium Project, 2010.
[Online]. Available: http://projects.webappsec.org/w/page/13247005/XPath Injection.
[Accessed: 10-May-2018].

[143] R. Dev, A. Jääskeläinen, and M. Katara, “Model-Based GUI Testing: Case Smartphone
Camera and Messaging Development,” 2012, pp. 65–122.

[144] J. Nordholm, “Model-Based Testing: An Evaluation,” 2010.
[145] L. Pesante, “Introduction to Information Security,” US-CERT, 2008. [Online]. Available:

https://www.us-cert.gov/security-publications/introduction-information-security.
[Accessed: 10-May-2018].

[146] D. Appelt, C. D. Nguyen, and L. Briand, “Behind an Application Firewall, Are We Safe
from SQL Injection Attacks?,” in 2015 IEEE 8th International Conference on Software
Testing, Verification and Validation (ICST), 2015, pp. 1–10.

[147] V.-T. Pham, W. B. Ng, K. Rubinov, and A. Roychoudhury, “Hercules: Reproducing
Crashes in Real-World Application Binaries,” in 2015 IEEE/ACM 37th IEEE
International Conference on Software Engineering, 2015, pp. 891–901.

[148] A. Aydin, M. Alkhalaf, and T. Bultan, “Automated Test Generation from Vulnerability
Signatures,” in 2014 IEEE Seventh International Conference on Software Testing,
Verification and Validation, 2014, pp. 193–202.

[149] K. Hossen, R. Groz, C. Oriat, and J.-L. Richier, “Automatic Generation of Test Drivers
for Model Inference of Web Applications,” in 2013 IEEE Sixth International Conference
on Software Testing, Verification and Validation Workshops, 2013, pp. 441–444.

[150] A. Blome, M. Ochoa, K. Li, M. Peroli, and M. T. Dashti, “VERA: A Flexible Model-
Based Vulnerability Testing Tool,” in 2013 IEEE Sixth International Conference on
Software Testing, Verification and Validation, 2013, pp. 471–478.

[151] F. Lebeau, B. Legeard, F. Peureux, and A. Vernotte, “Model-Based Vulnerability Testing
for Web Applications,” in 2013 IEEE Sixth International Conference on Software Testing,
Verification and Validation Workshops, 2013, pp. 445–452.

[152] M. Buchler, J. Oudinet, and A. Pretschner, “SPaCiTE -- Web Application Testing
Engine,” in 2012 IEEE Fifth International Conference on Software Testing, Verification
and Validation, 2012, pp. 858–859.

206

[153] D. Zhang, D. Liu, Y. Lei, D. Kung, C. Csallner, N. Nystrom, and W. Wang, “SimFuzz:
Test case similarity directed deep fuzzing,” J. Syst. Softw., vol. 85, no. 1, pp. 102–111,
Jan. 2012.

[154] H. Shahriar and M. Zulkernine, “MUTEC: Mutation-based testing of Cross Site
Scripting,” in 2009 ICSE Workshop on Software Engineering for Secure Systems, 2009,
pp. 47–53.

[155] A. El-Ahmad and H. Arafeh, “The Influence of Software Risk Management on Software
Project Success,” 2017.

[156] H. Plate, S. E. Ponta, and A. Sabetta, “Impact assessment for vulnerabilities in open-
source software libraries,” in 2015 IEEE International Conference on Software
Maintenance and Evolution (ICSME), 2015, pp. 411–420.

[157] Y. Yu, V. N. L. Franqueira, T. Than Tun, R. J. Wieringa, and B. Nuseibeh, “Automated
analysis of security requirements through risk-based argumentation,” J. Syst. Softw., vol.
106, pp. 102–116, Aug. 2015.

[158] J. Cox, E. Bouwers, M. van Eekelen, and J. Visser, “Measuring Dependency Freshness in
Software Systems,” in 2015 IEEE/ACM 37th IEEE International Conference on Software
Engineering, 2015, pp. 109–118.

[159] R. Kannavara, “Assessing the Threat Landscape for Software Libraries,” in 2014 IEEE
International Symposium on Software Reliability Engineering Workshops, 2014, pp. 71–
76.

[160] R. Kannavara, “Securing Opensource Code via Static Analysis,” in 2012 IEEE Fifth
International Conference on Software Testing, Verification and Validation, 2012, pp.
429–436.

[161] S. H. Houmb, V. N. L. Franqueira, and E. A. Engum, “Quantifying security risk level
from CVSS estimates of frequency and impact,” J. Syst. Softw., vol. 83, no. 9, pp. 1622–
1634, Sep. 2010.

[162] C. Fruhwirth and T. Mannisto, “Improving CVSS-based vulnerability prioritization and
response with context information,” in 2009 3rd International Symposium on Empirical
Software Engineering and Measurement, 2009, pp. 535–544.

[163] M. Boldt, B. Carlsson, and R. Martinsson, “Software Vulnerability Assessment Version
Extraction and Verification,” in International Conference on Software Engineering
Advances (ICSEA 2007), 2007, pp. 59–59.

[164] M. Cadariu, E. Bouwers, J. Visser, and A. van Deursen, “Tracking known security
vulnerabilities in proprietary software systems,” in IEEE 22nd International Conference
on Software Analysis, Evolution, and Reengineering (SANER), 2015, pp. 516–519.

[165] S. S. Alqahtani, E. E. Eghan, and J. Rilling, “Tracing known security vulnerabilities in
software repositories – A Semantic Web enabled modeling approach,” Sci. Comput.
Program., vol. 121, pp. 153–175, Jun. 2016.

[166] S. S. Alqahtani, E. E. Eghan, and J. Rilling, “Recovering Semantic Traceability Links
between APIs and Security Vulnerabilities: An Ontological Modeling Approach,” in 2017
IEEE International Conference on Software Testing, Verification and Validation (ICST),
2017, pp. 80–91.

[167] S. Neuhaus, T. Zimmermann, C. Holler, and A. Zeller, “Predicting vulnerable software
components,” in Proceedings of the 14th ACM conference on Computer and
communications security - CCS ’07, 2007, p. 529.

[168] S. Neuhaus, T. Zimmermann, and T. Zimmermann, “The Beauty and the Beast:

207

Vulnerabilities in Red Hat’s Packages,” in Proceedings of the 2009 USENIX Annual
Technical Conference (USENIX ATC), 2009, pp. 383–396.

[169] F. Massacci, S. Neuhaus, and V. H. Nguyen, “After-Life Vulnerabilities: A Study on
Firefox Evolution, Its Vulnerabilities, and Fixes,” 2011, pp. 195–208.

[170] V. Mulwad, W. Li, A. Joshi, T. Finin, and K. Viswanathan, “Extracting Information about
Security Vulnerabilities from Web Text,” in IEEE/WIC/ACM International Conferences
on Web Intelligence and Intelligent Agent Technology, 2011, pp. 257–260.

[171] A. Joshi, R. Lal, T. Finin, and A. Joshi, “Extracting Cybersecurity Related Linked Data
from Text,” in IEEE Seventh International Conference on Semantic Computing, 2013, pp.
252–259.

[172] J. A. Wang and M. Guo, “OVM: an ontology for vulnerability management,” in
Proceedings of the 5th Annual Workshop on Cyber Security and Information Intelligence
Research Cyber Security and Information Intelligence Challenges and Strategies -
CSIIRW ’09, 2009, p. 1.

[173] I. Souag, Amina and Salinesi, Camille and Comyn-Wattiau, A. Souag, C. Salinesi, I.
Comyn-Wattiau, and I. Souag, Amina and Salinesi, Camille and Comyn-Wattiau,
“Ontologies for Security Requirements: A Literature Survey and Classification,” in
Advanced Information Systems Engineering Workshops, Springer, 2012, pp. 61–69.

[174] C. Blanco, J. Lasheras, R. Valencia-Garc, E. Fern, A. Toval, M. Piattini, and M. Blanco,
Carlos and Lasheras, Joaquin and Valencia-Garc{\’\i}a, Rafael and Fern{\’a}ndez-
Medina, Eduardo and Toval, Ambrosio and Piattini, “A systematic review and comparison
of security ontologies,” in Availability, Reliability and Security, 2008. ARES 08. Third
International Conference on, 2008, pp. 813--820.

[175] M.-A. Sicilia, E. García-Barriocanal, J. Bermejo-Higuera, and S. Sánchez-Alonso, “What
are Information Security Ontologies Useful for?,” 2015, pp. 51–61.

[176] S. Alqahtani, “Knowledge Modeling Survey dataset,” 2018. [Online]. Available:
https://github.com/isultane/KM-survey-dataset. [Accessed: 20-May-2018].

[177] S. Seedorf and F. F. I. U. Mannheim, “Applications of Ontologies in Software
Engineering,” in In 2nd International Workshop on Semantic Web Enabled Software
Engineering (SWESE 2006), 2006.

[178] D. Dermeval, J. Vilela, I. I. Bittencourt, J. Castro, S. Isotani, P. Brito, and A. Silva,
“Applications of ontologies in requirements engineering: a systematic review of the
literature,” Requir. Eng., vol. 21, no. 4, pp. 405–437, Nov. 2016.

[179] W. Kang and Y. Liang, “A Security Ontology with MDA for Software Development,” in
2013 International Conference on Cyber-Enabled Distributed Computing and Knowledge
Discovery, 2013, pp. 67–74.

[180] G. Elahi, E. Yu, and N. Zannone, “A Modeling Ontology for Integrating Vulnerabilities
into Security Requirements Conceptual Foundations,” 2009, pp. 99–114.

[181] F. den Braber, T. Dimitrakos, B. A. Gran, M. S. Lund, K. Stolen, and J. O. Aagedal, “The
CORAS Methodology,” in UML and the Unified Process, IGI Global, 2003, pp. 332–357.

[182] R. Matulevičius, N. Mayer, H. Mouratidis, E. Dubois, P. Heymans, and N. Genon,
“Adapting Secure Tropos for Security Risk Management in the Early Phases of
Information Systems Development,” in Advanced Information Systems Engineering,
Berlin, Heidelberg, Heidelberg: Springer Berlin Heidelberg, 2008, pp. 541–555.

[183] A. Souag, C. Salinesi, R. Mazo, and I. Comyn-Wattiau, “A Security Ontology for Security
Requirements Elicitation,” 2015, pp. 157–177.

208

[184] P. El Khoury, A. Mokhtari, E. Coquery, and M.-S. Hacid, “An Ontological Interface for
Software Developers to Select Security Patterns,” in 2008 19th International Conference
on Database and Expert Systems Applications, 2008, pp. 297–301.

[185] P. W. Singer and A. Friedman, Cybersecurity and Cyberwar: What Everyone Needs to
Know. 2014.

[186] J. Undercoffer, A. Joshi, T. Finin, and J. Pinkston, “A Target-Centric Ontology for
Intrusion Detection,” in Proceedings of the IJCAI-03 Workshop on Ontologies and
Distributed Systems, 2004, pp. 47--58.

[187] J. Undercoffer, A. Joshi, and J. Pinkston, “Modeling Computer Attacks: An Ontology for
Intrusion Detection,” in Recent Advances in Intrusion Detection, 2003, pp. 113–135.

[188] J. B. Kopena and W. C. Regli, “DAMLJessKB: A Tool for Reasoning with the Semantic
Web,” in Second International Semantic Web Conference, 2003, pp. 628–643.

[189] S. More, M. Matthews, A. Joshi, and T. Finin, “A Knowledge-Based Approach to
Intrusion Detection Modeling,” in IEEE Symposium on Security and Privacy Workshops,
2012, pp. 75–81.

[190] P. N. Mendes, M. Jakob, A. García-Silva, and C. Bizer, “DBpedia spotlight: shedding
light on the web of documents,” in Proceedings of the 7th International Conference on
Semantic Systems - I-Semantics ’11, 2011, pp. 1–8.

[191] Z. Syed, A. Padia, T. Finin, M. L. Mathews, and A. Joshi, “UCO: A Unified
Cybersecurity Ontology,” in AAAI Workshop: Artificial Intelligence for Cyber Security,
2016.

[192] M. Iannacone, S. Bohn, G. Nakamura, J. Gerth, K. Huffer, R. Bridges, E. Ferragut, and J.
Goodall, “Developing an Ontology for Cyber Security Knowledge Graphs,” in
Proceedings of the 10th Annual Cyber and Information Security Research Conference,
2015, pp. 1–4.

[193] P. Kamongi, S. Kotikela, K. Kavi, M. Gomathisankaran, and A. Singhal, “VULCAN:
Vulnerability Assessment Framework for Cloud Computing,” in 2013 IEEE 7th
International Conference on Software Security and Reliability, 2013, pp. 218–226.

[194] A. Steele, “Ontological Vulnerability Assessment,” in Web Information Systems
Engineering – WISE 2008 Workshops, Berlin, Heidelberg, Heidelberg: Springer Berlin
Heidelberg, 2008, pp. 24–35.

[195] K. Srujan and K. K. G. Mahadevan, “Vulnerability Assessment In Cloud Computing,” in
Proceedings of the International Conference on Security and Management (SAM), 2012,
pp. 1–7.

[196] A. Gyrard, C. Bonnet, and K. Boudaoud, “An Ontology-Based Approach for Helping to
Secure the ETSI Machine-to-Machine Architecture,” in 2014 IEEE International
Conference on Internet of Things(iThings), and IEEE Green Computing and
Communications (GreenCom) and IEEE Cyber, Physical and Social Computing
(CPSCom), 2014, pp. 109–116.

[197] A. Gyrard, C. Bonnet, and K. Boudaoud, “The STAC (security toolbox: attacks &
countermeasures) ontology,” in Proceedings of the 22nd International Conference on
World Wide Web - WWW ’13 Companion, 2013, pp. 165–166.

[198] J. A. Wang and M. Guo, “Security Data Mining in an Ontology for Vulnerability
Management,” in 2009 International Joint Conference on Bioinformatics, Systems Biology
and Intelligent Computing, 2009, pp. 597–603.

[199] J. A. Wang, M. Guo, H. Wang, M. Xia, and L. Zhou, “Environmental Metrics for

209

Software Security Based on a Vulnerability Ontology,” in 2009 Third IEEE International
Conference on Secure Software Integration and Reliability Improvement, 2009, pp. 159–
168.

[200] J. A. Wang, M. Guo, H. Wang, M. Xia, and L. Zhou, “Ontology-based security
assessment for software products,” in Proceedings of the 5th Annual Workshop on Cyber
Security and Information Intelligence Research Cyber Security and Information
Intelligence Challenges and Strategies - CSIIRW ’09, 2009, p. 1.

[201] J. A. Wang, H. Wang, M. Guo, L. Zhou, and J. Camargo, “Ranking Attacks Based on
Vulnerability Analysis,” in 2010 43rd Hawaii International Conference on System
Sciences, 2010, pp. 1–10.

[202] J. A. Wang, L. Zhou, M. Guo, H. Wang, and J. Camargo, “Measuring Similarity for
Security Vulnerabilities,” in 2010 43rd Hawaii International Conference on System
Sciences, 2010, pp. 1–10.

[203] I. Kotenko, A. Chechulin, E. Doynikova, and A. Fedorchenko, “Ontological Hybrid
Storage for Security Data,” 2018, pp. 159–171.

[204] A. V. Fedorchenko, I. V. Kotenko, E. V. Doynikova, and A. A. Chechulin, “The
ontological approach application for construction of the hybrid security repository,” in
2017 XX IEEE International Conference on Soft Computing and Measurements (SCM),
2017, pp. 525–528.

[205] R. Montesino and S. Fenz, “Automation Possibilities in Information Security
Management,” in 2011 European Intelligence and Security Informatics Conference, 2011,
pp. 259–262.

[206] G. Jiang, K. Ogasawara, A. Endoh, and T. Sakurai, “Context-based ontology building
support in clinical domains using formal concept analysis,” Int. J. Med. Inform., vol. 71,
no. 1, pp. 71–81, Aug. 2003.

[207] G. Fu, “FCA based ontology development for data integration,” Inf. Process. Manag., vol.
52, no. 5, pp. 765–782, Sep. 2016.

[208] J. Nanda, T. W. Simpson, S. R. T. Kumara, and S. B. Shooter, “A Methodology for
Product Family Ontology Development Using Formal Concept Analysis and Web
Ontology Language,” J. Comput. Inf. Sci. Eng., vol. 6, no. 2, p. 103, 2006.

[209] L. He and Q. Wang, “Construction of Ontology Information System Based on Formal
Concept Analysis,” 2011, pp. 83–88.

[210] X. Bai and X. Zhou, “Development of Ontology-Based Information System Using Formal
Concept Analysis and Association Rules,” 2011, pp. 121–126.

[211] N. Noy and D. McGuinness, “Ontology Development 101: A Guide to Creating Your First
Ontology,” 2001.

[212] I. V. Krsul, “Software vulnerability analysis,” Purdue University, 1998.
[213] D. Kosutic, “ISO 27001/ISO 22301 Knowledge base,” ISO 27001/ISO 22301, 2017.

[Online]. Available: https://advisera.com/27001academy/knowledgebase/. [Accessed: 14-
May-2018].

[214] A. Vorobiev and Jun Han, “Security Attack Ontology for Web Services,” in Second
International Conference on Semantics, Knowledge and Grid, 2006, pp. 42–42.

[215] S. S. Alqahtani, E. E. Eghan, and J. Rilling, “SE-GPS,” 2015. [Online]. Available:
http://aseg.cs.concordia.ca/segps. [Accessed: 26-Sep-2017].

[216] S. O. Kuznetsov, “Stability as an Estimate of the Degree of Substantiation of Hypotheses
on the Basis of Operational Similarity,” Sci. Tech. Inf. Ser. 2, vol. 24, pp. 21–29, 1990.

210

[217] S. O. Kuznetsov, “On stability of a formal concept,” Ann. Math. Artif. Intell., vol. 49, no.
1–4, pp. 101–115, Aug. 2007.

[218] B. L. Bullough, A. K. Yanchenko, C. L. Smith, and J. R. Zipkin, “Predicting Exploitation
of Disclosed Software Vulnerabilities Using Open-source Data,” in Proceedings of the 3rd
ACM on International Workshop on Security And PrivacyAnalytics - IWSPA ’17, 2017,
pp. 45–53.

[219] A. Kimmig, S. Bach, M. Broecheler, B. Huang, and L. Getoor, “A short introduction to
Probabilistic Soft Logic.,” in Proceedings of NIPS Workshop on Probabilistic
Programming: Foundations and Applications (NIPS Workshop-12), 2012.

[220] A. M. Project, “Maven Central Repository.” [Online]. Available: http://search.maven.org/.
[Accessed: 15-Dec-2014].

[221] NIST, “National Vulnerability Database,” 2007. [Online]. Available:
http://web.nvd.nist.gov/view/vuln/search. [Accessed: 15-Dec-2014].

[222] V. Livshits and M. Lam, “Finding security vulnerabilities in Java applications with static
analysis,” … 14th Conf. USENIX Secur. …, pp. 1–17, 2005.

[223] OWASP, “Using Components with Known Vulnerabilities,” 2013. [Online]. Available:
https://www.owasp.org/index.php/Top_10_2013-A9-
Using_Components_with_Known_Vulnerabilities. [Accessed: 23-Sep-2016].

[224] OWASP, “Top 10,” 2013. [Online]. Available:
https://www.owasp.org/index.php/Top_10_2013-Top_10. [Accessed: 23-Sep-2016].

[225] Y. M. Mileva, V. Dallmeier, M. Burger, and A. Zeller, “Mining trends of library usage,”
in Proceedings of the joint international and annual ERCIM workshops on Principles of
software evolution (IWPSE) and software evolution (Evol) workshops, 2009, pp. 57--62.

[226] M. Potamias, F. Bonchi, A. Gionis, and G. Kollios, “k-nearest neighbors in uncertain
graphs,” Proc. VLDB Endow., vol. 3, no. 1–2, pp. 997–1008, Sep. 2010.

[227] A. V. Aho, M. R. Garey, and J. D. Ullman, “The Transitive Reduction of a Directed
Graph,” SIAM J. Comput., vol. 1, no. 2, pp. 131–137, Jun. 1972.

[228] S. Skiena, Implementing Discrete Mathematics: Combinatorics and Graph Theory with
Mathematica. Addison-Wesley, 1990.

[229] D. Movshovitz-Attias, S. E. Whang, N. Noy, and A. Halevy, “Discovering Subsumption
Relationships for Web-Based Ontologies,” in Proceedings of the 18th International
Workshop on Web and Databases - WebDB’15, 2010, pp. 62–69.

[230] Y. Mileva, V. Dallmeier, and A. Zeller, “Mining API popularity,” Testing--Practice Res.
Tech., pp. 173–180, 2010.

[231] A. Hmood, I. Keivanloo, and J. Rilling, “SE-EQUAM - An Evolvable Quality
Metamodel,” in 2012 IEEE 36th Annual Computer Software and Applications Conference
Workshops, 2012, pp. 334–339.

[232] J. Z. Gao, C. Chen, Y. Toyoshima, and D. K. Leung, “Engineering on the Internet for
global software production,” Computer (Long. Beach. Calif)., vol. 32, no. 5, pp. 38–47,
May 1999.

[233] F. Thung, D. Lo, and J. Lawall, “Automated library recommendation,” Proc. - Work.
Conf. Reverse Eng. WCRE, no. October, pp. 182–191, 2013.

[234] M. M. Rahman, C. K. Roy, and D. Lo, “RACK: Automatic API Recommendation Using
Crowdsourced Knowledge,” in 2016 IEEE 23rd International Conference on Software
Analysis, Evolution, and Reengineering (SANER), 2016, pp. 349–359.

[235] C. Teyton, J.-R. Falleri, and X. Blanc, “Mining Library Migration Graphs,” in 2012 19th

211

Working Conference on Reverse Engineering, 2012, pp. 289–298.
[236] A. Hora, A. Hora, and M. T. Valente, “apiwave : Keeping Track of API Popularity and

Migration,” no. JANUARY, pp. 321–323, 2015.
[237] S. Raemaekers, A. van Deursen, and J. Visser, “Measuring software library stability

through historical version analysis,” in 2012 28th IEEE International Conference on
Software Maintenance (ICSM), 2012, pp. 378–387.

[238] F. McCarey, M. Ó. Cinnéide, and N. Kushmerick, “Rascal: A Recommender Agent for
Agile Reuse,” Artif. Intell. Rev., vol. 24, no. 3–4, pp. 253–276, Nov. 2005.

[239] D. L. Parnas, “Software aging,” in ICSE ’94 Proceedings of the 16th international
conference on Software engineering, 1994, pp. 279–287.

[240] F. S. Foundation, “Various Licenses and Comments About Them,” GNU Project, 2014. .
[241] L. Xavier, A. Brito, A. Hora, and M. T. Valente, “Historical and impact analysis of API

breaking changes: A large-scale study,” in 2017 IEEE 24th International Conference on
Software Analysis, Evolution and Reengineering (SANER), 2017, pp. 138–147.

[242] S. Raemaekers, A. Van Deursen, and J. Visser, “Semantic versioning versus breaking
changes: A study of the maven repository,” Proc. - 2014 14th IEEE Int. Work. Conf.
Source Code Anal. Manip. SCAM 2014, pp. 215–224, 2014.

[243] O. Seneviratne, L. Kagal, D. Weitzner, H. Abelson, T. Berners-Lee, and N. Shadbolt,
“Detecting creative commons license violations on images on the world wide web,”
WWW2009, April, 2009.

[244] A. Hmood, Philipp Schugerl1, J. Rilling, and Philippe Charland, “OntEQAM – A
Methodology for Assessing Evolvability as a Quality Factor in Software Ecosystems,” in
Defence R&D Canada - Valcartier, Valcartier QUE (CAN), 2010, p. 8.

[245] J. A. McCall, P. K. Richards, and G. F. Walters, “Factors in Software Quality. Volume I.
Concepts and Definitions of Software Quality,” 1977.

[246] A. Bergel, S. Denier, S. Ducasse, J. Laval, F. Bellingard, P. Vaillergues, F. Balmas, and
K. Mordal-Manet, “SQUALE - Software QUALity Enhancement,” in 2009 13th
European Conference on Software Maintenance and Reengineering, 2009, pp. 285–288.

[247] H. Kagdi, S. Yusuf, and J. I. Maletic, “Mining sequences of changed-files from version
histories,” in Proceedings of the 2006 international workshop on Mining software
repositories - MSR ’06, 2006, p. 47.

[248] H. Kagdi, M. L. Collard, and J. I. Maletic, “Comparing Approaches to Mining Source
Code for Call-Usage Patterns,” in Fourth International Workshop on Mining Software
Repositories (MSR’07:ICSE Workshops 2007), 2007, pp. 20–26.

[249] T. Kamiya, S. Kusumoto, and K. Inoue, “CCFinder: a multilinguistic token-based code
clone detection system for large scale source code,” IEEE Trans. Softw. Eng., vol. 28, no.
7, pp. 654–670, Jul. 2002.

[250] Y. Zhang, R. Witte, J. Rilling, and V. Haarslev, “Ontological approach for the semantic
recovery of traceability links between software artefacts,” IET Softw., vol. 2, no. 3, p. 185,
2008.

[251] I. Keivanloo, C. Forbes, J. Rilling, and P. Charland, “Towards sharing source code facts
using linked data,” Proceeding 3rd Int. Work. Search-driven Dev. users, infrastructure,
tools, Eval. - SUITE ’11, pp. 25–28, 2011.

[252] M. F. Bertoa, A. Vallecillo, and F. García, “An Ontology for Software Measurement,” in
Ontologies for Software Engineering and Software Technology, Springer Berlin
Heidelberg, 2006, pp. 175–196.

212

[253] R. Robbes, M. Lungu, and D. Röthlisberger, “How do developers react to API
deprecation?,” in Proceedings of the ACM SIGSOFT 20th International Symposium on the
Foundations of Software Engineering - FSE ’12, 2012, p. 1.

[254] B. E. Cossette and R. J. Walker, “Seeking the Ground Truth: A Retroactive Study on the
Evolution and Migration of Software Libraries,” Proc. ACM SIGSOFT 20th Int. Symp.
Found. Softw. Eng., p. 55:1--55:11, 2012.

[255] P. Kapur, B. Cossette, and R. J. Walker, “Refactoring references for library migration,”
ACM SIGPLAN Not., vol. 45, no. 10, p. 726, 2010.

[256] L. A. Zadeh, “The concept of a linguistic variable and its application to approximate
reasoning-III,” Inf. Sci. (Ny)., vol. 9, no. 1, pp. 43–80, Jan. 1975.

[257] I. E. Commission, “Programmable Controllers - Part 7: Fuzzy Control Programming,”
2000.

[258] P. Cingolani and J. Alcala-Fdez, “jFuzzyLogic: a robust and flexible Fuzzy-Logic
inference system language implementation,” in 2012 IEEE International Conference on
Fuzzy Systems, 2012, pp. 1–8.

[259] I. Samoladas, G. Gousios, D. Spinellis, and I. Stamelos, “The SQO-OSS Quality Model:
Measurement Based Open Source Software Evaluation,” in Open Source Development,
Communities and Quality, Boston, MA: Springer US, 2008, pp. 237–248.

[260] B. M. Kuhn, A. K. Sebro, and D. Gingerich, “Chapter 10 The Lesser GPL,” Free Software
Foundation & Software Freedom Law Center, 2016. .

[261] V. del Bianco, L. Lavazza, S. Morasca, and D. Taibi, “Quality of Open Source Software:
The QualiPSo Trustworthiness Model,” 2009, pp. 199–212.

[262] T. Boland, C. Cleraux, and E. Fong, “Toward a Preliminary Framework for Assessing the
Trustworthiness of Software,” 2010.

[263] R. Jagarlamudi, Jagadeesh and Daum III, Hal and Udupa, “Incorporating lexical priors
into topic models,” in Proceedings of the 13th Conference of the European Chapter of the
Association for Computational Linguistics, 2012, pp. 204--213.

[264] M. I. Blei, David M and Ng, Andrew Y and Jordan, “Latent dirichlet allocation,” J. Mach.
Learn. Res., vol. 3, pp. 993--1022, 2003.

[265] S. S. Alqahtani and J. Rilling, “An Ontology-Based Approach to Automate Tagging of
Software Artifacts,” in 2017 ACM/IEEE International Symposium on Empirical Software
Engineering and Measurement (ESEM), 2017, pp. 169–174.

