
Addressing the Knowledge Transfer Problem in

Secure Software Development Through Anti-Patterns

A thesis submitted for the degree of Doctor of Philosophy

(PhD)

by

Tayyaba Nafees

School of Design and Informatics, Division of Cybersecurity,

Abertay University.

February, 2019

i

Declaration

Candidate’s declarations:

I, Tayyaba Nafees, hereby certify that this thesis submitted in partial

fulfilment of the requirements for the award of Doctor of Philosophy

(PhD), Abertay University, is wholly my own work unless otherwise

referenced or acknowledged. This work has not been submitted for any

other qualification at any other academic institution.

Signed [candidates signature]………………………………………………….

Date………………………………………………………………………………..

Supervisor’s declaration:

I, Natalie Coull, hereby certify that the candidate has fulfilled the

conditions of the Resolution and Regulations appropriate for the degree

of PhD in Abertay University and that the candidate is qualified to submit

this thesis in application for that degree.

Signed [Principal Supervisors signature]……………………………………...

Date………………………………………………………………………………..

Certificate of Approval

I certify that this is a true and accurate version of the thesis approved by

the examiners, and that all relevant ordinance regulations have been

fulfilled.

Supervisor…………………………………………………………………..…….

Date………………………………………………………………………………..

ii

Acknowledgements

“[All] praise is [due] to Allah, Lord of the worlds”

First and foremost, I‘d like to thank my supervisory team Dr Natalie Coull,
Dr Ian Ferguson and Dr Adam Sampson for providing me constant
guidance and support throughout the duration of the research and the
write-up. I’d like to express my gratitude to Sascha Roschy for his
excellent guidance and expertise that helped shape the thesis into its
finished format. It goes without saying that this thesis wouldn’t have
happened without you, so I thank you for giving me confidence in my
writing skills.

Thanks to Dr Nia White, for supporting and encouraging me to purse my
dream as an entrepreneur. I hope that we will be able to continue working
together in the future.

Thanks to Gameelah Gahfoor, for helping me in running my experimental
study.

To my Dad and Mom (Ammi), thank you for being always with me.
Thanks to all my siblings, especially Babar, Khawar and Dr Rabia., for
always being there to pay my credit card shopping bills. But more
importantly, thank you all for supporting me during the PhD process and
for your patience with how long it’s taken to finish. To Aden, for always
being there to listen my nonsense conversations and making me laugh
even from the deepest depths of thesis writing.

To all the people I have met along the way- I came to Abertay as a
postgraduate student. I’ve had an amazing time here, but it would not
have been the same without these people. Wendy, for constant advice,
Salma, for support and encouragement, Alice, for love and care, and all
my fellow squash friends. Thank you all for wee lunch breaks, long walks
with laughter and tiring squash games to clear my mind.

iii

Abstract

There is a distinct communication gap between software engineering and
cybersecurity communities when it comes to addressing reoccurring
security problems, known as vulnerabilities. Many vulnerabilities are
caused by software errors that occur due to developers’ common mistakes.
Insecure software development practices are common due to a variety of
factors, which include inefficiencies within existing knowledge transfer
mechanisms based on vulnerability databases (VDBs) and pattern-based
approaches, software developers perceiving security as an afterthought,
and lack of consideration of security as part of the Software Development
Lifecycle (SDLC). The resulting communication gap also prevents
developers and security experts from successfully sharing essential
security knowledge.

This thesis identifies the major issues in the transfer of vulnerability
knowledge (vulnerability databases (VDBs)) using the existing pattern-
based approaches, which prohibits developers from finding causes of
vulnerabilities (errors) and mitigating them; Experts of both domains
struggle to understand each other’s security perspectives due to lack of
understanding and sharing of common terms, languages and procedures.

To address these issues, a hybrid pattern-based approach,
Vulnerability Anti-pattern (VAPs), has been developed consisting of two
types that encapsulates knowledge of existing vulnerabilities to bridge the
communication gap between security experts and software developers. A
catalogue of VAPs based on the most commonly occurring vulnerabilities
has been created that assists software developers in developing an
awareness of how malicious hackers can exploit errors in software.

The evaluation was performed through a series of experimental
studies to measure the effectiveness of VAP in order to raise awareness
of poor security practices that lead to vulnerabilities. Whilst the results
indicate the improvement of developers’ awareness of vulnerabilities and
encouraging them to create secure software systems.

iv

Table of Contents
Declaration ... i

Certificate of Approval .. i

Acknowledgements ... ii

Abstract .. iii

List of Tables ... xii

List of Figures .. xv

Definitions and Acronyms .. xvii

1 Introduction ... 1

1.1 Vulnerability Anti-Pattern ... 1

1.2 Difference between the VAP and Existing Security related

Pattern-Based Approaches ... 2

1.3 Background ... 3

1.4 Thesis Motivation (Story Line) ... 5

1.5 Rationale for Research.. 7

1.6 Thesis Statement .. 8

1.7 Research Questions (RQ) ... 9

1.8 Research Hypotheses (RH) .. 9

1.9 Dissertation Overview ... 9

1.10 Publications Arising from Thesis Work 15

2 Literature Review .. 16

2.1 Introduction ... 16

2.1.1 Background ... 18

2.2 Overview of Cybersecurity .. 19

2.2.1 Evolutionary History of Cybersecurity 20

2.2.2 Narrowing the Definition of Computer Security................ 24

2.2.3 Defining Cybersecurity .. 25

2.2.4 Formal Definition of Cybersecurity 27

2.3 Fundamentals of Cybersecurity ... 27

v

2.3.1 Core Software Engineering Terminologies 27

2.3.2 Core Cybersecurity Terminologies 29

1. Authorization VS CIA ... 33

2. Authentication VS CIA ... 33

3. Non-Repudiation VS CIA ... 33

2.4 Interdisciplinary Concepts and Approaches 34

2.4.1 Software Development Lifecycle (SDLC) and Software

Vulnerabilities .. 34

2.5 Empirical Strategies in Software Engineering 35

2.5.1 Experimental Study based on Intervention 37

2.6 Empirical Evaluations of Anti-patterns 38

2.6.1 Use of Anti-Patterns as Intervention 39

2.7 Cyber-Patterns .. 40

2.7.1 The Notion of Cyber-Patterns .. 40

2.7.2 Cyberspace ... 44

2.8 Why Care About Security in Cyberspace? 45

2.9 Why is Security a Problem in Cyberspace? 46

2.9.1 Security is Fundamentally Complex 46

2.10 Who is Responsible for Security in Cyberspace? 49

2.10.1 Software Developers: Building Security into the Software

Development Process ... 49

2.10.2 Cybersecurity Experts: Attempts to Capture Security 54

2.11 Why There Exists a Distinct Knowledge Gap Between Software

Developers and Cybersecurity Experts? ... 60

2.11.1 Inadequate Knowledge Sharing 60

2.11.2 The Hacker’s Time Advantage .. 62

2.11.3 Lack of Knowledge Industrialization 62

2.12 What is Pattern-Oriented Research Methodology? 64

vi

2.12.1 Why Use Patterns to Find the Solution? 64

2.12.2 How Do Cyber-Patterns Interact and Interrelate with each

other? 65

2.12.3 Cyber-Patterns for Vulnerabilities 65

2.13 The Shortcomings of Previous Pattern-Based Approaches are

Sourced from Both Communities - Software Engineering and

Cybersecurity .. 67

2.14 Software Engineering Community Problems: Transferring

knowledge from cybersecurity to Software Engineering 72

2.14.1 Continuous Efforts to Improve Libraries, Implementation

Languages, and Language Processors ... 72

2.14.2 Issues with Building Security into the Software

Development Processes ... 75

2.15 Cybersecurity Community Problems: Pushing Knowledge from

Cybersecurity to Software Engineering ... 78

2.15.1 VDBs Issue.. 78

2.16 Conclusion .. 80

3 Criticism of Existing Pattern-Based Approaches and the Derivation of

a New Approach: Vulnerability Anti-Pattern (VAP) 83

3.1 Pattern-Based Research Approaches 83

3.1.1 Cybersecurity Pattern-Based Research Methods............ 84

3.1.2 Software Engineering Pattern-Based Research Methods 86

3.2 Comparison Analysis of Cyber-Patterns against Vulnerabilities 90

3.3 Improved Use of Pattern-Based Approaches to Capture Poor

Software Development Practices (Vulnerabilities) 92

3.4 Proposed Solution ... 94

3.4.1 Derivation of Vulnerability Anti-Pattern (VAP) 94

i) Decision Tree Example: CWE-190, Integer Overflow or

Wraparound ...107

vii

3.5 Conclusion ...111

4 Vulnerability Anti-Patterns ..113

4.1 The Notion of a Vulnerability Anti-Pattern113

4.2 Chapter Overview ..114

4.3 Overview ..114

4.3.1 A Proposed VAP Definition...115

4.3.2 Vulnerability Anti-Pattern ..115

4.3.3 Vulnerability Anti-Pattern Objectives116

4.4 Rationale for Vulnerability Anti-Patterns118

4.4.1 Vulnerability: Security Flaw ..118

4.4.2 Anti-Pattern: Poor Software Practice118

4.4.3 An Anti-Pattern Perspective for Software Developers118

4.4.4 Combining Anti-Patterns and Vulnerabilities to Bridge the

Gap 119

4.5 VAP Development Process ..120

4.5.1 VAP Architectural Design ...120

4.5.2 Significance of Layering Structure in VAP Knowledge

Sources 121

4.5.3 VAP Knowledge Source Design121

4.5.4 Example of VAP Design ...123

4.6 VAPs Design Types ...124

4.6.1 Informal Vulnerability Anti-Patterns124

4.6.2 Formal Vulnerability Anti-Patterns126

4.7 Vulnerability Anti-Pattern Catalogue ..129

4.8 Conclusion ...131

5 Creating a Catalogue of Vulnerability Anti-Patterns (VAPs)132

5.1 Developing the Catalogue ..132

5.2 Vulnerability Anti-Patterns Clustering133

viii

5.2.1 Language-Based Cluster ..133

5.2.2 Aggregation-Based Cluster Organisation135

5.3 Organising Vulnerability Anti-patterns136

5.4 Vulnerability Anti-Pattern Catalogue ..138

5.5 Informal Vulnerability Anti-Pattern Catalogue140

5.6 Formal Vulnerability Anti-Pattern Catalogue141

5.7 Conclusion ...141

6 Pilot Study-I (PS-I) ...144

6.1 Introduction ..144

6.1.1 General Description ..144

6.1.2 Key Objectives ...145

6.1.3 Experiment Hypothesis ..145

6.2 Method ...145

6.2.1 Experiment Study Description ..145

6.2.2 Experiment Design Structure..147

6.2.3 Experiment Questions’ Structure147

6.2.4 Vulnerability Sample Size ...148

6.2.5 Participants’ Sample Size ...148

6.3 Results ...150

6.3.1 Assessment of Questionnaire Vulnerabilities150

6.3.2 Results Discussion for Total Scores of Vulnerabilities

Questions ...162

6.3.3 Results Discussion of Mean of Total Score Graph164

6.3.4 Assessment of Questionnaire Data-Statistical Analysis .164

6.3.5 Assessment of Questionnaire Internal Consistency172

6.3.6 Pilot-Study-I Overall Results Summary173

7 Pilot Study–II (PS-II) ...175

7.1 Introduction ..175

ix

7.1.1 General Description ..175

7.1.2 Key Objectives ...175

7.1.3 Experiment Hypotheses ...175

7.2 Method ...176

7.2.1 Study Description ...176

7.2.2 Studies Design Structure ..177

7.2.3 Survey Questions’ Structure ...178

7.2.4 Questionnaire Design ...181

7.2.5 Security Intervention Session ...182

7.2.6 Security Intervention Types ..183

7.2.7 Control Experiment Description184

7.2.8 Vulnerability Sample Size ...184

7.2.9 Participant Sample Size ...187

7.3 Experimental Study ..188

7.3.1 Research Hypotheses ..188

7.3.2 Examining Significant Difference between Two Scores

Samples 188

7.3.3 Descriptive Statistical Analysis189

7.4 Research Hypothesis ...202

7.5 Research Hypothesis ...208

1. Compare the Mean, Median and Mode208

2. Frequency Table ..210

3. Histogram ...212

7.5.2 Assessment of Effectiveness of Intervention Types216

7.6 Control Experiment ..218

7.6.1 Research Hypotheses ..218

7.6.2 Kruskal-Wallis H test to Compare the Scores of

Experimental Group and Control Group ...218

x

7.6.3 Mann-Whitney U Test to Compare the Scores of

Experimental Group and Control Group ...222

7.7 Pilot-Study-II Overall Results Summary225

8 Industrial Study (Qualitative Approach) ..227

8.1 Introduction ..227

8.1.1 General Description ..227

8.2 Method ...227

8.2.1 Experiment Study Description ..227

8.2.2 Experiment Design Structure..228

8.2.3 Experiment Questions’ Structure229

8.2.4 Vulnerability Sample Size ...230

8.2.5 Participants Sample Size ...230

8.3 Results ...231

8.3.1 Research Question ...231

8.3.2 Intervention helps participants’ ability to identify the root-

cause of Vulnerabilities ..231

8.3.3 Results Discussion ...232

8.3.4 Intervention helps participants’ ability to recognise and

classify vulnerabilities using the terminology of the cybersecurity

community ..234

8.3.5 Results Discussion ...234

8.3.6 There is no difference between “Informal” and “Formal

intervention” ...236

8.3.7 Results Discussion ...236

8.4 Discussion of Overall Results Including Semi-Structure Interview

Data 237

9 Discussion ..243

9.1 Discussion of Results ...243

9.1.1 Reflection on Pilot-Study-I ..243

xi

9.1.2 Reflection on Pilot-Study-II ...244

9.1.3 Reflection on Industrial Study ...245

9.1.4 Conclusion..245

9.2 Experimental Studies Limitations ...247

9.2.1 Avoidance Bias...247

9.2.2 Very Small Sample Size ...247

9.2.3 Students as Participants ...248

9.2.4 Background Knowledge of Subjects249

9.2.5 Lack of Realistic Environment ..249

9.2.6 Evaluating usability ...249

10 Conclusion and Future Work ...250

10.1 Conclusion ...250

10.2 Primary Contribution: Vulnerability Anti-Pattern and its

Catalogue: A Timeless Way to Capture Poor Software Practices

(Vulnerabilities) ..251

10.3 Research Outcomes ..253

10.4 Significance of the Research ..255

10.5 Future Work ...255

10.5.1 Catalogue of Vulnerability Anti-Patterns255

10.5.2 Design a Pattern Language ..256

10.5.3 VAPs Evaluation Considering Usability and Retainability

 256

10.5.4 Vulnerability Anti-Pattern Tool ..256

10.5.5 Training Method to Educate Developers about Recurrent

Vulnerabilities ...256

10.5.6 VAP Catalogue Dissemination257

11 References ..258

xii

List of Tables
Table 1 Published work from thesis ... 15
Table 2 Cybersecurity core definitions in different eras. .. 25
Table 3 Literature summary in order to improve programming languages with safer libraries 51
Table 4 Security patterns key issues .. 68
Table 5 Misuse pattern key issues ... 70
Table 6 key issues of anti-pattern .. 70
Table 7 Key issues of SFP ... 71
Table 8 Key issues of AP .. 72
Table 9 Issues with software engineering community efforts to improve libraries 74
Table 10 Critical analysis of building security into the software development process efforts 77
Table 11 Issues of VDBs usability for developers ... 80
Table 12 Analysis Table of existing pattern-based approaches and their relation to capture and

transfer vulnerability knowledge... 91
Table 13 Comparative analysis of cyber-patterns to measure ineffectiveness in order to

vulnerability understanding ... 93
Table 14 Mapping between vulnerabilities and cyber-patterns within SDLC 98
Table 15 Taxonomy of vulnerabilities .. 105
Table 16 Relationship between anti-pattern and pattern to describe CWE-89: SQL Injection

Vulnerability Anti-Pattern .. 123
Table 17 Informal VAP template and description .. 126
Table 18 Formal VAP template and its description .. 129
Table 19 Catalogue of Vulnerability Anti-Patterns ... 130
Table 20 Study Objectives (SO) of the experimental studies. ... 143
Table 21 PS-I question example ... 147
Table 22 Pilot-Study-1 experiment design structure .. 147
Table 23 Vulnerabilities included in questionnaire .. 148
Table 24 Participants information ... 149
Table 25 Descriptive analysis ... 166
Table 26 Tests of Normality ... 166
Table 27 Ranks table ... 170
Table 28 Mann-Whitney test statistics .. 171
Table 29 Reliability statistics ... 172
Table 30 Description of the Vulnerability Anti-Pattern experiment study structure, including a

description of the inputs and outputs of all stages inputs. ... 178
Table 31 PHP sample question .. 180
Table 32 Experiment question related to C# .. 181

xiii

Table 33 Experimental and control group comparison .. 184
Table 34 Survey summary for the computing students, its included vulnerabilities and

vulnerable code or UML diagram description ... 185
Table 35 Survey summary for the gaming students, its included vulnerabilities and vulnerable

code or UML diagram description .. 186
Table 36 Used Vulnerability Anti-Patterns as security intervention for computing and gaming

students ... 187
Table 37 Participants information ... 187
Table 38 Research questions and hypotheses: two samples test ... 188
Table 39 Compared the mean, median and mode of Total_stage1 and Total_stage2 and

presented the total number of participants ... 190
Table 40 Numbers of participants in the stage1. ... 190
Table 41 Numbers of participants in the stage2. ... 191
Table 42 Normality tests shown in the 'sig columns’. .. 197
Table 43 Paired samples statistics for total and all questions scores 200
Table 44 Paired samples statistics and correlations ... 200
Table 45 Result of the paired samples t test .. 201
Table 46 Research question and hypothesis .. 202
Table 47 Case processing summary stage2 .. 202
Table 48 Descriptive analysis ... 203
Table 49 Highest and lowest scores’ table during stage-2 .. 204
Table 50 Tests of normality ... 205
Table 51 Tests of normality ... 205
Table 52 One-way ANOVA test rank .. 206
Table 53 One-way ANOVA test results .. 206
Table 54 Research question and hypothesis .. 208
Table 55 Descriptive analysis of score of both stages ... 209
Table 56 Stage2 obtained scores frequencies ... 210
Table 57 Stage3 obtained scores frequencies .. 211
Table 58 Normality tests shown in the 'sig columns’ ... 214
Table 59 Both stages paired analysis ... 214
Table 60 Correlation table ... 214
Table 61 Correlation table ... 215
Table 62 Paired t test result... 215
Table 63 Number of participants .. 216
Table 64 Both stages mean scores difference .. 216
Table 65 Means comparison depending on the participants’ degree 217
Table 66 Control experiment research question and hypothesis ... 218

xiv

Table 67 Stage-1 hypothesis test ... 218
Table 68 Stage-2 hypothesis test ... 219
Table 69 Stage-3 hypothesis test ... 221
Table 70 Stage-1 Mann-Whitney U test ranks.. 222
Table 71 Stage-1 Mann-Whitney U statistics outcome .. 223
Table 72 Stage-2 Mann-Whitney U test ranks.. 223
Table 73 Stage-2 Mann-Whitney U statistics outcome .. 224
Table 74 Stage-3 Mann-Whitney U test ranks.. 224
Table 75 Stage-3 Mann-Whitney U statistics outcome .. 224
Table 76 Pilot-Study-II results summary .. 226
Table 77 Description of experiment study structure, including all stages inputs and outputs

description. .. 229
Table 78 Participants information ... 231
Table 79 Participants’ scores before and after intervention .. 233
Table 80 Participants scores to identify vulnerabilities terminologies 235
Table 81 Participants scores and intervention type .. 237
Table 82 Missing authentication question ... 239
Table 83 VAPs catalogue ... 252

xv

List of Figures
Figure 1 Dissertation roadmap .. 14
Figure 2 Broader view: class level distribution of software weaknesses 31
Figure 3 Vulnerability information in CWE-250 .. 55
Figure 4 Attack pattern example in CAPEC-501 ... 56
Figure 5 Interconnection of vulnerability databases (VDBs) .. 57
Figure 6 Vulnerability information flow among VDBs .. 58
Figure 7 Existing cyber-patterns capture security in cyberspace .. 67
Figure 8 Anatomy of security pattern .. 68
Figure 9 Anatomy of misuse pattern ... 69
Figure 10 Anatomy of anti-pattern .. 70
Figure 11 Anatomy of SFP .. 71
Figure 12 Anatomy of AP ... 71
Figure 13 Relationship between pattern-based approaches and cybersecurity & software

engineering experts.. 86
Figure 14 Derivation of VAP .. 96
Figure 15 Vulnerability flow decision Tree in SDLC .. 106
Figure 16 Decision tree mapping example: CWE-190 ... 108
Figure 17 Vulnerability anti-pattern conceptual model ... 115
Figure 18 VAP key objectives ... 117
Figure 19 Structure of Vulnerability Anti-Pattern .. 120
Figure 20 Proposed solution ‘Vulnerability Anti-Pattern’ design logic 121
Figure 21 Vulnerability Anti-Pattern versions: informal and formal anti-patterns 124
Figure 22 Language-based cluster .. 134
Figure 23 Aggregation-based cluster to display root causes with linkage parent and child

vulnerabilities. ... 135
Figure 24 Organisation of Vulnerability Anti-Patterns ... 137
Figure 25 Hierarchical view of VAP catalogue .. 139
Figure 26 Experimental studies and their research methods approach.................................. 142
Figure 27 Integer overflow vulnerability mean score ... 151
Figure 28 Dangerous function call in C++ vulnerability mean score 152
Figure 29 Integer to buffer overflow vulnerability mean score .. 153
Figure 30 Use of externally-controlled format string vulnerability mean score 154
Figure 31 Buffer overflow vulnerability mean score .. 155
Figure 32 Incorrect buffer size calculation vulnerability mean score 156
Figure 33 Use of Dangerous function call in PHP vulnerability mean score 157
Figure 34 SQL injection vulnerability mean score .. 158

xvi

Figure 35 Missing authorization vulnerability mean score ... 159
Figure 36 Missing authentication vulnerability mean score ... 160
Figure 37 Total scores mean .. 163
Figure 38 Total score mean comparison between software developers and pen tester......... 164
Figure 39 Histogram from the data explore output ... 167
Figure 40 Normality plot from the data explore output ... 167
Figure 41 Security intervention link with assessment phases .. 182
Figure 42 Security intervention types .. 183
Figure 43 Showing distribution of scores in stage-1 participants Figure

44 Showing the distribution of scores in stage-2 participant .. 193
Figure 45 Choosing the appropriate statistical test for related two samples to measure the

effectiveness of the proposed intervention study .. 194
Figure 46 Total_Stage1 scores frequency regarding the students' degree

Figure 47 Total_Stage2 scores frequency regarding the students’ degree 196
Figure 48 Score distribution of participants in the stage2 Figure

49 Score distribution of participants in the stage3 ... 212
Figure 50 Stage-1 control and experimental groups scores comparison 219
Figure 51 Stage-2 control and experimental groups scores comparison 220
Figure 52 Stage-3 control and experimental groups scores comparison 221

xvii

Definitions and Acronyms

Term Definition
Anti-Pattern An anti-pattern describes a “general form, the primary

causes which led to the general form; symptoms
describing how to recognise the general form; the
consequences of the general form; and a refactored
solution describing how to change the Anti-Pattern into
a healthier situation”(Brown et al. 1998).

Exploit/
Misuse

A “technique to breach the security of a network or
information system in violation of a security policy”
(Committee on National Security Systems (CNSS)
2003).

Vulnerability A “weakness in a system, application, or network that is
subject to exploitation or misuse” (Kissel 2013).

Software
Fault
Pattern

The Software Fault Patterns (SFP) are a clustering of
CWEs into related weakness categories. Each cluster is
“factored into formally defined attributes, with sites
(footholds), conditions, properties, sources, sinks, etc.
This work overcomes the problem of combinations of
attributes in CWE” (Mansourov 2011).

Penetration
Tester

A tester who is “used to test the external perimeter
security of a network or facility to find vulnerabilities that
an attacker could exploit” (CERT 2015).

VDB Vulnerability Database
VAP Vulnerability Anti-Pattern
SP Security Pattern
CWE Common Weakness Enumeration
CVE Common Vulnerabilities and

Exposures
CAPEC Common Attack Pattern

Enumeration and Classification
SDLC Software Deployment Lifecycle
SFP Software Fault Pattern

1

1 Introduction
There is a distinct communication gap between the software engineering and

cybersecurity communities when it comes to addressing the class of reoccurring

security problems known as vulnerabilities. Software errors made by software

developers cause many vulnerabilities. Insecure software development practices are

common due to a variety of factors, which include inefficiencies within existing

knowledge transfer mechanisms based on vulnerability databases (VDBs) such as

CAPEC and CWE, software developers perceiving security as an afterthought, and a

lack of consideration of security as part of the Software Development Lifecycle

(SDLC). The resulting communication gap also prevents developers and security

experts from successfully sharing essential security knowledge. The cybersecurity

community makes their expert knowledge available in various forms including

vulnerability databases and security-related pattern catalogues such as Security

Patterns, Anti-Patterns, and Software Fault Patterns. However, these existing sources

are not effective at providing software developers with an understanding of how

malicious hackers can exploit vulnerabilities in the software systems they create. This

is due to the complex structure of existing vulnerability knowledge sources coupled

with a lack of understanding of how to use them during the SDLC (Van and McGraw

2005, McGraw 2012, Yun-hua and Pei 2010).

For example, Jafari and Rasoolzadegan (2016) work on securing Gang of Four

(GoF) design patterns; however, it raised the concerns related to adding overhead

against increased security. Dougherty et al (2009) extension of work lacks the

information related to potential vulnerabilities and solutions and of how to tackle them.

This suggests that improved use of existing security-related patterns embedded with

vulnerability knowledge can help to improve the security of software. As developers

are familiar with pattern-based approaches, the use of Vulnerability Anti-Patterns

(VAPs) to transfer vulnerability knowledge to developers in a usable way is proposed.

1.1 Vulnerability Anti-Pattern

The Vulnerability Anti-Pattern is a hybrid solution, which encapsulates knowledge of

vulnerabilities from VDBs and presents this knowledge to developers so that they can

understand how poor coding software practices can be exploited. This increased

understanding and awareness of malicious hackers’ techniques will contribute to the

2

development of more secure software and aid developers’ understanding of the

prevention of software vulnerabilities.

 The primary contribution of this thesis is twofold:

1) A new pattern-based approach – the Vulnerability Anti-Pattern –that

encapsulates knowledge of existing vulnerabilities to bridge the communication

gap between security experts and software developers.

2) The use of a Vulnerability Anti-Patterns (VAPs) catalogue to provide

information about the most commonly occurring vulnerabilities that software

developers can use to learn how malicious hackers can exploit errors in code.

1.2 Difference between the VAP and Existing Security Related Pattern-
Based Approaches

The Vulnerability Anti-Pattern template is based on that proposed in Brown et al

(1998). However, existing anti-patterns are not intended to capture relationships

between poor practices and vulnerabilities, and do not provide mechanisms for

capturing cybersecurity domain knowledge.

We argue that existing pattern-based techniques – security patterns (Steel and

Nagappan 2006), software fault patterns (Mansourov 2011) and attack patterns

(MITRE Corporation 2014) – are ineffective at capturing and transferring necessary

knowledge of vulnerabilities. Anand, Ryoo, and Kazman (2014) and Hafiz (2011)

report that security patterns are harder for developers to use than conventional design

patterns. Dimitrov (2016) finds that the structure and semantics of software fault

patterns (SFPS) do not adequately capture all classes of vulnerabilities, and do not

align well with existing formal notations used by software engineers. In addition, NIST

reports that SFPs, as used in the CWE database, do not appropriately describe the

causes or consequences of related vulnerabilities (Black 2017). Faily, Parkin and Lyle

(2014) evaluated the use of both security patterns and attack patterns within the

software development process and found problems with the identification of specific

vulnerabilities in the system, and the complex interactions between security and attack

patterns; they report that there is “a dearth of work” evaluating the use of attack

patterns by software engineers. The intended audience for security patterns is security

experts rather than developers (Bunke 2015; Fernandez-Buglioni 2013), and the need

for usable and accessible knowledge about vulnerabilities is highlighted by (Van and

McGraw 2005, Fahl et al. 2013, Acar et al. 2016).

3

As Vulnerability Anti-Patterns (VAPs) are intended to capture recurring errors

that lead to vulnerabilities, we extended the template to include knowledge extracted

from vulnerability databases to make it understandable to software developers. As an

example of VAP, the “Use of Potentially Dangerous Function”:

Anti-Pattern describes the use of functions within a software system that are likely to

result in exploitable behaviour when a safer alternative is available. An instance of this

anti-pattern is the use of C’s strcpy function, which provides no inherent safeguards

against incorrect source or target buffer sizes, frequently resulting in faults such as

buffer-overflow vulnerabilities (Howard and Lipner 2011). Vulnerabilities resulting from

improper use of strcpy are so common – as evidenced in the CVE database (MITRE

Corporation 2016) – that some standards prohibit its use entirely (OWASP 2015).

The “Use of Potentially Dangerous Function” is proposed as a corresponding

solution, such as safe library functions strcpy. This VAP captures security expert

knowledge extracted from these sources in a form that is understandable for software

developers.

1.3 Background

Information technology (IT) infrastructures have evolved over the last two decades

and are now integrated into virtually every aspect of our lives. The software is a

component of the IT systems that form a large part of the present day. For example,

the UK is considered one of the world’s leading digital societies (U.K National Crime

Agency 2017). This digital transformation of society, however, somehow creates a

new set of dependencies such as e-banking, social networking and e-commerce. The

massive expansion of the Internet beyond traditional computers and mobile phones

fashions a new electronic medium of digital networks, which is called “Cyberspace”,

used to store, modify and communicate information (Blackwell and Zhu 2014b). This

also includes other information systems that support businesses, infrastructures and

services such as power grids, air traffic control systems, satellites, medical

technologies and industrial plants.

The term “cybersecurity” has been coined to refer to the protection of assets

that are directly or indirectly connected to the Internet (CERT 2015). There will always

be attempts to exploit weaknesses to launch cyber-attacks. This threat cannot be

eliminated completely, but the risk can be significantly reduced to a level that allows

users to continue to prosper, and benefit from the potential opportunities that digital

4

technology brings (Mansourov and Campara 2010). In terms of economic investment

to maintain cyberspace security, the recent National Cyber Security Strategy 2017-

2021 (National Cyber Security Centre 2016) estimated that the UK Government

invests £1.9 billion in cybersecurity (U.K National Crime Agency 2017). In a

comparatively recent article (CERT 2015), both cybersecurity experts and software

engineers noted that people’s critical dependency on the Internet had changed so

radically since the field’s inception. This has created a mind shift in the way we define

as its early definition is limited to (i) computer security, and (ii) internet security.

However, the modern definition of cybersecurity further includes process, controls and

technologies that are designed to protect systems, networks and data from cyber-

attacks (Craigen, Diakun-Thibault and Purse 2014).

Recently, there has been renewed interest in pattern-oriented research

methods whose primary focus is to study a subject domain such as Cyberspace by

identifying the potential relationship between different types of cyber-patterns. Uses

the term “Cyber-patterns” to refer to unifying design patterns with security and attack

related patterns in cyberspace. There is little consensus about what cyberspace

actually means; however, Morningstar and Farmer (2003) have observed that

cyberspace is defined more by the social interactions involved rather than its technical

implementation.

Either way, software systems and the Internet are intertwined with each other

in cyberspace where users interact for social, information and creative purposes. As

software systems are continuously growing in size, complexity and connectivity, the

growing risks are related to their malicious use (McGraw 2006). For malicious

attackers, the attack surface1 has been increasing by 70% over the last decade, which

contributes to the misuse of software systems and the exploitation of vulnerabilities

(Choo 2011).
Programmers can make mistakes during the development process, which could

generate or lead to software vulnerabilities. A software vulnerability is a flaw or defect

in the software system that can be exploited by an attacker in order to obtain some

privileges in the system. It means the vulnerabilities offer possible entry points to the

system. Despite the knowledge about vulnerabilities nowadays, there is still a growing

tendency in the number of reported vulnerabilities, and this is the reason why software

1 The total sum of the vulnerabilities in a given computing device or network that are accessible to a hacker.

5

security has become an important field of research. The presence of vulnerabilities in

software makes it necessary to have techniques that can help and assist developers

in understanding and mitigating errors during the development of the software.

In this chapter, the research problem upon which this thesis is based is

introduced, i.e. why the development of mistakes or errors that lead to vulnerabilities

are posing a significant challenge for developers in the creation of secure software.

The research aims to address the existing communication gap between software

engineers and cybersecurity experts when it comes to addressing reoccurring security

problems. The research proposed questions that contribute to bridging the knowledge

gap between both communities. Based on these questions, the main claim made by

this thesis is to justify the research approach which is derived via the Vulnerability Anti-

Pattern (VAP). This chapter concludes by presenting an overview of the dissertation

in Section 1.4, followed by its detailed structure in Section 1.9 and publications arise

from thesis work in Section 1.10.

The key objectives of the chapter are:

• Provide an overview of the thesis in section 1.4.

• Describe the thesis statement and arising research questions in sections 1.5,

1.6, 1.7 and 1.8.

• Present the dissertation structure and published work in sections 1.9 and 1.10.

1.4 Thesis Motivation (Story Line)

Security is a challenging task for software developers. The development process of

most software systems prioritises efficiency, cost and user convenience, deadlines,

but does not always have security designed in from the start. Thus, while users’

expectations for technology innovation continue to increase, the quality of software

security and security often falls short. The unfortunate reality, however, is that software

developers struggle against these recurring and consistent software errors (commonly

known as vulnerabilities), e.g. buffer overflows and integer overflows are exploited by

hackers on a daily basis (OWASP 2015). The Software can be made vulnerable

through a variety of factors ranging from complex requirements specifications,

accidental introduction of software errors, and the adoption of poor software

engineering practices. Malicious hackers may have the capabilities and motivations to

take advantage of these simple mistakes, which may be unknown to the developer

who inadvertently introduced them. Furthermore, a lack of understanding of what

6

vulnerabilities are and how they can be exploited may be the reason for developers to

continue making the same errors repeatedly during the development process.

The frequency of recurrence of recently discovered vulnerabilities in CVE

(MITRE Corporation 2015a) shows that malicious hackers know a lot more about

attacking systems than the developers who created them, indicating that the

effectiveness of attackers can be traced back to their extensive knowledge sharing as

discussed further in literature review chapter. In comparison, security experts and

software developers fail to show similar efficiency in their knowledge sharing

(Mouratidis, Giorgini and Manson 2003, Yun-hua and Pei 2010, McGraw 2012).

Although the problem of frequently recurring software vulnerabilities is very well

known, no standard solution has been universally adopted (Mansourov and Campara

2010). Furthermore, according to the National Cyber Security Centre (NCSC) “in 2016,

cybercrime cost the UK economy £29.1 billion and is growing at an alarming rate” (Levi

et al. 2016). As a corollary, users would also like software systems to be as secure as

they are usable. However, this presents a challenging task for software developers

due to an augmented complex network of people and software systems against

vulnerabilities.

The question is: “Why do developers repeatedly make security mistakes?”

In general, software developers do not thoroughly understand the security

issues and their main focus is usually delivering features and functionalities, rather

than making sure that software is secure (Howard 2004). Moreover, in the software

engineering community, the common trend is to tackle security during the late stages

of the Software Development Lifecycle (SDLC). Ironically, this is estimated to be 30

times more expensive than considering security in the early stages of the SDLC

(Howard 2004). The problem arises when considering how to bridge the distinct

communication gap between software engineering and cybersecurity experts as part

of a resilient system development process. Software engineers (Shiralkarand 2009)

recommend that security should be implemented from the early stages of development

and should be considered as important as other functional requirements. In the same

manner, cybersecurity experts suggest the early use of security domain knowledge

during software development. There are, however, many reasons why this might not

occur in practices:

• Developers face limitations with regards to time and finances (Hans 2010).

7

• There is a lack of knowledge sharing between both experts (developers and

security) (Yun-hua and Pei 2010, McGraw 2012).

• Developers present no threat. However, to build secure software systems,

there is a need to provide developers with usable and understandable security

knowledge (Green and Smith 2016, Acar et al. 2016, Witschey et al. 2015).

Evidence from previous studies reflects that there is a knowledge gap between

developers and security experts, which requires special attention in order to deal with

vulnerabilities (Ghani et al. 2013, Xie, Lipford, and Chu 2011, Fahl et al. 2013, Acar et

al. 2016). Due to this communication gap, the understanding of how common errors

in software development result in exploitable vulnerabilities in software systems is

limited (Morgan 2016). For example, in 2016, 10626 Cross-Site Scripting (XSS)

vulnerability exploitations were confirmed by CVE (MITRE Corporation 2015a) and

considered one of the most prevalent web application security threat (Wichers 2017).

Despite XSS prevalence and severe consequences, generally, XSS mitigation only

requires a simple input validation during development. This has revealed that XSS is

one of the most common types of vulnerability in web applications, yet many

developers remain unaware of it and unable to identify instances due to their lack of

understanding of existing complicated cybersecurity knowledge.

This thesis argues that an easily understood (usable) representation of recurring

exploitable development errors can help developers’ awareness of how malicious

hackers exploit these errors. Thus, it would be fruitful to study failures, identify the

recurring poor software practices and suggest solutions to these problems. This

concept is known as a negative pattern or an anti-pattern. This study proposes a new

pattern-based approach based upon the improved use of: “the Vulnerability Anti-

Pattern” that encapsulates knowledge of existing vulnerabilities as a solution to bridge

the gap between cybersecurity experts and software developers. A catalogue of

Vulnerability Anti-Patterns (VAPs), based on the most commonly occurring

vulnerabilities, is developed that software developers can use to learn how malicious

hackers exploit errors and address these during SDLC.

1.5 Rationale for Research

Despite the software engineering community’s endeavours, and the cybersecurity

community’s best efforts, the number of serious software exploitations is increasing:

According to IBM X-Force Threat Intelligence Index report (2017) tracked 10,197

8

software vulnerabilities in 2016 (Alvarez et al. 2017). Generally, developers are not

trained on how to leverage existing vulnerability database sources in order to learn

how to avoid development errors that potentially cause vulnerabilities. Insecure

software development practices are common due to a variety of factors, which include

(i) inefficiencies within existing knowledge transfer mechanisms based on vulnerability

databases (VDBs) and pattern-based approaches, (ii) software developers perceiving

security as an afterthought, and (iii) lack of consideration of security as part of the

Software Development Lifecycle (SDLC). This information gap between software

developers and cybersecurity experts has directly led to widespread software

vulnerabilities. The frequency of recurrence of commonly discovered vulnerabilities in

databases, such as CVE, confirms that software developers make the same errors

repeatedly during the development process. Consequently, it would be fruitful to study

failures, identify recurring poor software practices and find solutions for these

problems (Busch, Koch and Wirsing 2014, McGraw 2004, Howard and Lipner 2009).

In addition to investigating how cybersecurity knowledge sources could be used to

bridge the understanding gap of security information for software developers.

1.6 Thesis Statement

The essential argument made in this thesis is that using a pattern-based approach to

the documentation and communication of knowledge about recurring security

mistakes (and their amelioration) made during the process of software development

can lead to the production of more secure software. The need for such an approach

is based on the observation that ‘vulnerability knowledge’ is not currently transferred

effectively between the disparate cybersecurity and software development

communities. Whilst existing pattern-based approaches have been shown to improve

developers’ understanding of vulnerabilities, it is further hypothesised that constraints

in the design/style of patterns used have limited the effectiveness of knowledge

transfer in current approaches.

This thesis statement will be defended through work which seeks to answer the

following research questions.

9

1.7 Research Questions (RQ)

The work described in this thesis is thus based on proving the research question: “Can

a pattern-based approach (Vulnerability Anti-Pattern) be effective in bridging the

security knowledge gap between software developers and security experts in order to

help developers in the creation of secure software systems?”

This research question can be broken down into the following questions:

• RQ1: Do software developers have an effective understanding of errors that

lead to the creation of vulnerabilities, coupled with an awareness of how

malicious hackers can exploit these errors?

• RQ2: Why are current attempts, in the form of patterns and catalogues of

vulnerabilities, not successful in communicating security knowledge to software

developers?

• RQ3: Do developers know how to mitigate these recurrent errors during the

Software Development Lifecycle (SDLC)?

This work is original in that no previous study has used the Anti-Patterns construct to

capture vulnerabilities to educate developers against common vulnerabilities to

facilitate the creation of secure software.

1.8 Research Hypotheses (RH)

This research posits the following hypotheses:

• RH1: Software developers cannot radically recognise recurring software

vulnerabilities during the Software Development Lifecycle (SDLC).

• RH2: Current attempts, in the form of patterns and catalogues of vulnerabilities,

are generally not successful in communicating security knowledge to software

developers.

• RH3: Anti-Patterns can provide sufficient awareness and understanding of

vulnerabilities in order to enable developers to create more secure software.

1.9 Dissertation Overview

This dissertation is broken down into the subsequent nine chapters. Chapters 2 and 3

situate the dissertation and present the existing pattern-based approaches used to

derive Vulnerability Anti-pattern (VAP). Chapters 4, and 5 present the overview of VAP

design and create a catalogue of VAPs, which is validated by the pilot and industrial

10

studies described in Chapters 6, 7, and 8. Finally, Chapters 9, and 10 discuss the

results and review the thesis.

11

2. Literature Review
Chapter 2 provides an overview of the on temporary state-of-affairs in the design of

secure software development practices. This is achieved by describing the changing

trends in cybersecurity that increase the importance of secure software development.

Existing pattern-based approaches proposed by the cybersecurity and software

engineering communities are evaluated to alleviate the severity of security problems

during software development. Given the dissertation’s focus an in-depth study of

several pattern-based software engineering & cybersecurity approaches are

considered from a security perspective. The analysed pattern-based approaches are

security patterns, attack patterns, software fault patterns, and anti-patterns. The

literature review has emphasised the fact that these existing efforts from both

communities are not effective in terms of providing essential awareness about

software development errors that create knowledge gaps. The chapter concludes with

a brief evaluation of why security is a growing problem for developers due to existing

knowledge gaps between software engineers and cybersecurity experts.

3. Criticism of Existing Pattern-Based Approaches and the

Derivation of a New Approach: Vulnerability Anti-Pattern (VAP)
Chapter 3 describes the proposed methodology used to validate and achieve research

propositions. It critiques the existing pattern-based approaches taken by the

cybersecurity and software engineering communities, before presenting the derived

research method employed. At the end of this chapter, the derivation of Vulnerability

Anti-Pattern (VAP) process is proposed as improved use of the anti-pattern approach.

VAP contributes to raising the awareness of developers about common vulnerabilities

that is necessary for the development of secure software.

4. Vulnerability Anti-Patterns: A Timeless Way to Capture Poor
Software Practices (Vulnerabilities)

Chapter 4 presents a proposed hybrid solution “Vulnerability Anti-Pattern”, which

encapsulates vulnerability knowledge from vulnerability databases (VDBs) and

presents this knowledge to developers so that they can understand how malicious

hackers can exploit poor software practices. This chapter provides the VAP definition

and conceptual design. A justification is presented on how VAPs can help fill the

knowledge gap between communities – software engineering and cybersecurity – by

encapsulating knowledge of commonly occurring vulnerabilities. This is followed by

12

the solution presented by this research; merging cybersecurity knowledge into anti-

patterns to generate a new pattern-based approach in the form of VAPs. Two types of

VAPs are proposed; formal and informal, in terms of how the vulnerabilities are

addressed. Collectively, this pattern-based approach helps developers to understand

and become aware of malicious hackers’ techniques and contributes to the

development of more secure software. This chapter justifies the related concepts such

as a vulnerability, an anti-pattern and their relationship. This chapter ends with a

conclusion to describe both the proposed templates of VAPs: formal and informal.

5. Creating a Catalogue of Vulnerability Anti-Patterns (VAPs)
Chapter 5 presents the catalogue of Vulnerability Anti-Patterns (VAPs) including 12

vulnerabilities chosen from the OWASP list of “Top 25 Most Dangerous Software

Errors”. This chapter presents the clustering approaches to develop a catalogue of

VAPs. The chapter concludes by describing both catalogues of VAPs: formal and

informal.

6. Pilot Study -I (PS-I)
Chapter 6 is the part of the evaluation process, which describes the quantitative

analysis of pilot study-I (without intervention) and its results. This chapter elucidates

the pilot-study-I, including detail of participants and statistical analysis of data. The

chapter concludes with statistically significant outcomes of the study.

7. Pilot Study -II (PS-II)
As a part of the evaluation process, chapter 7 describes the quantitative analysis of

pilot-study-II and its results. This chapter explains the experiment design, its

participants and analysis of the statistical results. The chapter concludes with

significant outcomes of the pilot-study-II.

8. Industrial Study
As a part of the evaluation process, chapter 8 presents a case study, which

investigates the contributions of the thesis. The industrial study based on qualitative

analysis investigates the use of VAPs by professional software developers that belong

to the UK-based leading software development company. In the end, this chapter

13

concludes the qualitative analysis results to presents the effectiveness of VAPs in

order to raise awareness of vulnerabilities.

9. Discussion
Chapter 9 is the last chapter of the evaluation process, which discusses the conclusive

results of the series of experimental studies: pilot study-I, pilot-study-II and industrial

study.

10. Conclusion & Future Work
Chapter 10 presents the findings gleaned from developing and applying Vulnerability

Anti-Patterns, which details the contributions made by VAPs to increase developers’

awareness about vulnerabilities, before critically analysing the thesis in more detail.

This critical analysis involves summarising the case made by the thesis, reviewing

whether the research questions posed in Section 1.5 have been properly answered,

reflecting on the issues identified while conducting this research, and stating how the

research contributions in this dissertation answer the research questions and thus

validate the overall hypothesis. In the end, this chapter concludes with proposing

future work, extending the contributions made.

14

Figure 1 Dissertation roadmap

15

1.10 Publications Arising from Thesis Work

Table 1 describes the elements of this dissertation which have been published as

posters or in conference proceeding and journals.

Publications Related

Chapters

Nafees, T. et al. 2016. Bridging the Void between Software
Engineers and Security Experts. In: Proceedings of the
womENcourage 2016 - 3rd ACM-W Europe, Linz, Austria. 12-
13 September 2016. ACM,pp.24-25.

https://womencourage.acm.org/archive/2016/poster_abstracts
/womENcourage_2016_paper_24.pdf

2

Nafees, T. et al. 2017. Idea-caution before exploitation: The
use of cybersecurity domain knowledge to educate software
engineers against software vulnerabilities. In: Proceedings of
International Symposium on Engineering Secure Software
and Systems 2017. Springer, pp.133-142.

2,3

Nafees, T. et al. 2017. A Vulnerability Anti-Patterns: Essential
Education for Software Developers. PCWiCS-2017: The Truth
About Cyber Security in 7 Words!, Edinburgh, UK, 10th May
2017.

http://thecyberacademy.org/pcwics-2017/.

3,4

Nafees, T. et al. 2017. Vulnerability anti-patterns: A timeless
way to capture poor software practices (vulnerabilities). In:
Proceedings of the 24th Conference on Pattern Languages of
Programs 2017. The Hillside Group, pp.23-47.

5

Table 1 Published work from thesis

16

2 Literature Review

This chapter introduces, some general concepts related to cybersecurity. It is essential

to understand, as a part of this research, the extent and characteristics of

cybersecurity, while explaining core cybersecurity terminologies from two different

perspectives- software developers and cybersecurity experts. In addition, it reviews

the literature to answer some critical questions such as: why do we care about

security; who is responsible for maintaining security in cyberspace?

Both software engineering and cybersecurity communities share the concept of

security in cyberspace; the research evaluates how existing work on vulnerabilities (in

the form of vulnerability databases) might be cogent to aid developers to deal with

poor software development practices. This chapter provides an overview of efforts

made by the software engineering and cybersecurity communities to address security

concerns during the software development phases/stages. In particular, potential

pattern-based approaches are reviewed, while considering existing issues which arise

when transferring security knowledge from cybersecurity community to software

engineers when it comes to addressing vulnerabilities in order to create of secure

software systems. The discussed core concepts in this chapter will be used in the rest

of the dissertation.

2.1 Introduction

Despite significant advances in the state of the art of computer systems in recent

years, security of information is lacking, and resources in cyberspace are more

vulnerable than ever before. Each major technological advance in software systems

raises new security vulnerabilities and threats that require new security solutions.

Problems regarding the security of software systems are emerging faster than the rate

of the derivation of their solutions. From software developers’ points of view,

cybersecurity experts developed methodologies that are often too general and hard to

understand to implement during software development lifecycle (Kis 2002, Busch,

Koch and Wirsing 2014). Software engineering methodologies, on the other hand, lack

support to implement security specifications particularly to see errors that cause

vulnerabilities (Poller et al. 2017, Xiao, Witschey and Murphy-Hill 2014). Security is

considered to protect assets from various threats posed by vulnerabilities inherent in

the system. In general, developers lack the particular “security mindset” in order to find

17

vulnerabilities (Conti and Caroland 2011, Severance 2016). As a result, a distinct

communication gap between software engineers and cybersecurity experts exist

regarding security (Van and McGraw 2005, McGraw 2012). It is imperative that both

communities work together. Questions arising from this are “Why do software

developers struggle with persistent software errors?” and “What are the knowledge

gaps that exist between software engineers and cybersecurity experts?”

There is no simple answer to these questions, although the most obvious issues

are the lack of commonly shared understanding and poor communication between

software developers and security experts. In other words, these domains struggle to

understand each other’s perspectives and do not share common terms, languages,

and procedures, which prevents them from finding causes of vulnerabilities (errors)

and explaining them (Fahl et al. 2013). No single security measure or mechanism can

provide a completely secure system. In fact, there is a fundamental tension inherent

in today’s systems between functionality (i.e. an essential property of any working

system) and security (i.e. also critical in many cases) (Hans 2010, Busch, Koch and

Wirsing 2014). Therefore, a plan is required to create a balance between systems’

core functionalities and the level of protection required for developing a secure system.

We might not be able to change how software systems work in cyberspace, but the

transfer of knowledge from cybersecurity community can help in avoiding the typical

threats and deploy acceptable security practices (Weir, Rashid and Noble 2017,

Nafees et al. 2017).

The start of the chapter presents a history of cybersecurity, which began with

computer security and information security early definitions/concepts and how these

both merge into cybersecurity. This follows to introduce cybersecurity fundamentals,

which are explored from software developers’ and cybersecurity experts’ point of view.

This provides an overview of why cybersecurity experts and software developers are

different. Following this, cyber-patterns and their relationship within cyberspace are

explained. The scope of research was to focus on Cybersecurity and software

engineering efforts to deal with software security while using pattern-based

approaches. This chapter examined the existing literature related to security from two

communities:

• Software engineering community efforts to build security through improved

use of software development processes, improving runtime environment and

safer programming libraries, and a pattern-based approach (security pattern).

18

• Cybersecurity community efforts to capture security practice in the form of a

catalogue of vulnerabilities and to use pattern-based approaches such as

software fault patterns, attack patterns and anti-patterns.

At the end of the chapter, the shortcomings of previous communities’ attempts are

analysed. The chapter’s contents are:

• Section 2.1.1 provides the problem background

• Section 2.2 provides an overview of cybersecurity.

• Section 2.3 presents cybersecurity key terminologies from two different

perspectives, i.e. software developers’ and cybersecurity experts’.

• Section 2.4 introduces interdisciplinary security related concerts of both

communities.

• Sections 2.8 to 2.9 explore the reasons why security is a problem in

cyberspace.

• Section 2.10 examines the causes for the distinct knowledge gap between

software developers and security experts.

• Section 2.11 discusses the shortcomings of previous pattern-based

approaches of both communities, i.e. software engineering and cybersecurity.

• This chapter concludes with a discussion of knowledge pulling and pushing

from cybersecurity to software engineering in Sections 2.12 to 2.15.

2.1.1 Background

Programmers make mistakes. Much research effort has concentrated on addressing

this problem (Todorov 2015). Of particular concern are those coding flaws that lead to

security vulnerabilities. The deliberate misuse of such a vulnerability is termed as

exploitation, resulting in information leaks, and reducing the value or usefulness of the

system (Leveson 2004). Generally, software developers do not consider the security

as their focus is on delivering features, rather than on ensuring the security of the

software code, so it is often considered as something to be implemented during later

stages of development. However, the cost of fixing bugs post software release is

estimated to be 30 times pre-release cost (Cabinet Office 2011). Testing has a poor

relation to security. It is unusual for the software developer to use testing approaches

for finding vulnerabilities; this issue has not received the research attention it requires

(Bekrar et al. 2011). One implication of this is that security concerns should be

19

embedded into the software development lifecycle (including the early phases)

(Jorgensen 2013). In reality, however, software developers struggle against recurring

and consistent software flaws (i.e. buffer overflows, and integer overflows), which are

exploited by malicious hackers. Nonetheless, a large body of knowledge about

software vulnerabilities exists within the cybersecurity community, in particular,

amongst penetration testers and ethical hackers. The term ‘Ethical Hacker’ (EH) will

be used as a shorthand to denote this community. Currently, ethical hackers put much

effort into classifying discovered vulnerabilities and developing taxonomies of these

vulnerabilities. Such vulnerabilities are then catalogued in publicly available

vulnerability databases (VDBs) (Aslam, Krsul and Spafford 1996). Software

developers have worked to embed security within the software development lifecycle

(SDLC) (Howard and Lipner 2006) in order to reduce deployment errors. The

mechanism of knowledge transfers between the vulnerability databases (VDBs),

developers’ perceptions of security issues and the security development lifecycle

(SDLC) is complex, which creates a distinct communication gap between ethical

hackers and software engineers (Busch, Koch and Wirsing 2014). The application of

(knowledge) communication directs software developers to repeat persistent prevalent

vulnerabilities and gives rise to software flaws exploitation. Various attempts to

capture and formalise the knowledge transfer in a manner appropriate to software

engineers have been made, including Misuse Patterns (Fernandez, Yoshioka and

Washizaki 2010), Software Fault Patterns (SFP) (Mansourov 2011), and Security

Patterns (SP). The need for a better understanding of this mechanism and our

proposed solution is the subject of this research.

2.2 Overview of Cybersecurity

Cybersecurity is a field that is continuously evolving, perhaps even more than the IT

industry itself (Von and Van 2013). As cybersecurity is undergoing many dramatic

changes, it is not easy to explain cybersecurity in a definitive way. In fact, the definition

of Cyber or Security are both under debate and the meaning of cybersecurity has

evolved over time. For the purpose of this chapter, we will frame the definition in the

context of the internet or computer systems’ evolutionary history. Thus far, this

evolutionary process spans the last five decades. Such evaluation allows us to explore

aspects of cybersecurity as explained in Section 2.2.1 and succeeding Section 2.2.3

to define the notion of cybersecurity.

20

2.2.1 Evolutionary History of Cybersecurity

2.2.1.1 Era of Computer Security

In its origins (Flamm 1988), computer security was focussed on keeping the glass

houses in which computer processing units were positioned to protect from vandalism,

along with ensuring constant cooling and electricity. There was a limited number of

people who used and accessed computer systems (Amoroso 1994, Garfinkel,

Spafford and Schwartz 2003). After the revolutionary change in the early 1950’s, the

internet was designed for researchers to share information easily. In that era, internet

as the Advanced Research Projects Agency Network (ARPANET) protocols were

introduced by the Department of Defence’s Advanced Research Project Agency

(ARPA), whose intention was to promote the use of a supercomputer among

researchers and share classified information (Abbate 2000). During these years, the

primary aim of the internet was to provide openness and flexibility with unrestricted

access to information on the network for collaborative research. As a result, the first

problems related to information security emerged because of this ongoing design

decision unrestricted information sharing. The term information security is loosely

defined as the protection of information from unauthorized access, use, disclosure,

disruption, modification, or destruction (Fal’ 2010), which are explained further in

Section 2.2.1.4. Some examples of that time (1980’s) security incidents, which raised

information security concerns, are described by (Levy 2001) in his book “Hackers:

Heroes of the Computer Revolution”. Security incidents took place due to unrestricted

information sharing over the internet in that era had brought the researchers’ attention

towards future information security-related issues with a realisation to do work about

it.

2.2.1.2 Era of Computer Security or Information Security

As a result of the information sharing and its related security issues, researchers

introduced the term Information Security, which at first was used synonymously with

Computer Security (Cherdantseva and Hilton 2013). Regarding the concept of

substituting Computer Security with Information Security, so far there has been little

agreement on definitions proposed by Russell and Cherdantseva (Russell and

Gangemi 1991, Cherdantseva and Hilton 2013) and (Van and McGraw 2005). These

definitions have revealed the relationship between these disciplines - computer

21

security and information security. There was a general consensus between both

disciplines’ researchers that the term Information Security could be used in an

exchange for Computer Security. However, according to (Van and McGraw 2005) the

definition of Computer Security has often been regarded as a branch of Information

Security, which carefully considers the confidentiality and integrity of classified

information, while (Russell and Gangemi 1991) proposed definition embraces all

possible aspects of Information Security into basic definition of Computer Security

such as confidentially, integrity, and availability; therefore, the popular conception of

Computer Security is often called Information Security.

During the1960’s, which is known as an era of Information Security, secrecy

and confidentially was the primary security concern across networks and shared

computers. By that, security is a matter of protecting the information itself.

The first accounts of malicious hacking and vulnerability exploitation references

are: the malicious hacking action published in 1963 in Massachusetts Institute of

Technology (MIT’s) Tech newspaper (Raymond 2017, Lightsein 2008). The

vulnerability exploitation was performed by William D. Mathews from MIT

in CTSS running on an IBM 7094 (Csanadi 2015, McMillan 2012). The publicity

resulting from the misuse was held to have played a key educational role for users.

In the late 1960’s, the networked computer concept was introduced in the form

of server and client systems, which enabled the sharing of resources and information,

both within a computer and over a network. According to Amoroso (1994), and

Garfinkel, Spafford and Schwartz (2003), additional security problems became the

primary concern for security researchers and practitioners.

Progress was, however, being made (Cheswick, Bellovin and Rubin 2003) to

define Computer Security in more detail, so these arising issues could be addressed

properly. Consequently, Information Security was integrated into computers system

security. Authors such as, (Garfinkel, Spafford and Schwartz 2003) propose a more

operational definition of Computer Security when suggesting that “a computer is

secure if you depend on it and its software to behave as you expect”, and this concept

is often called “trust”. In conclusion, however, these informal definitions include natural

disasters and faulty software as security concerns. Secure software development and

testing concerns in the regard of computer and information security was often

overlooked by researchers (McGraw 1999).

22

2.2.1.3 Digital Era of Cybersecurity

In the early 1980’s, the FBI investigated a breach of security at National CSS, as

reported in the New York Times (McLellan 1981). This period recognised hackers as

being an asset in the computer industry. According to (Walton 2006), the United

Kingdom’s first Computer Misuse Act was written after a hacking attack on Prince

Philip’s Prestel mailbox (Calcutt 1999). Such events brought to researchers’ attention

that the correct operation of software can also become a security problem when it is

operated in a manner which it was not intended to be used.

By 1988, the Internet was an essential tool for communications, but it began to

create concerns about privacy and security in the digital world. The term digital world

here means the virtual space for inter-connected digital devices and media, which is

further discussed in Section 2.7.2.

Eisenberg and Gries (1989) described the first computer worm that affected

many computers, created by Robert Morris. It was a landmark incident in that it was

the first widespread instance of a denial-of-service (DoS) attack and since then this

class of vulnerability has been persistently publicised like a buffer overflow

vulnerability. Up to that time, developers view that software errors (Kidwell 1998) such

as buffer overruns were a potential problem, but not many people realized what the

consequences of those errors could be.

The buffer overflow was one of several exploits used by the Morris worm

(Orman 2003) to propagate itself over the Internet. Due to the infancy of the internet

at the time, the impact was less than it would be today. However, it laid the groundwork

for the kinds of security issues that have seem observable since the Morris Worm.

This catastrophic incident ultimately forced security practitioners and researchers to

include software security as an integral part of information security in cyberspace.

Since software errors have the potential to be exploited as vulnerabilities, software

security received increased interest among researchers and practitioners (Vacca

2009). In response to the Morris worm incident, the CERTs (Computer Emergency

Response Teams) were created in 1988 (Pesante 2002) the first organization of its

kind in which researchers coordinate responses to computer security incidents in order

to find and publish software bugs that impact software and internet security. The team

works with business and government to improve the security of software systems. To

deal with obvious and growing dangers of cyber-attacks, a large number of software

23

exploits emphasised to researchers that bolting security onto an existing system is not

a good strategy (McGraw 2012). McGraw argues that software security significantly

improved but these efforts are not enough, as he explained in his study in the section

on “Bugs per square inch trending down”: Despite the improvement in architecture risk

analysis, code review technology and penetration testing techniques, the sheer

volume of code product is immense, requiring persistent effort to build secure

software. Therefore, McGraw argues the need for training for software development

teams to provide knowledge of attacks. He also mentions that exploitation knowledge

should be cycled back into the development organization and for developers, thus

security practitioners should explicitly track both threat models and attack patterns.

Security is not a simple feature because it requires advanced planning and

careful design that includes some emergent properties such as fault tolerance, and

error handling. As the internet has greatly increased the connectivity and extensibility

of computer systems, and complexity of modern software systems, it is necessary to

secure the cyberspace (computers and networks) and its contextual use (information).

The question needing to be asked is how developers can implement/adopt the security

concerns from the start of software systems development to ensure the use of good

software assurance practices. However, improvement required to include software

security as an integral part of computer security or information security in order to

educate developers about up-to-date software assurance practices. In some way,

progress is being made while changing the opinion to security and trying to emerge

software security as an integral part of information security (Von and Van 2013). Since

the start of the decade, a number of studies have revealed a relationship between

information security and cybersecurity that confirmed the association between them

in order to protect information (Cherdantseva and Hilton 2013, Von and Van 2013,

Alexander and Panguluri 2017).

2.2.1.4 Interrelation between Cybersecurity and Information Security

Following the brief historical evaluation of cybersecurity, this Section will explain how

cybersecurity and information security correlate to each other.

According to ISO/IEC 27000:2009, Information security may be defined to preserve

three cores of security, namely confidentiality, integrity and availability of information

(Fal’ 2010).

24

According to International Telecommunication Union (Craigen, Diakun-Thibault

and Purse 2014), cybersecurity may be defined as “the collection of tools, policies,

security concepts, security safeguards, guidelines, risk management approaches,

actions, training, best practices, assurance and technologies”, which can be used to

protect the cyber environment and both organizational and user assets.

These definitions indicate that cybersecurity and information security are closely

interrelated and are, indeed, integrated in order to cover significant aspects of security

within cyberspace.

2.2.2 Narrowing the Definition of Computer Security

Before the problem of data (information) security became widely publicised in the

media, the idea of computer security mostly focused on the physical machine.

Traditionally, computer facilities have been physically protected for three reasons

(Stallings et al. 2012):

• To prevent theft of, or damage to, the hardware

• To prevent theft of, or damage to, the information

• To prevent disruption of service

To date, however, increased reliance on the Internet, has radically changed

Computer Security concerns towards protecting information from unauthorized

disclosure, or information secrecy. According to Garfinkel and Spafford’s (2003)

definition, Computer Security, which was introduced in Section 2.2.1.2, was meant to

maintain a “Trust”, which may be defined as a functional component of a system in

order to protect and preserve data. Maintaining trust is not an only concern within

cyberspace. Referring to ISO/IEC 27000:2009, there are other factors, which need to

be considered against sophisticated cyber-attacks. For example, preventing a system

from unauthorised access or unauthorised use on the network. These concerns have

an association with the core of the concept of Information Security such as

confidentiality, integrity and availability. Thus far, however, with pervasive remote

terminal access now in the form of communication, and networking, the idea of

Computer Security has been dramatically changed.

According to the NIST handbook’s Computer Security definition (Guttman and

Roback 1995), it may be defined as the protection afforded to automation systems in

order to attain the applicable objectives of preserving the integrity, availability and

confidentiality of information system resources (includes hardware, firmware,

25

information/data and telecommunication). From the following NIST definition, which

enclosed both Information Security and Computer Security aspects in much more

detail, in addition to the security cores such as confidentiality, integrity and availability

(CIA) (Landwehr 1981, Russell and Gangemi 1991) that are discussed further in

Section 2.3.2.5, it is suggested that both Computer Security and Information Security

are intertwined in order to maintain security in cyberspace.

It can be concluded from NIST Computer Security definition that cyberspace

includes security of information/data, network, and internet, which is in line with

cyberspace definition introduced in (Blackwell and Zhu 2014b) in Section 2.7.2. After

examining the last five-decades of literature in this regard to explore the possible

alternative definitions of cybersecurity, the direction of academic thought on the

subject of cybersecurity evokes a sense of revolt and revolution, since the security

concept was transformed, from computer security to information security, with modern

cyberspace ideology. In order to establish a working definition of cybersecurity, the

following section presents some proposed formal definitions.

2.2.3 Defining Cybersecurity

In recent decades, cybersecurity has become increasingly challenging, and, in order

to comprehend this phenomenon, it is first necessary to clarify the notion of

cybersecurity. Different definitions have been proposed, and these have been

contrasted with the concepts of cyberspace, information security, and computer

security (CNSS, 2003; Butler, 2013; CERT, 2015). Table 2 reflects three different

definitions that provide an overview of how cybersecurity and its concept has changed

over time.

CNSS (2003) Butler (2013) CERT (2015)
Cyberspace Cyberspace

Information security

Computer security

Cyberspace

Information security

Computer security
Table 2 Cybersecurity core definitions in different eras.

As illustrated in Table 2, the most up-to-date definition of cybersecurity

comprises three cores: cyberspace, information security and computer security. As

shown in Table 2, the definition of cybersecurity evolved over time. Such as, there is

consensus to include cyberspace in the definition of cybersecurity, which is

26

fundamentally considered as a primary core. For example, CNSS (2003) stated,

Cybersecurity may be defined as the ability to protect or defend the use of cyberspace

from cyber-attacks.

CNSS (2003) and Butler & CERT, (2013; 2015) proposed definitions show a

modest association between information security and cybersecurity, including the

cyberspace.

An advanced definition of cybersecurity is provided by Kaspersky Lab (Butler

2013), describing the practice of defending computers and servers, mobile devices,

electronic systems, networks and data from malicious attacks. The term is broader

ranging and applies to everything from computer security to disaster recovery and

end-user education. To compare the above definitions with Garfinkel and Spafford’s

(2003) definition, the interesting fact is that computer security is a subset of

cybersecurity, because it focuses on protecting computers, networks, programs, and

data from unintended or unauthorized access, change, or destruction.

The most comprehensive definition, so far is provided by the CERT

Coordination (2015), which defines cybersecurity as “the full range of threat reduction,

vulnerability reduction, deterrence, international engagement, incident response,

resiliency, and recovery policies and activities, including computer network operation,

information assurance, law enforcement, diplomacy, military, and intelligence

missions as they relate to the security and stability of the global information and

communication infrastructure”.

This definition is relatively similar to those of CERT (2015) and Butler (2013)

who defined cybersecurity as “the information and communications systems and

services composed of all hardware and software that process, store, and

communicate information, or any combination of all of these elements: Processing

includes the creation, access, modification, and destruction of information. Storage

includes paper, magnetic, electronic, and all other media types. Communications

include sharing and distribution of information” (Kissel 2013).

Essentially, this reflects that cybersecurity may be loosely defined as computer

and network security within the context of cyberspace. With this concept in mind, the

term cyber infrastructure has resonated, which requires further explanation in order to

articulate a useful concept. Thus, according to NIST provided definition about cyber

infrastructure stated that (CNSS 2003): An electronic information and communications

systems and services and the information contained therein (CERT 2015, NIST 2011).

27

There is a consensus in these definitions on having a common security interest

in order to define the scope of cybersecurity including computer security and

information security, which provides researchers with a means to taking a proactive

approach to secure computer systems in cyberspace.

2.2.4 Formal Definition of Cybersecurity

The most acceptable definition of cybersecurity stated that, Cybersecurity may be

defined as “the strategy, policy, and standards regarding the security of and operations

in cyberspace, and encompass the full range of threat reduction, vulnerability

reduction, deterrence, international engagement, incident response, resiliency, and

recovery policies and activities, including computer network operations, information

assurance, law enforcement, diplomacy, military, and intelligence missions as they

relate to the security and stability of the global information and communications

infrastructure” (Amoroso 1994, Board 1993, Instruction 2003).

2.3 Fundamentals of Cybersecurity

The study of cybersecurity in this text begins with a description of essential

cybersecurity-related vocabulary items and core concepts not inclusive, which can

broadly be divided into two sub-categories.

1) Software Developers: in the category of developers we include software

engineers, programmers, analysts, and testers.

2) Cybersecurity Experts: in the category of cybersecurity experts we include

penetration testers and ethical hackers.

2.3.1 Core Software Engineering Terminologies

This section describes basic definitions for terms related to software developers, which

will be used in this text. Additionally, definitions appear in subsequent chapters to aid

in concept understanding. Many of the definitions used in this text are based on the

terms described in the IEEE Standard Collection for Software Anomalies (Board 1993,

Brehmer and Carl 1993, C/S2ESC - Software & Systems Engineering Standards

Committee 2010). The standards collection includes the IEEE Standard Glossary of

Software Engineering Terminology, which is a dictionary devoted to describing

software engineering vocabulary (Radatz, Geraci and Katki 1990). It contains working

definitions of terms that are in use in both the academic and industrial worlds. All

28

definitions described in this text have been directly adapted from the IEEE Standard

Glossary of Software Engineering Terminology, which follows IEEE Standard 610.12-

190 (IEEE Standards Coordinating Committee 1990).

2.3.1.1 Defect/ Fault/ Error/ Failure/ Problem

• Defect: An imperfection or deficiency in a work product where that work product

does not meet its requirements or specification and needs to be either repaired

or replaced.

o Example: it includes for example, omission and imperfections found

during early life cycle phase (Brehmer and Carl 1993, Board 1993,

C/S2ESC - Software & Systems Engineering Standards Committee

2010).

• Fault: a manifestation of an error in software. Faults contained in the software

are sufficiently mature for detection by test or operation. An incorrect step,

process, or data definition.

o Example: For example, an incorrect instruction in the computer

program.

• Error: A human action that produces an incorrect result. The difference

between a computed, observed, or measured value and condition and the true,

specified or theoretically correct value or condition.

o Example: For example, a difference of 30 metres between a computed

result and the correct result.

• Failure: is divided into two main definitions:1) Termination of the ability of a

product to perform a required function or its inability to perform within previously

specified limits; 2) an event in which a system or system component does not

perform a required function within specified limits. Note: A failure may be

produced when a fault is encountered. An incorrect result.

o Example: For example, a computed result of 12 when the correct result

is 10.
• Mistake: A human action that produces an incorrect result.

o Example: For example, an incorrect action on the part of a programmer

or operator.

29

• Problem: Difficulty or uncertainty experienced by one or more persons,

resulting from an unsatisfactory encounter with a system in use. A negative

situation to overcome.

o Example: for example, a login system grant access to unauthorized

users.

2.3.1.2 Basic Terminologies Association and Intersection

1. Bug: Fault/ Defect

A bug may be more precisely defined as a fault or defects. As shown in Figure 2, these

terminologies are interlinked and generally interdependent on each other. Use of the

latter terms related to Bug trivializes that fault has a direct impact on software quality.

Use of the term “defect” is also associated with software artefacts such as

requirements and design documents. Defects occurring in these artefacts are also

caused by errors and are usually detected in the review process (Burnstein 2006). A

bug is another name of an error. Software developers usually name it an error;

however, testers call it a bug.

2. Usability

According to (Nielsen 1994), usability has multiple components and traditionally may

be defined as the ease with which a user can learn to operate, prepare inputs for, and

interpret outputs of a system or component. The associated attributes of usability are:

• Learnability: easy to learn

• Efficiency: efficient to use

• Memorability: easy to remember

• Errors: Few and non-catastrophic error

• Satisfaction: pleasant to use

2.3.2 Core Cybersecurity Terminologies

This section describes basic cybersecurity related definitions and terminologies. An

additional definition is given in subsequent chapters to aid in concept understanding.

Many of the definitions used in this text are directly adapted from Common Cyber

Security Language (CERT 2015), and Glossary of Key Information Security Terms

(Kissel 2013), which follows IEC 27000:2009 standard. It contains working definitions

of terms that are in use in both the academic and industrial worlds.

30

2.3.2.1 Vulnerability

The literal meaning of “vulnerability” is the state of being open to injury. From a

computing viewpoint, it may be defined as design or implementation or code errors in

information systems or software applications, which may result in compromise of the

confidentiality, integrity or availability of information stored upon or transmitted over

the affected system (Symantec Corporation 2008). For example, consider Robert’s

vulnerability definition (Newman 2009) “a characteristic of a computer system or

network that makes it possible for the threat to occur is called vulnerability”. A

presence of vulnerability within the software systems provides an opportunity for

problems and disasters to occur. Bishop (2003) argues it as opening doors of a system

to enable entry to the disallowed state because of a security mechanism failure.

2.3.2.2 Software Vulnerabilities

From a cybersecurity point of view, a vulnerability is a weakness (a form of software

error) which allows an attacker to reduce a system’s assurance.

Generally, a vulnerability is the intersection of three features:

1) A system may have a flaw or bug.

2) An attacker may get access to the flaw or bug.

3) An attacker may have the capability to exploit the flaw or bug.

A vulnerability is a subset of a bug. A bug is any defect in a product and different

terms are used during the software development process such as a mistake, anomaly,

fault, failure, error, exception that discussed in Section 2.3.1. The potential reason to

deal with security is to identify the bug before it is exploited by an attacker and is

labelled as a vulnerability. Software vulnerabilities share common properties and

similar characteristics in general aspects such as location, cause, impact and severity

(Chen, Zhang and Chen 2009). Consequently, the process of capturing patterns of

vulnerabilities may be effective in order to group and implement standard rules of

classification on the enormous population of vulnerabilities.

2.3.2.3 Violations

A violation is a sub-part of vulnerability as shown in Figure 2. It is a malicious or

inadvertent action that has the potential to impair the security properties of assets.

Violation is sub-divided into four major categories and each category is related to the

major class of vulnerability (Schumacher et al. 2013).

31

Figure 2 Broader view: class level distribution of software weaknesses

• Unauthorized Disclosure: any information that is considered a part of the asset

of the organization, which is inappropriately released. There are multiple ways of

leakage 1) Exposure: an organization employee leaving a sensitive document on

the table at a coffee shop, 2) interception: unauthorized access of data from outside

the organization, 3) inference: indirect access by reasoning and 4) intrusion:

bypassing the security protection. The purpose is:

o Deception: it includes falsification, repudiation and spoofing. All cases that

lead to false information about the organization are part of the deception.

o Disruption: It contains injury or damage to the working interior of the

organization. The main sub-parts of disruption are incapacitation,

corruption, and obstruction.

o Usurpation: It causes misappropriation theft and misuse of the physical or

logical resources of the organization.

2.3.2.4 Attack/ Countermeasure/ Threat/ Incident

• Attack: An attempt to gain unauthorized access to system services, resources, or

information, or an attempt to compromise system integrity.

o Example: for example, a malicious attacker exploits the web-system with

SQL injection.

Bug

Vulnerability

Violation

Unauthorized
Disclosure

•Deception

•Disruption

•Usurpation

32

• Countermeasure: Actions, devices, procedures, or techniques that meet or

oppose (i.e., counter) a threat, a vulnerability, or an attack by eliminating or

preventing it, by minimizing the harm it can cause, or by discovering and reporting

it so that corrective action can be taken.

o Example: for example, the developer carefully used the potentially

dangerous function calls strcpy_s as a safe replacement during coding to

reduce the chance of exploitation.

• Threat: Any circumstance or event with the potential to adversely impact

organizational operation (including mission. Functions, images, or reputation),

organizational assets, individuals, other organizations, or the Nation through an

information system via unauthorized access, destruction, disclosure, modification

of information, and/or denial of services.

o Example: for example, credential information is protected with email

verification to avoid the threat of misuse.

• Incident: A violation or imminent threat of violation of computer security policies,

acceptable use policies, or standard security practices.

o Example: for example, agent compromised the organization’s confidential

information via any malicious act or suspicious event.

2.3.2.5 CIA

CIA (confidentiality, integrity, and availability) are three core concepts of cybersecurity.

These terminologies are commonly used within the industry but may take on a more

particular meaning in the context of cybersecurity. All CIA definitions are sourced from

NIST Glossary of key information Security Terms (Kissel 2013).

• Confidentiality: may be defined as a 3rd party preserving information assets,

which are personal to those authorized by the asset owner.

• Integrity: may be defined as ‘unaltered information assets’, which has not been

modified or destroyed in an unauthorized manner.

• Availability: may be defined as an ability of a system to provide reliable and

timely access to information assets by authorized individuals.

The key impact factors relating to users’ information are Authentication, Authorization,

and Nonrepudiation (Longstaff et al. 1997).

33

1. Authorization VS CIA
• The process of verification of rights to perform any task is called authorization.

Loss of Confidentiality: when information is read or copied by someone not

authorized to do so, the result is known as loss of confidentiality. For example,

for some types of information, confidentiality is a very important attribute such

as research data, insurance records, and medical records.

• Loss of Integrity: information can be corrupted when it is available on an

insecure network. When information is modified in unexpected ways, the result

is known as a loss of integrity. This means that unauthorized changes are made

to information, whether by human error or intentional tampering.

• Loss of Availability: information can be erased or become inaccessible,

resulting in loss of availability. This means that people who are authorized to

get information cannot get what they need.

2. Authentication VS CIA
The process of verifying the identity of the user or proof of identity is called

authentication.

• Loss of Confidentiality: Authentication is verification that users are who they

claim to be. When secure information is authorized to the unauthorised user

such as false identity (identity theft), the result is known as loss of

confidentiality.

• Loss of Integrity: When unauthenticated users gain access and modified the

information. Such as electronic funds transfer, and air traffic control systems.

• Loss of Availability: Availability is often the most important attribute in service-

oriented business such as airline schedules. When an authorized user cannot

get access to specific services this is generally known as Denial-of-service

(DoS) attacks.

3. Non-Repudiation VS CIA
The process of assurance that the sender of information is provided with proof of

delivery and the recipient is provided with proof of the sender’s intent, so neither can

later deny having processed the information.

• Loss of Confidentiality: When information is not protected against an

individual falsely denying having performed a particular action.

34

• Loss of Integrity: Having no capability to determine where a given individual

took a particular action such as creating information, sending a message, and

receiving a message.

• Loss of Availability: When an authorized user has no capability to approve

information because of specific services being unavailable.

2.4 Interdisciplinary Concepts and Approaches

Software security practices are receiving increased interest among researchers and

practitioners. The increased interest is a result of an increase in reported security-

related vulnerabilities and incidents of security breaches (Daud 2010). This section

describes the relationship between the inter-disciplinary field of cybersecurity and

software engineering focused on software security.

2.4.1 Software Development Lifecycle (SDLC) and Software Vulnerabilities

The Software Development Lifecycle (SDLC) is generally considered as an idealised

model of the process involved in building software. It is often described as a complex

process and can be more challenging for the software developer because of its

inherent problem that is referred to as complexity includes the program complexity and

the design complexity (Conte, Dunsmore and Shen 1986). Failures, faults, and errors

can be introduced and slipped into at any stage of SDLC (Beizer 1990, Beizer 2003).

Programmers make mistakes. McConnell stated in his book that “Experience suggests

that there are 15-50 errors per 1000 lines of delivered code” (McConnell 1993). As the

number of lines of code in a software system increases it always results in increased

bugs and this is evidenced from developers’ common developing practices during

SDLC (Murdico 2007). In the complex and large software application, even 1 error per

1000 lines of code may constitute a large security risk.

For example, each new version of Microsoft Windows carries the baggage of

its past errors. As Windows has grown, the technical challenge has become

increasingly daunting. Several thousand engineers have laboured to build and test

Windows Vista, a sprawling, complex software construction project with 50 million

lines of code, more than 40% larger than Windows XP (Lohr and Markoff 2006). This

means that if the software developers of Windows Vista only made one error per 1000

lines of code, then Vista had 50,000 errors. Exploitation of any one of these errors,

bugs and security violations by the attackers is a potential cause of vulnerability in the

35

software system. Furthermore, these vulnerabilities can also cause other issues such

as the loss of information and reduce the value or usefulness of the system (Krsul

1998, Leveson 2004, Cohen 1999).

A vulnerability can be considered to be a type of a bug as described in Section

2.3.1.2. To protect software systems from being exploited or misused by malicious

attackers is one of the potential reasons to identify the bug before it is exploited by an

attacker and is labelled as a vulnerability. According to (Schumacher et al. 2013) each

category of vulnerability is interlinked with the major class of the bug as shown in

Figure 2.

The one critical element shared by vulnerabilities is common initiation patterns

and similar characteristics such as location, cause, impact and severity (Chen, Zhang

and Chen 2009). Normally, vulnerabilities are deliberately introduced or mistakenly

slip through the supply chain during the Software Development Lifecycle (SDLC).

They come about in delivered software systems due to acquisition processes and by

following the poor software development practices. Poor precautions and lack of

measurements easily allow vulnerabilities to pass through other levels during the

SDLC. It means, the higher the level of software development, the higher the severity

and harm impact of these missed vulnerabilities.

2.5 Empirical Strategies in Software Engineering

Empirical strategies in software engineering are defined “to set up formal experiments,

study real projects in industry, i.e. performing a case study, and perform surveys

through, for example, interviews” (Wohlin et al. 2012 p.120).

According to Sommerville (2010), experimentation is useful in software

engineering practices for the provision of understanding in order to identify the

relationship between different factors, and variables. Over the last two decades,

software engineering research and practices widely have used empirical studies to

validate techniques or analyse the results (Anastas 1999).

In order to evaluate practices and tools related to software engineering,

empirical studies are essential. For example, to verify and analyse engineering tools

and practices as they solve real problems with real practitioners. Therefore, empirical

studies based on experimentation are necessary (Sjøberg et al. 2008).

The introduction of empirical strategies in the area of software engineering

serves as the basis of the process for experimentation. The fundamental steps in the

36

process can be utilised for different types of empirical studies. However, the emphasis

is on providing help and guidelines to perform experiments in software engineering.

Moreover, ‘true’ experiments with full randomisation, are challenging to perform. In

software engineering, there are different types of experimentation depending on the

factors and variables of the study. For example, quasi-experiments are frequently

used in software engineering. Quasi-experiments are defined as “an experiment in

which it, for example, has not been possible to assign participants in the experiments

to groups randomly” (Wohlin et al. 2012 p.12). Quasi-experiments are important, and

they can gauge valuable outcomes for research based on intervention. There are three

different types of strategies based on the purpose of evaluation, whether it be tools,

techniques or methods, and based on the conditions of the experimental evaluation.

1) Survey

2) Case study

3) Experiment

The empirical strategies are neither competing nor completely orthogonal. They

offer a convenient outcome; however, some studies might be observed as

combinations of more than one empirical strategy.

1) Survey

According to Fink (2003 p.36): “a survey is often an investigation performed in

retrospect, when, for example, a tool or technique, has already been in use.” The key

purpose of gathering quantitative or qualitative data are questionnaires or interviews.

The survey results are used to derive explanatory and descriptive inferences.

2) Case study

According to Runeson et al (2012 p.114): a case study is “an empirical enquiry that

draws on multiple sources of evidence to investigate one instance (or a small number

of instances) of a contemporary software engineering phenomenon within its real-life

context, especially when the boundary between phenomenon and context cannot be

clearly specified.” Case studies are utilised to understand research assignments,

activities or projects. Data is accumulated for a specified purpose during the study.

Statistical analysis can be performed on the collected data. Normally, case studies are

intended to track a particular attribute or to determine a link between different types of

attributes. Case studies are considered lower in the level of control, in comparison to

experiments.

3) Experiment

37

Experiment (or controlled experiment) in software engineering is “an empirical enquiry

that manipulates one factor or variable of the studied setting.” During experimentation,

different treatments are tested on different subjects. However, other variables are kept

constant, while measuring the outcome of the independent variables and their effects.

There is a difference in human-oriented and technology-oriented experiments.

Human-oriented experiments are defined as “humans apply different treatments to

objects, while in technology-oriented experiments, different technical treatments are

applied to different objects” (Wohlin et al. 2012 p.76). The main goal is to manipulate

multiple variables at fixed levels. The manipulation effect is measured, and statistical

analysis can be carried out based on this. Generally, quasi-experiments are used,

when it is difficult to apply treatments on subjects randomly.

A Quasi-Experiment is “an empirical enquiry similar to an experiment, where

the assignment of treatments to subjects cannot be based on randomisation but

emerges from the characteristics of the subjects or objects themselves” (Wohlin et al.

2012 p.11). During experimental studies, statistical methods for inferences are

performed to show the statistical significance in order to measure which one method

is better in comparison with the other (Robson 2002, Sjøberg et al. 2008, Wohlin et al.

2012).

During an experiment, different conditions are applied to differentiate between two

conditions, such as an experimental situation and control situation (Wohlin et al. 2012).

2.5.1 Experimental Study based on Intervention

The guidelines state that the process should start from a clear question, in which the

population, intervention, difference, outcome, and contextual background have been

made explicit (Dittrich, 2002). In an intervention based experimental study, the

following aspects need to be taken into account:

I. The population in which the evidence is collected, i.e. which group of people,

programs or businesses are of interest?

II. The intervention applied in the empirical study, i.e. which technology, tool or

procedure is under study?

III. A comparison is made of the interventions, i.e. how is the control treatment

defined? In particular, the ‘placebo’ intervention is critical, as “not using the

intervention” is mostly not a valid option in software engineering.

38

The outcomes of the experiment should be not only be statistically significant but

also significant from a practical point of view. For example, it is probably not interesting

that an outcome is 10% better in some respect if it is also twice as time-consuming.

The context of the study must be defined, which is an extended view of the

population, including whether it is conducted in academia or industry, the industry

segment, and the incentives given to the subjects (Höst, Wohlin and Thelin 2005;

Petersen and Wohlin 2009). The experimental designs must also be defined. Weir,

Rashid and Noble (2017) have explored eight types of intervention to support secure

software development, such as incentivisation workshop, threat modelling, component

choice, developers training, static analysis, penetration testing, code review and

continuous reminder. According to (Such et al. 2016) intervention effectiveness can

depend on two aspects: financial cost and team discipline. Financial cost will mostly

depend on the cooperate environment. However, team discipline may see reviews of

codes to be a matter of development related to security. However, some of the

research found that the probability of taking security initiatives during development

processes is quite low (Poller et al. 2017).

2.6 Empirical Evaluations of Anti-patterns

Patterns are an approach to abstracting and capturing, for reuse, knowledge about

what made a system or paradigm successful. Anti-patterns are derived from design

patterns, which capture good practice in software development. Brown (Brown et al.,

1998) introduced the idea of anti-patterns as a way of codifying existing bad practice

in the software industry; In contrast to a pattern, an anti-pattern “describes a commonly

occurring solution to a problem that generates, decidedly, negative consequences”.

Anti-Patterns are useful to provide a specific piece of negative advice, as suggested

by (Griffiths and Pemberton, 2005). Unfortunately, the efficacy of anti-pattern has yet

to be proven. It may be due to a lack of empirical evidence of the practical

implementation of anti-patterns. Experimentation is difficult in software engineering

(Juristo and Moreno 2013). One problem is the fact that empirical analysis has to be

realistic for transfer to industry applications (Sjøberg et al. 2003). However,

professionals are expensive, the setting has to be as close as possible to an industry

setting, and the tasks must be chosen realistically (Fittkau 2011). It is difficult to answer

a question for the use of anti-patterns to transfer knowledge and when it should be

39

used. However, the software engineering industry is aware of anti-patterns and

commonly use them in their practices (Juristo and Moreno 2013).

There is some empirical evidence on the use of anti-patterns in teaching human

computer interaction (Kotzé, Renaud and Van Biljon 2008). According to Van Biljon

et al (2004), they may be counterproductive teaching tools and a suboptimal

knowledge transfer strategy.

According to Cockburn et al (2005) anti-pattern captures poor software

development practices with an explanation of why such practices are common and

how they lead to a bad solution. The rationale of anti-patterns is to identify recurring

flaws/errors and help other people to avoid making the same errors.

The use of anti-patterns for knowledge transfer during software development is not

well-known, but there is a growing trend in order to state instructions in negative ways.

However, it is argued by (Koenig 1995; Long 2001) that knowledge transfer through

anti-patterns might be useful to provide an adequate understanding of the problem. In

this situation, it is essential that the anti-patterns are not regarded as blueprints for the

problem, preferably that they guide to a refactored solution (Julisch 2013).

The empirical studies carried out by Kotzé et al (2006) and Kotzé, Renaud and

Van Biljon (2008) have conducted some initial investigations into human computer

interaction context. Results suggest that anti-patterns are studied in order to avoid

pitfalls; however, they can actually create pitfalls in knowledge transfer, if not applied

appropriately (Kotzé, Renaud and Van Biljon 2008). However, in the cybersecurity

context, awareness of negative practices is exposed through teaching (Conti and

Caroland 2011). This means that in order to judge whether a specific solution can be

successful, it is necessary to describe the context as completely and as accurately as

possible (Juristo and Moreno 2013; Petersen and Wohlin 2009). For example, Shull,

Seaman and Zelkowltz (2006) and Höst, Wohlin and Thelin (2005) have provided solid

results in the use of empirical analysis to improves defect detection techniques, such

as the use of anti-patterns to detect the vulnerabilities during software development.

The empirical analysis should be used as evidence to prove or disprove the viability

of anti-patterns in transferring vulnerability knowledge to software developers.

2.6.1 Use of Anti-Patterns as Intervention

Empirical studies, in software engineering, are carried out to validate the effectiveness

of a tool or technique. They are hard to conduct, but are necessary for evaluation of

40

their practical implementation, in different circumstances. Examples of empirical

strategies in software engineering include surveys, case studies and experiments.

Interventions are applied in empirical studies to collect evidence of its effectiveness

and validate application in a specific context. In software engineering, intervention-

based experiments have been carried out to measure the effectiveness of newly

designed techniques or technologies. It can be concluded that the implementation of

interventions during experimental study depends on the context, such as the segment

of industry and incentives for the subject. There are different types of interventions can

support secure software development. However, there are some financial and time

related constraints. Anti-patterns are useful to describe poor development practices,

but it is difficult to answer a question for the use of anti-patterns to transfer knowledge

.i.e. When it should be used and how it can be used. The software engineering industry

is aware of the anti-pattern technique but does not commonly use them in their

practices. Therefore, quasi-experiments can be used as evidence to prove or disprove

the efficacy of anti-patterns, in terms of their ability to convey vulnerability knowledge

to software developers.

2.7 Cyber-Patterns

2.7.1 The Notion of Cyber-Patterns

Cyberspace is a territory in which humans interact with technologies, processes, data

and networks. To make cyberspace secure, patterns have been used to understand,

predict and fix security issues in the cyberspace (Jang-Jaccard and Nepal 2014). The

inspiration comes from the use of existing design patterns for cybersecurity (Blackwell

and Zhu 2014a). Patterns are commonly used in software engineering to find reusable

solutions for commonly occurring problems (Walker et al 2014).

However, cyber-patterns remain a poorly-defined term; thus it is challenging to

provide a definition. However, any pattern related to security is considered part of

cyber-patterns such as, for example, security patterns and attack patterns.

Fundamentally, “cyber-pattern” has been proposed to aid researchers in order to

capture and find solutions in cyberspace (Blackwell and Zhu 2014b). Thus, it is

suggested that patterns would prompt new conceptual and research methodologies

for the benefit of cyberspace studies.

41

In the field of software engineering, a pattern may be defined as a reusable

template, which represents a discernible regularity of the design (Gamma et al. 2008).

Primarily, software pattern theory is borrowed from Alexander (1977), who described

the philosophy of architectural design patterns. This concept takes into account the

ability of software engineers to evolve software development processes and to deduce

software patterns such as requirement analysis patterns, process patterns, and testing

patterns. It is believed that cyber-patterns are more abstract whereas other sciences

propose patterns such as in the field of mathematics patterns are definite and always

provide definite results. Further, cyber-patterns cannot predict precise results or

answers, although output may be observable only by analysis (Blackwell and Zhu

2014a). Generally, cyber-patterns present a “descriptive view” rather than a

“perspective view”. Cyberspace contains a set of validated patterns, in which each of

them describes and predicts one subset of the phenomena. To conclude, cyber-

patterns within cyberspace formulate a scientific foundation in order to categorise,

classify and organise cyber-patterns through assigning a common language. This is

explained further in Section 2.12.2. Vulnerability related cyber-patterns literature was

analysed to identify the reasons why existing cyber-patterns are ineffective in

providing useful knowledge of vulnerabilities.

• Design Pattern (DP): presents a template to build software in an ideal situation

(Gamma et al. 2008). The pros and cons of DP to provide vulnerability

knowledge are:

• Security Pattern (SP): describes a security mechanism against potential

threats (Brenner 2007). The pros and cons of SP to provide vulnerability

knowledge are:

Pros

•Standard format
•Easily Understandable to developers
•Agreed by Software engineering
community

Cons

•No association with VBDs
•Lack the security knowledge
•Insufficient awareness of exploitation
circumstances

42

• Software Fault Pattern (SFP): indicates the faulty computation of the

vulnerability (Mansourov 2011). The pros and cons of SFP to provide

vulnerability knowledge are:

• Attack Pattern (AP): presents a template to describe attacks against software

error (Blackwell and Zhu 2014b p.115). The pros and cons of AP to provide

vulnerability knowledge are:

• Anti-pattern: explains a negative mechanism of poor software development

common practices (Julisch 2013). The pros and cons of Anti-Pattern to provide

vulnerability knowledge are:

Pros

•Sufficient security knowledge
•Understandable description about the
threats to point out the vulnerability

Cons

•Lack of standard format
•Difficult to understand and implement
•No association with VDBs
•Inconclusive debates by software
engineering community

Pros

•Strong association with VDBs and
cybersecurity community

•Full explanation of vulnerability (faulty
computation)

Cons

•Absence of configuration and
standardization

•Difficult to understand and implement
•Complicated structure
•poor communication with software
developers’ community

Pros

•Strong association with VDBs and
cybersecurity community

•Complete explanation of attack
•In depth study of exploitation
techniques

Cons

•Difficult to understand and implement
•Complicated structure
•poor communication with software
developers’ community

43

Pros

•Refactor solution for any recurring
problems

•easily understandable form to assist in
software development

Cons

•Lack basic structure and format of the
implementation

•No association with VDBs and cyber
security community

44

2.7.2 Cyberspace

The term cyberspace originated in the early 1980s and since then this

notional and augmented environment has been expanding dramatically.

There is no agreed definition of what constitutes cyberspace. The earliest

definition of cyberspace is “an infinite artificial world where humans

navigate in information-based space and as the ultimate computer-human

interface” may be defined as cyberspace (Benedikt 1991). Fundamentally,

this reflects a virtual internet-based space for users, in which they interact

for social, information and creative purposes.

Heim (1991) provides a comprehensive definition that has

demonstrated the identified abilities that might be subsumed under the

term “Cyberspace”: “is more than a breakthrough in electronic media or in

computer interface design, is a metaphysical laboratory, is a tool for

examining users’ sense of reality with its virtual environments and

simulated worlds”.

Morningstar and Farmer (2003) argue that cyberspace is defined

more by the social interactions involved than its technical implementation.

However, in recent years, research in cyberspace has grown and evolved

significantly (Blackwell and Zhu 2014b). Therefore, the researchers assign

a conventional meaning to the term “cyberspace”, which generally refers

to the internet and its diverse range of information systems environment for

users (Maymí et al. 2018, Li et al. 2017). More importantly, this

environment offers various services for its millions of participants, so they

can influence and interact with each other world-wide. These interactions

include online distance learning facilities for students across the world, use

of social media such as Facebook and Twitter, use of online banking and

e-commerce such as eBay and Amazon. Undoubtedly, this has had a

considerable impact on human daily life and has become an essential

aspect of modern society. Nevertheless, cyberspace is highly complex and

therefore presents challenges in many aspects such as privacy and

security.

45

According to Lee (2008), security is a growing concern in the

cyberspace, due to its inherent complexity. Furthermore, developers face

difficulties in enforcing security in this virtual-domain (Wright 2015, Ilyin

2015). As cyberspace strongly suggests an enlarged virtual world of

complex infrastructure which has a complicated relationship with the real

world. Consequently, this poses grave challenges to researchers, who are

involved in management, protection and further development of this space.

2.8 Why Care About Security in Cyberspace?

It is hard to find a facet of modern life that does not involve the internet or

use of cyberspace, at least at some level. The virtual environment on the

internet where computer systems virtually interact is known as cyberspace.

Such as online purchases, debit cards, and automatic bill pay are standard

parts of modern life.

Since cyberspace is an open communal area for a wide range of

millions of users, it requires judicial, supervisory and legislative bodies to

maintain checks and balances in this complicated space (Lee 2008). As

cyberspace becomes ever more pervasive in daily life tasks, including: e-

commerce, e-socialization, e-banking and e-government, the risk of

cybercrime is a growing concern. For example, WannaCry Cyber-Attack2.

For this reason, many countries have declared their information technology

space (cyberspace) as part of their national critical infrastructure.

Additionally, these countries have been establishing their own cyber

defence authorities. Well-known examples are a National Cyber-Crime

Unit (NCCU) (U.K National Crime Agency 2017) and a U.S. Department of

Homeland Security (DHS 2017). Despite having these monitoring

authorities, unauthorized access, confidential information disclosure and

various other forms of cybercrime have been increasing at an alarming rate

(Symantec Corporation 2016). The consequences of a successful cyber-

attack cover a broad range of possibilities. For example, a minor loss of

time in recovering from the problem, a decrease in productivity, a

significant loss of money or staff-hours; However, a major loss of credibility

2 https://en.wikipedia.org/wiki/WannaCry_ransomware_attack

46

or market opportunity, a business no longer able to compete, legal liability,

and loss of life (Wright 2015).

2.9 Why is Security a Problem in Cyberspace?

As of 2016, the internet connected an estimated 6.4 billion IoTs (Internet-

of-Things) worldwide, including children toys, kitchen appliances, and

pacemakers. As the internet is comprised of loosely connected multiple

networks, it fundamentally provides multiple channels for connecting a

worldwide collection of devices in cyberspace without regards to national

or geographic boundaries or time of the day. As the number of activities of

individuals, organizations, and nations being conducted in cyberspace is

increasing, the security of those activities is an emerging risk. Since a

decade ago, the United States of America has perceived these risks and

applied the national strategy for securing cyberspace. As mentioned in

previous Section 2.7.2, cyberspace is an augmented virtual space, which

often poses challenges of security for software developers and

cybersecurity experts. Nonetheless, without having an understanding of

cybersecurity, attempts to protect people in cyberspace is a difficult task.

Some reasons are mentioned below:

2.9.1 Security is Fundamentally Complex

Since the inception of the internet in 1969, it was designed to provide

openness and flexibility, and not intended to be secure. Although such an

approach was appropriate at that time, it is not one that lends itself to

today’s commercial, private, and official use. In the intervening years,

usage patterns of the internet have radically changed, leading to

acknowledge increased attention of cybersecurity (Walker et al. 2014). The

literature described in Section 2.2.1 highlights several issues related to the

complexity of cybersecurity.

1. Complex Relationship or Interconnection between Systems
and People

According to (CERT 2015) cyberspace has competed to a complex

interconnection between systems and people, due to complex

47

interconnection; it creates barriers for software engineers in implementing

and maintaining cybersecurity. This complex relationship has drawn

researchers’ attention towards the fine associations between cyberspace,

and the internet with its diverse culture.

Essentially, as argued in the cyberspace definition that real people

and systems augmentation has an ability to directly influence and affect

each other.

Despite efforts by security practitioners and researchers to secure

systems, security has traditionally been a battle of wits: cybersecurity

experts try to find vulnerabilities; developers attempt to fix these

vulnerabilities (patches). However, malicious hackers successfully manage

to exploit the flaws of systems. In fact, the main reasons why software

developers cannot be confident in establishing fully secure systems are:

cyberspace scale, and its complexity of software systems along with its

complicated relations with the real world. Arguably, these complexities

have imposed challenges to software developers and industry experts in

developing, protecting, and operating software systems securely in

cyberspace.

2. Usability is an Impediment for Security

A common perception of users about dealing with security is that it is a

nuisance (Morgan, 2016). Generally, software developers perceive

security as a painful act (Poller et al. 2017); cybersecurity experts

acknowledge that evaluation of security is an as an act of finding software

weaknesses rather than assisting developers in fixing them. Common

users generally consider security to be the responsibility of someone else

such as software developers or cybersecurity experts. These biases are

debatable and raise a question about usability (as defined in Section

2.3.1.2) with reference to its relationship with security. Amoroso (1994)

argues that determining attacker intent and balancing usability are

concerns which present as troublesome impediments to increased

security.

48

3. Technology is Oversold

The most common perceptions in regard to achieving cybersecurity are

that: it is irrelevant to real-world problems and can never be accomplished

in practice, so any effort is doomed to failure (Arshad et al. 2012).

To achieve cybersecurity, there are general perceptions of bias

were overlaid that consider cybersecurity is irrelevant to real world

problems and it can never be accomplished in practice, so any effort is

doomed to failure. The main reasons for these misconceptions are:

• High Level of Expectation

In general, Users expect more from technology than what it does in reality.

For example, cloud computing is considered one of the leading

developments in modern computing. The illusion of unlimited resource

availability improves the ability of an organization to meet the requirement

of a wider user-base. As with any other emerging paradigm, security

underpins widespread adoption of Cloud computing. This has been

highlighted by the surveys conducted by IDC Exchange where security

features as the most challenging aspect in the move towards the adoption

of Cloud computing (Arshad et al. 2012)

• Misuse of the Technology

Cloud computing, mobile computing, and the internet of things (IoTs) are

ever more dynamic in their use of cyberspace. There is no longer a

boundary between the virtual and real world, which raises concerns related

to provide and maintain the security of cyberspace. Generally, this

digitalization has led to an urgent need to set boundaries between systems

and human of these computing paradigms in order to use security in real-

world contexts, since this diversity has been causing security flaws that

demand an integrated security strategy to control vulnerabilities.

4. Security is an Afterthought

There are millions of software systems around the world connected through

the Internet, and many organizations have maintained their own web-

space, including university departments, government agencies,

corporations, schools, and religions. Furthermore, many individuals have

49

personal websites or have some sort of reliance on cyberspace, be it

through the use of online banking, e-shopping, information

gathering/sharing, and entertainment. However, along with the

convenience and easy access to information come new risks. Among them

are the threats as defined in Section 2.3.2.4 that valuable information will

be lost, corrupted, stolen, or misused and that computer systems may be

vulnerable and corrupted (see Section 2.3.2.3). If the information is saved

electronically and is available on the network, it is more vulnerable than if

the same information is printed on paper and locked in a file cabinet.

One of the explanations for this lack of protection that developers

tend to regard security as an add-on feature (Mouratidis, Giorgini and

Manson 2003, McGraw 1999, McGraw 2012). For them, security is an

afterthought at best, and is often neglected. It is reasonably accurate to say

that developers do not consider security as critical as other system

requirements (McGraw 2006). Furthermore, security, if considered at all,

generally comes at the bottom of the list of system requirements.

2.10 Who is Responsible for Security in Cyberspace?

As cyberspace is considered a communal place, so the responsibility to

make it secure is dependent on a number of professionals. For example,

software engineers who are called software developers and; software

defenders who are cybersecurity experts. This section explores the efforts

from both communities -software engineering and cybersecurity- to

implement and restore the security of software systems

2.10.1 Software Developers: Building Security into the Software
Development Process

This is an exciting time to be a software developer. Software systems are

becoming more challenging to build (Daud 2010). As software systems are

playing an increasingly important role in society, it is necessary to build

secure software. There have been numerous attempts to address security

concerns as a part of the software development processes. Earlier

attempts were targeted at the implementation phase of the Software

Development Lifecycle (SDLC) and include those based upon improving

50

libraries, implementation languages, and language processors. These are

typified by the work of (Bourque and Fairley 2014, Sutter and Alexandrescu

2004, Shiralkarand 2009). Approaches based on static and dynamic code

analysis have been proposed by providing different guidelines, such as the

Microsoft Security Development Lifecycle (SDL), and banned functions

(Howard and Lipner 2011). Recently, the software engineering community

has been emphasising early exclusion of vulnerabilities by considering

security issues at all phases of the SDLC. Typifying such approaches, the

Microsoft Security Development Lifecycle (SDL), Security Patterns (SP)

and OWASP CLASP development life cycle is considered below.

2.10.1.1 Improving Runtime Environments and Safer
Programming Libraries

When personal computers were introduced in the late 1970s, operating

systems (OS) were assumed to be used by a single user. As connecting to

internet increased cybersecurity threats, it became evident that discovery

and disclosure of software vulnerabilities would be a continuing feature of

Cyberspace. The software engineering community took multiple steps in

order to deal with new security challenges.

As reflected in the literature (Howard and Lipner 2009), many

security breaches occur due to insecure runtime environments. For

example, discoveries of vulnerabilities in Netscape and Internet Explorer

received wide publicity (Allen et al. 2001). SQL server 2000 initially

released in 1999 was issued with 16 vulnerabilities (Howard and Lipner

2009). Given the criticality of securing operation systems, there are many

papers that study the distribution of bugs and vulnerabilities due to the

adoption of inadequate software practices (Garcia et al. 2014, Miller et al.

1995).

As explained earlier, security threats in cyberspace have changed

over time. It is argued that from operating systems in vulnerability data

sourced from the NIST (NIST 2011) that software system architects accept

could that systems will contain some faults taking a ’less is more’ attitude

when cyber-attacks occur. However, patches for fixing vulnerabilities are

51

generally superficial solutions and often do not get at the core of the

software problems (Morgan 2016).

Developers who are continuously challenged in order to build more

secure software also trying to improve programming languages by steps

such as introducing new more secure runtime libraries, as summarised in

Table 3. As a result, developers can more easily avoid those types of

dangerous errors that caused vulnerabilities. However, the success of

these proposed solutions is doubtful due to many reasons and are

discussed further in Section 2.14. This section gives discussion to some

secure software engineering practices to reduce vulnerabilities rather than

trying to do exhaustive research.

Safer
Libraries

C/C++ PHP

• The security development

lifecycle

• Secure Coding in C and C

• Guidelines for Secure Coding

• The design and evolution of C

• C coding standards: 101 rules,

guidelines, and best practices

• Security Development

Lifecycle (SDL) banned

function calls

(Howard and Lipner 2011, Meyers

2005, Seacord 2006, Sutter 2002,

Schumacher et al. 2013,

Stroustrup 1994)

• Programming PHP

with security in mind

• Programming PHP

with security in mind

(Loureiro 2002, The

PHP Group 2017)

Table 3 Literature summary in order to improve programming languages with safer libraries

1. C/C++ Banned Function Calls

Over three decades ago, when the C runtime library (i.e. CRT Microsoft

terminology) was first created, computer threats were different. Computers

were not as interconnected as they are today, and attacks were not as

prevalent. Therefore, a subset of the C runtime library has been deprecated

52

for new code and, over time, removed from the earlier code. Usage of

these outdated functions easily leads to vulnerabilities because of its

unsecured behaves. Even the provided replacement functions had

suggested with no guarantees of security. Because of this danger in

C/C++, (Howard and Lipner 2011) a list was compiled of dangerous

functions composed of known bad functions that must be avoided to reduce

vulnerabilities and need to be updated as part of secure software practices.

According to (Howard 2005), It is recommended from their experiences

with real-world security bugs (occurred due to banned function calls), which

are focused primarily on functions that can lead to vulnerabilities. Existing

code must either replace the banned function with a more secure version

or be re-architected so that the banned function is not used. Importantly,

for the functions marked as “recommended”, developers consider these

functions a strong recommendation and evaluate the function against the

systems own security requirements, elevating them to “required” as

necessary. It is strongly suggested that, none of the listed banned functions

should be used in new code during the Software Development Lifecycle

(SDLC). For example, developers use dangerous functions such as

strcpy(), strcat(), and sprintf() that do not check bounds and lack the

assurance that the bounds will never get exceeded.

Once the program executes, it invokes a potentially dangerous

function that would provide an opportunity for a malicious attacker to exploit

this vulnerability. However, these functions can be used safely. Microsoft

Safe CRT is included starting with Visual Studio 2005 that provides

somehow tool support against these dangerous function calls. For

example, the Visual Studio 2005 (and later) compiler has built-in

deprecations against dangerous functions, developers must investigate all

C4996 compiler warnings to make sure that the function in question is not

on the preceding banned list.

2. PHP Deprecated Functions

A similar approach can be found in PHP programming practices. To

address growing concerns related to security, researchers are keeping

revising PHP libraries or functions to assist developers in creating more

53

secure web-applications. For example, PHP 5.3.0 introduces two new error

levels: E_DEPRECATED and E_USER_DEPRECATED.

The E_DEPRECATED error level is used to indicate that a function

or feature has been deprecated (The PHP Group 2017). They also

competed to industrialise their knowledge such as secure PHP

programming practices in order to achieve the security posture of web-

applications (Loureiro 2002).

3. Microsoft SDL

The software industry’s past is littered with security exploitation. Microsoft

has learned from and has been proposed the Microsoft Security

Development Lifecycle (SDL) to remedy past mistakes. The Microsoft SDL

may be defined as Microsoft’s security assurance process, which builds

security into every phase of software development and offers defence-in-

depth guidance and protection. It suggests a practical and holistic

approach to addressing security concerns of developing software and to

implement security enforcing postures such as privacy and reliability.

Furthermore, incorporation of Cybersecurity standards, such as ISO 27001

[30] into Microsoft SDL ensures that any software produced with this

process complies with industry recognised standards. The Microsoft SDL

goes beyond the traditional software development process and

incorporates the overarching information security management system that

requires the specification of security guidelines for policies, processes, and

systems within an organization. The Microsoft SDL is continuously evolving

and improving to deal with ever more complicated, and sophisticated

attacks (Howard and Lipner 2006, Howard and Lipner 2009). In contrast to

traditional SDLC, Microsoft SDL is an add-on with two additional phases.

For example, a core security training phase and repose phase (Howard

2005). Usability analysis of Microsoft SDL is discussed further in Section

2.14.2

4. OWASP CLASP

OWASP CLASP - short for Comprehensive, Lightweight Application

Security Process - has been developed to embed security considerations

54

during the early stages of the Software Development Lifecycle (SDLC) for

web-applications. It includes a set of guidelines for web security

requirements, cheat sheets, a development guide, a code review and a

testing guide, an Application Security Verification Standard (ASVS), a risk

rating methodology, tools and a top 10 of web security vulnerabilities. This

is explored further in Section 2.14.2.

5. SP

Security Patterns (SP) are used to describe a solution to stop or mitigate a

set of specified threats through certain security mechanisms. These are

patterns designed to assist software developers who are not security

experts with embedding security in their systems. It can also be a useful

tool for teaching security concepts (Brenner 2007). This is explored further

in Section 2.13. Security Patterns are an enhanced form of design pattern

for software developers’ assistance to add security inside their

applications. They are not, however, based directly on the vulnerability

knowledge stored in VDBs which is necessary for achieving currency and

timely response to new threats (Halkidis, Chatzigeorgiou and Stephanides

2006).

2.10.2 Cybersecurity Experts: Attempts to Capture Security

Approaches to the problem of building security domain knowledge into the

Software Development Lifecycle originating from the cybersecurity domain

can be considered under two headings: Attempts to catalogue

vulnerabilities and attempts to communicate vulnerabilities using patterns.

2.10.2.1 Attempts to Catalogue Vulnerabilities

The National Vulnerability Database (NVD) comprises CWE, CVE, and

CAPEC which are the three most comprehensive vulnerability databases

(VDBs). They are open-source and maintained by MITRE (MITRE

Corporation 2013, MITRE Corporation 2015b, MITRE Corporation 2015a),

based on the Security Content Automation Protocol (SCAP).

• CWE: The Common Weakness Enumeration database (CWE)

catalogues weaknesses that can occur in software. These

55

weaknesses are described as software bugs that can lead to

vulnerabilities. For example, in Figure 3, CWE- 250: Execution with

Unnecessary Privileges, and as such can be considered as an

abstract, top-down view of the types of errors that can occur in

software. The CWE aims to raise awareness and understanding of

software flaws in software in order to eliminate these from released

versions.

Figure 3 Vulnerability information in CWE-250

• CVE: The Common Vulnerabilities Enumeration database (CVE)

catalogues specific examples of publicly known vulnerabilities that

exist in software and is designed to facilitate the sharing of

information about these vulnerabilities across a number of different

capabilities, including IDS, scanners, repositories. For example,

CVE-2007-3931. A malicious attacker can execute arbitrary code

and successful exploitation may result in compromising rights of the

system.

56

Figure 4 Attack pattern example in CAPEC-501

• CAPEC: The Common Attack Pattern Enumeration and

Classification database (CAPEC) provides formal attack patterns

and is designed to bridge the knowledge between the CWE and the

CVE and offer guidance to software developers on how software

weaknesses are likely to be exploited by a malicious hacker as

shown in Figure 4, which demonstrates attack pattern example:

CAPEC-501.

All of the above described databases are organized by NVD (NIST

2015), which enables these databases to contain information to be

interlinked and searchable as shown in Figure 5. To improve usability and

functionality, these databases share similar formats, styles and fields.

There are, however, problems surrounding information redundancy,

information conflicts and information representation across these

databases such as methods of attack, CIA impact and mitigation

techniques (MITRE Corporation 2015b). As such, it can be especially

challenging for software developers to implement security

recommendations. These databases will be critiqued further in the

succeeding Section 2.15.

57

Figure 5 Interconnection of vulnerability databases (VDBs)

2.10.2.2 Attempts to Use Patterns to Communicate
Vulnerabilities

In addition to the above VDBs, security experts have also attempted to

embed vulnerability related security knowledge in the form of patterns such

as SFP, AP and Misuse pattern. Figure 6 presents the author’s proposed

conceptual VDBs information flow model, which explains how to bridge the

gap between VDBs developers and users. This will be explored further in

Section 2.13.

58

Figure 6 Vulnerability information flow among VDBs

1. Software Fault Pattern (SFP)

SFP (Mansourov 2011) has been designed to provide a formal

specification of weaknesses (vulnerabilities) and are aligned with the CWE

database. These will be explored further in Section 2.13. The idea of SFPs

is based upon intelligence from CWE that might help to make such

information more understandable and easier to use. However, a lack of

detailed information about the structure and format of SFP presents a

considerable obstacle for software developers (Arnold, Hyla and Rowe

2006).

2. Attack Patterns (AP)

AP sources information from the CAPEC database, which describes a

procedure of a particular vulnerability attack format. It is not intended as a

source of design patterns (like standard software pattern) and software

developers’ attitude towards APs is not an effective means of

understanding in regard to vulnerability attack. Software developers do not

use AP to find the vulnerabilities due to their lack of understanding (Bunke,

59

Koschke and Sohr 2012). In other words, they fail to appreciate the

purpose of the AP fundamental to support developers in order to provide

an understanding of attacks and its procedures. This research has shown

that APs are rarely used by software developers’ due to their inherent

complexity, but also because AP, tend to be written in a format that is not

easily understood by software developers (see Section 2.13).

3. Misuse Pattern

A misuse pattern describes the malicious hacker point of view in a generic

way while considering sub-dimensions to classify it as a set of attack

actions and enumerating with possible security patterns as a

countermeasure (Schumacher et al. 2013). Although, the misuse pattern

groundwork clearly illustrates that VDBs sources are not utilised in defining

its attack actions, there is definitely mutual knowledge sharing with security

patterns. Furthermore, so far there are not well-supported pieces of

evidence of their practical usage. This clearly has shown that misuse

patterns have certain construction deficiencies and lack considerable

usage for software developers (see Section 2.13), such as undefined

attack pattern knowledge sources and less practical values.

4. Anti-Pattern

Anti-pattern “describes a commonly occurring solution to a problem that

generates decidedly negative consequences”. While there are no solutions

against prevailing vulnerabilities, it is practicable to address recurring and

frequent prevalent software vulnerabilities through anti-patterns (Julisch

2013). From this, the question that is formed is “which pattern will be

considered for better transformation into an anti-pattern particularly as a

solution?” One of the aims of this research is to determine which

mechanism of integration will lead to enabling the different patterns’ (such

as SFP, AP) transformation in generating a general solution (anti-pattern).

It appears one of the most appropriate and communicable solutions for

providing awareness of vulnerabilities and an effective understanding to

software developers (Walker et al. 2014).

60

2.11 Why There Exists a Distinct Knowledge Gap Between
Software Developers and Cybersecurity Experts?

One of the essential elements shared by every modern information system

is the software that determines how the system behaves. Today’s software

problems have led to spectacular real-world failures of many different

kinds, including security problems, reliability problems, and safety

problems. It is probably only a matter of time before software causes the

demise of a large company. What do software developers need to do in

order to combat dangerous software errors occurring especially due to the

rush to embrace e-commerce and the intense pressure of Internet time?

2.11.1 Inadequate Knowledge Sharing

The lack of a shared understanding of both communities - cybersecurity

and software engineering - is well-documented (Howard 2004, Borstad

2008, Bunke, Koschke and Sohr 2012, Arnold, Hyla and Rowe 2006). This

gap in communication generates biased knowledge partly by the way the

practices of penetration-testing/ethical hacking has evolved, and partly due

to cultural/sociological factors between the two communities. Although

there are exceptions, security testing sometimes takes place as an activity

separate from the SDLC. Cybersecurity experts such as penetration-

testers communicate with and report to system administrators and IT

managers. There is relatively little communication from those doing

security testing to that building software. There is no (formal,

methodological) feedback path from the security testing activities to

software development activities (Poller et al. 2017). Lack of knowledge is

present in individual software engineers, software engineering teams and

organizations as a consequence of being unable to learn from poor

software practices (vulnerabilities knowledge from VDBs). The same kinds

of insecurities are built into the next generation of software systems.

This lack of awareness was also in evidence due to some prejudiced

cultural reasons among these communities. Although, there is some

crossover between the basic knowledge and skill-set of a software

engineer and an ethical hacker/ penetration-tester, they represent some

61

very distinct technical domains, with different educational paths, different

technical languages and different professional bodies. To fill the basic

knowledge gap the teaching of cybersecurity during undergraduate

Computer Science courses can help (Roumani et al., 2012; Fahl et al.,

2013), and reflects improvement evidenced through the practices of

recently employed software engineer graduates, those likely to have a

better appreciation of techniques of support) cybersecurity than one whose

education is less recent, software engineering (SE) teams are likely to

include a variety of ages/experiences.

Software developers are responsible for the development of

software systems that will represent their company’s reputation and ensure

the safe conduct of business online, thus, appreciate the seriousness of

creating secure software. Despite this, discussions around security are

often avoided because instigating meaningful change is too complex, too

slow and too expensive. There is a general perception that development

mistakes are caused by inexperienced developers or developers who do

not understand the tool, language or technology; however, this is not the

case. In fact, even experienced developers make common security

mistakes. The more senior engineers/managers may give a lower priority

to producing secure code than to producing working code. Mistakes made

by software developers are generally seen as the primary cause of security

flaws in software systems. We argue instead that the fault lies with the

process: developers lack an understanding of how malicious hackers can

exploit software flaws, and this understanding is necessary for the creation

of secure software. One key explanatory factor for this is a lack of

awareness about poor software practices that cause exploitation.

One of the best solutions proposed by (Yun-hua and Pei 2010) is

the creation of an ‘ecosystem’, bridging the knowledge gap and providing

a common ground of understanding to ethical hackers/ penetration testers

and software developers to facilitate in collection and accumulation of

cybersecurity knowledge needed for security assurance, and to ensure its

efficient and affordable delivery to software developers (Acar et al. 2016)

to the defenders of cyber-systems, as well as to other stakeholders.

62

2.11.2 The Hacker’s Time Advantage

Generally, a malicious hacker does not work under the same constraints

of project schedules and deadlines as a software engineer does. If they

wish to spend six months examining, in minute detail, the state of the stack

under a particular attack condition, they will not have employers

pressurising them, to deliver. Thus, they have the advantage of time. This,

coupled with the extensive knowledge-sharing that takes place amongst

the hacking community means that a hacker may be more familiar with the

weaknesses of a particular piece of software than those who created it,

which is explained in Section 2.9.1. The evidence for this is the frequency

of newly discovered vulnerabilities. Ethical hackers and software

developers, on the other hand, can lack efficiency in their knowledge

sharing due to corporate barriers (Van and McGraw 2005, McGraw 2012).

This research concluded that the main reason for software

developers’ lack of security understanding is because their focus is on

delivering features rather than on ensuring security. Accordingly,

developers often consider security as something to be added to a system

as a bolt-on component in later stages of development (McGraw 2012).

2.11.3 Lack of Knowledge Industrialization

As software systems become ever more complex and connected by the

internet, security is a growing concern. The frequency and reoccurrence of

mostly discovered vulnerabilities undoubtedly confirm that poor software

practices are continuously adopted, repeated, and implemented by

developers during the Software Development Lifecycle (SDLC). It may be

fruitful to study failures and identify recurring problems such as poor

software practices to find solutions against these problems. Some

researchers (Mansourov and Campara 2010, Shiralkarand 2009) have

mainly been interested in a question concerning: why software developers

generally overlooked security issues throughout the Software

Development Lifecycle? In particular, as mentioned vulnerabilities or faults

(Section 2.3.1.1) are introduced accidentally through the supply chain and

slip through into delivered systems due to the adoption of poor software

63

practice. The industry has realised that with traditional system security

engineering, the error-free, the failure-free, and the risk-free operation is

not usually achievable, within acceptable cost and time constraint during

SDLC. As far as security is concerned in the software development

process, there is no single technique, which could be considered as a

100% secure. Arguably, software developers have consistently failed to

develop secure software systems (Ilyin 2015). One question that needs to

be asked, however, is whether during the software development process,

developers intentionally make the development mistakes or whether they

lack the necessary understanding of ‘how a malicious attacker can

exploit/misuse these software development errors’. Arguably, malicious

hackers have a time advantage, indicating that the effectiveness of

attackers can be traced back to their extensive knowledge sharing (see

Section 2.11.2.) However, security experts and software developers in this

regard, fail to share their knowledge with each other efficiently, and

although the problem of frequently recurring software vulnerabilities is very

well known, no standard solution has been universally adopted (Aslam,

Krsul and Spafford 1996). Questions have been raised, such as how both

communities’ experts capture and share their experiences of poor software

practices (failures in solving problems) in a form that is suitable for the other

party that is with clarity, rationale, and context in a way which could be

applied to a new solution.

In theory, all software systems have some vulnerabilities as

discussed in previous section 2.3.2.2; whether or not they are serious,

depends on whether they are used to cause damage to the system. In

cyberspace, poor software development may be considered as one of the

most serious threats, and the principal reason for this is a lack of

information sharing about the prevalent software flaws that can easily lead

to vulnerabilities (Morgan 2016, Busch, Koch and Wirsing 2014). According

to McGraw (2012) the existing software design and engineering processes

provide little guidance about preventing security exploitation during SDLC.

This information disconnects (gaps) between software developers and

cybersecurity experts have led to widespread software vulnerabilities

64

(Kalaimannan and Gupta 2017). The researcher proposed an idea called

“Caution before exploitation”, which basically means to provide essential

security awareness to developers through industrialised security

knowledge. To be successful, these knowledge forms need to be

presented in an understandable format (Acar et al. 2016, Fahl et al. 2013).

This would consequently lead to an efficient “safe environment” which

could amplify in order to industrialise the necessary security knowledge

from a few highly skilled developers/security experts. This would transfer

necessary security knowledge to a large number of less skilled but highly

motivated developers.

2.12 What is Pattern-Oriented Research Methodology?

“Cyber-patterns are predictable regularities in cyberspace that may help us

to understand, design, implement and operate successful and reliable

cyber systems.” (Blackwell and Zhu 2014b). The pattern-oriented

methodology has been proposed by (Blackwell and Zhu 2014a), to

introduce the concept of reusability of cyber-patterns. For example, the

methodology applied to the design pattern to answer the following research

questions

• How to identify and document design patterns

• How to catalogue and develop pattern language of design patterns?

• How to design formal specification of design patterns?

• How to develop software tools from design patterns?

2.12.1 Why Use Patterns to Find the Solution?

The pattern-oriented research methodology is used to address problems

through the general features of patterns:

• Finding the regularities of complicated problems in cyberspace.

• Providing the core understanding of reoccurring problems through

the discovery of underlying mathematical structures.

• Facilitating the observation of problems in order to detect the

occurrences of its repetition.

• Defining the operations to predicts, detect and prevent problems.

65

• Devising the mechanisms of solutions for classifying and

categorising problems.

• Formulating the standard set of vocabulary of the recurring

problems to form pattern languages.

2.12.2 How Do Cyber-Patterns Interact and Interrelate with each
other?

As stated previously in pattern-oriented research methodology (Section

2.12), cyber-patterns are certainly interlinked and connected to each other.

The interaction of similar types of cyber-patterns is known as composition

(Riehle 1997), hybridization is defined as an interaction of different types

of cyber-patterns.

Furthermore, these types of interaction among cyber-patterns

significantly provide a more effective means to use and protect the

infrastructure and resources on the internet. For example, a security

pattern is sub-set of design patterns and each security pattern protects or

detects more than one type of attack patterns.

2.12.3 Cyber-Patterns for Vulnerabilities

Evaluation of cyberspace that includes progressively complex

infrastructure, is a complex task specially to find solutions via applying the

contemporary approaches. The Cybersecurity community has made efforts

to identify, categorise and classify software vulnerabilities. However, such

information lacks formal representation in the form of patterns (McGraw

2004). Besides, cyber-patterns individually (without having the

cybersecurity domain knowledge) are insufficient to provide an

understanding of prevalent vulnerabilities. Consequently, software errors

are constantly reoccurring, and potential reasons for this are: lack of

intuitive knowledge of vulnerability databases, outdated knowledge

sources, and insufficient awareness about underlining root-causes (Busch,

Koch, and Wirsing 2014, Ghani et al. 2013, Yun-hua and Pei 2010).

Generally, cyber-patterns’ core objectives are to support software

developers while providing guidance and assistance during the software

development process (SDLC) different aspects. For example, design

66

patterns consider the functional or non-functional requirements aspect of

the system, security patterns concern security issues of the system and

attack patterns focus the security attack procedures of the system.

Nevertheless, most of the cyber-patterns do not have sufficient evidence

of their industrial use and lack detailed descriptions of their practical

implementation during software development. The main concern is

whether these cyber-patterns themselves give information about prevalent

software flaws that can easily be exploited by the attacker as a

vulnerability. This means that the education of software developers is

paramount to successes on those patterns that are related to security flaws

of software weaknesses (vulnerabilities), rather than the existing design

patterns that only focus on functional and non-functional requirements.

The research performs a comparative analysis of relevant cyber-

patterns, which have been carefully selected to fulfil developers’ need in

order to attain adequate information about vulnerabilities. Ultimately this

will determine the most effective way of repeating vulnerabilities

information. Security knowledge intervention will increase the software

developer’s ability to identify and mitigate software vulnerabilities. Thus,

there is a definite need to configure/channel cybersecurity community

efforts related to vulnerabilities into a formal organisation. This

formalisation could certainly help software engineers to understand

vulnerabilities root-causes through assigning a common language, namely

a pattern.

The work in this thesis proposes a solution based on hybridisation

of patterns which allows the generation of an optimal solution, referred to

as a “Vulnerability Anti-Pattern”. As shown in Figure 7 design patterns,

security patterns, and attack patterns have been selected from the list of

cyber-patterns.

67

2.13 The Shortcomings of Previous Pattern-Based Approaches
are Sourced from Both Communities - Software
Engineering and Cybersecurity

Trying to capture and address security in the form of patterns represents

an on-going issue amongst cybersecurity experts and software engineers.

For example, Figure 7 presents the existing cyber-patterns, software

engineers attempt to capture security (see Section 2.10.2.2), which is

described as Security Pattern, Misuse Pattern, and Anti-Pattern;

cybersecurity experts’ efforts to use patterns to communicate

vulnerabilities Software Fault Pattern and Attack Pattern.

Figure 7 Existing cyber-patterns capture security in cyberspace

1. SP (Security Pattern)

As discussed in Section 2.10.1, the SP defines the security forces and its

consequences, which are summarized in Figure 8. However, there exists

little research on the categorization of SPs, which have been proposed for

use against vulnerabilities. It is still not clear to inexperienced developers

what pattern should be adapted and applied during development. Other

impediments that are often present to developers include the lack of

communication with cybersecurity experts’ knowledge as sourced from

VDBs having considerable significance to achieve currency and a timely

Patterns
Names

Sourced
Community

Cyberspace

Cyber-
Patterns

Software
Engineering

Design
Pattern

Misuse
Pattern

Anti-Pattern

Cyber
Security

Software
Fault Pattern

Security
Pattern

Attack
Pattern

68

response against new threats (Halkidis, Chatzigeorgiou and Stephanides

2006).

Figure 8 Anatomy of security pattern

In addition, it is evidenced by the literature exemplified in Table 4

that there is a number of proposed catalogues to organize security

patterns. For example, An inventory of security patterns (Yskout et al.

2006), Core Security Patterns: Best Practices and Strategies for J2EE,

Web Services, and Identity Management (Steel and Nagappan 2006),

Classifying security patterns (Fernandez et al. 2008), A Natural

Classification Scheme for Software Security Patterns (Alvi and Zulkernine

2011), Enterprise security pattern: a new type of security pattern (Moral-
García et al. 2014), and Vulnerability-Based Security Pattern

Categorization in Search of Missing Patterns (Anand, Ryoo and Kazman

2014). Despite all of these above efforts, it does not work due to the lack

of standard format and lack of association with VDBs.

Key Issues References

• Lack of standard format
• No association with

VDBs
• Inconclusive debates by

software engineering
community vulnerability

(Bunke 2015, Yoshioka, Washizaki and

Maruyama 2008, Skout, Scandariato,

and Joosen 2012, Borstad 2008),

Table 4 Security patterns key issues

2. Misuse Pattern

As discussed above in Section 2.10.2.2, the Misuse Pattern describes the

attack, forensic data and mitigation, which are summarised in Figure 9.

Security Pattern
(SP)

A Set of Forces A Set of
Consequences

69

Although, the misuse pattern groundwork clearly illustrates that VDBs

sources are not utilised in defining its attack actions, mutual knowledge is

shared with security patterns. In fact, misuse patterns complement security

patterns to stop a specific attack. Although, to date, there is no well-

supported evidence of their practical use as further described in Table 5.

This demonstrates that misuse patterns have certain construction

deficiencies and lack considerable usages from software developers’

perspective, such as undefined attack pattern knowledge sources and less

practical values.

Figure 9 Anatomy of misuse pattern

Misuse Pattern

Attack Description Forensic Data Mitigation Strategy
to Stop Attack

70

Key issues References

• Lack of basic structure and
standard format

• No association with VDBs

(Fernandez, Yoshioka and

Washizaki 2010, Fernandez,

Yoshioka, and Washizaki 2009)
Table 5 Misuse pattern key issues

3. Anti-Pattern

As discussed above in Section 2.10.2.2, in the late 1990’s the Anti-Pattern

concept originated, which are summarised in Figure 10. This field lacks up-

to-date knowledge restoration. Despite the fact that the industry has been

creating and employing anti-patterns since the invention of programmable

computers (see Table 6), there is no recent literature evidence of its usage

to capture vulnerabilities.

Figure 10 Anatomy of anti-pattern

Key issues Reference

• No association with
VDBs

• Lack of up-to-date
structure and standard
format

(Foote and Yoder 1997, Dias e Silva 2014,

Brown et al. 1998)1998).

Table 6 key issues of anti-pattern

4. SFP (Software Fault Pattern)

As mentioned above in Section 2.10.2.2, the SFP describes the faulty

computation, which is summarised in Figure 11. Although SFP was

primarily designed by security experts to automate the CWE (Vulnerability

Database) intelligence in the form of patterns, a lack of detailed information

about the structure and format of SFP presents a considerable obstacle for

software developers. Potential shortcomings concerning developers’

understanding are listed in Table 7.

Anti-Pattern

Common Software
Development problem

with their variation

Symptoms and
Consequences

Method to Avoid the
Problems

71

Figure 11 Anatomy of SFP

Key issues References

• Absence of configuration and
standardization

• Difficult to understand and
implement

• Complicated structure
• poor communication with

software engineering community

(Mansourov 2011)

Table 7 Key issues of SFP

5. AP (Attack Pattern)

As mentioned above in Section 2.10.2.2, the AP presents attack vectors,

which are summarised in Figure 12. However, AP primarily intends to

present the vulnerability exploitation, it lacks a standard formulation.

Literature research found that attack patterns are rarely used by software

developers’ due to their inherent complexity as shown in Table 8,

additionally AP tend to be written in a format that is not easy for developers

to understand.

Figure 12 Anatomy of AP

Software Fault Pattern (SFP)

Characteristics: Footholds &
Conditions of Faulty

Computation

Parameters: Discernable
CWEs

Attack Pattern (AP)

Defensive
Observation

Actions to Counter
the Attack

72

Key Issues Reference

• Difficult to understand
and implement

• Complicated structure
• poor communication

with software
engineering community

(MITRE Corporation 2015c, MITRE

Corporation 2013, Blackwell and Zhu

2014b)

Table 8 Key issues of AP

2.14 Software Engineering Community Problems: Transferring
knowledge from cybersecurity to Software Engineering

As mentioned previously in Section 2.10.1, the software engineering

community has been trying for a long time to integrate security, and to crack

security challenges of software development processes. Each effort has

separate shortcomings.

2.14.1 Continuous Efforts to Improve Libraries, Implementation
Languages, and Language Processors

As mentioned above in Section 2.10.1.1, programming languages and their

runtime environments are continuously being refined in order to deal with

ongoing security challenges. Operating systems (OS) vendors are

maintaining the pace on sustaining core operating systems security.

Software engineering community has been developing in-house and add-

on approaches to deal with the security posture of systems. There is a

whole industry that has been trying to implement and operate security in

cyberspace for some time, and it is important to understand

interdependencies between software and their runtime environments.

Because it became evident that everything is relative such as

computer systems, running software and operating runtime environments.

It is reasonable to say that failure and success of a software system

security have been highly influenced by the running environments such as

OS, using programming languages such as C/C++, and their libraries.

For example, when the C runtime library (CRT) was first created

over three decades ago, the security issues for computers was different as

mentioned above in Section 2.2.1. However, computer systems incredible

level of interconnectedness has created a vast threat environment in

73

cyberspace, hence escalating threats. The first question that probably

comes to mind is “Why are these persistent efforts not sufficient to fulfil the

security holes?” The answer is simple: standalone attempts to retrofit the

programming languages and their runtime environment in order to stop

security erosion of the system are not enough. Indeed, this requires a high

level of collaboration and understanding between developers and security

experts.

2.14.1.1 Continuing Challenges

In order to address security concerns as a part of software development

processes, detailed analysis of the software engineering literature (Section

2.10.1) revealed the following particular issues. The main reasons why

these efforts are not enough to provide a sufficient level of security; what

preventive measures they lack against prevalent vulnerabilities are listed

below:

• Deprecated & Banned functions still in use

• Legacy systems

• Developers lack the up-to-date awareness about update

vulnerabilities

Key Issues References

Deprecated &
Banned
functions still in
use

• Buffer Copy without Checking Size of Input
('Classic Buffer Overflow')

• Security Development Lifecycle (SDL) banned
function calls

(MITRE Corporation 2015, Howard and Lipner 2011)

Legacy systems • System assurance: beyond detecting
vulnerabilities

(Mansourov and Campara 2010)

Developers lack
the up-to-date
awareness

• You Get Where You're Looking For: The Impact
of Information Sources on Code Security

• Rethinking SSL development in an amplified
world

• Toward Formalization of Software Security
Issues

• Bridging the gap between software development
and information security

74

• Cyber-patterns: Unifying Design Patterns with
Security and Attack Patterns

(Acar et al. 2016, Fahl et al. 2013, Van and

McGraw 2005, Blackwell and Zhu 2014b)
Table 9 Issues with software engineering community efforts to improve libraries

1. Deprecated & Banned Functions Still in Use
Deprecated functions or dangerous function are commonly used in

developers’ practices regardless of their vulnerable behaviour. It seems

that developers’ awareness of these functions is questionable.

Questions that need to be asked, are whether developers are aware of

these functions misused or unsafe behaviour or whether they are aware of

these safe alternatives to the functions.

As mentioned in Section 2.10.1.1, C/C++ programming language

researchers and industrial practitioners have been proposed and

developed a list of the unsafe functions that should be replaced or be re-

architected to avoid C/C++ related vulnerabilities as part of secure software

practices. Developers may be not aware of these alternative functions. If

used properly, these do not directly pose a security risk but can introduce

a weakness if not used incorrectly. These are regarded as potentially

dangerous functions. A well-known example is the strcpy() function, in

which, if a destination buffer size is provided which is larger than its source

size, strcpy() will not overflow or cause a vulnerability. However, the misuse

of strcpy() is so common in developers’ practices that some companies

prohibit strcpy() use entirely (MITRE Corporation 2015d). Similarly, in the

case of PHP deprecated functions, which are mentioned in Section

2.10.1.1.

2. Legacy Systems
There are a large number of legacy systems, which represent enormous

commercial value, and therefore their life span has been extended and

enhanced to accommodate new market requirements and governmental

regulations (Russinovich and Solomon 2009). When legacy systems were

developed, these systems security requirements were more relaxed,

75

based on the not at the time deprecated and unsafe version of libraries

functions.

For example, all those web-based systems, which are developed

based on using earlier versions of PHP 5.3.0, due to use of deprecated

functions, are now vulnerable and ready for attack. This creates a serious

problem to maintain and provide security in legacy systems. As developers

have previously overlooked these security systems and very often apply

quick fixes based on the partial investigation are used to make them

secure. Essentially, this add-on fix aggravates the problem and further

comprises the security of the system (Mansourov and Campara 2010). This

raises the big question of how we should address the security postures of

such systems.

3. Developers Lack Up-To-Date Awareness
This research accentuates the realisation that in many cases developers’

naively copy-paste insecure code obtained from internet resources (Van

and McGraw 2005, Blackwell and Zhu 2014b). This highlighted a number

of reasons explaining why developers do not very often use the official

documentation or up-to-date resources. Arguably, official sources are less

accessible in the comparison of other solutions and difficult to understand.

Stack-overflow is commonly used instead of CWE (Acar et al. 2016). The

issue is related to poor usability (Hans 2010) discussed in Section 2.3.1

usability. In addition, developers working under in a time constraint and

under economic pressure choose resources that are easy to use and

access. Software developers lack awareness because they have not been

educated in this regard (Fahl et al. 2013). Developers may be unaware that

those functions, have been deprecated because of their vulnerabilities, or

that safe alternatives have been introduced. These practices are especially

prevalent in those software developers’ practices who are unfamiliar with

secure coding practices (Dimitrov 2016).

2.14.2 Issues with Building Security into the Software Development
Processes

During the 1990’s researchers argued that security needs should be

merged into the software development process and not considered an add-

76

on endeavour. The literature on building security into Software

Development Processes and their relevance to implementing security are

analysed. The literature review identified critical issues, which are

summarised in Table 10. In particular, commonly used software

development practices do not include security as an integral part of the

software development process as it costs too much money and consumes

a lot of time (Banerjee and Pandey 2009).

Critical analysis: Issues with Building Security into the Software
Development Process

Software
Development
Process

Microsoft
SDL

• Risk management and compliance
• Experiences threat modelling at

Microsoft
• System and methods for detecting

software vulnerabilities and malicious
code

(Brenner 2007, Shostack 2008, Lomont

and Jacobus 2014)

OWASP
CLASP

• On the secure software development
process: CLASP, SDL and
Touchpoints compared

• On the secure software development
process: CLASP and SDL compared

(Gregoire et al. 2007, De Win et al. 2009)

Poor up-take of security • How Do They Do It? A Look Inside the
Security Development Lifecycle at
Microsoft

• On the secure software development
process: CLASP, SDL and
Touchpoints compared

• Gregoire, Johan, 2007, On the secure
software development process:
CLASP and SDL compared

• System and methods for detecting
software vulnerabilities and malicious
code

• Risk management and compliance
(Howard 2005, De Win et al. 2009,
Gregoire et al. 2007, Lomont and
Jacobus 2014, Brenner 2007, Shostack
2008)

77

Table 10 Critical analysis of building security into the software development process efforts

1. Microsoft Security Development Lifecycle (SDL)
As mentioned in Section 2.10.1.1, SDL, proposed by Microsoft, is the

initiator, attempting to integrate security into the development lifecycle.

However, Microsoft SDL arguably appears complicated for developers in

term of understanding to implement and follow guidelines

Firstly, Microsoft SDL is not free; developers require special training to use

Microsoft SDL, which means it increases the software development and

maintenance cost.

Secondly, Microsoft SDL compliance with ISO 27001 (Brenner

2007), which makes it complicated in terms of threat modelling, requires a

specialised security experts’ team. Consequently, this is challenging for

small software companies with fewer expert developers (Shostack 2008).

In addition, standard compliance does not necessarily result in the

elimination of vulnerabilities. The reduction of vulnerabilities is

predominantly based on awareness and developers’ education about how

to build secure software (Lomont and Jacobus 2014). For example, the

Microsoft SDL does not embed any source knowledge from cybersecurity

experts, such as VDBs, which can be challenging for those software

developers with limited awareness and understanding of the security

vulnerabilities to apply the security guidelines effectively.

Furthermore, this has imposed paradoxical enforcement on

software developers for complying with security standards regardless of

developers’ lack of security issues understanding and knowledge of how

to prevent vulnerabilities. The organizational emphasis of Microsoft SDL

may also be of limited applicability in the informal world of cross-platform

application deployment.

2. OWASP CLASP
OWASP developed a process referred to as CLASP (Comprehensive,

Lightweight Application Security Process) as discussed in Section

2.10.1.1. This consists of a set of independent activities that have to be

integrated into the development process and its operating environment.

The choice of the activities to be executed, and the order of execution, is

left open for the sake of flexibility. Essentially, the execution frequency of

78

activities is specified per individual activity and the coordination and

synchronization of activities are therefore not straightforward. (De Win et

al. 2009).

OWASP CLASP implementation is limited to web-based systems.

For example, like Microsoft SDL, CLASP implementation also requires a

security advisor, which is not cost-effective and reasonable for small scale

companies (Gregoire et al. 2007).

3. Poor Up-Take of Security
Software developers generally consider security an add-on feature

(Howard 2005, Poller et al. 2017). In reality, it is not a simple feature that

developers can add to a system at any phase of the development process

(McGraw 1999). For example, the fact that 80% of 1998’s CERT alerts

involved buffer overflow problems emphasizes the point referred to Section

2.3.2.2. There is no reason that any code today should be susceptible to

buffer overflow problem, yet they remain the biggest source-code security

risk today (OWASP, 2015; Allen et al., 2001; Park et al., 2010; McGraw

and Viega 2000). The question which needs to be addressed is: “what we
can do to educate software developers, so they can understand
security errors with knowledge of how to mitigate them?” It is

suggested that security should be considered as a property as part of a

complete system rather than considering it to be a bolt-on feature.

2.15 Cybersecurity Community Problems: Pushing Knowledge
from Cybersecurity to Software Engineering

Attempts of the cybersecurity community to share their knowledge with

software engineers (see Section 2.10.2.1) also have a number of

shortcomings which create a big knowledge gap.

2.15.1 VDBs Issue

The detailed analysis of existing VDBs literature and their efficacy,

particularly in order to transfer vulnerability knowledge for software

developers revealed the following key issues, which are summarised in

Table 11.

79

As discussed in Section 2.10.2.1, cybersecurity experts attempt to

catalogue vulnerabilities in the form of Vulnerability databases (VDBs).

These VDBs have retained a wealth of security issues and their

exploitation. However, it is clear that the intended audience for these

databases is not software engineers involved in developing software but

rather systems administrators looking to secure their existing systems. It

might be possible that the information is simply not generalized enough to

be directly relevant to software developers during the development

process. Literature analysis with vulnerability databases’ effectiveness

which was studied in order to understand software developers' vulnerability

knowledge reflected upon the following issues. These are enumerated in

Table 11.

Issues Description

Lack
Standardization

No standard taxonomy/classification scheme for

existing VDBs, thus each of them uses their own

approach, none of which were explicitly designed to

use during SDLC. As such, these VDBs can typically

appear complex and ambiguous to the software

developer (Hui et al. 2010, Huang et al. 2013,

Dimitrov 2016).

Limited
knowledge

Closed source VDBs, such as the Carnegie-Mellon

US Cert database and Secunia, are of necessity

limited in the information that they can show

concerning code-level errors (Carnegie Mellon

University 2015, Secunia 2015).

Complex
knowledge

It is clearly shown by many research studies, which

have compared vulnerability information across the

multiple VDBs that these repositories are deficient in

providing interoperability, knowledge consistency

and are not following standard classification schemes

80

(Ghani et al. 2013, Chen, Zhang and Chen 2009,

Yun-hua and Pei 2010).

Inadequate
Automated
tools

Researchers have tried to address VDBs complexity

issue while creating a number of different tools which

designed to automate the detection of vulnerabilities

during development phase such as use of VDBs

knowledge via text mining bug databases

(Wijayasekara, Manic, and McQueen 2014, MITRE

Corporation 2004, Liu and Zhang 2011, Yun-hua and

Pei 2010). Nonetheless, it is clearly evident from the

literature that problematic ambiguities still exist in

their classification strategies.

Table 11 Issues of VDBs usability for developers

2.16 Conclusion

90% of security incidents result from exploitation of flaws in software

systems (DHS 2017). In reality; however, software developers struggle

against recurring and consistent software flaws (i.e. buffer overflows, and

integer overflows), which are exploited on a daily basis by malicious

hackers. Questions arising from this are:

• Why do malicious hackers know more about our systems than

developers and security experts?

• What are the knowledge gaps or disconnects between developers

and security experts that allow malicious hackers to succeed?

Nonetheless, a large body of knowledge about software

vulnerabilities exists within the cybersecurity community, in particular

amongst penetration testers and ethical hackers. Currently, cybersecurity

experts put much effort into classifying discovered vulnerabilities and

developing taxonomies of these vulnerabilities. Such vulnerabilities are

then catalogued in publicly available vulnerability databases (VDBs).

Similarly, software developers have worked to embed security within the

software development process in order to improve the security of software

systems. Various attempts to capture and formalise the transferring

81

knowledge in a manner appropriate to software engineers have been made

such as improving libraries C/C++ and PHP, introducing secure

development lifecycle (Microsoft SDL, and OWASP CLASP), and including

Misuse Patterns, Software Fault Patterns (SFP), and Security Patterns

(SP).

Despite the software engineering community’s best efforts, the

number of dangerous software exploitations is increasing at an alarming

rate. It is thus clear that these resources are not being utilised effectively

in providing the necessary knowledge to the software developer due to the

following reasons: information overload, lack of techniques to

systematically annotate flaws’ rectification and insufficient analysis of the

data relating to these prevalent vulnerabilities. In fact, other impediments

include the knowledge transfer mechanisms between the work on

vulnerability databases (VDBs), developers’ perceptions of security issues

and the complexity of the Microsoft security development lifecycle (SDL) is

complex, which creates a distinct communication gap between

cybersecurity experts and software engineers. Interruption of (knowledge)

communication directs software developers to repeat practices that lead to

vulnerabilities and gives rise to software flaws exploitation. The need for a

better understanding of vulnerabilities via a usable knowledge transfer

mechanism and our proposed solution is the subject of the remainder of

this dissertation.

82

Contribution
This section of the thesis comprises of three chapters, chapter 3 derivation

of Vulnerability Anti-Patterns (VAPs), chapter 4 Vulnerability Anti-Patterns

(VAPs), and chapters 5 creating the catalogue of VAPs.

Chapter 3 critiques existing pattern-based approaches and define

the derivation process of VAPs. This chapter describes the motivation and

context for investigating and addressing the following problem. VAP can

bridge the security knowledge gap faced by developers while successfully

transferring the usable security information from the cybersecurity

community to software developers. The goal of VAP development is to

provide security awareness of flaws that lead to vulnerabilities.

Chapter 4 elicits the main work product VAP and its design

structure. This chapter explains the VAP types which will use during the

evaluation process.

Chapter 5 describes the created catalogue of VAPs, which

comprises of 9 “Informal” and 11 “Formal” VAPs.

83

3 Criticism of Existing Pattern-Based Approaches and the
Derivation of a New Approach: Vulnerability Anti-Pattern
(VAP)

This chapter introduces the methodology used for evaluating the contribution of

this dissertation. The research examines how the cybersecurity and software

engineering communities’ deal with the concept of poor development practices

and vulnerabilities based on the use of patterns as a research topic. Informed by

these different approaches, this chapter describes an approach based on Anti-

Patterns to use within this dissertation.

The key objectives of the chapter are:

• Section 3.1 provides an overview and criticism of current pattern-based

security research.

• Section 3.2 performs the comparison Analysis of selected Cyber-

Patterns against Vulnerabilities

• Section 3.3 describes a proposed methodology.

• Section 3.4 describes steps engaged in capturing vulnerability knowledge

in the form of vulnerability anti-patterns.

3.1 Pattern-Based Research Approaches

An analysis of both software engineering and cybersecurity communities’ pattern-

based approaches has performed. This includes the knowledge sources that are

required to design a methodology for an effective transfer of vulnerability

knowledge to improve software developers’ awareness. Pattern-based

approaches originating in the cybersecurity domain are considered in Section

3.1.1, followed by those from the software engineering community in Sections

3.1.2 and 3.4.1, leads to the derivation of VAPs.

To deal with the inadequacies of existing pattern-based approaches, while

fulfilling developers’ needs to understand vulnerabilities and their root-causes,

specific vulnerability knowledge is obtained from each selected pattern-based

approach to provide an optimal solution.

84

3.1.1 Cybersecurity Pattern-Based Research Methods

In cybersecurity, pattern-based research tends to focus on evaluating the

exploitation of vulnerabilities or misuse of errors, rather than investigating why

the errors occur or why errors constitute vulnerabilities. This position is based on

the assumption that poor software development practices will stop if usable and

understandable knowledge is provided, and the appropriate knowledge transfer

methods are used to help software developers during Software Development

Lifecycle (SDLC) as shown in Figure 13. Two pattern-based approaches related

to security have been carefully chosen from the cybersecurity community for this

purpose: Software Fault Patterns (SFP) (Mansourov 2011) and Attack Patterns

(AP) (MITRE Corporation 2014)

3.1.1.1 Software Fault Pattern

Common Weakness Enumeration (CWE) and s catalogue of weaknesses provide

for the most commonly known open source vulnerability database. SFPs are

associated with the CWE database, which provides a formal specification of

weaknesses (vulnerabilities). As mentioned in Section 2.13, the CWE

restructuring into a cluster is known as a Software Fault Pattern that aims to make

a vulnerability database such as CWE more understandable and easier to use.

However, a lack of detailed information about the structure and format of SFP

posits a considerable obstacle for software developers in understanding them

(Mansourov 2011).

3.1.1.2 Knowledge Sourced from Software Fault Pattern

From SFP the useful set of information is considered based on the need of

software developers in order to provide with an understanding of vulnerability, its

root-cause and traceability in the code. The derivation process of VAPs includes:

a) White-box Vulnerability Pattern
This provides transparency to trace a vulnerability and its properties (c.f.

white-box testing).

b) Footholds
This draws attention to vulnerability characteristics during the development of

system artefacts such as code, database schemas and platform configuration.

c) Code path (the condition of this pattern)

85

Necessary conditions for the connecting elements of the code to find coding

errors/mistakes.

3.1.1.3 Attack Pattern

An Attack Pattern is considered analogous to a design pattern, which describes

how a particular type of attack is performed as an abstract pattern (Blackwell and

Zhu 2014a p.115). As explained in the literature review chapter Section 2.10.2.2.

CAPEC (MITRE Corporation 2015c) introduced the concept of Attack Patterns to

describe the attack procedure. However, it lacks the standardisation of design

patterns. Consequently, software developers do not use Attack Patterns as they

usually appear to be complicated and difficult to understand (Faily, Parkin and

Lyle 2014). It is also apparent from the literature that adoption of attack patterns

is not common in software developers’ development practices due to their

inherent complexity and lack of standardisation, but also because attack patterns,

do not tend to be written in a usable format according to software developers’

needs (Section 2.13).

3.1.1.4 Knowledge Sourced from Attack Pattern

From Attack Pattern the useful set of information is considered based on the need

of software developers in order to provide an understanding of vulnerability, it

includes an overview of attack and its formats:

a) Pattern Name and Classification
A unique, descriptive identifier for the pattern.

b) Attack Prerequisites
What conditions must exist or what functionality and what characteristics must

the target software have, or what behaviour must it exhibit, for this attack to

succeed?

c) Description
A description of the attack including the chain of actions taken.

d) Related Vulnerabilities or Weaknesses
What specific vulnerabilities or weaknesses does this attack leverage?

e) Method of Attack
What is the vector of attack used (e.g., malicious data entry, maliciously

crafted file, protocol corruption)?

86

f) Attack Motivation-Consequences
What is the attacker trying to achieve by using this attack?

g) Attacker Skill or Knowledge Required
What level of skill or specific knowledge must the attacker have to execute

such an attack?

h) Resources Required
What resources (e.g., CPU cycles, IP addresses, tools, time) are required to

execute the attack?

i) Solutions and Mitigations
What actions or approaches are recommended to mitigate this attack, either

through resistance or through resiliency?

j) Context Description
In what technical contexts (e.g., platform, OS, language, architectural

paradigm) is this pattern relevant?

k) References
What are further sources of information available to describe this attack?

Figure 13 Relationship between pattern-based approaches and cybersecurity & software engineering experts

3.1.2 Software Engineering Pattern-Based Research Methods

This section presents software engineering pattern-based research methods as

discussed in Section 2.10.2 included in this thesis are: Security Patterns (SP)

(Schumacher et al. 2013) and Anti-Patterns (Brown et al. 1998).

87

3.1.2.1 Security Pattern

SP defines a solution against a set of specific threats which are controlled via

applying a specifically designed security mechanism. Moreover, SP defines a

solution, rather than directly revealing the underlying cause of software errors

(Schumacher et al. 2013).

3.1.2.2 Knowledge Sourced from Security Pattern

From a security pattern, the useful set of information is considered based on the

need of software developers in order to provide an understanding of vulnerability.

The useful set of information of SP that is considered for developers in this

research includes:

a) Example
Problem situation where the use of this pattern may provide a solution.

b) Context
Relevant context and its characteristics in which a solution is applicable.

c) Problem
It indicates the risk forces that affect the possible solution.
d) Solution
Describes the idea of the pattern.

e) Structure
The static view of the solution and some dynamics aspects in the form of a

sequence diagram.

f) Dynamic
UML diagrams such as class diagram, sequence diagram and use cases.

g) Implementation
Set of recommendations when or where to do to use this pattern.

h) Example resolved
Following contents of the above pattern will lead to resolutions.

i) Consequences
The benefits and liabilities of the solution embodied in this pattern.

j) Known uses
Minimum three examples of its use in a real system.

k) See also

88

Related other known patterns.

3.1.2.3 Anti-Pattern

An Anti-pattern is a mechanism to describe poor development practices to a

developer that have the potential to generate significant negative consequences.

Anti-Patterns examine the causes, symptoms, and consequences of poor

software development practices and in return, offer a refactored solution that

provides a successful solution (Brown et al. 1998).

3.1.2.4 Knowledge Sourced from Anti-Pattern

The useful set of information of anti-pattern that is considered for developers

in this research includes:

a) Name
The key problem name is addressed in this Anti-pattern.

b) Also known as
 This identifies an additional popular, descriptive name and phrases for the

Ani-pattern.
c) Most frequent scale
This section identifies where this anti-pattern fits into predefine scale SDLM

o Global

o Enterprise

o System

o Application

o Framework

o Micro-architecture

o Object

d) Refactored solution name
The refactored solution patterns name is a key reference, particularly when

paired with the Anti-pattern name for the problem.

e) Refactored solution type
This will identify the type of improvement that results from applying the Anti-

pattern solution:

o Software, involving the creation of new software

o Technology, solving the problem by the adoption of technology

89

o Processes, providing the definition of activities that are consistently

repeatable

o Role, allocation of clear responsibilities to organizational stakeholders.

f) Root causes
The general causes for this Anti-pattern.

g) Unbalance forces
The identifiers the primal forces that are ignored, misused or overused in this

Anti-pattern.

h) Anecdotal evidence
Common phrases and humorous anecdotes that succinctly describes the

problem.

i) Background
This section briefly describes the context of the problem.

j) General form
General characteristics of the Anti-pattern are identified and an overview of

the nature of the problem is presented.

k) Symptoms and consequences
It provides a list of symptoms that direct to the resulting consequences.

l) Typical causes
The specified problem causes of this Anti-pattern.

m) Known expectations
Potential cases in which the usage expectations can occur.

n) Refactored solution
It resolves the symptoms and consequence, typical causes and unbalances

forces issues.

o) Variation
It has shown the variation in known expectations.

p) Example
A real-world experience which provides the refactored solution.

q) Related solution
Other related solution against this Anti-pattern.

r) Applicability to other viewpoints and scales
 A viewpoint of users or an appropriate scale is described.

90

3.2 Comparison Analysis of Cyber-Patterns against Vulnerabilities

A comparative analysis of the selected types of patterns related to a security

described in Section 3.1.1 to Section 3.1.2 is investigated in Table 12. The

literature review of existing cyber-patterns related to cybersecurity or software

engineering communities and highlighted the deficiencies of transfer vulnerability

knowledge. In addition, Table 12 explicates the existing cyber-patterns

inadequateness including the vulnerability databases issues as mentioned

previously 2.15.1. Consequently, it is beneficial to do a comparison analysis of

existing pattern-based approaches; subsequently, we can find and design an

effective solution.

The headings used in Table 12 are discussed below:

• Pattern Name: pattern original name

• Context: Pattern implementation perspective

o Software developers

o Cybersecurity experts

• Usability: Usability in the context of providing understanding to software

developers range from Poor-high

• Security Concerns: pattern enactments to the security of the system and

answer will be in yes or no

• Functionality concerns: pattern ratification of the system requirements

and the answer will be in yes or no

• Target Audience: The main user of the pattern such as software

developer and security experts

• Knowledge Source Community: cybersecurity community or software

engineering community

• Developer Expertise Level: Developers require expertise to use this

pattern and is divided into three levels: low, medium, high

91

C
ybersecurity

Pattern- based

Approaches

Pattern

Name

Context VDBs

Knowledge

Association

Usability Security

Concerns

Functionality

Concerns

Target

Audience

Knowledge

Source

Community

Developer

Expertise

Level

Software
Fault
Pattern

Faulty

Computation

Template

Yes Poor Yes No Security

Experts

Cybersecurity

Community

High

Attack
Pattern

Attack

Mechanism

Template

Yes Poor Yes No Security

Experts

Cybersecurity

Community

High

Softw
are

engineering

Pattern -Based Approaches

Security
Pattern

Security

Mechanism

Template

No Poor Yes No Software

Developers

Software

Engineering

Community

High

Anti-
Pattern

Refactored

Solution

Template

No No No No Software

Developers

Software

Engineering

Community

Low-high

Table 12 Analysis Table of existing pattern-based approaches and their relation to capture and transfer vulnerability knowledge

92

3.3 Improved Use of Pattern-Based Approaches to Capture Poor

Software Development Practices (Vulnerabilities)

Software developers are generally trained to develop software systems in an ideal

scenario, in contrast to security experts (ethical hackers or pen testers) who generally

investigate exploitation mechanisms of software systems (Van and McGraw 2005).

As mentioned previously Section 2.15.1, the complicated structure of

vulnerability databases (VDBs), and their inadequacies in capturing and transferring

vulnerability knowledge via existing pattern-based approaches pose major challenges

to software developers in order to understand the root causes of vulnerabilities (Hans

2010, Nafees et al. 2017).

Furthermore, cyber-patterns are ineffective in intimating a common

understanding with adequate communication among software engineering and

cybersecurity communities’ experts (Blackwell and Zhu 2014b). As a result, Software

developers repeatedly commit common development errors. As discussed in the

literature review chapter (Sections 2.10.2 and 2.11) the research concludes the

following potential reasons:

• Lack of intuitive knowledge communicated from vulnerability databases (VDB).

• Common use of outdated knowledge sources and transfer mechanisms.

• Insufficient awareness of development errors and their underline root causes

that lead to vulnerabilities.

To address this problem, this work proposes a means of expressing

vulnerability knowledge in the form of anti-patterns to provide guidance and assistance

to software developers.

The concerns this thesis raises are: how can patterns encapsulate essential

understanding of security related vulnerabilities and how can patterns effectively

present the exploitation of errors to developers (Yun-hua and Pei 2010).

The contention between raising vulnerability awareness of developers and transfer of

security knowledge is paramount to success as an effective way of capturing and

transferring of vulnerability knowledge, in comparison to existing efforts such as

security patterns, attack patterns and software fault patterns that failed to do so. This

study performs a comparative analysis among selected vulnerability related cyber-

patterns to evaluate and identify the reasons why existing cyber-patterns are

93

ineffective in providing useful knowledge of vulnerabilities. The literature review

Section 2.10.2.2 explained patterns in detail. Table 13 provides a brief overview of

existing cyber-patterns’ ineffectiveness, which is based on the criteria of their

availability, understanding and usability for developers. CIA impact and mitigation

techniques (MITRE Corporation 2015b) are commonly used within the cybersecurity

industry, to transfer usable knowledge of the vulnerability, we have chosen three main

categories: vulnerability knowledge availability while providing in a format that is

understandable and useful for developers.

Table 13 main headings description are:

• Availability: Lack of accessibility and its usage information. For example,

software fault patterns are less accessible in comparison to the design pattern.

• Understanding: Lack of a standard format makes it difficult to understand. For

example, attack patterns lack the standard format of representation.

• Usability: Lack of usable knowledge format sourced from Cybersecurity

community. For example, security patterns lack communication with

vulnerability knowledge sources.

The following table provides pattern content information. Such as

• Mostly: Publicly available, easy to understand, easy to use

• No: Not publicly available, difficult to understand, difficult to use.

Pattern Type Availability Understanding Usability

Design Pattern Mostly Mostly No

Security Pattern Mostly No No

Software Fault

Pattern

No No Mostly

Attack Pattern Mostly No No

Anti-Pattern No Mostly No
Table 13 Comparative analysis of cyber-patterns to measure ineffectiveness in order to vulnerability understanding

94

3.4 Proposed Solution

From this review of existing pattern-based approaches to security, it can be concluded

that any new approach needs to deal with the following considerations:

• The new method needs to use cybersecurity knowledge sources. However,

knowledge extracted from cybersecurity sources should be presented in a

usable format which software developers can understand.

• The new approach needs to contribute a new pattern-based approach that can

be used to identify and capture any vulnerability within the Software

Development Lifecycle (SDLC) and provide mitigation solutions.

The pattern-based approach proposed in this dissertation, which is known as

“Vulnerability Anti-Pattern”, is described in more detail in the following section.

3.4.1 Derivation of Vulnerability Anti-Pattern (VAP)

There are three main derivation processes of the VAP approach:

1. Knowledge Extraction Process (KEP)

The KEP involves “pulling” information about vulnerability from appropriate

sources, e.g. existing vulnerability databases (e.g. CWE, CAPEC, and CVE)

and security patterns (SP).

2. Knowledge Provision Process (KPP)

The KPP involves taking the output of KEP and storing /expressing it in the form

of a VAP.

3. Knowledge Awareness Process (KAP)

This is the activity of presenting the VAP to software developers for knowledge

awareness of vulnerabilities.

As shown in Figure 14, the proposed methodology is divided into sub-parts to

achieve simplicity and reduce complexity. The KEP in Section 3.4.1.1 explains the

“Knowledge pulling”, to extract knowledge from different VDBs, security patterns and

attack patterns sources; The KPP in Section 3.4.1.2 describes the “Knowledge

pushing”, to encapsulate the normalised knowledge into anti-pattern to apprehend the

necessary knowledge of vulnerabilities.

95

96

Figure 14 Derivation of VAP3

3 1-knowledge extraction is KEP, 2-knowledge provision is KPP, 3-Knowledge Awareness is KAP

97

3.4.1.1 Knowledge Extraction Process (KEP)

KEP is a process during which cybersecurity knowledge sources are used to extract

developer centric knowledge, which is essential to improve developer awareness of

how malicious hacker exploit their development errors. To follow up, KEP maps

extracted knowledge into SDLC, which provides knowledge to developers about which

stage of the development lifecycle the vulnerability originates and what root causes

leading to the vulnerability. KEP comprises:

• Knowledge extraction

o Create nomenclature of Vulnerabilities

• Knowledge mapping into SDLC

o Generate a Decision tree

Knowledge extraction: During this process, knowledge is extracted from multiple

sources such as VDBs (CWE, CVE), security patterns and attack pattern databases

(CAPEC) as shown in Table 14, which explains the knowledge sources such as

Software Fault Patterns (SFP), Design Patterns (DP), Anti-Patterns and Attacks

Patterns (AP) and describes accrued knowledge from these sources. Based on

extracted knowledge, a nomenclature of vulnerabilities is created.

Knowledge mapping into SDLC: After extraction, the vulnerability knowledge is

mapped into the SDLC. The mapping to SDLC provides awareness to developers

about which stage of development lifecycle the vulnerability originates in and what root

causes leading to the vulnerability. A mapping process is used to generate a decision

tree, which maps vulnerabilities to root causes within the SDLC and generates “injury”

and “safeguard” paths based on extracted knowledge from VDBs and security related

cyber-patterns within SDLC.

Table 14 illustrates the general overview of the knowledge extraction process

and its mapping to cyber-patterns within the SDLC. This SDLC mapping of

vulnerability adds value to VAP design. Basically, this approach helps developers to

trace the vulnerability root cause from the initiated level within the SDLC. The research

includes three main phases of the SDLC during which poor security coding practices

generate weaknesses that have the potential to turn into vulnerabilities. The mapping

considers the following the SDLC phases:

1) Requirement specification

2) Design

98

3) Implementation

Vulnerability level in

SDLC

Software Fault

Pattern

Vulnerability

Databases

Analysis Process of

Security Related Cyber-

patterns

Requirement Level

Vulnerabilities

Injury,

safeguard

CWE Security objectives

Design Level

Vulnerabilities

Injury,

safeguard

CWE, CVE Design patterns/anti-

pattern

Code/Implementation

Level Vulnerabilities

Injury,

safeguard

CAPEC Secure coding/attack

patterns
Table 14 Mapping between vulnerabilities and cyber-patterns within SDLC

1) Requirement Specification Phase: During this phase, inaccurate security

requirements and any security weaknesses violating security requirements are

potential security flaws. Security objectives present the solution for these

security flaws. The knowledge is extracted from Common Weakness

Enumeration (CWE) (MITRE Corporation 2015b), which can provide a list of

security flaws that can help find and resolve vague requirements and achieving

the security objectives (Alvi and Zulkernine 2011).

2) Design Phase: During the design phase, the wrong algorithm approach,

incorrect data conversion and unsafe exception handling are design flaws

which may result in vulnerabilities being introduced into the software. The

knowledge is extracted from CWE and CVE, while using the Anti-Pattern

approach. This creates a link between the security flaws and properties to

inform upon the reasons of anti-patterns within the VAP.

3) Implementation phase: During the implementation phase, there are many

security guidelines to be used for preventing possible security risks (Hans 2010,

Shiralkar and Grove 2009). The main focus should be on a secure coding

pattern to attack patterns. Common Attack Pattern Enumeration and

Classification (CAPEC) (MITRE Corporation 2015c) are very helpful for linking

software flaws to attack patterns.

99

Primarily, the KEP is designed to transfer vulnerability knowledge, which

comprised of vulnerabilities nomenclature to assign developers understandable

vocabulary and decision tree to find the injury (flaw leads to vulnerability) and (safe

solution against flaw) safe path. This process includes:

1) Nomenclature of Vulnerabilities

2) Decision Tree

These are detailed below.

100

1. Nomenclature of Vulnerabilities

During the KEP, a nomenclature is generated based on the extracted knowledge that

is sourced from CWE, CVE, CAPEC and security patterns. This vocabulary helps

developers to understand cybersecurity experts’ terminologies. The including

information are:

• Vulnerability Information: General vulnerability information comprises ID,

registered CVE vulnerable examples CVE and other general names given to

vulnerability, which are sourced from CWE, and CVE.

• Vulnerability Footprints or Characteristics: This category includes the

context in which vulnerabilities generally occur, Software Development

Lifecycle phase in which vulnerability originates, and vulnerability software fault

pattern to expose the faulty computation. All information is obtained from CWE

and SFP.

• Mitigation: To find solutions against these vulnerabilities, we include possible

threat information, related solution patterns, and attack patterns that are

sourced from STRIDE threat model, a catalogue of security pattern and attack

pattern from CAPEC.

The vulnerability nomenclature is demonstrated in Table 15 with the knowledge

source information. This is used as a sanitised knowledge bank for designing the

Vulnerability Anti-Pattern. During KEP, vulnerabilities nomenclature is manually

generated by the researcher and updated quarterly since 2015, but as a part of

future work which is described in Section 10.5.1. Automated tool will create to

capture and sanitise recent vulnerability information, which will automatically

update vulnerabilities nomenclature information regularly.

101

4 Vulnerability databases searched between 15/07/2015 -12/11/2017

Vulnerability information4 Vulnerability fingerprint or characteristics Mitigation

CWE-ID CVE Generally known

as

Context Lifecycle SFP STRIDE SP AP

CWE-89 CVE-

2016-
1393,

CVE-

2015-
0161

SQL Injection Software fails to

correctly escape
special elements

used in SQL

commands.

Design Phase CWE-990: SFP

Secondary Cluster:
Tainted Input to

Command

Spoofing Intercepting

Validator

CAPEC-7,

CAPEC-66,
CAPEC-108,

CAPEC-109

CAPEC-110

CWE-

862:

CVE-

2009-
3168,

CVE-

2009-
3597,

CVE-

2009-

2282

Missing

Authorization

The software does

not perform an
authorization check

when an actor

attempts to access
a resource or

perform an action.

Design Phase Information

Disclosure

Role-based access

control

CAPEC-1,

CAPEC-17,
CAPEC-58

102

CWE-

306

CVE-

2004-
0213,

CVE-

2008-
6827,

CVE-

2002-

1810

Missing

Authentication for
Critical Function

The software does

not perform any
authentication for

functionality that

requires a provable
user identity or

consumes a

significant amount

of resources.

Design phase CWE-952: SFP

Secondary Cluster:
Missing

Authentication

Spoofing Authentication CAPEC-225,

CAPEC-12,

CAPEC-36,
CAPEC-40,

CAPEC-62

CWE-

120

CVE-
2016-

5108,

CVE-
2016-

5108

Buffer Copy without
Checking Size of

Input ('Classic

Buffer Overflow')

The program copies
data to a buffer

without checking

the size of the input.

Implementation
phase

CWE-970: SFP
Secondary Cluster:

Faulty Buffer

Access

Tampering Safe Data Structure CAPEC-8,
CAPEC- 9,

CAPEC-10,

CAPEC-14,

CAPEC-24

CWE-

676

CVE-

2011-
0712,

CVE-

2009-
3849,

CVE-

2006-
2114

Use of Potentially

Dangerous Function

The program uses a

potentially
dangerous function

that may introduce

a vulnerability if
used incorrectly.

Design and

Implementation
Phase

CWE-1001: SFP

Secondary Cluster:
Use of an Improper

API

NONE NONE CAPEC-113

103

CWE-

131

CVE-

2004-
1363,

CVE-

2008-
0599

Incorrect Calculation

of Buffer Size

The software does

not correctly
calculate the size to

be used when

allocating a buffer,

Implementation

Phase

CWE-974: SFP

Secondary Cluster:
Incorrect Buffer

Length Computation

Tampering NONE CAPEC-47,

CAPEC-100

CWE-

190

CVE-

2010-

2753,
CVE-

2005-

0102,
CVE-

2005-

1141

Integer Overflow or

Wraparound

The software

performs a

calculation that can
produce an integer

overflow or

wraparound.

Implementation

Phase

CWE-998: SFP

Secondary Cluster:

Glitch in
Computation

Tampering NONE CAPECE-92

CWE-79 CVE-

2008-

5080,

CVE-
2007-

5727

Improper

Neutralization of

Input During Web

Page Generation

The software does

not properly escape

attacker-provided

data when
generating HTML

content.

Design and

Implementation

Phase

CWE-990: SFP

Secondary Cluster:

Tainted Input to

Command

Information

disclosure,

Tampering

Container Managed

Security,

Message Interceptor

Gateway

CAPEC-18,

CAPEC-19,

CAPEC-32,

CAPEC-63,
CAPEC-85

CWE-

352

CVE-
2009-

3759,

CVE-
2009-

3520,

Cross-Site Request
Forgery (CSRF)

The web application
does not sufficiently

verify that the

source of the
request is the same

as the target of the

request. This

Design and
Implementation

Phase

NONE Spoofing Synchronizer token
pattern

CAPEC-62,
CAPEC-111

104

CVE-

2005-
1674

enables a

command (triggered
from a malicious

application) to be

sent to a trusted
website using the

user’s browser.

CWE-

134

CVE-

2007-
2027,

CVE-

2006-
2480,

CVE-

2002-
1788

Uncontrolled Format

String

The software uses

formatted output
functions with a

format string

controlled by an
attacker.

Implementation

Phase

CWE-990: SFP

Secondary Cluster:
Tainted Input to

Command

NONE NONE CAPEC-67

105

CWE-78 CVE-

2012-
1988,

CVE-

2007-
3572,

CVE-

2008-

4796

Improper

Neutralization of
Special Elements

used in an OS

Command

The software does

not properly escape
the special

elements used in an

operating system
command, which

may enable

execution of

arbitrary commands
by an attacker.

Design and

Implementation
Phase

CWE-990: SFP

Secondary Cluster:
Tainted Input to

Command

NONE NONE CAPEC-6,

CAPEC-15,

CAPEC-43,
CAPEC-88

Table 15 Taxonomy of vulnerabilities

106

2. Decision Tree
In the KEP, after categorisation using the developed nomenclature, the vulnerabilities

are based on their extracted knowledge, Decision tree generation has two main aims:

firstly, to carry out the vulnerability mapping for finding the root-causes within the

SDLC, secondly, to apply the obtained VDBs and vulnerability related pattern

information to indicate the “Injury” and “Safeguard” paths.

• “Injury Path” means that flaws lead to vulnerability.

• “Safeguard Path” means that the flaw can be avoided to prevent the

vulnerability from occurring.

Consequently, the decision tree can depict safeguarding and injury flows which

are associated with security incidents, including their low-level and high-level root

causes within the SDLC phases, as shown in Figure 15.

• Green paths are safeguards that direct the developer to avoid software

vulnerabilities.

• Following Red (injury) paths can lead to the creation of a vulnerability.

Figure 15 Vulnerability flow decision Tree in SDLC

To illustrate a decision tree, CWE-190: Integer overflow or wraparound is

exemplified in the following section. This vulnerability occurs due to an incorrect logic

assumption, in which larger integers are stored in a small size integer value.

Implementation/Cod
ing Phase

Design Phase

Requirement
Specification Phase

SDLC Vulnerability

Injury

Injury

Injury

Safeguard

Injury

Injury

Safeguard

Injury Safeguard

107

i) Decision Tree Example: CWE-190, Integer Overflow or Wraparound

Figure 16 is an example of a decision tree for the Integer Overflow vulnerability, which

is chosen from the list of OWASP “Top 25 Most Dangerous Software Errors”. The

CWE-190 vulnerability explanation mapping within SDLC is described below:

• Requirement Specification Phase: During this phase, Information is sourced

from the CWE and OWASP, and VDBs, which helps us find the security

objectives5 for integer overflow vulnerability. It can conclude that careful

language selection6 is the green (safeguarding) path that performs bound

checking otherwise it can lead to the injury path of numeric error (sourced from

software fault pattern-CWE-998) at this stage.

• Design Phase: During the design phase, information passed from the above

phase leads to the further subdivision. The injury path (numeric error)

knowledge sourced from software fault pattern that can turn into integer

overflow vulnerability and safeguard path knowledge scoured from security

pattern that follows secure coding practices such as Safeint libraries, which is

linked to a security pattern called Safe Data Structure7.

• Code/Implementation Phase: The CAPEC information source helps the

developer find the related attack patterns and interlinked vulnerabilities, such

as related attack patterns are CAPEC- 92 forced integer overflow, and

interlinked vulnerability CWE-680 integer overflow to buffer overflow that can

occur due to the injury path. However, to follow the safe path, such as the

bounds-checking library (gcc 2.7.0) and related security pattern (Safe Data

Structure), can help to avoid introducing this vulnerability.

5 System requirement specifications to deal with security concerns

6 The CWE recommends (MITRE Corporation 2015c) using a language that does not allow this weakness to occur or provides

constructs that make this weakness easier to avoid. If possible, choose a language or compiler that performs automatic bounds

checking.
7 Security pattern

108

Figure 16 Decision tree mapping example: CWE-190

The point to be noted here is that an “injury” path in one phase always leads to

an “injury” path in subsequent phases.

The CWE-190 vulnerability originated during the design phase due to poor

requirement specification, which is confirmed with decision tree mapping. Use of safe

language will lead developers to the safeguard path. Once an injury is induced, it is

difficult to mitigate. For example, CWE-190 is exploited as CAPEC-92(forced integer

overflow) and leads to its chain vulnerability (CWE-680) that is called interlinked

vulnerability (vulnerability always triggers another vulnerability, also called a chained

vulnerability). For example, integer overflow mostly causes a buffer overflow.

implementation
/coding phaseDesign phase

Requirement
specification

phase
SDLC

CWE-190

Numeric Errors Integer overflow

Forced Integer
Overflow-92

CWE-680: Integer
Overflow to Buffer

Overflow

language
selection

Integer overflow

Forced Integer
Overflow-92

CWE-680: Integer
Overflow to Buffer

Overflow

CERT C & C+
Secure Coding

(SafeInt (C++) or
IntegerLib (C or

C++))

bounds-checking
library (gcc 2.7.0)

Forced Integer
Overflow-92

CWE-680: Integer
Overflow to Buffer

Overflow

109

3.4.1.2 Knowledge Provision Process (KPP)

The Knowledge Provision Process makes use of anti-patterns to capture and integrate

the extracted information which forms the output of the KEP, so that software

developers have access to the distilled wisdom of cybersecurity experts in dealing with

recurring development errors related to security. The extracted knowledge is pushed

into the Anti-pattern to encapsulate the necessary knowledge of the vulnerability.

a) Anti-Patterns to Capture Vulnerabilities knowledge

For a software engineer, a design pattern generally describes a good practice, and in

turn, an anti-pattern, poor practice. However, sometimes good development practices

are ineffective and turn into poor development practices. The use of anti-patterns

allows developers to recognise commonly occurring problems, which may result from

a lack of knowledge, insufficient experience in solving a particular type of problem, or

applying a correct pattern in the wrong context (Foote and Yoder 1997, Dias e Silva

2014). Similarly, design patterns can turn into anti-patterns. The result is that a pattern

that may be commonly used and generally considered good practice but is now

ineffective and counterproductive in practice.

For example, common anti-patterns in critical or legacy systems are called

KEEPING IT WORKING (Foote and Yoder 1997, Foote, Rohnert and Harrison 1999),

which means do what it takes to maintain the software and keep it going and working.

This anti-pattern is common in critical systems because when an essential element is

broken, or a single failure will affect the entire system. An example is a system

developed in C/C++ that uses unsafe function calls.

b) A Vulnerability Anti-Pattern

This is a final stage in which vulnerability knowledge is pushed into an anti-pattern

structure to capture poor security practices. This leads to the derivation of a

Vulnerability Anti-Pattern, a hybrid solution against prevalent vulnerabilities. This

research proposed a VAP that captures cybersecurity domain knowledge and provides

distilled knowledge access to enhance developer understanding so that software will

not be exploited due to recurring vulnerabilities. Furthermore, the VAP offers precise

information that extracted from specified knowledge sources such as vulnerability

Databases (VDBs), Security Pattern (SP), Software Fault Pattern (SFP) and Attack

Pattern (AP) to fulfil the need to provide essential vulnerability information.

110

a. General Structure of Vulnerability Anti-Pattern (VAP)

This section introduces the VAP general structure, which is comprised of

• Anti-pattern

• Pattern

VAP general structure explained further by VAP types in the following chapter.

a) Vulnerability Anti-Pattern General info
Anti-Pattern

a. Anti-Pattern Name:
b. Also Known as:
c. Most Frequent Scale in SDLC:

i. Requirement Specification Phase
ii. Design Phase
iii. Implementation/Coding Phase

d. Problem Description:
e. CWE Mapping:

i. CWE-ID
ii. General name

f. Related CWEs:
CWE-ID Name

g. CVE Example:
b) Anti-Pattern Problematic Solution

a. Refactored Solution Name:
b. Refactored Solution Type:

i. Software Pattern
ii. Technology Pattern
iii. Process Pattern
iv. Role Pattern

c. Root Causes(Context):
d. Unbalanced Forces

Unbalanced forces Attack Example(code)

i. Management of functionality: meeting the
requirements. �

ii. Management of performance: meeting the
required speed of operation. �

iii. Management of complexity: defining
abstractions. �

iv. Management of change: controlling the
evolution of software.

v. Management of IT resources: controlling the
use and implementation of people and It
artefacts

vi. � Management of technology transfer:
controlling technology change. �

�Pattern

111

e. Risk patterns and Consequences:
Risk Patterns Consequences Context Description

 STRIDE threat model

f. Typical Causes
c) Problem Fingerprints(SFP)

i. Software Fault Pattern
d) Known Exploitation (Attack patterns-CAPEC)

i. Attack Pattern
e) Mitigation (Refactors the problem)

ii. Refactored Solutions:
i. Solution Steps

SDLC Phase Solution

a. Examples: (Real world Patch example)
Product versions Comment Vulnerability CVE-ID Patch(solution)

b. Related Solutions (SP):
i. General Solution (All in one solution)

3.4.1.3 Knowledge Awareness Process (KAP)

Knowledge Awareness Process aims to provide vulnerability information to software

developers through Vulnerability Anti-Patterns. The Notion of Vulnerability Anti-

Pattern is a hybrid solution that intended to provide the developers with awareness of

security flaws, so they will understand the vulnerabilities and their root-causes to

deploy mitigation solutions. To achieve this, KAP is designed to measure the

effectiveness and usability of VAPs for developers in identifying and understanding

how malicious hackers can exploit vulnerabilities. The KAP is explained in detail in the

evaluation Chapters 6, 7 and 8 of this thesis.

3.5 Conclusion

This chapter presented a critique of existing pattern-based approaches to security and

suggested the formulation of a Vulnerability Anti-Pattern. The motivation of the

Vulnerability Anti-Pattern approach was to create a pattern-based technique that

resolves the problem of:

• Ineffectiveness of existing pattern-based approaches to providing information

about the most commonly-occurring vulnerabilities. Software developers can

use these to learn how a malicious hacker can exploit their software systems.

• A distinct knowledge gap between software engineers and cybersecurity

experts in terms of how to create secure software systems.

112

The first problem requires a novel approach to capture vulnerabilities, one that

is easily understood by developers.

The second problem requires a form of management that provides essential

information flow of vulnerabilities to bridge the knowledge gap to help developers to

create secure software. The VAP detailed design and created catalogues are

presented in the next chapters, and then the performed evaluation is reported in

subsequent Chapters 6, 7 and 8.

132

5 Creating a Catalogue of Vulnerability Anti-Patterns (VAPs)

This chapter presents a catalogue of Vulnerability Anti-Patterns (VAPs) that currently

captures 12 vulnerabilities. However, each VAP has two types: formal and informal,

so the catalogue includes 24 VAPs defending against 12 vulnerabilities. The included

vulnerabilities in the catalogue chosen from OWASP Top 25 software errors list (Martin

et al. 2011). These consist of the most critical security problems faced by today’s

developers. VAPs are clustered together by various classification schemes such as

language-based or aggregation-based cluster.

The way VAPs are organised helps to explain to developers which VAP can be

used against a particular type of vulnerability, coupled with prevention in the future.

This chapter describes how the VAP catalogue was derived, and how the VAPs are

organised in the catalogue.

This chapter’s key objectives are:

• Sections 5.1 and 5.2 detail and explain the organisation of Vulnerability Anti-

Patterns to develop a catalogue.

• Section 5.3 explains the organisation of VAPs.

• Section 5.4 describes the formal Vulnerability Anti-Pattern catalogue.

• Informal Vulnerability Anti-Pattern catalogue describes in Section 5.5.

5.1 Developing the Catalogue

The catalogue was created while considering evaluation studies of this thesis, in which

vulnerabilities have been selected on the basis of participants’ knowledge of the

particular programming language and platform dependencies, so the evaluation study

can assess the selected vulnerabilities awareness in participants and provide

intervention through its related VAPs.

Catalogue of VAPs is comprised of most serious development errors identified

by surveying various vulnerability databases and their recent trend reports. Then this

research explored the root causes of development errors by surveying the multiple

pattern-based approaches in order to deal with security such as security patterns,

software fault patterns, and attack patterns. This was aided by the fact that this

research proposed a new approach based on anti-pattern to capture software

vulnerabilities as mentioned in Chapter 3, Section 3.4.1. The catalogue contributes to

the organisation of all developed Vulnerability Anti-Patterns and its software errors.

133

There are multiple approaches to developing a catalogue, the most rigorous

way to build a catalogue of VAPs is to enumerate every possible development error

and their refactored solutions, build tools to implement candidate solutions as optimal

answers, allow developers to use the tools and identify which refactored solutions are

more useful, and finally include them in the catalogue. It is impossible for a researcher

to follow this rigorous path; building tools and user testing each vulnerability (software

error) in the catalogue would take hundreds of person years.

The proposed approach to develop a catalogue is mainly focused on fulfilling

the recurrent vulnerabilities awareness need for software developers. However,

instead of finding all possible vulnerabilities that occur due to poor coding practices,

this research restricted to the most important 12 vulnerabilities, identified by the

OWASP as “Most Dangerous Development Errors”. Furthermore, this research

explores the most optimal and usable security solutions suggested by both

communities (cybersecurity and software engineering). The catalogue of VAP is a

summation of selected poor security coding practices and refactored solutions against

vulnerabilities; it covers the solution space better than any arbitrary approach.

5.2 Vulnerability Anti-Patterns Clustering

5.2.1 Language-Based Cluster

In Figure 22, Language-based cluster represents all included vulnerabilities that are

inherited in developers’ common devolvement practices not only due to a lack of poor

understanding of security core concepts such as proper memory allocation and bound

checking but important platforms, such as C/C++, also shared in the responsibility of

the vulnerabilities’ reoccurrence. The motivation to put together this group of

vulnerabilities into clusters are:

• All vulnerabilities occur due to specific languages such as C/C++ or PHP.

• All vulnerabilities have their origins in a lack of input validation or improper input

validation checks.

• All vulnerabilities are mitigated to some extent by implementing/ following the

secure coding practice.

• All vulnerabilities are led to information breaches such as denial-of-service

(DoS) attack.

134

Figure 22 Language-based cluster

As shown in Figure 22, the language-based cluster appears to have two main

languages:

• PHP
• C/C++

The leaf nodes of the cluster define the vulnerabilities and the middle nodes

explain the lack of input validation or improper input validation checks that have been

taken from the software fault pattern. Therefore, faulty computation leads to

vulnerability.

Vulnerability

PHP

Use of an Improper API
Use of Deprecated

Functions

Glitch in Computation
Integer Overflow or

Wraparound

C/C++

Faulty Buffer Access

Buffer Copy without

Checking Size of Input

('Classic Buffer Overflow')

Incorrect Calculation of

Buffer Size

Tainted Input
Use of Externally-Controlled

Format String

Use of an Improper API
Use of Potentially

Dangerous Functions

Glitch in Computation

Integer Overflow or

Wraparound(Exception in

some cases)

135

5.2.2 Aggregation-Based Cluster Organisation

The cluster shown in Figure 23 is based on aggregation, which is a specialised form

of association among vulnerabilities in order to indicate a significant correlation among

vulnerabilities’ root-causes. Fundamentally, “Use of Potential Dangerous function” is

a parent vulnerability and “Integer Overflow”, “Buffer Overflow”, “Incorrect Calculation

of Buffer Size”, “Use of Externally-Controlled Format String” are child objects

(vulnerabilities). This association among vulnerabilities help us to signify a hierarchical

relationship as one of simplicity.

• Parent Vulnerability: Use of Potentially Dangerous Function

• Child Vulnerabilities: Integer Overflow, Incorrect Calculation of Buffer Size,

Use of Externally Controlled Format String, Buffer Overflow.

Figure 23 Aggregation-based cluster to display root causes with linkage parent and child vulnerabilities.

Use of
Potentially
Dangerous
Function

Integer
Overflow

Incorrect
Calculation of

Buffer Size

Use of
Externally-
Controlled

Format String

Classic Buffer
Overflow

136

5.3 Organising Vulnerability Anti-patterns
Vulnerability Anti-Pattern catalogue organised into formal or informal types and then follows the language-based clustering as

shown in Figure 24.

137

Figure 24 Organisation of Vulnerability Anti-Pattern

Vulnerability Anti-
Pattern

Formal

Langauage-Based

C/C++

Incorrect
Calculation of

Buffer Size

Buffer Copy without
Checking Size of

Input

Use of potential
Dangerous /
Depercated
Functions

Integer Overflow

Use of Externally-
Controlled Format

String

PHP

SQL Injection

Use of potential
Dangerous /
Depercated

Function

Language-
Independent

Missing
Authentication

Missing
Authorization

Cross Site Scripting

Cross Site Request
Forgery

Command Injection

Infromal

Langauage-Based

PHP

Use of PHP
Potentially

Dangerous Function
(Deprecated)

PHP Integer
Overflow or
Wraparound

SQL Injection

C/C++

Buffer Copy without
Checking Size of

Input

Use of C/C++
Potentially

Dangerous Function

Incorrect
Calculation of

Buffer Size

C/C++ Integer
Overflow or
Wraparound

Lanaguage-
Indepenedent

Missing
Authentication for

the Critical Function

Missing
Authorization

138

5.4 Vulnerability Anti-Pattern Catalogue
Figure 25 demonstrates the catalogue of included vulnerabilities with their sub-

division into formal and informal arrangements.

1. Formal Vulnerability Anti-Pattern Catalogue:

As mentioned above in Section 4.6.2, the formal Vulnerability Anti-Pattern

follows the standard format of anti-pattern to capture and present vulnerability.

2. Informal Vulnerability Anti-Pattern Catalogue:

As mentioned in Section 4.6.1, the Informal Vulnerability Anti-Pattern

exemplifies the way in which a vulnerability can occur in a specific context.

139

Figure 25 Hierarchical view of VAP catalogue

VAP

C/C++

Incorrect Calculation of Buffer Size

Buffer Copy without Checking Size
of Input

PHP SQL Injection

Missing Authentication

Missing Authorization

Cross Site Scripting

Cross Site Request Forgery

Command Injection

C/C++ or PHP

Use of potential Dangerous /
Depercated Functions

Integer Overflow

Use of Externally-Controlled Format
String

Formal
Catalogue

Informal Catalogue

140

5.5 Informal Vulnerability Anti-Pattern Catalogue
As explained in Section 4.6.1, Informal vulnerability Anti-Pattern is exemplified

the exploitation prospect for developers in an understandable format. The

informal catalogue of Vulnerability Anti-Patterns includes 9 vulnerabilities:

1) Buffer Copy without Checking Size of Input

2) Use of C/C++ Potentially Dangerous Function

3) Use of PHP Potentially Dangerous Function (Deprecated)

4) Incorrect Calculation of Buffer Size

5) C/C++ Integer Overflow or Wraparound

6) PHP Integer Overflow or Wraparound

7) Missing Authentication for the Critical Function

8) Missing Authorization

9) SQL Injection

Details of each VAP explains in the appendix Section 1.2, which elucidates

the relationship between vulnerability and its exploitation behaviour in the form of

a pattern and anti-pattern.

141

5.6 Formal Vulnerability Anti-Pattern Catalogue
As explained previously in Section 4.6.2, formal vulnerability Anti-Pattern is

extended explanatory configuration which elucidates detailed information of

vulnerability for developers in an understandable format. The formal catalogue of

Vulnerability Anti-Patterns includes 12 vulnerabilities:

1) Buffer Copy without Checking Size of Input

2) Use of Potentially Dangerous/ Deprecated Function

3) Incorrect Calculation of Buffer Size

4) Integer Overflow or Wraparound

5) Missing Authentication

6) Missing Authorization

7) SQL Injection

8) Improper Neutralization of Input during Web Page Generation

9) Cross-Site Request Forgery

10) Use of Externally-Controlled Format String

11) Shell Injection

Details of each pattern are explained in the appendix Section 1.1 that

elucidates the factors involved to cause the vulnerability (i.e. anti-pattern and

pattern).

5.7 Conclusion
The catalogue of Vulnerability Anti-Patterns (VAPs) has been created to match

12 vulnerabilities. VAPs have different types: formal and informal, which further

is sub-categorised based on programming languages, such as PHP and C/C++.

The included vulnerabilities in the catalogue have been chosen from the OWASP

Top 25 software errors list (Martin et al. 2011) that consist of the most important

security problems faced by today’s developers. The way VAPs are organised

helps explain to developers which VAPs can be used against a particular type of

vulnerability coupled with prevention in the future. This chapter describes the

VAP catalogue by various classification schemes such as language-based or

aggregation-based clusters. The chapter concluded by presenting informal and

formal VAP catalogues.

142

 Evaluation
This section of the dissertation consists of four chapters to detail the results of

three experimental studies: Pilot study-I (PS-I), which was conducted to test the

proposed experiment design with Computing and Ethical hacking students at

Abertay University, Pilot study-II (PS-II), which was performed only with

Computing related degree students at Abertay University and an Industrial
study performed with professional software engineers at a UK-based leading

software development company. The evaluation is divided into three parts.

Chapter-6 Pilot study-I: the key objective was to evaluate developers’ (in

this case, students’) understanding of security flaws that lead to vulnerabilities.

We concluded this study by specifying outcomes which re-inform Vulnerability

Anti-Patterns (VAPs) and the design of the subsequent pilot study-II and industrial

study.

Chapter-7 Pilot study-II and Chapter-8 Industrial study: the key

objectives were to evaluate developers’ and students’ understanding of security

flaws that lead to vulnerabilities and to measure the effectiveness of VAPs to help

developers in improving their understanding about vulnerabilities.

A mixed methods approach is used to evaluating developers’ awareness about

recurrent vulnerabilities and measuring the effectiveness of Vulnerability Anti-

Pattern to provide understanding in a series of experiments as shown in Figure

26.

Figure 26 Experimental studies and their research methods approach

Pilot Study-I
• Quantitative

Approach

Pilot Study-
II
• Quantitative

Approach

Industrial
Study
• Qualitative

Approach

143

The derived pattern-based approach (VAP) mentioned in Chapter 4 is

used as an intervention during PS-II and Industrial study.
Based on literature review analysis and Pilot-study-I results, it was

apparent that the use of a pattern-based approach and subsequent development

of VAP would be an appropriate solution. Therefore, an evaluation of VAPs was

conducted via the PS-II and Industrial study.
Chapter-9 discusses all performed studies results and concludes by

proving a brief summary of results to measure the effectiveness of the VAP for

developers in order to provide essential awareness of vulnerabilities with support

to the creation of secure software systems.

Table 20 describes the study questions (SQ) of pilot study-I, pilot study-II

and industrial study. By analysing data in multiple ways, the results seek to

determine:

Pilot Study-I
SQ-1 Do software developers have an effective understanding of recurrent

vulnerabilities?

Pilot Study-II & Industrial Study

SQ-1 Do software developers have an effective understanding of recurrent

vulnerabilities?

SQ-2 Can interventions based on Vulnerability Anti-Pattern help developers

in improving their understanding of vulnerabilities?

Table 20 Study Objectives (SO) of the experimental studies.

The evaluation section of this dissertation is organised into 4 chapters:

Chapter 6 presents the Pilot-study-I results and their statistical analysis; Chapter

7 presents the Pilot-study-II results, and their statistical analysis; Chapter 7

presents the Industrial study results and their qualitative analysis. Followed by

Chapter 8 discusses all studies results.

144

6 Pilot Study-I (PS-I)

6.1 Introduction

Initially, a pilot study (PS-I) was conducted, to investigate the question that does

software developers have an effective understanding of recurrent vulnerabilities?

Furthermore, does PS-I designed questionnaire appropriately capture and

present information about the selected vulnerabilities to participants in order to

evaluate their understanding of vulnerabilities. In addition to this, there was a

need to assess the complexity of the designed questionnaire for participants, the

length of time required to complete the questionnaire and to identify any

preliminary problems.

A small sample group of 30 computing degree related students were

recruited as participants for PS-1. This study was performed to test the designed

questionnaire appropriateness and selection of vulnerabilities. The PS-I

participants were students of computer science majors at the Division of

Computing and Mathematics, Division of Cybersecurity at Abertay University.

The main issue reported by participants was the lengthy and time-consuming

nature of the questionnaires as it was comprised of 10 vulnerabilities. To address

these comments, the vulnerability sample size was reduced to 5.

The second pilot-study and the industrial study included only 5

vulnerabilities. The results of the pilot study are presented independently in

Section 9.1.

6.1.1 General Description	

This chapter reports the results of pilot study-I, which aimed to evaluate the

developers’ existing understanding of recurrent vulnerabilities. This study does

not test an intervention based on Vulnerability Anti-pattern.

Furthermore, the PS-I analysed the results to determine the statistical

significance to confirm the proposed hypothesis (as discussed in Section1.8).

The results revealed that software developers lack an effective understanding of

how to identify recurring security flaws (weaknesses) that enable the malicious

attacker to carry out an attack.

145

6.1.2 Key Objectives

The Study Question (SQ) is described:

Do software developers have an effective understanding of recurrent

vulnerabilities?

6.1.3 Experiment Hypothesis

The experiment study posits the following hypothesis (Experiment

hypothesis=EH):

EH-1 Participants can identify recurring security flaws and know how

malicious hackers can exploit these.

EH-0 Participants cannot identify recurring security flaws and do not know

how malicious hackers can exploit these.

6.2 Method

6.2.1 Experiment Study Description

A pilot study was performed with students from the School of Design and
Informatics at the University of Abertay Dundee. The study comprised a

questionnaire, which investigated their awareness of the most commonly

occurring software errors (i.e. vulnerabilities) and techniques for their mitigation.

Computing related degree students such as BSc Ethical Hacking, BSc

Computing, BSc Computer Games Technology, BSc Computer Application

Development and MSc Ethical Hacking students were surveyed. All students

share computer science as common knowledge background. However, ethical

hacking degree students are different due to their major in cybersecurity, and they

are also called penetration testers. Pilot study participants had alternative

background knowledge. For example, ethical hacking students were expected to

know some of the included vulnerabilities and their exploitation in comparison to

computing or gaming degree students. The questionnaire consisted of 10

questions. Each question represented one particular vulnerability. The selected

vulnerabilities were chosen from the “2011 CWE/SANS Top 25 Most Dangerous

146

Software Errors” list (Martin et al. 2011). 30 students participated and completed

the questionnaire. Please see Appendices 1.2. For information. Each question

was divided into three sub-parts,

Part-1: Investigated developers’ (students) awareness of why a given

piece of vulnerable code or UML diagram is insecure.

Part-2: Investigated developers’ (students) ability to describe how this

security flaw can enable a malicious attacker to carry out an attack.

Part-3: Investigated developers’ (students) awareness of commonly used

cybersecurity terminology to describe a security flaw.

In the questionnaire, each question has been assigned one of 4 points, which

are distributed as follows:

• 0 = Student is unaware of the vulnerability.

• 1 = student is slightly aware of the vulnerability

• 2 = student is aware of the vulnerability

• 3 = student is well aware of the vulnerability

Each question sub-divided into 3 parts as shown in Table 21; each part is

manually marked based on the answers of participants by researchers and

moderated by someone else. The points assigned to the participants according

to the above mentioned criteria (between 0 to 3). An example question is

explained below:

Use the C# code sample below to answer the following questions I, II

and III?
1. string userName = ctx.getAuthenticatedUserName(); //function call to

get user name
2. string query = "SELECT * FROM items WHERE owner = '"

+ userName + "' AND itemname = '" + ItemName.Text + "'"; // database
query to retrieve item information using user name and itemname as
an input value from user.

3. sda = new SqlDataAdapter(query, conn);// execute the query

 The program output will retrieve item information that corresponds to the

username and itemname.

Part-1 I. The above code contains a flaw, which may not be
detected by the compiler. Please describe below why
you think this code is wrong.

147

Part-2 II. A malicious hacker could exploit this code to
concatenate malicious input to build SQL command to
skip any input validation on username and can be used
to gain access to database information. Can you explain
how this code would enable a malicious hacker to carry
out such an attack?

Part-3 III. Can you explain this security flaw?

Table 21 PS-I question example

6.2.2 Experiment Design Structure

The rationale for the experimental design displayed in Table 22, which comprised:

• Assessment Survey Study
Accessing and measuring participants’ (software developers’) awareness about

prevalent vulnerabilities.

Stage-1

Assessment Survey Study
Input Questionnaire with

vulnerable code/ UML

diagram

Output Assessed result of

developers’ awareness of

vulnerabilities
Table 22 Pilot-Study-1 experiment design structure

6.2.3 Experiment Questions’ Structure

The structure of each question was constructed on the basis of shared

information accumulated from both communities’ sources: software engineering

and cybersecurity. Each question consisted of three parts:

Part-1: Vulnerable code or UML diagram

Part-2: Misused or exploited technique

Part-3: Identify the vulnerability’s formal name (Formally defined by

cybersecurity community)

148

6.2.4 Vulnerability Sample Size

This study considered the NVD (NIST 2011) as the main source of vulnerabilities’

related data, which includes CVE as a sub-set repository to trace and track the

most serious vulnerabilities. This research aims to structure information of those

software errors that have serious and dangerous consequences for software

systems. Table 23 presents the information on selected vulnerabilities from the

list of “2011 CWE/SANS Top 25 Most dangerous software errors” (Martin et al.

2011) according to students’ experience of a particular programming language.

The experiment includes the following vulnerabilities:

Question
Number

Vulnerability
OWASP
Rank

Vulnerability Name Example
Code
Language

Q1 Rank 24 Integer Overflow C/C++,

PHP

Q2 Rank 18 Use of Dangerous Function Call C/C++

Q3 Unranked Integer to Buffer Overflow C++

Q4 Rank 23 Use of Externally-Controlled

Format String

C++

Q5 Rank 3 Buffer Overflow C++

Q6 Rank 20 Incorrect Buffer Size Calculation C++

Q7 Rank 18 Use of Dangerous Function Call C++

Q8 Rank 1 SQL Injection PHP

Q9 Rank 6 Missing Authorization UML Class

diagram

Q10 Rank 5 Missing Authentication UML Class

Diagram
Table 23 Vulnerabilities included in questionnaire

6.2.5 Participants’ Sample Size

In this experimental study, the term “penetration tester” is used here to refer to

ethical hacker and research students, and the term “software developers” will be

used in its broadest sense to refer to all students of computing, computer games

technology and computer games application development technology. Table 24

presents the participants’ demographics.

149

Number of
participants

Degree Title Year of study

1 Computer Games Application Development 1st

1 Computer Games Application Development 3rd

6 Ethical Hacking 3rd

4 Computer Games Technology 1st

1 Computer Games Technology 2nd

1 Computer Games Technology 3rd

2 Computing 1st

7 Computing 3rd

3 Computing 4th

2 Post-Grad-Research
Table 24 Participants information

All participants were considered to be software developers during PS-I.

However, after their score analysis, the PS-I found significant trends in the

participants, whose major were cybersecurity. To investigate significant outcome,

they were classified in two groups.

1. Penetration Tester
• Post-grad Research Students (all participants were from the

cybersecurity division)

• Ethical Hacking Students

2. Software Developers
• Computer Games Technology Students

• Computer Application Development Technology Students

• Computing Students

To evaluate students’ performance depending on their degree, each

degree is assigned a code:

1=Computing

2=Ethical hacking

3=Computer Games Technology

4=Computer Game Application Technology

5=Post-Graduation

150

6.3 Results

6.3.1 Assessment of Questionnaire Vulnerabilities

This section presents the mean scores attained for each vulnerability assessed

by the questionnaire. The result of each question is displayed as a bar chart to

reflect on how participants' obtained marks and their related degrees.

151

6.3.1.1 Integer Overflow Vulnerability

When participants were asked about an integer overflow vulnerability during the

experiments, Computer Game Application students got the highest marks.

However, computing students got the lowest marks; the mean of their total

obtained marks out of 3 is shown in Figure 27.

Figure 27 Integer overflow vulnerability mean score

152

6.3.1.2 Use of Dangerous Function Call in C++ Vulnerability

When participants were asked about the use of dangerous function calls during

the experiments, Post-Grad students obtained the highest marks. However,

computer game application students obtained the lowest marks; the mean of their

total obtained marks out of 3 is shown in Figure 28.

Figure 28 Dangerous function call in C++ vulnerability mean score

153

6.3.1.3 Integer to Buffer Overflow Vulnerability

When participants were asked about an integer to buffer overflow vulnerability

during the experiments, the majority of participants struggled to find the

vulnerability in the vulnerable code. However, post-Grad and ethical hacking

students managed to answer correctly; the mean of their total obtained marks out

of 3 is shown in Figure 29.

Figure 29 Integer to buffer overflow vulnerability mean score

154

6.3.1.4 Use of Externally-Controlled Format String Vulnerability

When participants were asked about the use of an externally-controlled format

string vulnerability during the experiments, the majority of participants were not

able to answer any questions relating to this vulnerability. However, some of the

Post-Grad and ethical hacking students managed to answer correctly; the mean

of their total obtained marks out of 3 is shown in Figure 30.

Figure 30 Use of externally-controlled format string vulnerability mean score

155

6.3.1.5 Buffer Overflow Vulnerability

When participants were asked about a buffer overflow vulnerability during the

experiments, the buffer overflow vulnerability appeared difficult for computing and

computer games technology students; the mean of their total obtained marks out

of 3 is shown in Figure 31.

Figure 31 Buffer overflow vulnerability mean score

156

6.3.1.6 Incorrect Buffer Size Calculation Vulnerability

When participants were asked about an incorrect buffer size calculation

vulnerability during the experiments, like the buffer overflow, this vulnerability

appeared difficult for computing and computer games technology students; the

mean of their total obtained marks out of 3 is shown in Figure 32.

Figure 32 Incorrect buffer size calculation vulnerability mean score

157

6.3.1.7 Use of Dangerous Function Call in PHP Vulnerability

When participants were asked about the use of a dangerous function call in PHP

vulnerability during the experiments, Post-Grad students got the highest scores;

the mean of their total obtained marks out of 3 is shown in Figure 33.

Figure 33 Use of Dangerous function call in PHP vulnerability mean score

158

6.3.1.8 SQL Injection Vulnerability

When participants were asked about an SQL Injection Vulnerability during the

experiments, Post-Grad and ethical hacking students got the highest scores; the

mean of their total obtained marks out of 3 is shown in Figure 34.

Figure 34 SQL injection vulnerability mean score

159

6.3.1.9 Missing Authorization Vulnerability	

When participants were asked about a missing authorization vulnerability during

the experiments, for computer game application development students this

vulnerability was difficult to identify; the mean of their total obtained marks out of

3 is shown in Figure 35.

Figure 35 Missing authorization vulnerability mean score

160

6.3.1.10 Missing Authentication Vulnerability

When participants were asked about missing authentication vulnerability during

the experiments, computing and computer games application students found it

difficult to identify this vulnerability. The mean of their total obtained marks out of

3 is shown in Figure 36.

Figure 36 Missing authentication vulnerability mean score

161

6.3.1.11 Discussion

Students with a cybersecurity background performed well in identifying

vulnerabilities. This group includes ethical hacking and post-grad students only

however, computing-related degree student group performed well in

demonstrating knowledge of vulnerabilities related to coding such as buffer

overflow and incorrect buffer size calculation.

In PS-I, all participants were considered to be software developers,

because they all studied computer science. However, their scores showed that

penetration testing groups performed better in all questions.

162

6.3.2 Results Discussion for Total Scores of Vulnerabilities Questions

The Mean Total Score was performed to evaluate and compare all participants’

scores with respect to their degree. Figure 37 graph x-axis represents the

students’ degree and the y-axis representing the mean total score obtained by

participants. The score of ethical hacking and post-grad students appeared to be

higher, although the score belonging to students of the Computing, Computer

Games Technology and Computer Games Application Development degrees are

lower indicating that penetration testers (Ethical Hacking degree students) are

more efficient in finding vulnerabilities in vulnerable code samples relative to

software developers. In other words, software developers received lower scores

than penetration testers. It may be due to influences in their background

knowledge and awareness of vulnerabilities. penetration testers and post-grad

students studied ethical hacking modules that provide students with a deep

understanding of vulnerabilities. This is in comparison to software developers,

whose background knowledge is influenced by programming languages and

advanced software development modules.

163

Figure 37 Total scores mean

164

6.3.3 Results Discussion of Mean of Total Score Graph

Figure 38 shows the accumulated results after combining all computing-related

degree students as software developers and comparing to post-grad and ethical

hacking degree students. The mean total score comparison of software

developers and ethical hackers reveals that there was a sharp difference in

ethical hackers scores, in comparison to software developers scores. Ethical

hackers score 50% better than software developers in finding vulnerabilities.

Figure 38 Total score mean comparison between software developers and pen tester

6.3.4 Assessment of Questionnaire Data-Statistical Analysis

A number of statistical methods were used to analyse the data gained from the

questionnaires.

6.3.4.1 Checking for Normality Distribution

The author performed a four-step procedure to check if parametric assumptions

are satisfied or not while using SPSS.

Step-1: Means and median are not similar between degree code 2 (Ethical

hacking) and 3 (Computer Game Technology) as shown in Table 25.

Step-2: However, the means of all degree codes are higher than the

standard deviation.

165

Table 25 illustrates that the degreecode 5 (post-graduate) students

perform very well and degreecode 2 (ethical hacking) students perform second

best among all other degrees’ students, though, degreecode 1 (Computing)

students perform least good.

Descriptives
 degree Statistic Std. Error

TotalScor

e

Computer Mean 6.6013 1.57611

95% Confidence

Interval for Mean

Lower

Bound

2.8743

Upper

Bound

10.3282

5% Trimmed Mean 6.5108
Median 7.6650
Variance 19.873
Std. Deviation 4.45792
Minimum .00
Maximum 14.83
Range 14.83
Interquartile Range 4.83
Skewness .442 .752

Kurtosis .949 1.481

Computin

g

Mean 5.5700 1.07363

95% Confidence

Interval for Mean

Lower

Bound

3.2308

Upper

Bound

7.9092

5% Trimmed Mean 5.5411
Median 5.4900
Variance 14.985
Std. Deviation 3.87104
Minimum .00
Maximum 11.66
Range 11.66
Interquartile Range 6.75
Skewness .192 .616

Kurtosis -1.062 1.191

Ethical Mean 13.3833 2.02251

95% Confidence

Interval for Mean

Lower

Bound

8.1843

166

Upper

Bound

18.5824

5% Trimmed Mean 13.4448
Median 14.9100
Variance 24.543
Std. Deviation 4.95412
Minimum 7.16
Maximum 18.50
Range 11.34
Interquartile Range 9.96
Skewness -.507 .845

Kurtosis -2.093 1.741

Post-

Grad

Mean 17.6250 5.29500

95% Confidence

Interval for Mean

Lower

Bound

-

49.6544

Upper

Bound

84.9044

5% Trimmed Mean .
Median 17.6250
Variance 56.074
Std. Deviation 7.48826
Minimum 12.33
Maximum 22.92
Range 10.59
Interquartile Range .
Skewness . .

Kurtosis . .

Table 25 Descriptive analysis

Step-3: Test of Normality
The Tests of Normality as shown in Table 26, it is clear that the p-values 0.333,

and 0.604 are higher than 0.05 so it can be assumed that the data is normally

distributed.
Tests of Normality

degreecode Develop_EH

Kolmogorov-Smirnova Shapiro-Wilk

Statistic df Sig. Statistic df Sig.

1 TOT_score 1 .181 12 .200* .925 12 .333

2 TOT_score 2 .213 6 .200* .933 6 .604

Table 26 Tests of Normality

167

Step-4: Histogram
Figure 39 shows a histogram that was generated to explore the data. The graph

is not bell-shaped, and data is not symmetrical around the mean.

Figure 39 Histogram from the data explore output

Step 5: Normality Plots
Figure 40 shows that data is not normally distributed. There are some noticeable

outliers at the top and bottom ends.

Figure 40 Normality plot from the data explore output

168

6.3.4.2 Normality Results Discussion

During PS-I, the author performed the test for normality using SPSS to verify if
normality test conditions are valid or not.

1. Normality condition-1 Means and medians are not similar: This condition

is not valid. Table 25 shows that the mean and median are similar.

2. Normality condition-2 Means are higher than standard deviations: This

condition is valid as shown in Table 25.

3. Normality condition-3 Normality tests show all p-values are higher than

0.05: This condition is valid as shown in Table 26.

4. Normality condition-4 Histogram must show perfect bell curve: This

condition is not valid as shown in Figure 39; the histogram does not show

a perfect bell-curve.

5. Normality condition-5 Data points will be close to the diagonal line in Q-Q

Plot. This condition is not valid as shown in Figure 40; the data points are

not closed to the diagonal line.

From these above conditions, it can be concluded that the data is not normally

distributed as not all five conditions are correct.

6.3.4.3 Mann-Whitney Test

Mann-Whitney test is one of the most common tests used to analyse non-

parametric and small sample size data. It was performed to measure the

significant differences between computing and ethical hacking students’ scores

in order to identify the students understanding of recurring security flaws, and

whether they know how these flaws can be exploited.

The results obtained from the Mann-Whitney test analysis of software

developers and ethical hackers scores can be compared in Table 27. It can be

seen from the data in ranks table that the software developers score about 150

points in Q4, about 125 points in Q5 and about 163.5 points in Q7 more than

ethical hackers, due to the difference in sum of ranks. This is a significant

difference in mean scores between ethical hackers and software developers as

p=.005, .009 and .035 respectively.

A Mann-Whitney test showed that there was a statically significant

difference in Q4, Q5 and Q7 scores between software developers and ethical

hackers as shown in Table 28, it is interesting to note that software developers

169

perform well in those questions that related to coding in contrast to ethical

hackers.

Based on the results, it stated that software developers (computing related

degree students) are more aware than ethical hackers of those vulnerabilities that

occur during writing code because all these questions are related to

implementation or coding phase.

170

Ranks

 Develop_EH N Mean Rank Sum of Ranks

Q1 1 22 14.64 322.00

2 6 14.00 84.00

Total 28

Q2 1 22 14.43 317.50

2 6 14.75 88.50

Total 28

Q3 1 22 13.25 291.50

2 6 19.08 114.50

Total 28

Q4 1 22 12.64 278.00

2 6 21.33 128.00

Total 28

Q5 1 21 11.98 251.50

2 6 21.08 126.50

Total 27

Q6 1 22 13.89 305.50

2 6 16.75 100.50

Total 28

Q7 1 22 12.93 284.50

2 6 20.25 121.50

Total 28

Q8 1 22 13.02 286.50

2 6 19.92 119.50

Total 28

Q9 1 22 13.34 293.50

2 6 18.75 112.50

Total 28

Q10 1 22 13.23 291.00

2 6 19.17 115.00

Total 28

Table 27 Ranks table

171

Mann-Whitney Test Statisticsa

 Q1 Q2 Q3 Q4 Q5 Q6

Mann-Whitney U 63.000 64.500 38.500 25.000 20.500 52.500

Wilcoxon W 84.000 317.500 291.500 278.000 251.500 305.500

Z -.182 -.093 -1.764 -2.788 -2.623 -1.054

Asymp. Sig. (2-tailed) .855 .926 .078 .005 .009 .292

Exact Sig. [2*(1-tailed Sig.)] .892b .935b .126b .020b .010b .460b

Mann-Whitney Test Statisticsa

 Q7 Q8 Q9 Q10

Mann-Whitney U 31.500 33.500 40.500 38.000

Wilcoxon W 284.500 286.500 293.500 291.000

Z -2.111 -1.950 -1.543 -1.623

Asymp. Sig. (2-tailed) .035 .051 .123 .105

Exact Sig. [2*(1-tailed Sig.)] .052b .068b .157b .126b

Table 28 Mann-Whitney test statistics

a. Grouping Variable: Develop_EH

b. Not corrected for ties.

6.3.4.4 Results Discussion of Mann-Whitney Test

Results of the Mann-Whitney test indicate that computing students were aware

of code level vulnerabilities such as

• Q4: Use of Externally-Controlled Format String Vulnerability

• Q5: Buffer Overflow Vulnerability

• Q7: Use of Dangerous Function Call in PHP Vulnerability

For the following vulnerability questions, the two-tailed p-value: was .005,

.009 and .035. p<0.05; therefore, these are significant results as shown in Table

28.

From this data, it can be concluded that ethical hackers scores were

significantly higher than software developers, except in Q4, Q5, and Q7 where

(U = 25, p = .005, U=20.5, p=.009, and U=31.5, p=.035). Therefore, these are

significant results.

	 	

172

6.3.5 Assessment of Questionnaire Internal Consistency

6.3.5.1 Cronbach's Alpha

Cronbach's Alpha is a measure used to determine the scale reliability in the

questionnaire. For example, the pilot-study-I had included 10 questions to

measure computing and ethical hacking students’ ability to identify the

vulnerabilities during the software development process. Let us consider the four

scale items that used to measure participants’ vulnerability understanding

ranging from “not aware” to “well aware”. A Cronbach's alpha was run on a

sample size of 30 students.

Reliability Statistics

Cronbach's Alpha

Cronbach's Alpha Based on

Standardized Items N of Items

.844 .845 10

Table 29 Reliability statistics

6.3.5.2 Results Discussion of Cronbach's Alpha

As shown in Table 29, the alpha coefficient for the ten items is .844, suggesting

that the items have relatively high internal consistency. (Note that a reliability

coefficient of .70 or higher is considered “acceptable” in most social science

research situations.).

A reliability analysis was carried out on the perceived task values scale

comprising 10 Items. Cronbach’s alpha showed the questionnaire to reach

acceptable reliability, α =0.84. Most items appeared to be worthy of retention,

resulting in a decrease in the alpha if deleted. See appendix Section 2.1 for

correction and other related results.

173

6.3.6 Pilot-Study-I Overall Results Summary

There is a multitude of factors in the empirical literature, and because it is

impossible to control all factors, it is often very difficult to get a meaningful result.

The results of the PS-I, although statistically significant, due to a very sample size

it is difficult to conclude that participants struggle to identify the vulnerabilities or

lack sufficient understanding of recurrent vulnerabilities.

The primary goal of PS-I was to investigate the participants (software

developers) ability to identify the software development errors that lead to

vulnerabilities. Participants were given vulnerable code samples or UML class

diagrams and asked to identify development errors. Exploring the participants’

ability to know how malicious hackers could exploit these vulnerabilities was

difficult due to the fact that all participants studied the same courses relating to

software development and programming languages in the 2nd year. Thus, initially,

all of them were considered to be software developers. However, after analysing

participants’ results, as shown in Figure 38 that students studying a cybersecurity

major performed better than students studying with a computing major. The

problem here is that students with a computing major learnt more about

programming languages and software development modules in comparison to

students with a cybersecurity major who learnt more about ethical hacking and

computer security modules. Therefore, the PS-I split the participants into two

groups: penetration testers (ethical hackers) and software developers

(computing).

The statistically significant result has shown that ethical hacking students’

scores were significantly higher than computing students’ scores. This will be

discussed in detail later in the discussion chapter. The results of this case study,

therefore, raise the concern that computing students lack awareness of

vulnerabilities and do not know how malicious hackers can exploit these. This

case study also highlighted another fact that ethical hacking students lack the

understating of coding level vulnerabilities.

It can be concluded that software developers are different from ethical

hackers due to their background knowledge and working perspectives to achieve

such as software developers worked to develop software, however, ethical

hackers worked as penetration testers in order to find security flaws or

174

vulnerabilities. Both groups: penetration testers and software developers do not

share common ground knowledge in order to develop or exploit software.

The results from PS-I raised some concerns and justified further investigation in

PS-II such as vulnerable code samples would need to understandable and easy

to explain the target vulnerability, as discussed in the following chapter PS-II. The

study also had a number of limitations, namely:

• Not all computing relating degree students were software developers

• Sample size was very small.

• Experiment was very lengthy and time consuming with difficulty to

understand vulnerable code samples.

• Participants were not aware of all vulnerabilities because of lack of

awareness of some of the programming languages used in the

questionnaire.

Based on these limitations, the next study was designed to avoid some of these.

In particular, we used a language that all participants would be familiar with. The

number of vulnerabilities to be examined was halved. The next study is described

in Chapter 7.

	

175

7 Pilot Study–II (PS-II)

7.1 Introduction

7.1.1 General Description

The second pilot study aimed to analyse the effectiveness of the proposed

Vulnerability Anti-Pattern (VAP), for software developers, both in terms of

providing an effective understanding of vulnerabilities and an awareness of how

to mitigate them. Furthermore, the study analysed the experimental results to

determine the statistical significance to confirm the proposed hypothesis and

ascertain its usefulness as a representative model. Through the process of

vulnerabilities’ awareness, recommendations would be that software developers

could be better informed about recurrent vulnerabilities and their mitigation,

without having to be an expert in cybersecurity.

7.1.2 Key Objectives

The Study Questions (SQ) are described in the following table

SH-1 Do software developers have an effective understanding of
recurrent vulnerabilities?

SH-2 Can interventions based on Vulnerability Anti-Pattern help developers

in improving their understanding of vulnerabilities?

7.1.3 Experiment Hypotheses

The study posits the following hypotheses (Experiment hypothesis=EH):

Experimental Study
EH-1 The intervention study, which is based on Vulnerability Anti-Pattern, will

improve participants' ability to identify the root causes of vulnerabilities

during the different stages of the software development process
EH-2 The intervention will improve participants' ability to recognise and

classify vulnerabilities using the terminology of the security community.

EH-0 There is no significant difference in participants' ability to

identify the root-causes of vulnerabilities with and without intervention.

EH-3 There is no difference between “formal” and “informal” intervention in

order to raise awareness of vulnerabilities.

176

EH-0 There is no significant difference between “formal” and

“informal” intervention in order to raise awareness of vulnerabilities.

EH-4 Software developers will be able to retain awareness of vulnerabilities

through interventions after a gap of one week.

EH-0 There is no significant difference in software developers’

obtained scores in the stage3 after a gap of one week.

Control Study
EH-5 There is a significant difference between the performance of

participants provided with intervention and those not provided with

intervention.

EH-0 There is no significant difference between the performance of

participants provided with intervention and those not provided with

intervention.

7.2 Method

The experimental study and control study both followed the same method. The

experimental study used intervention; however, the control was carried out

without intervention. The sample size of both studies is not the same, which

discussed further in limitation section 9.2.2.

7.2.1 Study Description

Experimental study designs, also called interventional study designs, are those

where the researcher intervenes at some point throughout the study. A pre-post

study survey measures the occurrence of an outcome before and after a

particular intervention is applied. Both studies consisted of three sets of

questionnaires, each of which consisted of pre-set and open-ended questions

designed to investigate the core understanding and mitigation knowledge

regarding the most commonly occurring software errors (Vulnerabilities). All

participants were studying computing-related degrees such as Computing,

Computer Games Technology and Computer Games Application Development.

The sample dataset was from a series of survey exercises conducted with

3rd and 4th year students of the School of Design and Informatics at the

177

University of Abertay Dundee. Overall, 39 participants took part in three stages

of survey exercises.

1) Pre-Assessment Survey Study

2) Post-Assessment Survey Study

3) Post-Post-Assessment Survey Study

7.2.2 Studies Design Structure

The rationale for the experimental design is displayed in Table 30, which is

comprised of four stages:

1. Stage1: Pre-Assessment Survey
Accessing and measuring participants (software developers) actual knowledge

about prevalent vulnerabilities

2. Intervention-Stage: Security Training Session
Providing security training through the Vulnerability Anti-Pattern (Formal and

Informal)

3. Stage2: Post-Assessment Survey
Accessing and measuring improvement or decline in participants (software

developers) actual knowledge about prevalent vulnerabilities after the secure

training

4. Stage3: Post-Post-Assessment Survey
Evaluating participants’ long-term memory to show how much information they

retained from the stage-2 provided secure training, after a gap of one week.

178

 Group A Group B

Stage-

1

Pre-Assessment Survey Study

Input Questionnaire comprised of vulnerable codes or UML diagram

Output Evaluate participants results to measure their awareness of

vulnerabilities

Interve

ntion-

stage

Intervention Session

Input

Group A-Formal

Vulnerability Anti-Pattern

Group B-Informal Vulnerability

Anti-Pattern

Output Provide information about vulnerabilities

Stage-

2

Post-Assessment Survey Study

Input Questionnaire comprised of vulnerable codes or UML diagram

Output Evaluate participants results to measure improvement/

deterioration after intervention provided by VAPs

After 1 Week (one week gap)

Stage-

3

Post-Post-Assessment Survey Study

Input Questionnaire comprised of vulnerable codes or UML diagram

Output Evaluate results to measure how much participants were able

to retain the information from the provided intervention based

on VAPs after a gap of one week.
Table 30 Description of the Vulnerability Anti-Pattern experimental study structure, including a description of the

inputs and outputs of all stages inputs.

7.2.3 Survey Questions’ Structure

Table 31 details the question used during the experiment, which was essentially

constructed based on accumulated necessary information from both

communities’ sources - software engineering and cybersecurity. The design of

each question primarily demonstrated the connection of vulnerabilities root-

causes with the Software Development Lifecycle (SDLC) phases from where they

originated rather than categorised all of them as a coding error. It could be better

179

to find out why this error has occurred due to one of the following reasons:

requirement specification phase error, design phase error or implementation

phase error. Subsequently, this directs developers’ attention towards the SDLC

phase from which this vulnerability initiated. Each question was designed to ask

software developers about the following necessary information. Part-1 of each

question assessed participants’ actual knowledge of the vulnerability while

providing vulnerable codes or UML diagrams, Part-2 investigated participants’

understanding of misuses or exploitations, and Part-3 inspected participants'

ability to recognise and classify the vulnerabilities using the terminology of the

cybersecurity community. The question structure is as follows:

1. Part-1: Vulnerable code or UML diagram

2. Part-2: Misused or exploited explanation

3. Part-3: Identify vulnerability formal name

Each questionnaire consisted of five sets of questions, and each set of

questions investigated the developers’ knowledge to find a vulnerability. The

selected vulnerabilities were chosen from the “2011 CWE/SANS Top 25 Most

Dangerous Software Errors” list. Of 90 students doing to computing degrees, 39

successfully completed the questionnaire. Each question was divided into three

sub-parts:1) identifies developer (students) awareness of the provided vulnerable

code or UML diagram; 2) investigated vulnerability root-cause description in a

formal and informal way; 3) explored related attack pattern and exploitation

knowledge.

Part-1:

Vulnerable code

or UML diagram

Use the PHP code sample below to answer questions I, II
and III below.

1. $id = $_COOKIE["mid”] ;//Assign cookie value to id
variable

2. mysqli_query("SELECT MessageID, Subject FROM
messages WHERE MessageID =
'$id'");// mysqli query to retrieve message
number(id)

The program output will print a message that corresponds
to the message ID.
The above code contains a flaw, which may not be

detected by the compiler. Please describe below why you

think this code is wrong.

180

Part-2: Misused

or exploited

explanation

 Use the PHP code sample below to answer questions I, II
and III below.

1. $id = $_COOKIE["mid”] ;//Assign cookie value to id
variable

2. mysqli_query("SELECT MessageID, Subject FROM
messages WHERE MessageID =
'$id'");// mysqli query to retrieve message
number(id).

The program output will print a message that corresponds
to the message ID.
A malicious hacker could exploit this code because it lacks
input validation on $id and can be used to gain access to
the database information. Can you explain how this code
would enable a malicious hacker to carry out such an
attack?

Part-3: Identify

vulnerability

formal name

Use the PHP code sample below to answer questions I, II
and III below.

1. $id = $_COOKIE["mid”] ;//Assign cookie value to id
variable

2. mysqli_query("SELECT MessageID, Subject FROM
messages WHERE MessageID =
'$id'");// mysqli query to retrieve message
number(id).

The program output will print a message that corresponds
to the message ID.
In your opinion, which of the following best describes the
flaw (tick all that apply)?

□ Injection Flaw
□ Improper Input Validation
□ SQL injection
□ Information leakage
□ String format error

Table 31 PHP sample question

Another example of a question used during the experiment.

Use the C# code sample below to answer the following questions I, II

and III?
1. string userName = ctx.getAuthenticatedUserName(); //function call to

get user name
2. string query = "SELECT * FROM items WHERE owner = '"

+ userName + "' AND itemname = '" + ItemName.Text + "'"; // database

181

query to retrieve item information using user name and itemname as
an input value from user.

3. sda = new SqlDataAdapter(query, conn);// execute the query

 The program output will retrieve item information that corresponds to the

username and itemname.

I. The above code contains a flaw, which may not be detected by the
compiler. Please describe below why you think this code is wrong.

II. A malicious hacker could exploit this code to concatenate malicious
input to build SQL command to skip any input validation on username
and can be used to gain access to database information. Can you
explain how this code would enable a malicious hacker to carry out
such an attack?

III. In your option, which of the following best describes the flaw (tick all
that apply)?

Injection Flaw

□ Improper Input Validation

□ SQL injection

□ Information leakage

□ String format error
Table 32 Experiment question related to C#

Tables 31 and 32 represent the questions used during the experiment. The

answers of each participant have been marked as follows:

• 0 = Student is unaware of the vulnerability.

• 1 = student is slightly aware of the vulnerability

• 2 = student is aware of the vulnerability

• 3 = student is well aware of the vulnerability

7.2.4 Questionnaire Design

PS-II included questions based on the vulnerable code, which were written by the

researcher with the help of ethical hacking, PHP and C\C++ lecturers. The

research considered the students’ (participants’) level of understanding and

degree of code complexity during the questionnaire design. For generating

182

vulnerable codes, a penetration training environment was used such as OWASP

Mutillidae II (Druin 2011) and bWAPP (Happel 2017).

7.2.5 Security Intervention Session

 As a part of the knowledge awareness process (KAP), explained in Section

3.4.1.3, an intervention8 was provided, based on the VAP, during the intervention-

stage. The intervention stage was designed to measure VAPs’ effectiveness in

subsequent stages: post-assessment and post-post-assessment as shown in

Figure 41. There are two types of interventions: formal and informal, which were

evaluated in

• Post-Assessment stage, just after it was provided.

• Post-Post-Assessment stage, after a gap of one week.

Figure 41 Security intervention link with assessment phases

8 Researcher had provided the intervention to intervene at stage-2 throughout the study. A pre-post
study measures the occurrence of an outcome before and again after a VAPs based intervention is
implemented.

Intervention
Session

•Fomal
Intervention

•Informal
Intervention

Post-
Assessment

Survey Study

•Just after
intervention

Post-Post-
Assessment

Survey Study

• After a one
week gap in
intervention

183

7.2.6 Security Intervention Types

The intervention, which is based on the concept of Vulnerability Anti-Patterns,

was provided to participants during the experiment. As shown in Figure 42, the

intervention was designed in two formats:

• Formal Vulnerability Anti-Pattern: the reason to call it formal is that the

standard “Anti-Pattern” format has been followed while designing the

formal version. Through the formal Vulnerability Anti-Pattern, software

developers may be able to raise awareness of vulnerabilities that include

problem descriptions relating to vulnerability databases (CWE, CVE),

vulnerability risk patterns pointing to software fault patterns,

consequences and countermeasures offered by security patterns included

in code examples.

• Informal Vulnerability Anti-Pattern: it followed an informal way of

presenting similar information to the formal version. A vulnerable scenario

was presented in the informal version because software developers would

gain awareness of the vulnerability through a detailed example, which

demonstrated the root-causes, consequences and countermeasures of

the vulnerability.

Figure 42 Security intervention types

Se
cu

ri
ty

 In
te

rv
en

ti
on

 T
yp

es

Formal Vulnerability
Anti-Pattern

Informal Vulnerability
Anti-Pattern

184

Using two types of security intervention, the study evaluates the following

hypothesis:

EH-3: There is no difference between “formal” and “informal” intervention

in order to improve awareness about the particular vulnerability.

7.2.7 Control Experiment Description

The goal of the control experiment was to demonstrate the effectiveness of the

intervention. The control experiment was carried out with 14 participants. The

experimental structure was identical but excluded the intervention stage. Control

participants did not receive any intervention. The study measured the scores’

difference between the experimental and control groups as shown in Table 33,

which detailed in Section 7.4.

Experimental Group Control Group
Stage-1 without intervention Stage-1 without intervention

Stage-2 with intervention Stage-2 without intervention

Stage-3 with intervention Stage-3 without intervention
Table 33 Experimental and control group comparison

7.2.8 Vulnerability Sample Size

The selection of vulnerabilities was purely based on those programming

languages, which students already taught and were well aware of. The module

lecturers were consulted to ensure that experiment questions were

understandable and not too complicated for the students. During PS-I, 10

vulnerabilities were tested with students. This study’s feedback mentioned that

the experiment was too lengthy and time-consuming. Consequently, in the PS-II

only 5 vulnerabilities were selected.

This study considered the NVD to be the primary source of data relating

to vulnerabilities, which included CVE as a sub-set repository to trace and tracks

the most serious vulnerabilities. This research aims to raise awareness of those

software errors that had serious and dangerous consequences for the system.

Five vulnerabilities were selected from the list of ‘2011 CWE/SANS Top 25 Most

dangerous software errors’, which is purely based on students’ knowledge

(software developers) of the programming language.

185

The students had different background knowledge, depending on their

degree choice. They are divided into two categories: Computing and Gaming,

based on their expertise and competence in programming languages.

• Computing students: The experiment included the five vulnerabilities for

the ‘COMPUTING’ students in Table 34.

Question

Number

Vulnerability

OWASP

Rank

Vulnerability

Name

Stage-

1

Stage-
2

Stage-
3

Example

Code

Language

Q1 Rank 1 SQL Injection √ √ √ PHP, C#

Q2 Rank 5 Missing

Authentication
√ √ √ UML

Class

Diagram

Q3 Rank 6 Missing

Authorization
√ √ √ PHP

Q4

Deprecated

Function Call
√ √ √ PHP

Q5 Rank 24 Integer

Overflow
√ √ √ PHP

Table 34 Survey summary for the computing students, its included vulnerabilities and vulnerable code or UML

diagram description

• Gaming students: The experiment included the following five

vulnerabilities for the ‘GAMING’ students in Table 35.

Question

Number

Vulnerability

OWASP Rank

Vulnerability

Name

Stage-
1

Stage-
2

Stage-
3

Example

Code

Language

Q1 Rank 5 Missing

Authorization
√ √ √ UML

Sequence

Diagram

Q2 Rank 3 Buffer

Overflow
√ √ √ C++

186

Q3 Rank 18 Use of

Dangerous

Function Call

√ √ √ C++

Q4 Rank 24 Integer

Overflow
√ √ √ C++

Q5 Rank 20 Incorrect

Calculation

of Buffer

Size

√ √ √ C++

Table 35 Survey summary for the gaming students, its included vulnerabilities and vulnerable code or UML diagram

description

• Vulnerability Anti-patterns: As shown in Table 36, the experiment

included the proposed design “Vulnerability Anti-Patterns” as a security

intervention for gaming and computing students.

Vulnerability Anti-Pattern Computing Gaming Example
Code
Language

1 SQL Injection Vulnerability Anti-

Pattern
√ PHP

2 Missing Authentication for Critical

Functions Vulnerability Anti-

Pattern

√ PHP

3 Missing Authorization Vulnerability

Anti-Pattern

√ √ PHP

4 Buffer Overflow Vulnerability Anti-

Pattern

 √ C/C++

5 Use of Deprecated Function

Vulnerability Anti-Pattern

√ PHP

6 Use of Potentially Dangerous

Function Vulnerability Anti-Pattern

 √ C/C++

7 Integer Overflow Vulnerability Anti-

Pattern

√ √ PHP, C/C++

187

8 Incorrect Calculation of Buffer Size

Vulnerability Anti-Pattern

 √ C/C++

Table 36 Used Vulnerability Anti-Patterns as security intervention for computing and gaming students

7.2.9 Participant Sample Size

In this experiment, the term “software developers” will be used in its broadest

sense to refer to all students of Computing, Computer Games Technology and

Computer Games Application Development. Table 37 presents participants’

information about their Numbers, Degree Title, Year of Study and stages in which

they had participated.

Number of
Participants

Degree Title Stage-
1

Stage-
2

Stage-
3

8 Computer Games Application

Development

 √ √

5 Computer Games Application

Development

√ √ √

4 Computer Games Technology √ √ √

12 Computer Games Technology √ √

5 Computing √ √ √

5 Computing √ √ √
Table 37 Participants information

188

7.3 Experimental Study

7.3.1 Research Hypotheses

The statistical analysis evaluates two successive measurements of paired

samples to know whether their means are significantly different (Table 38).

Research
Question

Does intervention, based on the use of “formal or
informal Vulnerability Anti-Pattern”, improve
participants' ability to identify the root-causes of
vulnerabilities?

EH-1 The intervention will improve participants' ability to identify

the root causes of vulnerabilities during different stages of

the development process.

EH-2 The intervention will improve participants' ability to recognise

and classify vulnerabilities using the terminology of the

security community.

EH-0 There is no significant difference in participants' ability to

identify the root-causes of vulnerabilities with and without

intervention.

Depended
Variables

Total_Score_stage-1 Total_Score-stage-2

Independent
Variables

DegreeCode

1=Computing

2=Gaming

Table 38 Research questions and hypotheses: two samples test

7.3.2 Examining Significant Difference between Two Scores Samples

The dataset consisted of participants’ scores (software developers), called

Total_Score_stage-1 and Total_Score_stage-2. Each participant completed the

predefined questionnaire twice during the experiment study: Firstly, without any

security training; secondly, after the secure training. They were marked based on

their answers and a total score of each stage was calculated. Thus,

Total_Score_stage-1 was a total obtained score by a participant in stage-1 and

Total_Score_stage-2 was a total obtained score by a participant in stage-2.

189

Specifically, we are interested in the difference between

Total_Score_stage-1 and Total_Score_stage-2 for each participant. In other

words, the intention was to determine whether participants performed better after

receiving the intervention in order to recognise and identify vulnerabilities in

stage-2 than their first time in stage-1.

7.3.2.1 Key Terms

• Intervention: this process raises security awareness. It comprised of the

Vulnerability Anti-Pattern (a proposed solution to educate the software

developers of recurrent vulnerabilities).

• Independent variable: degree_code, 1=Computing, 2= Gaming

• Dependent variables: Total_score_stage1, Total_score_stage2

7.3.3 Descriptive Statistical Analysis

Before performing any formal statistical tests, it was necessary to perform a

detailed exploration and description of the sample data through descriptive

analysis. For the sample data, this was an essential preliminary step. For that

reason, during the descriptive statistical analysis, the sample data was explored

thoroughly, while including a wide range of useful statistics, i.e. exploration of

frequencies, mean values and median values. To supplement the descriptive

statistics, a graphical representation (Histogram) was included to provide a

validation of the data. The study included the following descriptive statistics:

1. Mean, median and mode

2. Frequency differences between the two samples

3. Histograms

1. Compare the Mean, Median and Mode
As shown in Table 39, the descriptive analysis of the total_stage-1 and

total_stage2 compared the mean value, median value and mode value. A total of

18 participants, data were collected, one missing value that was not excluded.

Total_stage1 score (score obtained by participants in the stage1) mean value

was 6.72 and median value 7.00, in contrast to total_stage2 score (score

obtained by participants in the stage2) mean value of 11.72 and the median value

of 11.500.

190

Thus, it is apparent from Table 39 that participants scored double with

average mean value 11.7222 in stage 2, which was performed after the

intervention study.

Mean, Median and Mode Statistics

TOTAL_stage1 TOTAL_stage2

N Valid 18 18

Missing 1 1

Mean 6.7222 11.7222
Median 7.0000 11.5000
Mode 7.00 11.00

Std. Deviation 1.84089 1.36363
Table 39 Compared the mean, median and mode of Total_stage1 and Total_stage2 and presented the total number

of participants

2. Frequency Table	
The difference in frequencies was analysed and the central tendency across the

stage-1 and the stage-2 scores (Total_stage1 and Total_stage2) calculated.

Table 40 displayed the numbers of participants in stage-1. Those obtained scores

ranging from 4 to 10. Table 40 shows that frequently obtained score by

participants during the stage-1 was 7 (also known, as the central tendency of

Total_stage1 was 7). The minimum score value was 4 and the maximum score

was 10.

TOTAL_stage1

Frequency Percent Valid Percent Cumulative Percent

Valid 4.00 2 10.5 11.1 11.1

5.00 4 21.1 22.2 33.3

6.00 1 5.3 5.6 38.9

7.00 6 31.6 33.3 72.2

8.00 2 10.5 11.1 83.3

9.00 1 5.3 5.6 88.9

10.00 2 10.5 11.1 100.0

Total 18 94.7 100.0

Missing System 1 5.3

Total 19 100.0
Table 40 Numbers of participants in the stage1.

191

Table 40 presents participants’ frequencies with respect to their obtained

scores in stage-2. The highest obtained score was 15 and the lowest 9. Table

41 shows that a median of obtained scores during the stage-2 was 11 (also

known, as the central tendency of Total_stage-2 was 11).

TOTAL_stage2

Frequency Percent Valid Percent Cumulative Percent

Valid 9.00 1 5.3 5.6 5.6

10.00 1 5.3 5.6 11.1

11.00 7 36.8 38.9 50.0

12.00 4 21.1 22.2 72.2

13.00 4 21.1 22.2 94.4

15.00 1 5.3 5.6 100.0

Total 18 94.7 100.0

Missing System 1 5.3

Total 19 100.0
Table 41 Numbers of participants in the stage2.

Data from Table 40 can be compared with data in Table 41, which clearly

demonstrates that the stage-1 maximum score is equal to the stage-2 minimum

obtained score. These results suggest that the security training method had

considerably improved participants' ability to identify the root causes of

vulnerabilities during different stages of the development process. The themes

identified in these responses can be compared by both stages’ average means,

which illustrates a substantial difference in their mean values such as Stage-

1=6.7222 and Stage-2=11.7222 in Table 39.

192

3. Histograms
Figures 43 and 44 show stage-1 and stage-2 score distributions. On the x-axis, the total score of each stage is displayed and on the

y-axis, the frequency (numbers of participants) score obtained was presented. The graphical presentation of two histograms shows

that both stages’ maximum frequency was almost the same, although there is a tendency for participants to score higher in stage-2

after receiving the intervention, in comparison to stage-1. In addition, after comparing the total score of both stages, it can be noticed

in their mean and standard deviation values that participants appear to have been performed differently before and after receiving

the intervention. Overall, these results indicated that the intervention had considerably improved participants' ability to identify the

root causes of vulnerabilities.

193

Figure 43 Showing distribution of scores in stage-1 participants Figure 44 Showing the distribution of scores in stage-2 participant

194

7.3.3.1 Selection of Appropriate Statistical Test for Related Sample Data

To explore the significance of the difference between the two sample sets of scores,

the study performed a statistical test. As a guide to choosing an appropriate statistical

test for the sample data, Figure 45 presents a flow chart, which can be used to show

researchers how to implement the recommended tests when there are two samples

of scores. This is done in order to compare students’ scores to measure the

effectiveness of the ‘VAPs’.

The observation has paired for each subject (participants) in the sample and

two successive measurements had performed with the same set of participants

without and with intervention (security training). As shown in Figure 45, this study had

chosen a Paired-Samples t Test. The detail of the decision process, which included

the explanation of why the Paired-Samples t Test was chosen, has been described

further in the below sub-sections.

Figure 45 Choosing the appropriate statistical test for related two samples to measure the effectiveness of the proposed
intervention study

7.3.3.2 Type of Data: Related Samples

During statistical analysis, it is essential to know what the type of data we have, as we

are aware that the same group of participants (software developers) performed two

sets of questionnaires twice and, from them, two sets of total scores were generated,

which clearly shows we need to categorise the sample data as a related samples or

paired samples.

Assumptions
of Paired-

Sample t Test
Testing for
Normality

•Parametric Data
•Paired Sample t

Test

Type of Data

•Related Sample

195

7.3.3.3 Testing for Normality

A normality test was used to determine if the data were normally distributed. There are

two main methods of assessing normality:

1. Graphically: Histograms

2. Numerically: Test of normality

196

1. Histograms
The visual examination of both stages total scores data in the histograms, in Figures 46 and 47 show that data is normally distributed.

Figure 46 Total_Stage1 scores frequency regarding the students' degree Figure 47 Total_Stage2 scores frequency regarding the students’ degree

197

2. Test of Normality
Table 42 presents the results from two well-known tests of normality; namely the

Kolmogorov-Smirnov Test and the Shapiro-Wilk Test. Because of the small sample

size, which included only 18 participants with one missing value), the Shapiro-Wilk test

was recommended as being more appropriate for this experiment (< 50 samples). For

this reason, the author used the Shapiro-Wilk test numerical means for measuring

normality.

From Table 42, it would be claimed that for Degree_code the dependent

variable "Gaming" and "Computing”, with the independent variables "Total_stage1"

and “Total_stage2”, data were normally distributed.

To validate the test of normality, it is vital to know that, if the Sig. value of the

Shapiro-Wilk Test is higher than 0.05, then the data is normal. If it is below 0.05 then

the data significantly deviates from a normal distribution.

Tests of Normality

DegreeCode

Kolmogorov-Smirnova Shapiro-Wilk

Statistic df Sig. Statistic df Sig.

TOTAL_stage1 Gaming .237 9 .154 .930 9 .486

Computing .236 9 .161 .864 9 .106

TOTAL_stage2 Gaming .240 9 .144 .941 9 .595

Computing .196 9 .200* .872 9 .130
Table 42 Normality tests shown in the 'sig columns’.

*. This is a lower bound of the true significance.

a. Lilliefors Significance Correction

In Table 42 tests of normality, there were no significant results in the sig

columns value that is equal or less than 0.05. Neither normality test includes any

statistically significant results, and this has been confirming observations from the

histograms in Figures 46 and 47. Taken together, these results suggest that the data

was normally distributed.

198

7.3.3.4 Assumptions of Paired-Sample t Test

1. Assumption #1: Dependent variable should be measured on

a continuous scale. The dependant variables are on a continuous scale such

as Total_stage1 scores range from 0 to 3.

2. Assumption #2: Sample independent variables should consist of two

categorical, "related groups" or "matched pairs". The sample independent

variable consists of two categories “Gaming” and “Computing” participants

3. Assumption #3: There should be no significant outliers in the differences

between the two related groups. There is no prominent outlier in the sample.

4. Assumption #4: The distribution of the differences in the dependent

variable between the two related groups should be approximately normally

distributed. The test of normality confirms this.

7.3.3.5 Paired-Samples t Test Discussion

The paired-samples t Test compares the means between two related groups on the

same continuous, dependent variable. For example, the study uses the paired-

samples t-test to measure whether there was a difference in participants (software

developers) performance related to finding vulnerabilities during software

development process before and after receiving the intervention (a secure training

method). In this case, the dependent variable is “total score”, and related groups

(gaming and computing) would be the obtained score values “before=Total_stage1”

and “after=Total_tsage2” the intervention study.

The subject in the sample was the same and focused on the difference between

two successive measurements: stage-1 (Pre-Assessment) score and stage-2 (Post-

Assessment) score. Specifically, we were interested in the difference between the first

and second scores for each participant. The test is performed to see if scores

improved. To test the hypothesis the researcher had to perform the test. Therefore, in

this test, the null hypothesis suggests that there was no improvement in the

participants’ scores.

• Stage-1-Pre-Assessment Survey Study: Participants (software developers)

were asked to answer a series of questions in order to measure their knowledge

of common software errors (vulnerabilities). The stage-1 questions included

SQL Injection (CWE-89), Buffer Overflow (CWE-120), Missing Authentication

199

for Critical Function (CWE-306), Missing Authorization (CWE-862), Use of

Potentially Dangerous (Deprecated) function (CWE-676), Incorrect Calculation

of Buffer Size (CWE-131).

• After receiving the “intervention”.

• Stage-3-Post-Assessment Survey Study: Participants (software developers)

were asked to answer similar questions in order to measure how much they

had improved in their knowledge about common software errors

(vulnerabilities). The stage-2 questions followed the same format and included

similar questions, such as SQL Injection (CWE-89), Buffer Overflow (CWE-

120), Missing Authentication for Critical Function (CWE-306), Missing

Authorization (CWE-862), Use of Potentially Dangerous (Deprecated) function

(CWE-676), Incorrect Calculation of Buffer Size (CWE-131).

7.3.3.6 Result Discussion of Paired-Samples t Test

Table 43 provides summary statistics for the two conditions. This includes the sample

size (N=18), mean, standard deviation and standard error mean for the dependent

variables (Total_stage1 and TOTAL_stage2) for each condition of the independent

variable (Gaming and Computing).

The detailed analysis included all questions to measure significant differences.

The experiment hypotheses state that participants would score more after receiving

the intervention, which was intended to help participants to identify the root causes of

vulnerabilities, in contrast to participants’ scores before receiving the intervention. The

null hypothesis is rejected, and participants improved their ability to identify the root

causes of vulnerabilities after the intervention, during stage-2.

7.3.3.6.1 Paired Sample Statistics Table
Table 43 presents the mean number of participants and the standard deviation values

of the variables. As shown in Table 43, there were six pairs: the first pair presented

the difference between both stages’ total scores and the remaining pairs described the

difference in both stages of each set of questions’ scores. The mean column defined

all six pairs mean value differences, N column included the number of participants,

and then the St. Deviation column explained the standard deviation differences.

200

Paired Samples Statistics

Mean N Std. Deviation Std. Error Mean

Pair 1 TOTAL_stage1 6.7222 18 1.84089 .43390

TOTAL_stage2 11.7222 18 1.36363 .32141

Pair 2 Q1-s1 1.22 18 1.060 .250

Q1-S2 2.11 18 .963 .227

Pair 3 Q2-s1 1.22 18 .647 .152

Q2-S2 2.06 18 1.056 .249

Pair 4 Q3-s1 1.75 16 1.291 .323

Q3-S2 2.63 16 .500 .125

Pair 5 Q4-s1 1.39 18 .916 .216

Q4-S2 2.56 18 .511 .121

Pair 6 Q5-s1 1.41 17 .712 .173

Q5-S2 2.41 17 .618 .150
Table 43 Paired samples statistics for total and all questions scores

From Table 44, it would be suggested that there was a significant correlation

between pair2 and pair6 (Q1 and Q5).

Paired Samples Correlations

N Correlation Sig.

Pair 1 TOTAL_stage1 & TOTAL_stage2 18 .085 .739

Pair 2 Q1-s1 & Q1-S2 18 .550 .018
Pair 3 Q2-s1 & Q2-S2 18 .325 .188

Pair 4 Q3-s1 & Q3-S2 16 -.052 .849

Pair 5 Q4-s1 & Q4-S2 18 .014 .956

Pair 6 Q5-s1 & Q5-S2 17 .584 .014
Table 44 Paired samples statistics and correlations

Paired Samples Test

Paired

Differences

t df Sig. (2-tailed)

95% Confidence

Interval of the

Difference

Upper

Pair 1 TOTAL_stage1 -

TOTAL_stage2
-3.90783 -9.659 17 .000

Pair 2 Q1-s1 - Q1-S2 -.410 -3.915 17 .001

Pair 3 Q2-s1 - Q2-S2 -.315 -3.389 17 .003

Pair 4 Q3-s1 - Q3-S2 -.125 -2.485 15 .025

201

Pair 5 Q4-s1 - Q4-S2 -.648 -4.745 17 .000

Pair 6 Q5-s1 - Q5-S2 -.685 -6.733 16 .000
Table 45 Result of the paired samples t test

Table 45 reports that the mean score during stage-2 (M= 11.7222,

SD=1.36363) is significantly (t= -9.659 and p< 0.05) greater than the mean score of

the same participants during stage-1 (M= 6.7222, SD=1.84089).

7.3.3.7 Conclusion

As t (17) = -3.9078, p < 0.001 and the mean values of the two score pairs values and

from the direction of the t-value, it can be concluded that there is a statistically

significant improvement in participants’ scores after receiving the intervention, which

ranges from 6.722 ± 1.84 to 11.72.52 ± 1.84 (p < 0.001). Hence, the null hypothesis is

rejected, which indicates that there is no significant difference in participants' ability to

identify the root-causes of vulnerabilities with intervention. Therefore, it can be

concluded that the proposed intervention improved participants' ability to identify the

root causes of vulnerabilities during different stages of the development process.

202

7.4 Research Hypothesis

Research
Question

Is there a difference between “formal” and “informal”
intervention in order to provide information of
vulnerabilities?

EH-3 There is a difference between “formal” and “informal”

interventions in order to provide information of vulnerabilities.

EH-0 There is no significant difference between “formal” and

“informal” interventions in order to provide information of

vulnerabilities.

Dependent
Variables

Total_Score-Stage2

Independent
Variables

Vulnerability Anti-Pattern Code

1=Formal

2=Informal

Key Terms Formal training method= Formal Vulnerability Anti-Pattern

Informal training method= Informal Vulnerability Anti-Pattern
Table 46 Research question and hypothesis

7.4.1.1 Descriptive Analysis of Total_Score_Stage2 Based on the Intervention
Type

Table 47 presents a case processing summary, in which there were 39 participants.

During stage2, participants trained using “Vulnerability Anti-Pattern” about prevalent

vulnerabilities while using two types of formats: 1=Formal training method, 2=Informal

training method. Out of 39, 18 participants had received the formal intervention and

21 participants had received the informal intervention.

Case Processing Summary

VulnerabilityAntiPatternCode

Cases

Valid Missing

N Percent N Percent

Total_Score_Stage2 Formal 18 100.0% 0 0.0%

Informal 21 100.0% 0 0.0%
Table 47 Case processing summary stage2

Simple statistical analysis was used to measure the mean of both types of

interventions to evaluate the difference in participants’ scores. The means of

203

total_Score_Stage2 for “Formal intervention” is 11.83, whereas the “Informal

intervention” mean is 11.33. Thus, it can be concluded that there is no difference in

participants mean scores as shown in Table 48.

Descriptives

VulnerabilityAntiPatternCode Statistic Std. Error

Total_Score_Stage2 Formal Mean 11.83 .390

95% Confidence Interval for

Mean

Lower Bound 11.01

Upper Bound 12.66

5% Trimmed Mean 11.93

Median 12.00

Variance 2.735

Std. Deviation 1.654

Minimum 8

Maximum 14

Range 6

Skewness -.668 .536

Kurtosis .385 1.038

Informal Mean 11.33 .634

95% Confidence Interval for

Mean

Lower Bound 10.01

Upper Bound 12.66

5% Trimmed Mean 11.74

Median 12.00

Variance 8.433

Std. Deviation 2.904

Minimum 0

Maximum 15

Range 15

Skewness -3.156 .501

Kurtosis 12.403 .972
Table 48 Descriptive analysis

204

Table 49 presents the highest and lowest obtained scores during each type of

intervention. Interestingly, the participant who got “informal intervention” case number

6 obtained full marks. Case number 10 is an outlier because this participant performed

stage-1 but did not complete the questionnaire in stage-2.

Extreme Values

VulnerabilityAntiPatternCode Case Number Value

Total_Score_Stage2 Formal Highest 1 19 14

2 20 14

3 23 14

4 2 13

5 4 13a

Lowest 1 21 8

2 18 9

3 22 11

4 15 11

5 13 11b

Informal Highest 1 6 15

2 8 13

3 29 13

4 31 13

5 33 13a

Lowest 1 10 0

2 25 9

3 36 10

4 26 10

5 34 11b
Table 49 Highest and lowest scores’ table during stage-2

a. Only a partial list of cases with the value 13 are shown in the table of upper

extremes.

b. Only a partial list of cases with the value 11 are shown in the table of lower

extremes.

7.4.1.2 Selection of Appropriate Statistical Tests for the Sample Data

A normality test was performed similar to Section 7.3.4, Table 50 presents the results

from two well-known tests of normality. In this case, the Shapiro-Wilk Test is more

205

appropriate for small sample sizes (< 50 samples). As can be seen from Table 51, the

data normality assumption is correct.

Tests of Normality

VulnerabilityAntiPatternCode

Kolmogorov-Smirnova

Shapiro-

Wilk

Statistic df Sig. Statistic

Total_Score_Stage2 Formal .196 18 .066 .910

Informal .264 21 .001 .642
Table 50 Tests of normality

Tests of Normality

VulnerabilityAntiPatternCode

Shapiro-Wilka

df Sig.

Total_Score_Stage2 Formal 18 .085

Informal 21 .000
Table 51 Tests of normality

a. Lilliefors Significance Correction

7.4.1.3 One-Way ANOVA Test

Since the normality test indicated that stage-2 participants’ data (after receiving the

intervention) was normally distributed, a parametric type of test was required to

analyse the statistical significance of results gained.

 The one-way analysis of variance (ANOVA) is used to determine whether there

are any statistically significant differences between the means of stage-2 participants;

those received two different types of interventions. The test was run using a 0.05 alpha

level, and was two-tailed, in a bid to detect an effect in either direction. To this effect,

if a test achieves a p< 0.05, this was deemed to reflect a statistically significant

difference between the two samples.

7.4.1.4 Results Discussion of One-way ANOVA Test

Table 52 details the results of 39 participants who took part in this study and provides

some very useful descriptive statistics, including the mean, standard deviation and

206

95% confidence intervals for the dependent variable (Vulnerability anti-pattern) for

each separate group (Formal, Informal), as well as when all groups are combined

(Total). The tested conditions of the experiments are based on the type of intervention:

“1=Formal training” included 18 participants and 21 participants provided “Informal

training”, as well as the mean rank and sum of ranks for the two groups tested. This

table is very useful because it indicates that both groups had very similar scores and

which group can be considered as having the highest score, which we need to know

if we have to interpret a significant result.

Descriptives
Total_Score_Stage2

 N Mean

Std.

Deviation Std. Error

95% Confidence Interval for

Mean

Minimum Maximum Lower Bound Upper Bound

Formal 18 11.83 1.654 .390 11.01 12.66 8 14

Informal 21 11.33 2.904 .634 10.01 12.66 0 15

Total 39 11.56 2.393 .383 10.79 12.34 0 15
Table 52 One-way ANOVA test rank

Table 53 shows the output of the ANOVA analysis to determine whether there

is a statistically significant difference between two group means. We can see that the

significance value is 0.523, p> 0.05. Therefore, the null hypothesis was not rejected

that there is no significant difference between “formal” and “informal” interventions in

raising awareness of vulnerabilities.

ANOVA
Total_Score_Stage2
 Sum of Squares df Mean Square F Sig.

Between Groups 2.423 1 2.423 .417 .523

Within Groups 215.167 37 5.815
Total 217.590 38

Table 53 One-way ANOVA test results

a. Grouping Variable:

VulnerabilityAntiPatternCode

b. Not corrected for ties.
To examine the observed difference in stage2 total score between those who

received the intervention through “Formal Vulnerability Anti-Pattern” and “Informal

207

Vulnerability Anti-Pattern”, a one-way ANOVA test was performed and found not to be

significant. We can conclude from the ANOVA test result that there is no significant

difference in the participants mean scores depending on their received intervention

type.

208

7.5 Research Hypothesis

Research
Question

Is there a difference in software developers’ obtained
scores in the stage3 depend on receiving the type of
intervention, which performed after the one weeks?

EH-4 Software developers will manage to retain vulnerability

awareness provided by interventions after a gap of one week.

EH-0 There is no significant difference in software developers’

obtained scores in the stage3 after a gap of one week.

Dependent
Variables

Total_Score_stage-2 Total_Score-stage-3

Independent
Variables

Vulnerability Anti-Pattern type

1=Formal

2=Informal

Key Terms 1=Formal

2=Informal
Table 54 Research question and hypothesis

7.5.1.1 Descriptive Statistical Analysis of Stage_2 and Stage_3 Data

Before performing any formal statistical tests, it was necessary to do a detailed

exploration and description of the sample data through descriptive analysis. For the

sample data, this was an essential preliminarily step. For that reason, during the

descriptive statistical analysis, the sample data had explored thoroughly while

including a wide range of useful statistics. For example, exploration of frequencies,

mean values and median values. To supplement the descriptive statistics, the

graphical representation (Histogram) was included to have a picture of data. The study

included the following descriptive statistics:

1. Compare mean, median and mode

2. Frequencies difference of two samples

3. Histograms

1. Compare the Mean, Median and Mode

209

Table 55 compares the Mean, Median and Mode of total_Score_Stage2 and

Total_Score_Stage3, which show that students had managed to retain enough

knowledge provided via intervention a week before. However, there is a slight

declination of their scores in stage-3 in comparison to stage-2.

Mean, Median and Mode Statistics

 Total_Score_Stage2 Total_Score_stage3
N Valid 38 31

Missing
1 8

Mean 11.8684 11.0645
Median 12.0000 11.0000
Mode 12.00 11.00a
Std. Deviation 1.47357 2.04834

Variance 2.171 4.196

Range 7.00 7.00

Minimum 8.00 7.00

Maximum 15.00 14.00
Table 55 Descriptive analysis of score of both stages

a. Multiple modes exist. The smallest value is shown

210

2. Frequency Table

Table 56 analyses the difference in frequencies and measured the central tendency

across stage-2 and stage-3 scores (Total_Score_Stage2 and Total_Score_Stage3).

Table 56 presents participants frequency with respect to their obtained scores during

stage-2, those obtained scores range from 8 to 15. It appears from Table 56 that

frequently obtained score by participants during stage-2 is 12 (also known, as central

tendency of Total_stage2 was 12). Although, the lowest score was 8 and maximum-

score 15.

Total_Score_Stage2

 Frequency Percent Valid Percent Cumulative Percent
Valid 8.00 1 2.6 2.6 2.6

9.00 2 5.1 5.3 7.9

10.00 2 5.1 5.3 13.2

11.00 9 23.1 23.7 36.8

12.00 11 28.2 28.9 65.8

13.00 9 23.1 23.7 89.5

14.00 3 7.7 7.9 97.4

15.00 1 2.6 2.6 100.0

Total 38 97.4 100.0

Missing

1 2.6

Total 39 100.0
Table 56 Stage2 obtained scores frequencies

211

Table 57 presents scores’ frequency obtained during stage3, frequently

obtained scores range from 7 to 14. It appears from Table 31 that median in the stage3

was 11 (also known, as central tendency of TOTAL_stage3 was 11). Although, lowest

score was14 and highest score 14.

Total_Score_stage3

 Frequency Percent Valid Percent Cumulative Percent

Valid 7.00 3 7.7 9.7 9.7

8.00 1 2.6 3.2 12.9

9.00 2 5.1 6.5 19.4

10.00 5 12.8 16.1 35.5

11.00 6 15.4 19.4 54.8

12.00 5 12.8 16.1 71.0

13.00 6 15.4 19.4 90.3

14.00 3 7.7 9.7 100.0

Total 31 79.5 100.0

Missing

8 20.5

Total 39 100.0
Table 57 Stage3 obtained scores frequencies

212

3. Histogram
Figures 48 and 49 show the distribution of participants’ scores of both stage-2 and stage-3. On the x-axis, the total score of each

stage was displayed; on the y-axis, the frequency (numbers of participants) of participants is presented. The graphical presentation

of two histograms clearly revealed that both stages highest scores frequency is the almost same, although there is a tendency for

participants to score higher in the stage-2: just after receiving the intervention rather than in the stage-3, which was conducted after

a week gap. To compare the total score of both stages, it can be observed especially in their mean and standard deviation values

those participants’ performance declines after a week gap in receiving the intervention.

Figure 48 Score distribution of participants in the stage2 Figure 49 Score distribution of participants in the stage3

213

7.5.1.2 Discussion

The null hypothesis is not rejected; hence, software developers manage to retain

vulnerability awareness provided by interventions after a gap of one week. It can

be concluded that in stage-3, the average score is 11 that obtained by 6

participants, although during stage-3 the average score is 12, which was obtained

by 11 participants., Therefore, it is clearly justified that during stage-2 the highest

obtained score 14 in comparison to stage-3 where the highest obtained score

was 15 as shown in Figures 48 and 49. These results suggested that after a gap

of 7 days since they received the intervention, participants' ability to identify the

root cause of vulnerabilities had reduced slightly. The themes identified in these

responses can be compared by the average mean of both stages, which shows

a difference in their mean values such as Stage-2=11.87 and Stage-3=11.06 in

Table 55. Overall, this is not a significant result.

214

7.5.1.3 Selection of Appropriate Statistical Test for the Sample Data

Similar to Section 7.3.4, Table 58 shows that data is normalised.

Tests of Normality

VAP

Kolmogorov-Smirnova Shapiro-Wilk

Statistic df Sig. Statistic df Sig.

Total_Score_Stage2 Formal .225 14 .052 .925 14 .257

Informal .247 17 .007 .910 17 .099

Total_Score_stage3 Formal .158 14 .200* .968 14 .847

Informal .173 17 .189 .905 17 .082

*. This is a lower bound of the true significance.

a. Lilliefors Significance Correction
Table 58 Normality tests shown in the 'sig columns’

7.5.1.4 Assumptions of Paired-Sample t Test

Same assumptions followed liked Section 7.3.4.3 to select the following Paired-

Sample t Test.

7.5.1.5 Paired-Samples t Test

Tables 59, 60, and 61 present the overall results of the paired samples t Test.

Paired Samples Statistics

Mean N Std. Deviation Std. Error Mean

Pair 1 Total_Score_Stage2 11.8387 31 1.50769 .27079

Total_Score_stage3 11.0645 31 2.04834 .36789
Table 59 Both stages paired analysis

Paired Samples Correlations

N Correlation Sig.

Pair 1 Total_Score_Stage2 &

Total_Score_stage3
31 .295 .107

Table 60 Correlation table

Paired Samples Correlations

215

N

 Correlation Sig.

Pair 1 Total_Score_Stage2 &

Total_Score_stage3
31 .295 .107

Table 61 Correlation table

Paired Samples Test

Paired

Differences

t df Sig. (2-tailed)

95% Confidence

Interval of the

Difference

Upper

Pair 1 Total_Score_Stage2 -

Total_Score_stage3
1.56493 2.000 30 .055

Table 62 Paired t test result

7.5.1.6 Result Discussion of Paired-Samples t Test

Table 62 reports the following results: The mean score of the participants of the

stage-2 (M= 11.84, SD=1.50) is greater than the mean score of same participants

during stage-3 (M= 11.06, SD=2.05) as t= 2.00 and the value of p=.055 is greater

than 0.05 as shown in Table 62. However, Table 60 and 61 shown a strong

correlation between both stages scores. The two-tailed p>0.05, therefore this is

not a significant result.

216

7.5.2 Assessment of Effectiveness of Intervention Types

7.5.2.1 Research Question

ü Is there a significant difference between the participants mean scores in
the formal intervention group and the informal intervention group after a
week gap?

Case Processing Summary

Cases

Included Excluded Total

N Percent N Percent N Percent

Total_Score_Stage2 * VAP 38 97.4% 1 2.6% 39 100.0%

Total_Score_stage3 * VAP 31 79.5% 8 20.5% 39 100.0%
Table 63 Number of participants

Report

VAP Total_Score_Stage2 Total_Score_stage3

Formal Mean 11.8333 10.9286

N 18 14

Std. Deviation 1.65387 1.85904

Informal Mean 11.9000 11.1765

N 20 17

Std. Deviation 1.33377 2.24264

Total Mean 11.8684 11.0645

N 38 31

Std. Deviation 1.47357 2.04834
Table 64 Both stages mean scores difference

7.5.2.2 Results Discussion

Participants were divided into two groups. One group received the formal

intervention, and the other group received the informal intervention. The detail

means analysis of dependent variables Total_Score_Stage2 and

Total_Score_Stage3 and both stages independent variable VAP (Formal and

Informal) has shown in Table 64. It can be concluded that developers have

managed to retain more information through the informal intervention (based on

the informal Vulnerability Anti-Pattern) rather than formal intervention after a gap

of one week.

217

Report

VAP Degree Total_Score_Stage2 Total_Score_stage3

Formal Computing Mean 12.0000 10.3333

N 4 3

Std. Deviation 1.15470 1.15470

Gaming Mean 11.7857 11.0909

N 14 11

Std. Deviation 1.80506 2.02260

Total Mean 11.8333 10.9286

N 18 14

Std. Deviation 1.65387 1.85904

Informal Computing Mean 12.6000 10.6000

N 5 5

Std. Deviation 1.51658 2.30217

Gaming Mean 11.6667 11.4167

N 15 12

Std. Deviation 1.23443 2.27470

Total Mean 11.9000 11.1765

N 20 17

Std. Deviation 1.33377 2.24264

Total Computing Mean 12.3333 10.5000

N 9 8

Std. Deviation 1.32288 1.85164

Gaming Mean 11.7241 11.2609

N 29 23

Std. Deviation 1.50941 2.11526

Total Mean 11.8684 11.0645

N 38 31

Std. Deviation 1.47357 2.04834
Table 65 Means comparison depending on the participants’ degree

7.5.2.3 Means Results Discussion

The study sub-divides the participants depending on their degree (C= computing

and G=gaming) and type of intervention received as explained in Sections 4.6.1

and 4.6.2. This evaluation gives some interesting outcomes. For example, Table

65 compares both degree students mean scores and concludes that gaming

students (G) manage to retain more information in contrast to computing students

(C) after a week gap of receiving the intervention.

218

7.6 Control Experiment

7.6.1 Research Hypotheses

Research
Question

Is there a significant difference between the scores of
the control and experimental groups?

EH-5 There is a significant difference between the performance of
participants provided with intervention and those not
provided with intervention.

EH-0 There is no significant difference between the performance
of participants provided with intervention and those not
provided with intervention.

Depended
Variables

Total_Score_stage-1

Independent
Variables

Security Training
No= without intervention
Yes=with intervention

Table 66 Control experiment research question and hypothesis

7.6.2 Kruskal-Wallis H test to Compare the Scores of Experimental Group
and Control Group

The Kruskal-Wallis H test (sometimes also called the "one-way ANOVA on

ranks") is a rank-based non-parametric test that can be used to determine if there

are statistically significant differences between two or more groups of an

independent variable on a continuous or ordinal dependent variable. It is

considered the non-parametric alternative to the one-way ANOVA, and an

extension of the Mann-Whitney U test to allow the comparison of more than two

independent groups.

7.6.2.1 Stage-1 Control and Experimental Groups Scores Comparison

Hypothesis Test Summary
 Null Hypothesis Test Sig. Decision

1
The distribution of TOTAL_stage1 is
the same across categories of
Groups.

Independent-Samples
Kruskal-Wallis Test .512 Retain the null

hypothesis.

Asymptotic significances are displayed. The significance level is .05.
Table 67 Stage-1 hypothesis test

219

Table 67 shows that during stage-1 there is no difference between both groups’

scores.

Figure 50 Stage-1 control and experimental groups scores comparison

As shown in Figure 50, the Kruskal-Wallis test could not provide strong

evidence of a difference (p> 0.05) between the mean ranks of the groups.

Therefore, the null hypothesis is not rejected because there is no significant

difference between the performance of participants provided with intervention

and those not provided with intervention.

7.6.2.2 Stage-2 Control and Experimental Groups Scores Comparison

Hypothesis Test Summary
 Null Hypothesis Test Sig. Decision

1
The distribution of Total_Score_Stage2
is the same across categories of Security
Training.

Independent-Samples
Kruskal-Wallis Test .000 Reject the null

hypothesis.

Asymptotic significances are displayed. The significance level is .05.
Table 68 Stage-2 hypothesis test

220

Table 68 shows that during stage-2 there is a difference in scores of experimental

and control groups.

Figure 51 Stage-2 control and experimental groups scores comparison

Figure 51 shows that the Kruskal-Wallis test provided very strong evidence

of a difference (p < 0.001) between the mean ranks of stage-2 scores of trained

and non-trained groups. Therefore, the null hypothesis is rejected that there is no

significant difference between the performance of participants provided with

intervention and those not provided with intervention.

7.6.2.3 Stage-3 Control and Experimental Groups Scores Comparison

Hypothesis Test Summary
 Null Hypothesis Test Sig. Decision

221

1
The distribution of Total_Score_stage3 is
the same across categories of Security
Training.

Independent-Samples
Kruskal-Wallis Test .000 Reject the null

hypothesis.

Asymptotic significances are displayed. The significance level is .05.
Table 69 Stage-3 hypothesis test

Table 69 shows that during stage-3 there is a difference in scores of experimental

and control groups.

Figure 52 Stage-3 control and experimental groups scores comparison

Figure 52 shows that the Kruskal-Wallis test provided very strong evidence

of a difference (p< 0.001) between the mean ranks of stage-2 scores of trained

and non-trained groups. Therefore, the null hypothesis is rejected that there is no

significant difference between the performance of participants provided with

intervention and those not provided with intervention. However, it does not reflect

which group performed better.

222

7.6.2.4 Conclusion

The outcome of the Kruskal–Wallis post hoc test indicates that during stage-1

there are no differences between group scores. However, during stage-2 and

stage-3 there is a significant difference between group scores. These differences

are not significant. In order to determine which group is significantly better than

other, a Mann-Whitney U test was used.

7.6.3 Mann-Whitney U Test to Compare the Scores of Experimental
Group and Control Group

The Mann-Whitney U test was used to compare differences between

independent groups, such as control and experimental groups. The Mann-

Whitney U test compares the differences between groups scores to determine if

there are differences between groups.

7.6.3.1 Stage-1 Scores Comparison: Mann-Whitney U Test Ranks Table

Table 70 provides information regarding the output of the Mann-Whitney U test.

It shows the mean rank and sum of ranks for the two groups tested: experimental

and control.

Ranks
 Security Training N Mean Rank Sum of Ranks

TOTAL_stage1 No 14 15.75 220.50

Yes 18 17.08 307.50

Total 32
Table 70 Stage-1 Mann-Whitney U test ranks

The mean rank indicates which group performed better, overall; namely,

the group with the highest mean rank. Table 70 indicates that the experimental

group obtained higher scores in comparison to the control group.

7.6.3.1.1 Mann-Whitney U Test Table
Table 71 shows the significant value of the test. Specifically, Table 71 provides

the U statistic, as well as the asymptotic significance (2-tailed) p-value.

Mann-Whitney U Test Statisticsa

 TOTAL_stage1

Mann-Whitney U 115.500

223

Wilcoxon W 220.500

Z -.408

Asymp. Sig. (2-tailed) .684

Exact Sig. [2*(1-tailed Sig.)] .694b
Table 71 Stage-1 Mann-Whitney U statistics outcome

a. Grouping Variable: Security Training

b. Not corrected for ties.
From this data, it can be concluded that scores of the experimental group

were not statistically significantly higher than the control group

(U =115.50, p >0.05). There is no significant difference between experimental

and control groups, which shows both groups obtained the same scores not

receiving the intervention based on vulnerability anti-pattern.

7.6.3.2 Stage-2 Scores Comparison: Mann-Whitney U Test Ranks Table

Table 72 provides information regarding the output of the Mann-Whitney U test.

It shows mean rank and sum of ranks for the two groups tested: without security

training, and with security training

Ranks
 Security Training N Mean Rank Sum of Ranks

Total_Score_Stage2 No 14 7.50 105.00

Yes 38 33.50 1273.00

Total 52
Table 72 Stage-2 Mann-Whitney U test ranks

Table 72 shows the highest mean rank of the trained group, which

indicates that the trained group performed better as having higher scores. In this

case, the participants with security training had the highest scores.

7.6.3.2.1 Mann-Whitney U Test Table
From Table 73 data, it can be concluded that scores of the trained group were

significantly higher than the non-trained group (U =.000, p <0.001). There is a

significant difference between the performance of participants provided with

intervention, as compared to those not provided with training.

Mann-Whitney U Test Statisticsa

 Total_Score_Stage2

Mann-Whitney U .000

224

Wilcoxon W 105.000

Z -5.547

Asymp. Sig. (2-tailed) .000
Table 73 Stage-2 Mann-Whitney U statistics outcome

a. Grouping Variable: Security Training

7.6.3.3 Stage-3 Scores Comparison: Mann-Whitney U Test Ranks Table

Table 74 provides information regarding the output of the Mann-Whitney U test.

It shows mean rank and sum of ranks for the two groups tested: without security

training, with security training.

Ranks
 Security Training N Mean Rank Sum of Ranks

Total_Score_stage3 No 14 7.50 105.00

Yes 31 30.00 930.00

Total 45
Table 74 Stage-3 Mann-Whitney U test ranks

Table 74 shows the highest mean rank of the trained group, which

indicates that the group with security training performed better. In this case, the

participants with security training had the highest scores.

7.6.3.3.1 Mann-Whitney U Test Table
From Table 75, it can be concluded that scores of the trained group were

significantly higher than the non-trained group (U =.000, p <0.001). There is a

significant difference between the performance of participants provided with

intervention, and those not provided with intervention.

Mann-Whitney U Test Statisticsa
 Total_Score_stage3

Mann-Whitney U .000

Wilcoxon W 105.000

Z -5.352

Asymp. Sig. (2-tailed) .000
Table 75 Stage-3 Mann-Whitney U statistics outcome

a. Grouping Variable: Security Training

225

7.7 Pilot-Study-II Overall Results Summary

The original hypothesis was formulated in order to determine whether participants

were able to identify vulnerabilities with interventions based on anti-patterns as

knowledge transfer mediums. The experimental groups score statistical analysis

shows that developers improve their awareness of poor security practices

(vulnerabilities) using VAPs. The research designed two different types of anti-

patterns (“Informal” and “Formal” Section 4.6). To verify the efficacy of

interventions, the experimental group was divided into halves and provided

different interventions. The results indicate that there is no significant difference

between “Informal” and “Formal” Vulnerability Anti-Pattern in term of retaining the

vulnerability knowledge. The most interesting finding was that an “informal

intervention was more effective in helping participants to retain an awareness of

vulnerabilities after a one week gap in comparison to the formal intervention.

A control experiment was carried out to determine if there were any significant

differences between the performance of participants provided with intervention

and those not provided with an intervention. A Quasi-experiment was chosen

because the students could not be chosen by chance. The results of the

experiment rejected the null hypothesis: There is no significant difference

between the performance of participants provided with the intervention and those

not provided with the intervention.

It is evidenced by the statistical analysis of pilot-study-II results (see Table

78) that developers improve their awareness of poor security practices

(vulnerabilities). However, there is no significant difference between “Informal”

and “Formal” Vulnerability Anti-Pattern. The most interesting finding was that an

“informal intervention was more effective in order to help participants to retain an

awareness of vulnerabilities after a one week gap in comparison to a formal

intervention. Table 76 presents the pilot-study-II results summary.

Questions Test
name

p-value Normality
distribution

Does intervention, based on the use
of “formal or informal Vulnerability
Anti-Pattern”, improve participants'

Paired-

Samples

T Test

P<0.001 Yes

226

ability to identify the root-causes of
vulnerabilities?
Is there a difference between “formal”
and “informal” intervention in order
to provide information of
vulnerabilities?

Mann-

Whitney

Test

P>0.05 No

Is there a difference in the scores
obtained by software developers in
stage3 depending on which type of
intervention they received after a
week gap?

Paired-

Samples

T Test

P>0.05 Yes

Is there a significant difference
between the scores of the control and
experimental groups?

Mann-

Whitney

U Test

p <0.001 No

Table 76 Pilot-Study-II results summary

227

8 Industrial Study (Qualitative Approach)

8.1 Introduction

This chapter details the results of the experimental study which was performed

with professional software developers to evaluate the efficacy of the vulnerability

anti-patterns in improving awareness of vulnerabilities. The industrial study is

divided into three parts

• Section 8.2 explains the experiment design and questionnaires structure

which followed the same experimental design as the pilot-study-II.

• Section 8.3 summarises the results from this study.

• Section 8.4 empirically evaluates the results based on the qualitative

approach to prove/ disapprove the hypotheses of this thesis as mentioned

in Section 1.7.

8.1.1 General Description

The Industrial study’s key objectives were to evaluate professional software

engineers’ (software developers) understanding of security flaws that lead to

vulnerabilities and to measure the effectiveness of Vulnerability Anti-Patterns to

help developers in improving their understanding of vulnerabilities.

8.2 Method

8.2.1 Experiment Study Description

There is no established method to evaluate Vulnerability Anti-Patterns (VAP) in

order to provide essential awareness of vulnerabilities. Evaluating and measuring

Vulnerability Anti-Pattern effectiveness with a limited number of participants is

fraught with difficulty and potential bias. Due to the small sample size, it is difficult

to apply a quantitative method to perform statistical evaluation such as that

applied during the Pilot study-II. Pilot study II shows an improvement in

developers’ awareness about vulnerabilities via VAPs. Therefore, a qualitative

approach for evaluating the effectiveness of VAP is adopted here. The purpose

of this approach is to demonstrate the efficacy of VAP in aiding developers in

finding the vulnerabilities within the vulnerable code/UML diagram, thus

determining its overall effectiveness in a professional environment.

228

To eliminate bias in the measurement of effectiveness, the five stage

experiment study was designed (see Section 8.2.2 design of experiment study).

The design of the experiment was discussed earlier in the Pilot study-II. The

experiment was developed independently to avoid any bias towards a particular

technique, domain or environmental requirement. Instead, it was designed to

illustrate the many ways that intervention could be measured and evaluated. This

ensures the evaluation framework is fit for general purpose and reusable as a

common method of evaluation.

8.2.2 Experiment Design Structure

In the qualitative process of evaluation, the experimental study was carried out

alongside the semi-structured interviews as shown in Table 77.

The semi-structured interview was conducted with participants to overcome the

small sample size and time limitations, which provides in-depth analysis with

feedback on VAP. A suitable method of evaluation in a small sample size is to do

a detailed assessment (Newton 2010).

The study comprised of five stages supported by an intervention via

Vulnerability Anti-Patterns. The engineers completed a questionnaire, which

consist of 15 questions relating to five vulnerabilities.

229

 Group A Group B

Stage-

1

Pre-Assessment Survey Study

Input Questionnaire comprised of vulnerable codes or UML diagram

Outpu
t

Evaluate participants’ ability to measure their awareness about

vulnerabilities

Stage-

2

Intervention Session

Input

Group A-Formal

Vulnerability Anti-Pattern

Group B-Informal Vulnerability

Anti-Pattern

Outpu
t

Provide information of vulnerabilities

Stage-

3

Post-Assessment Survey Study

Input Questionnaire comprised of vulnerable codes or UML diagram

Outpu
t

Evaluate participants’ ability to measure improvement/

deterioration after intervention provided by VAPs

Stage-

4

Semi-structured interview with Participants (Only with industry)

After 1 Week (one week gap)

Stage-

5

Post-Post-Assessment Survey Study

Input Questionnaire comprised of vulnerable codes or UML diagram

Outpu
t

Evaluate results to measure how much participants able to

retain the information from the provided intervention based on

VAPs after a gap of one week.
Table 77 Description of experiment study structure, including all stages inputs and outputs description.

8.2.3 Experiment Questions’ Structure

Similar to Section 7.2.3, which was essentially constructed to test engineers’

understanding and awareness of vulnerabilities while specifying their root-causes

during the Software Development Lifecycle (SDLC) phases from where the

vulnerability originated. The aim is to categorise flaws based on SDLC:

230

requirement specification phase flaw, design phase flaw and implementation

phase flaw. Subsequently, this directs developers’ attention towards the SDLC

phase from where the vulnerability initiated.

Each question was designed to ask software developers about the

following necessary information: For example, part-1 of each question assessed

participants’ actual knowledge about the vulnerability while providing vulnerable

code or UML diagram, part-2 investigated participants’ understanding about

misused or exploitation, and part-3 inspected participants' ability to recognise and

classify the vulnerabilities using the terminology of the cybersecurity community.

The question structure is as follows:

1. Part-1: Vulnerable code or UML diagram

2. Part-2: Misused or exploited explanation

3. Part-3: Identify vulnerability formal name

8.2.4 Vulnerability Sample Size

For Java developers, the included vulnerabilities are:

1) Missing Authentication,
2) Missing Authorization,
3) SQL injection
4) Buffer Overflow
5) Integer Overflow

For C# developers, the included vulnerabilities are:

1) Missing Authentication
2) OS Command Injection
3) Cross-Site Scripting
4) SQL Injection
5) Cross-site Request Forgery

8.2.5 Participants Sample Size

The study was conducted with five professional software engineers. Table 78

shows the demographics of the participants.

Participants Assign
Names

Degree Software
Development
Experience

P1 Ethical Hacking 2 years

231

P2. P3, P4 Computing 2 years, 1 year, 2

years

P5 Computer and Electric

Engineering

5 years

Table 78 Participants information

8.3 Results

8.3.1 Research Question

ü Does the Vulnerability Anti-Pattern (VAP) improve developers' understanding
(awareness) to identify the root-cause of vulnerabilities in order to help
developers to the creation of secure software systems?

To investigate this question, the experimental study was performed with

professional software engineers. During the experiment study, each participant

was provided with an intervention based on Vulnerability Anti-Pattern and

evaluated. The developers obtained scores before and after receiving the

invention.

The evaluation experiment study was developed with the purpose of fairly

assessing the ability of VAP to provide a useful understanding of vulnerabilities.

The experiment study is structured to determine the followings.

1. Intervention helps participants’ ability to identify the root-cause of
Vulnerabilities.

2. Intervention helps participants’ ability to recognise and classify
vulnerabilities using the terminology of the cybersecurity community.

3. There is no difference between “Informal” and “Formal” interventions.

8.3.2 Intervention helps participants’ ability to identify the root-cause of
Vulnerabilities

ü The intervention study, which is based on the Vulnerability Anti-pattern will
improve participants’ ability to identify the root-cause of vulnerabilities during
the software development process.

In Pilot-Study-II Section 7.2, it was proved while using quantitative statistical

analysis that intervention is useful in order to improve participants’ ability to

identify the root-cause of vulnerability. However, this study is based on qualitative

analysis. The industrial study designed in two programming languages based on

engineers’ awareness:

232

1) For Java Engineers
• Stage-1: Pre-Assessment

Out of 5 questions, Java based engineers only managed to answer 2

questions correctly.

• Stage-3: Post –Assessment
After getting the intervention, out of 5 questions engineers managed to

answer 4 questions correctly.

• Stage-5: Post-Post-Assessment
Similarly, to stage-3, after a gap of one week in intervention, engineers

answered 4 questions correct out of 5.

2) For C# Engineers

• Stage-1: pre-Assessment
Out of 5 questions, C# engineers answered the 3 questions correct.

• Stage-3: Post –Assessment
After getting the intervention, all engineers managed to answer 5

questions correct.
• Stage-5: Post-Post-Assessment

Unlike stage-3, after a gap of one week in intervention, engineers

managed to answer 4 questions correct out of 5.

8.3.3 Results Discussion

Identifying vulnerabilities within code samples or UML diagram is a complicated

process. Those engineers who closely worked with the security of software

systems such as P3, P5, easily target the vulnerabilities in the code samples.

However, engineers with a computing background struggle to find the

vulnerabilities in the code samples such as P1, P2.

Stage-1 and Stage-3 scores comparison presented in Table 79, which

clearly demonstrates the improvement in engineers’ scores after receiving the

intervention. Furthermore, those engineers (i.e. P1, P2, and P4), who find

difficulty in identifying the vulnerabilities during stage-1, after receiving the

intervention, they also performed well and improved their scores during Stage-3.

However, engineers’ background knowledge also has an impact on their

ability to find the vulnerability in the code sample such as P2 engineer with

computing background scored less than P3 engineer (P3) with cybersecurity

233

background. After receiving the intervention, both participants scored well during

Stage-3. Therefore, overall results suggest that intervention improves

participants’ ability to identify the root-cause of vulnerabilities during the software

development process.

Participants Java C# Before
Intervention

After
Intervention

Stage-1 score Stage-3 score

P1 Y 6 12

P2 Y 6 14

P3 Y 11 14

P4 Y 10 13

P5 Y 11 13
Table 79 Participants’ scores before and after intervention

234

8.3.4 Intervention helps participants’ ability to recognise and classify
vulnerabilities using the terminology of the cybersecurity
community

ü The intervention, which is based on Vulnerability Anti-pattern, will improve
participants’ ability to recognise and classify vulnerabilities using the
terminology of the cybersecurity community.

The industrial study was designed in two programming languages based on

engineers’ awareness:

1) For Java Engineers
• Stage-1: Pre-Assessment

Out of 5 questions, Java engineers managed to answer 4 questions

correctly.

• Stage-3: Post –Assessment
After getting the intervention, out of 5 questions engineers managed to

answer 4 questions correctly.

• Stage-5: Post-Post-Assessment
After a gap of one week of receiving the intervention, engineers

answered all questions correctly.

2) For C# Engineers
• Stage-1: Pre-Assessment

Out of 5 questions, C# engineers answered all question correctly.

• Stage-3: Post –Assessment
After receiving the intervention, all engineers managed to answer all

questions correctly.
• Stage-5: Post-Post-Assessment

Similarly, to stage-3, after a gap of one week in having the intervention,

engineers managed to answer all question correctly.

8.3.5 Results Discussion

Awareness of cybersecurity terminology is an essential aspect in order to

understand vulnerabilities. During this part of the experiment, the study results

show that all engineers are aware of the vulnerabilities’ terminologies that are

used by the cybersecurity community.

235

Table 80 compares the participants’ score in order to answer the part-3 of

the questionnaire, which inquires the participants’ awareness of software flaws

called by cybersecurity experts.

Two engineers were unaware of Cross-Site Request Forgery and missing

authorisation vulnerabilities (flaws) terminologies during Stage-1 such as P1 and

P2. The reason underlying was caused by their expertise and knowledge being

derived elsewhere. For example, web-based developers have a different set of

security priorities than the developers who worked on desktop applications.

During Stage-1, engineers struggled to find the Cross-Site Request Forgery

vulnerability, but with the support of intervention, they understood this

vulnerability and managed to get it correct during Stage-3. However, some

engineers lack the proper understanding of some vulnerabilities terminologies;

for example, they got confused between information leakages with missing

authorisation terminologies. As both vulnerabilities are interdependent/

interlinked to each other, thus we considered both answers correct in this case.

Participants Java C# Before
Intervention

After intervention

Stage-1 score Stage-3

score

Stage-5

score

P1 Y 4 5 5

P2 Y 3 4 5

P3 Y 5 5 5

P4 Y 5 5 5

P5 Y 5 5 5
Table 80 Participants scores to identify vulnerabilities terminologies

236

8.3.6 There is no difference between “Informal” and “Formal
intervention”

ü There is no difference between “Informal” and “Formal” intervention in order
to provide information about vulnerabilities.

As mentioned previously in Chapter 4 Section 4.6. VAPs were designed in two

types: Informal and Formal. Engineers were provided with two kinds of

interventions. The experiment study aims to measure which kind of intervention

is more effective.

1) Informal Intervention

• Stage-3: Post –Assessment
Out of 5 participants, 3 were provided with informal intervention, who

scored 12, 13, and 14 as shown in Table 81.

• Stage-5: Post-Post-Assessment
After a gap of one week of receiving an informal intervention, out of 3

engineers, only 1 performed better while others were managed to retain

their scores as compared to Stage-3.

2) Formal Intervention

• Stage-3: Post –Assessment
After receiving a formal intervention, engineers scored 14 and 13

respectively as shown in Table 81.

• Stage-5: Post-Post-Assessment
After a gap of one week, the formal intervention had a mixed response

such as P2 performed better; however, P5 performance was declined as

compared to Stage-3.

8.3.7 Results Discussion

Overall, the results suggest that both interventions help participants to improve

their ability to identify and recognise vulnerabilities, although the small sample

size is a limiting factor. The null hypothesis cannot be rejected due to the sample

size, so there is no difference between “informal” and “formal” intervention.

As shown in Table 81, it is noticeable that the Informal intervention

appears easy for engineers’ understanding which is confirmed through participant

P2 score of 14 during Stage-3 and scored 15 during Stage-5. Although after

237

receiving a formal intervention, participant P5 scored 13 during Stage-3 and

declined score (12) during Stage-5.

As discussed previously in Section 4.4, there is no current methodology to

evaluate VAP types; thus, this study concluded that both “Informal” and “Formal”

interventions are equally useful in order to provide information of vulnerabilities.

Participants Informal Intervention Formal Intervention

Stage-3 score Stage-5 score Stage-3 score Stage-5 score

P1 12 13

P2 14 15

P3 14 14

P4 13 13

P5 13 12
Table 81 Participants scores and intervention type

8.4 Discussion of Overall Results Including Semi-Structure
Interview Data

This section analyses the questionnaires score and semi-structured interview

data of participants which concludes in two stages.

8.4.1.1 Pre-Assessment Stage

The first concern during the pre-assessment stage was whether engineers have

an understating of vulnerabilities, do they know how vulnerable codes lead to a

vulnerability. Interestingly, the results obtained from the pre-assessment stage

shows that engineers had a partial understanding of vulnerabilities.

Experiment study Q-1 (see appendices Table 67) relates to the create

Bank Account sub-system, which was comprised of a figure and UML diagram.

This was used to evaluate the understanding of the engineers about Missing

Authentication vulnerability.

This question is based on the UML diagram, which was appeared complex

for engineers. Overall, during Stage-1, out of 5 engineers only 2 were managed

to answer correctly. Following are the reasons to use the UML diagram to

evaluate Missing Authentication vulnerability.

1) Try to map vulnerability within Software Development Lifecycle. As

targeted vulnerability commonly raised flaw during the design phase, so

238

we used UML diagram to assess engineers’ understanding about from

where and when Missing Authentication vulnerability has occurred.

2) Evaluate and test engineers’ awareness of the root cause of vulnerability.

Engineers faced difficulty in answering this question due to a lack of

background knowledge and lack of UML diagram usage in their routine. As

participants said during the informal semi-structured interview,

P1 said: “Especially in the UML for the authentication authorised one I

got a bit confused because may I am not used UML diagrams anymore”.

P3 said:” I say that UML diagram in Q-1 is not effective just simply not

explicitly and everything it is saying”.

Only in this particular case, it can be concluded that engineers do not use

UML diagrams; that’s why they could not answer the Q-1 related to Missing

Authentication vulnerability during Stage-1 as shown in Table 82.

Overall, during pre-assessment-stage, all engineers have managed to

answer Buffer Overflow and SQL injection vulnerability related questions

correctly.

Consider the scenario in Figure below that is based on the design of a bank login
system, which creates an account for the valid users only.

239

The UML class diagram below demonstrates the createBankAccount sub-system
of the online banking system. As createBankAccount is a critical function, can
you verify the authentication mechanism to ensure that the user has the
permission to create a new bank account (a bank account is a critical object)?
On a scale of 1 (not secure) to 3 (very secure), how secure is this authentication
mechanism?

Choose one of the following answers

• Not secure

• Average

• Very secure

• Other:

Table 82 Missing authentication question

8.4.1.2 Post-assessment & Post-Post-Assessment Stages

After receiving an intervention during post-assessment stages, there is a

significant improvement in all engineers’ scores.

Engineers find the intervention an effective way to provide information of

security flaws in the vulnerable code. As participants said during the informal

semi-structured interview,

 P3 said: “Yes, VAP was very clear, certainly with the code examples,

definitely make it clear and make it standout”.

240

The main concern is related to the effectiveness of VAP in terms of

whether it provides enough information about a vulnerability.

 P2 said: “the document (VAP) we received just looked like descriptions

of security vulnerabilities”.

P1 said: ”In reading the anti-pattern, the sheet you gave us was more

helpful, I thought”.

P4 mentioned: “apart, looking at code reviewing code, for example, the

ability to identify those is, yea is certainly useful is”.

The second trend was the improvement of engineers understanding in

the part-2 of each question that was related to the exploitation of vulnerable

code.

For example,

P2 said: “VAPs did give me some insight into security vulnerabilities”.

P5 said: “but I think it would probably be a good reference guide”.

Furthermore,

P3 said: “VAPs are a good way to explain the vulnerability in itself, so

developers might understand the idea, especially inexperienced

developers who might not understand why if they are putting their code

would be a vulnerability rather than from the opposite direction

understanding how something would be exploited immediately. I think it

could be a very effective way of preventing vulnerabilities”.

The third trend was how user-friendly VAPs are for engineers. The

vulnerable code example in the VAP support engineers to understand the

vulnerability in a well-defined fashion such as

241

P5 said: “I was never got across to cross site forgery vulnerability

whatever it called, so VAP of cross-site request forgery example was a

very good example, because I thought, ah right that makes sense”.

P4: “certainty in CRSFG one there, the example you gave in the sheet

certainly very clear, you know, when you just picturing in your head

exactly how it works, so the description and explanation are good for us”.

P5 said:” one thing is a probably good idea in VAPs because your kind

understands the general idea of it, but you see the code examples

probably quite helpful particular for the cross-site request forgery.so I

think having a code example that in particular, one is good”.

In particular, engineers find VAPs more helpful against those

vulnerabilities in which they do not have background knowledge.

P5 said: “I think they are pretty understandable, I think is, well at least for

programmers, you, I think you beat them understand, why you won’t do

this, what wrong with it, and how to avoid it”.

Some important comments raised by participants are:

P4 said: “They (VAPs) would be useful only if readily available and

referred to regularly. Would also be useful for code reviews, but again

only if readily available/easily accessible”.

P3 said: “be exploited immediately. I think it could be a very effective way

of preventing mistakes made of being in the first place”.

Overall these stages results suggest that engineers easily understand

VAPs and their usage helps engineers to identify and recognise vulnerabilities

effectively.

242

The third trend was how user-friendly VAPs are for engineers. The

vulnerable code example in the VAP supports engineers in understanding the

vulnerability in a well-defined fashion such as Cross-Site Request Forgery

vulnerability.

8.4.1.3 Industrial Study Overall Results Summary

The sample size of the industrial study was very small in comparison to PS-I and

PS-II. Due to this reason, it is difficult to draw a significant conclusion. However,

overall study results show essential outcomes such as intervention based on

Vulnerability Anti-Pattern (VAP) is an effective way to provide developers with a

necessary awareness of poor security practices that cause vulnerabilities. This

knowledge transformation can bridge the security knowledge gap between

software developers and cybersecurity experts in order to the creation of secure

software systems.

The study used a qualitative research method, including semi-structured

interviews, which analysed experiment results to investigate developers’

understandings of recurrent vulnerabilities and to the measure effectiveness of

VAPs in order to improve vulnerabilities awareness. Several interesting trends

emerged from this evaluation study to show the potential of VAPs as a solution

against recurrent vulnerabilities to prevent and mitigate them. Industrial study

overall results summary is:

• For all participants, intervention improves their ability to identify the root-

cause of Vulnerabilities.

• In general, participants were aware of vulnerabilities using the terminology of

the cybersecurity community; however, some of them were unaware due to

their background knowledge.

• Due to small sample size, there is no significant difference between

“Informal” and “Formal intervention”.

243

9 Discussion

This chapter will discuss the results, which were obtained and analysed in pilot-

study-I, pilot-study-II and the industrial study reported in Chapters 6, 7, and 8,

respectively.

Overall, the discussion will examine how the results relate to the research

question “Can a pattern-based approach (Vulnerability Anti-Pattern) be effective

in bridging the security knowledge gap between software developers and security

experts in order to help developers in the creation of secure software systems?”

9.1 Discussion of Results

9.1.1 Reflection on Pilot-Study-I

Pilot-study-I aimed to evaluate the students’ understanding of recurrent

vulnerabilities. There was no intervention during this study. Overall, the Pilot-

study-I results suggest that computing degree related students (Developers)

were lacking an effective awareness, which would enable them to identify

recurring security flaws, coupled with an awareness of how malicious hackers

can exploit these flaws

However, background knowledge has a significant impact on developers’

abilities to prevent and mitigate vulnerabilities. For example, Ethical Hacking

degree students performed well in identifying vulnerabilities in comparison to

computing degree students. Furthermore, statistically significant results gained

while evaluating the questionnaire results of participants shows that computing

degree students lack the vulnerability awareness in comparison to ethical hacking

degree students. However, computing students perform better than ethical

hackers in coding phase related vulnerabilities such as buffer overflow and

integer overflow. The primary goal of PS-I was to investigate the participants’

(students’) ability to identify software development errors that lead to

vulnerabilities. Participants were given vulnerable code samples or UML class

diagram and asked them to identify development errors. Furthermore, to explore

the participants’ ability to know how malicious hacker exploit these vulnerabilities.

The PS-I concluded that software developers are different from ethical hackers

due to their background knowledge and type of tasks. Software developers

worked to develop software, but ethical hackers worked as penetration testers to

244

find security flaws or vulnerabilities. The groups: penetration testers and software

developers did not share common ground knowledge. The results of this case

study, therefore, raise the concern that computing students lack the awareness

of vulnerabilities and do not know how malicious hackers can exploit these. This

case study also highlighted another fact that ethical hacking students lack the

understating of coding level vulnerabilities.

9.1.2 Reflection on Pilot-Study-II

Based on the findings and limitations of the pilot-study-I, as discussed in Section

6.3.6, which raised some concerns and justified further investigation in PS-II such

as vulnerable code samples would need to understandable and accessible to

explain the target vulnerability, as discussed in following chapter PS-II. The

experiment design of PS-II considered the PS-I limitations and designed a more

structured experiment. The participants were split up into two distinct groups:

1) Experimental group (with the invention based on Anti-patterns)

2) Control group (without intervention)

During PS-II, the guideline and examples were chosen with great care.

The experiment was designed to test the following hypothesis

H1: There is a significant difference between the performances of those

students who received the intervention and those who did not receive the

intervention.

The null hypothesis is stated as

H0: there is no significant difference between the performance of the

students with or without intervention.

The results of the variance analysis indicate that performance of students

provided with the intervention based on Anti-patterns was significantly better than

those not provided with intervention. This provides quantitative support to our

argument that Anti-patterns have a positive impact on transferring knowledge of

poor development practices. The results from our quantitative analysis were

confirmed by an observed difference in scores between the members of two

groups during PS-II. The experimental group of students were demonstrated

remarkable improvement in finding the vulnerabilities in code once they were

provided with the VAP patterns support as an intervention.

245

It is evident from the statistical analysis of pilot-study-II results that

developers improved their awareness of poor security practices, after receiving

the intervention based on Vulnerability Anti-Pattern. Furthermore, statistically

significant results showed, that intervention helped participants’ developers to

understand vulnerabilities with the insight of how they can prevent them.

Furthermore, just after receiving the intervention (without a week gap), there is

no statistically significant difference between the “Informal” and “Formal”

interventions. However, after a week, there was a significant trend of showing

that “informal intervention is more effective in order to retain vulnerabilities

awareness”.

9.1.3 Reflection on Industrial Study

In comparison to PS-I and PS-II, the industrial study was based on qualitative

analysis due to the very small sample size. The results of the industrial study

were unable to provide statistical significance trends, concluded that with the use

of VAPs professional engineers (developers) improved their ability to identify the

root-cause of vulnerabilities. In general, participants were aware of vulnerabilities’

terminologies used by the cybersecurity community such as cross-site request

forgery and potential dangerous function calls. In addition, two engineers lacked

information of integer overflow and cross-site request forgery vulnerabilities,

which could be due to their background knowledge. These results are not

significant as the sample size was too small, and engineers had different levels

of experience with different background knowledge. Furthermore, the study was

unable to show the difference between “Informal” and “Formal” interventions.

Several interesting trends emerged from this evaluation study to show the

potential of VAPs as a knowledge transfer mechanism.

9.1.4 Conclusion

As discussed in Chapter 3, the complicated structure of vulnerability databases

(VDBs) and their inadequacies in capturing and transferring vulnerability

knowledge via existing pattern-based approaches pose significant challenges to

software developers. The contention between raising vulnerability awareness

and the transfer of security knowledge is paramount to success in an effective

way of capturing and transferring of vulnerability knowledge, in comparison to the

246

efficacy existing efforts such as security patterns, attack patterns and software

fault patterns. As discussed in Section 2.11.1 due to a lack of shared

understanding between cybersecurity and software engineering communities –

there is a distinct communication gap when it comes to addressing recurring

security problems, known as vulnerabilities. This research designed a new

approach Vulnerability Anti-Pattern (VAP), which includes two key components:

(i) an anti-pattern which captures and transforms information on vulnerability and

its common footprints to explain how a malicious hacker can exploit, and (ii) a

pattern which provides solutions and mitigation techniques against the

vulnerability. Moreover, as developers are familiar with pattern-based

approaches, Vulnerability Anti-Patterns are designed to provide understandable

vulnerability knowledge to developers. To evaluate the efficacy of VAP, empirical

studies were conducted to determine whether VAPs are significantly effective to

provide vulnerabilities awareness to developers as a knowledge transfer medium.

The results of PS-I, PS-II and the industrial study confirmed the effectiveness of

VAPs to raise awareness of vulnerabilities. These experiments quantitatively and

qualitatively confirmed earlier assertions about the usefulness of VAPs of

presenting poor security practices via Anti-patterns. The results of PS-II provided

significant outcomes to improve participants vulnerability awareness via VAPs.

These differences in participants’ performance can be attributed to the

effectiveness of VAPs in presenting vulnerability knowledge as discussed in

Chapter 4.

Background knowledge of the participants was another impacting factor,

which suggested that software developers are different from ethical hackers due

to their background knowledge and nature of work. Software developers worked

to develop software; however, ethical hackers worked as penetration testers in

order to find security flaws or vulnerabilities. Both groups: penetration testers and

software developers do not share common ground knowledge of software

exploitation. An industrial study was performed with professional software

developers and also confirmed the potential of the vulnerability anti-patterns in

providing the awareness of vulnerabilities. We found that there is a great deal of

hype, but very little hard evidence about the benefits and pitfalls of using anti-

patterns in software engineering education and none on capturing vulnerabilities

247

from cybersecurity community (see Section 2.14). It is apparent from the findings

of our studies that anti-patterns have the potential to help to find vulnerabilities

during the SDLC and to provide them with solutions. Therefore, the results

suggest that giving anti-patterns as developers’ train have a significant effect on

transferring vulnerability knowledge to software developers. Anti-patterns capture

poor practices. Vulnerabilities are poor practices which can be exploited by

hackers, so using anti-patterns to transfer poor security practice knowledge

shows promise in reducing code related vulnerabilities.

9.2 Experimental Studies Limitations

9.2.1 Avoidance Bias

Several steps were taken to avoid introducing any type of bias into the

experiments. When partaking in the experiments, participants were initially told

the purpose of the research was to assess and measure their core understanding

and mitigation knowledge of software developers about the most commonly

occurring software errors (vulnerabilities). Participants were asked to complete a

questionnaire and some simple tasks. All instructions were provided before each

task began. No risks or discomforts were anticipated from taking part in this study.

For data analysis and interpretation, participants were asked to answer all the

questions and complete the tests. However, if a participant felt uncomfortable

with any of our questions/tests, he/she was able to skip that question/test or

withdraw from the study altogether. Participation was voluntary. All data and

responses were kept entirely confidential. The data did not contain any personal

information except participants age, gender and degree programme. Participants’

names were replaced with a participant number, and it is not possible to identify

people from any of the gathered data.

9.2.2 Very Small Sample Size

Results obtained of studies such as PS-I, PS-II, and industrial studies were

insignificant due to the very small sample size. In the PS-I, students were

recruited regardless of their background knowledge, considering all of them to be

software developers. The results of PS-I show that participants with a

cybersecurity background are aware of vulnerable codes and not considered to

248

be software developers. Therefore, during PS-II we recruited only final year

computing-related degree students, known as software developers. In PS-II, only

those students were recruited who were well versed in specific programming

languages. Only 38 students were recruited in PS-II.

Professional programmers are hard to recruit and are expensive. During

the Industrial study, only five professional software developers were recruited.

Furthermore, it is difficult to come by an adequate pool of professional developers

in locations that do not have a significant software developmental industrial base.

In PS-I, participants with cybersecurity knowledge results were not reliable. To

rectify these unreliable results, during PS-II, we only recruited computing related

degree students known as software developers. However, during Industrial study,

one of the participant’s possessed cybersecurity knowledge, which influenced our

results.

9.2.3 Students as Participants

During our research, it was relatively easy to use students as subjects in PS-I

and PS-II. Such experiments in software engineering are often criticized due to

their artificial settings. To prove the practical implementation of experimental

results in a realistic setting, the industrial study included sample subjects from the

professional developer population that we aim to make claims about. Students

are more accessible, easier to hire and are generally inexpensive. PS-I and PS-

II were easier to run and to reduce the risks, than experiments with professionals.

PS-I and PS-II were carried out to test experimental design and initial hypotheses

with students as participants, before conducting experiments with professionals’

developers. The potential goal of PS-I and PS-II was to gain an understanding of

the basic issues without deliberately aiming for external validity. Conducting

experiments with students was the first step to the measured effectiveness of

VAPs in the knowledge transfer process, and the aim was to reduce risks and

costs. However, students lack the experience or understanding of professionals,

which is the main disadvantage of PS-I and PS-II. This affects the validity of

results. In our research, the students were paid, and the experiment was not

considered a part of the course. PS-I and PS-II were carried out to test

experimental design and initial hypotheses with students as participants, before

conducting experiments with professional developers.

249

9.2.4 Background Knowledge of Subjects

Background knowledge of participants was another important factor that

influenced the experimental results. On the basis of participants’ background

knowledge, they were divided into two groups: ethical hackers, and software

developers (PS-I). Ethical hackers possessed knowledge of cybersecurity that

influenced experimental results. Hence during PS-II, ethical hacking students

were not recruited as potential participants. Consequently, the initial number of

potential participants was low. Moreover, the remaining participants were only

software developers, who were assumed to lack the awareness of errors that led

to vulnerabilities. In addition, the remaining participants had learnt different

programming modules. For example, gaming students were aware of C\C++

programming languages, and computing students were aware of PHP

programming languages. Thus, participants were further sub-divided that

reduced the sample size and made it difficult to get statistically significant results.

9.2.5 Lack of Realistic Environment

Experiments were executed in an artificial environment, with a controlled group

and in a short period of time. This makes it difficult to obtain meaningful results.

9.2.6 Evaluating usability

This research carried out three main studies to evaluate the effectiveness of

VAPs in order to provide developers with an understanding of code

vulnerabilities. In PS-II, control and treatment (experimental) groups’ comparison

suggest that participants improved their ability to understand and mitigate

vulnerabilities via VAPs. The scope of this study only considered the software

engineering and cybersecurity domain aspects related to vulnerabilities. Due to

limited research time, these studies were unable to verify usability, which requires

a longitudinal field experiment while considering the other influential factors such

as participant psychological and behavioural variables. To verify the efficacy of

VAPs, we plan to carry out a longitudinal field quasi-experiment. This is a part of

our future research (see Section 10.4.3).

250

10 Conclusion and Future Work

This thesis discussed the transfer of desirable and feasible cybersecurity domain

knowledge from security experts (“Ethical Hackers”) to software engineers. The

mechanism of knowledge transfers between the work on vulnerability databases

(VDBs), developers’ perceptions of security issues and the security development

lifecycle (SDLC) is complex, which creates a distinct communication gap between

ethical hackers and software engineers as mentioned in Section 2.11. This

security knowledge gap prevents software developers from making use of

security domain knowledge in its form of vulnerability databases (e.g. CWE, CVE,

Exploit DB), which are therefore not appropriate for this purpose. The

identification of these problems provided the motivation and requirement for a

useful technique for transferring vulnerability knowledge. A solution is proposed

in Section 3.4 Vulnerability Anti-Pattern that based upon the improved use of anti-

pattern, which encompasses security domain knowledge. A catalogue of

Vulnerability Anti-Patterns (see Section 5.4) is developed to provide developers

with an effective understanding of poor security practices that lead to

vulnerabilities. A series of experimental studies (see evaluation Section) has

been performed to validate the proposed hypothesis (see Section 1.8). The

results highlight that Vulnerability Anti-Pattern appears to be of value in providing

an effective understanding of vulnerabilities.

This chapter concludes the thesis by relating the results and contributions

to the hypothesis in subsequent Section 10.1. Possible further work is

summarised in Section 10.5.

10.1 Conclusion

A hybrid pattern-based technique to capture security knowledge during

development has been defined. The overall goal of this thesis is to contribute to

the development of secure software systems by improving security vulnerabilities

awareness among developers:

• Increasing the Security Flaws Awareness among Developers. A

series of case studies performed for the following purposes: to raise

awareness how vulnerabilities could be exploited by malicious hackers, to

251

measure the effectiveness of VAPs for developers in raising the

awareness of poor security practices that lead to vulnerabilities. The

significant results were concluded through the qualitative and quantitative

research that VAPs are significantly useful in increasing vulnerabilities

awareness among developers.

• Awareness of Vulnerabilities via Vulnerability Anti-Pattern (VAP).
Vulnerability Anti-Pattern technique can be used to provide developers

awareness about how a malicious attacker can exploit a security flaw and

misuse a system. Each VAP provides insight for developers to think about

security systematically using an anti-pattern to signify poor security

practices and a pattern to provide mitigation to solve the identifiable anti-

pattern. The contribution of this thesis is to help developers in identifying

anti-patterns (vulnerabilities) and enable them to use patterns (solutions/

mitigations) against vulnerabilities.

• Bridging the Security Knowledge Gap between Cybersecurity
Experts and Software Developers. VAP encapsulates vulnerability

information from cybersecurity experts and presents a format that can be

utilised by developers; anti-pattern (i.e. poor security practices) and

pattern (i.e. mitigation and solutions mapping into SDLC) template. This

enables tighter coupling between cybersecurity expertise and software

development practice to bridge the knowledge gap. A series of

experiments was performed to measure this; however, further evaluation

of VAP effectiveness will be explored in our future work.

Since new security attacks are being discovered and launched all the time,

the security solutions to prevent the attacks will need to change, and so will need

for the corresponding Vulnerability Anti-Pattern to stop security attacks.

10.2 Primary Contribution: Vulnerability Anti-Pattern and its
Catalogue: A Timeless Way to Capture Poor Software Practices
(Vulnerabilities)

To mitigate vulnerabilities, we anticipated a novel approach called Vulnerability

Anti-Pattern that helps developers understand vulnerabilities, coupled with how

to mitigate them during software development practices. We propose an

252

extended template of anti-patterns and using this template we produce a

catalogue of VAPs against 12 vulnerabilities (Table 83 Catalogue of Vulnerability

Anti-Patterns), chosen from the OWASP list of “Top 25 Most Dangerous Software

Errors”. Our current catalogue covers SANS Top 10 most commonly occurring

software errors in “Informal” and “Formal” format for today’s developers. We plan

to continue maintaining and extending our catalogue in future.

Vulnerability Name
(sourced from CWE (MITRE
Corporation 2015e))

Vulnerability Anti-Pattern

1 Improper Neutralization of Special
Elements used in an SQL
Command

SQL Injection

2 Missing Authentication Missing Authentication for Critical
Functions

3 Missing Authorization Missing Authorization

4 Buffer Copy without Checking Size
of Input

Buffer Overflow

5 Use of Obsolete Function Use of Deprecated Function

6 Use of Potentially Dangerous
Function

Use of Potentially Dangerous
Function Calls

7 Integer Overflow or Wraparound Integer Overflow

8 Incorrect Calculation of Buffer Size Incorrect Calculation of Buffer Size

9 Improper Neutralization of Input
During Web Page Generation

Cross-Site Scripting (XSS)

10 Cross Site Reference Forgery Cross-Site Request Forgery

11 Use of Externally-Controlled Format
String

Format String Injection

12 Shell injection OS Command Injection

Table 83 VAPs catalogue

Despite the relative success of the VAP addressing the fundamental

problem of cybersecurity (vulnerabilities), it only provides a small contribution to

solving the large research problem of aiming to provide developers awareness of

eleven from thousands of discovered vulnerabilities. Future work will continue to

extend this catalogue and will cover all possible sets of vulnerabilities.

253

10.3 Research Outcomes

The essential argument made in the thesis statement (Section 1.6) is that

developing an awareness of poor software engineering practices through the use

of a pattern-based approach can help software developers in the creation of more

secure software by communicating recurrent exploitable software errors

repeatedly made during the SDLC. However, existing pattern-based approaches

are limited by their complicated structure and a lack of understanding of the

genesis of development errors (Section 2.13) that lead to vulnerabilities.

The research question driving this research was “Can a pattern-based

approach (Vulnerability Anti-Pattern) be effective to fill the security knowledge

gap between software developers and security experts in order to help

developers in the creation of secure software systems?” We divided the research

into the following questions:

• RQ1: Do software developers have an effective understanding of errors

that lead to the creation of vulnerabilities, coupled with an awareness of

how malicious hackers can exploit these errors?

o In response to RQ1, this research demonstrates that developers

lack an effective understanding of recurrent vulnerabilities as

investigated in the literature review (Chapters 2 and 3) and

evaluated through experimental studies (Chapters 6,7 and 8).

• RQ2: Why are current attempts, in the form of patterns and catalogues of

vulnerabilities, not successful in communicating security knowledge to

software developers?

o In response to RQ2, Current attempts in the form of patterns and

catalogues of vulnerabilities, are not successful in communicating

security knowledge to developers as explored through literature of

existing pattern-based approaches (Chapters 2 and 3) and

proposed a solution: Vulnerability Anti-Pattern, which based on

improved use of pattern-based approaches to capture poor

software development practices (vulnerabilities) (Chapters 4 and

5).

254

• RQ3: Do developers know how to mitigate these recurrent errors during

the Software Development Lifecycle (SDLC)?

o In response to RQ3, a series of experiments were performed with

(students and professional software developers) participants to

explore that do developers know how to mitigate these recurrent

errors during the Software Development Lifecycle (SDLC).

We address RQ1 and RQ2 in Chapter 2 and 3, by analysing existing

pattern-based approaches and evaluating the issues why current attempts are

not successful. This thesis addresses these issues by proposing “Vulnerability

Anti-Pattern (VAP)” that assists software developers in developing an

awareness of how malicious hackers can exploit errors in software (Chapter

4). Furthermore, Anti-Patterns can provide sufficient awareness of

vulnerabilities in order to enable developers to create more secure software

(RQ1). This bridges the security knowledge gap between software engineers

and cybersecurity communities by providing information about cybersecurity

issues in formats that are usable and understandable for developers.

• In response to the main research question, Vulnerability Anti-

Pattern can help developers to improve their awareness of recurrent

vulnerabilities.

We perform a series of experiments in the evaluation section of this

dissertation (Chapters 6, 7 and 8), which was based on a series of experimental

studies to measure VAPs effectiveness in raising professional software

developers’ awareness of common software vulnerabilities.

o Quantitative analysis of Pilot-study-I suggests that computing

degree related students (Developers) were not able to identify

recurring security flaws and were not able to demonstrate an

understanding of how malicious hackers can exploit these flaws. In

comparison, the ethical hacking students performed well in being

able to identify recurring security flaws and demonstrating an

understanding of how these can be exploited.

o Quantitative analysis of Pilot-study-II shows that VAPs as an

intervention, provide developers with the understanding and

awareness of poor security practices (vulnerabilities) during SDLC,

255

however, there is no significant difference between “Informal” and

“Formal” Vulnerability Anti-Pattern. The most interesting finding

was that an “informal intervention was more effective in order to

help participants to retain an awareness of vulnerabilities after one

week gap” in comparison to formal intervention.

o Qualitative analysis of the Industrial study shows that intervention

through VAPs help participants to understand and identify the root-

cause of vulnerabilities.

10.4 Significance of the Research

Vulnerability Anti-Pattern is a new pattern-based approach to identify and

organise vulnerabilities that can provide support for developers to prevent and

mitigate vulnerabilities. Results from a series of experimental studies recommend

that Vulnerability Anti-Pattern is an appropriate way to provide vulnerability

awareness training about poor security practices. The work of this thesis is

concentrated on Vulnerability Anti-Pattern as a solution against recurring

vulnerabilities in a reusable and understandable format for developers’ aspects,

and there is much to do beyond these narrow boundaries. The following section

will describe some future directions for our work and project our vision.

10.5 Future Work

There is a potential to build on this current work as well as expand it into newer

terrains. Proposed here are some research areas that could be exploited in

future:

10.5.1 Catalogue of Vulnerability Anti-Patterns

The Vulnerability Anti-Pattern (VAP) catalogue will grow in response to new

classes of vulnerabilities and proactively, as more people use it and begin to look

for missing security flaws. An automated tool will generate to keep the databased

up-to-date. A developer can use multiple VAPs as a reference guide to prevent

vulnerabilities during software development processes. Identify the connection

among different sets of vulnerabilities and their mapping into SDLC. Furthermore,

exploring the relationship between VAPs help us to understand how VAPs can

be composed against interlinked vulnerabilities.

256

Furthermore, it is possible to study a particular programming language or

platforms and identify appropriate Vulnerabilities Anti-Patterns. This research

project is particularly interested in concentrating on vulnerabilities that mistakenly

occurred due to a developer’s mistake.

10.5.2 Design a Pattern Language

Security threats evolve rapidly, requiring developers to be up to date with the

latest information in order to prepare appropriately for software attacks.

Education of security for developers is an on-going process. As new

vulnerabilities will discover, more VAPs will generate against them. There is a

need to design a pattern-language in order to classify the vulnerabilities with their

vulnerable exploitation patterns, which will benefit developers to identify, prevent

and predict potential interlinked or dependent vulnerabilities. My next step is to

design a pattern-language based on to classify VAPs.

10.5.3 VAPs Evaluation Considering Usability and Retainability

In this research, VAPs was evaluated to provide an understanding of

vulnerabilities. There are many aspects related to VAPs evaluation, which are

essential to consider such as usability, efficiency and learnability. However, these

are out of the scope of our research. Nevertheless, this is my future plan to

examine these above factors and would run trials with a significant number of

professional developers before developing a commercial product.

10.5.4 Vulnerability Anti-Pattern Tool

Vulnerability Anti-Pattern (VAP) has captured vulnerability information as

depicted in a pattern and anti-pattern, which can be utilised to generate an

automated security tool. I am aiming to build a tool based on VAP, which would

warn developers of vulnerabilities during real-time development practices.

10.5.5 Training Method to Educate Developers about Recurrent
Vulnerabilities

Software systems should be as secure as they are usable, but threats to, and

vulnerabilities within, the augmented complex network of people and software

257

systems make this a challenging task for software developers. Education of

security through an Anti-Pattern is a beneficial mechanism.

I am aiming to design a security training package which will use the

catalogue of Vulnerability Anti-Patterns. This awareness training can help

developers to learn from others mistakes and gives insight on how to prevent

them. This training will include in-house and online security training sessions to

provide developers with awareness about the most-up-to-date security flaws that

cause vulnerabilities.

As a result, software developers can able to apply proactive and robust

security measures, delivering secure software products that are not an easy

target for cyber-attacks.

10.5.6 VAP Catalogue Dissemination

For academic purposes, the online directory will be created to publicise the VAPs.

However, for commercialisation, VAPs will be used to develop a security training

and automated tool. Therefore, VAPs will be publicised under copyright

protection for academic researchers to use. The authors are collaborating with

the Pattern Languages of Programs (PLoP) researchers to extend and

disseminate the VAP catalogue for educational purposes.

258

11 References

Acar, Y. et al. 2016. You get where you're looking for: The impact of information
sources on code security. In: IEEE Symposium on Security and Privacy, San
Jose, CA, 22-26 May 2016. IEEE, pp.289-305.

Alexander, R., D. and Panguluri, S. 2017. Cybersecurity terminology and
frameworks. In: R. M. Clark and S. Hakim. eds. Cyber-physical security:
Protecting critical infrastructure at the state and local level. Cham: Springer.
pp.19-47.

Alexander, C., Ishikawa, S. and Silverstein, M. 1977. A pattern language.
Available from:
http://courses.cs.vt.edu/~cs4634/fall2004/lecturehandouts/designpatterns.pdf
[Accessed 23 October 2014].

Allen, J., et al., 2001. Code red worm exploiting buffer overflow in IIS Indexing
Service DLL. Technical Report. Carnegie Mellon Software Engineering
Institute.[Online] Available from:
https://resources.sei.cmu.edu/asset_files/WhitePaper/2001_019_001_496466.p
df [Accessed February 2016].

Alvarez, M. et al. 2017. IBM X-Force Threat Intelligence Index 2017 The Year of
the Mega Breach. IBM Security. (March): pp.1-30.

Alvi, A.K. and Zulkernine, M. 2011. A natural classification scheme for software
security patterns. In: Ninth International Conference on Dependable, Autonomic
and Secure Computing, 12-14 Dec. 2011. IEEE, pp.113-120.

Amoroso, E. G. 1994. Fundamentals of computer security technology. London:
Prentice Hall International.

Anand, P., Jungwoo Ryoo, R. and Kazman, R. 2014. Vulnerability-based
security pattern categorization in search of missing patterns. In: Ninth
International Conference on Availability, Reliability and Security, 8-12 Sept.
2014. IEEE, pp.476-483.

Anastas, J. W. 1999. Research design for social work and the human services.
New York: Columbia University Press.

Arnold, A.D., Hyla, B.M. and Rowe, N.C. 2006. Automatically building an
information-security vulnerability database. In: IEEE Information Assurance
Workshop, 21-23 June 2006. West Point, pp.376-377.

Arshad, J. et al. 2012. Cloud computing security: Opportunities and pitfalls.
International Journal of Grid and High Performance Computing (IJGHPC). 4(1):
pp.52-66.

259

Aslam, T., Krsul, I. and Spafford, E.H., 1996. Use of a taxonomy of security
faults. Purdue University. [Accessed 12 October 2015].

Banerjee, C. and Pandey, S. K. 2009. Software Security Rules, SDLC
Perspective. (IJCSIS) International Journal of Computer Science and
Information Security. 6(1): pp.123-128.

Beizer, B. 2003. Software testing techniques. 2nd ed. New Delhi: Dreamtech
Press.

Beizer, B. 1990. Software testing techniques. 2nd ed. New York: Van Nostrand
Reinhold.

Bekrar, S. et al. 2011. Finding software vulnerabilities by smart fuzzing. In:
Fourth IEEE International Conference on Software Testing, Verification and
Validation, 21-25 March 2011. IEEE, pp.427-430.

Benedikt, M. 1990. Cyberspace: Some proposals. In: Conference on
Cyberspace, May 1990. University of Texas, pp.5-6.

Black, P. E. 2017. SARD: A Software Assurance Reference Dataset. Available
from: https://samate.nist.gov/index.php/SARD.html[Accessed May 2016].

Blackwell, C. and Zhu, H. 2014. Future directions for research on cyberpatterns.
In: C. Blackwell and H. Zhu. eds. Cyberpatterns: Unifying design patterns with
security and attack pattern. Springer. pp.259-264.

Blackwell, C. and Zhu, H. 2014. Cyberpatterns: Unifying design patterns with
security and attack patterns. Heidelberg: Springer.

Board, I. 1993. IEEE standard classification for software anomalies. IEEE
Standard. 1044.

Borstad, O. G. 2008. Finding security patterns to countermeasure software
vulnerabilities. Master Thesis. Institutt for Datateknikk og
Informasjonsvitenskap.

Bourque, P. and Fairley, R. E. 2014. Guide to the software engineering body of
knowledge (SWEBOK (R)): Version 3.0. IEEE Computer Society Press.

Brehmer, C. and Carl, J. 1993. Incorporating IEEE Standard 1044 into your
anomaly tracking process. CrossTalk, Journal of Defense Software
Engineering. 6: pp.9-16.

Brenner, J. 2007. ISO 27001: Risk management and compliance. Risk
Management. 54(1): pp.24-29.

260

Brown, W. J., 1998. AntiPatterns: Refactoring software, architectures, and
projects in crisis. New York: Wiley.

Bunke, M. 2015. Software-security patterns: Degree of maturity. In:
Proceedings of the 20th European Conference on Pattern Languages of
Programs, July 08 - 12, 2015 2015. ACM, pp.42-61.

Bunke, M., Koschke, R. and Sohr, K. 2012. Organizing security patterns related
to security and pattern recognition requirements. International Journal on
Advances in Security. 5(2): pp.46-67.

Burnstein, I. 2006. Practical software testing: A process-oriented approach.
New York: Springer Science & Business Media.

Busch, M., Koch, N. and Wirsing, M. 2014. Evaluation of engineering
approaches in the secure software development life cycle. In: M. Heisel, et al.
eds. Engineering secure future internet services and systems. Springer. pp.234-
265.

C/S2ESC - Software & Systems Engineering Standards Committee, 2010.
1044-2009-IEEE Standard Classification for Software Anomalies. IEEE.
[Accessed 12 August 2017].

Cabinet Office, 2011. The cost of cyber crime. Cabinet Office Report. [Accessed
10/12/2014].

Cabinet Office, 14 April 2016. The UK cyber security strategy report on
progress and forward plans. UK: Cabinet Office and National security and
intelligence. [Accessed 2015].

Calcutt, A. 1999. White noise: An A–Z of the contradictions in cyberculture.
London: Palgrave Macmillan.

Carnegie Mellon University, 2015. The Vulnerability Notes Database. U.S.A.:
CERT, Carnegie Mellon University. [Accessed 12 November 2014].

CERT, 2015. Common Cyber Security Language - ICS-CERT - US-CERT. US-
CERT. [Accessed 01 January 2016].

Chen, Z., Zhang, Y. and Chen, Z. 2010. A categorization framework for
common computer vulnerabilities and exposures. The Computer Journal. 53(5):
pp.551-580.

Cherdantseva, Y. and Hilton, J. 2014. Information security and information
assurance: Discussion about the meaning. In: I. M. Portela and F. Almeida. eds.
Organizational, legal, and technological dimensions of information system
administration. Hershey, PA: IGI Global. pp.1204-1235.

261

Cheswick, W. R., Bellovin, S. M. and Rubin, A. D. 2003. Firewalls and internet
security: Repelling the wily hacker. Boston. MA: Addison-Wesley Longman
Publishing Co.

Choo, K. R. 2011. The cyber threat landscape: Challenges and future research
directions. Computers & Security. 30(8): pp.719-731.

Cockburn, A. and Baruz, A. 2017. Antipattern. Available from:
http://wiki.c2.com/?AntiPattern [Accessed August 2015].

Cohen, F. 1999. Simulating cyber attacks, defences, and consequences.
Computers & Security. 18(6): pp.479-518.

Committee on National Security Systems (CNSS), 2003. National Information
Assurance Glossary. 4009. CNSS.[Online] Available from:
https://www.ecs.csus.edu/csc/iac/cnssi_4009.pdf [Accessed 20 August 2017].

Conte, S. D., Dunsmore, H. E. and Shen, V. Y. 1986. Software engineering
metrics and models. US: Benjamin-Cummings Publishing.

Conti, G. and Caroland, J. 2011. Embracing the Kobayashi Maru: Why you
should teach your students to cheat. IEEE Security & Privacy. 9(4): pp.48-51.

Craigen, D., Diakun-Thibault, N. and Purse, R. 2014. Defining cybersecurity.
Technology Innovation Management Review. 4(10): pp.13-21.

Csanadi, L. C. G. 2015. Cyber war: Poor man’s weapon of mass destruction,
and a new whip in the hands of the rich. Defence. 143: pp.153-174.

Daud, M.I. 2010. Secure software development model: A guide for secure
software life cycle. In: Proceedings of the International MultiConference of
Engineers and Computer Scientists, March 17-19 2010., pp.978-988.

De Win, B. et al. 2009. On the secure software development process: CLASP,
SDL and Touchpoints compared. Information and Software Technology. 51(7):
pp.1152-1171.

Department of Homeland Security (DHS), 2017. Cyber Incident Response at
DHS. 2017. USA: DHS.[Online] Available from: https://www.us-
cert.gov/sites/default/files/publications/infosheet_SoftwareAssurance.pdf
[Accessed 01 January 2017].

Dias e Silva, P. 2014. Categorization of Anti-Patterns in Software Project
Management. Master Thesis. Universidad Politecnica de Madrid.

Dimitrov, V., 2016. Toward formalization of software security issues. Bulgaria:
University of Sofia. [Accessed 02 September 2016].

262

Din, J., Al-Badareen, A. and Jusoh, Y.Y. 2012. Antipatterns detection
approaches in object-oriented design: A literature review. In: 7th International
Conference on Computing and Convergence Technology (ICCCT)., 3-5 Dec.
2012. Seoul, South Korea: IEEE, pp.926-931.

Dougherty, C.R., et al., 2009. Secure design patterns. Carnegie Mellon
University: Defense Technical Information Center.[Online] Available from:
http://www.dtic.mil/docs/citations/ADA636498 [Accessed August 2015].

Druin, J. 2011. OWASP Mutillidae II Web Pen-Test Practice Application.
Available from: https://sourceforge.net/projects/mutillidae/ [Accessed 13 June
2016].

Fahl, S. et al. 2013. Rethinking SSL development in an appified world. In:
Proceedings of the ACM Conference on Computer and Communications
Security, November 04 - 08 2013. ACM, pp.49-60.

Faily, S., Parkin, S. and Lyle, J. 2014. Evaluating the implications of attack and
security patterns with premortems. In: C. Blackwell and H. Zhu. eds.
Cyberpatterns: Unifying design patterns with security and attack patterns.
Cham: Springer. pp.199-209.

Fal’, A. 2010. Standardization in information security management. Cybernetics
and Systems Analysis. 46(3): pp.512-515.

Fernandez, E.B., Yoshioka, N. and Washizaki, H. 2010. A worm misuse pattern.
In: Proceedings of the 1st Asian Conference on Pattern Languages of
Programs, March 16 - 17 2010. ACM, pp.1-5.

Fernandez, E.B., Yoshioka, N. and Washizaki, H. 2009. Modeling misuse
patterns. In: 2009 International Conference on Availability, Reliability and
Security, 16-19 March 2009. IEEE, pp.566-571.

Fernandez, E.B. et al. 2008. Classifying security patterns. In: Asia-Pacific Web
Conference APWeb 2008, 26-28 April 2008. Heidelberg: Springer, pp.342-347.

Fink, A. 2003. The survey handbook. London: Sage.

Fittkau, F. 2011. Controlled experiments in software engineering. In: Seminar
Empirical Methods SuSe 2011 2011. Kiel: Department of Computer Science,
Kiel University.

Flamm, K. 1988. Creating the computer: Government, industry, and high
technology. Washington DC: Brookings Institution Press.

Foote, B., Rohnert, H. and Harrison, N. 1999. Pattern languages of program
design 4. Boston, MA: Addison-Wesley Longman Publishing.

263

Foote, B. and Yoder, J. 1997. Big ball of mud. Available from:
http://ansymore.uantwerpen.be/system/files/uploads/courses/SE3BAC/p11_1_b
igballofmud.pdf.

Gamma, E., et al., 2008. Design patterns: elements of. Department of Computer
Science, The Australian National University: Addison-Wesley.[Online] Available
from:
http://courses.cecs.anu.edu.au/courses/archive/comp2110.2008/lectures/lec16_
4up.pdf [Accessed October 2015].

Garcia, M. et al. 2014. Analysis of operating system diversity for intrusion
tolerance. Software: Practice and Experience. 44(6): pp.735-770.

Garfinkel, S., Spafford, G. and Schwartz, A. 2003. Practical UNIX and internet
security. Sebastopol, CA: O'Reilly Media.

Ghani, H. et al. 2013. International Conference on Risks and Security of Internet
and Systems (CRiSIS), 23-25 Oct. 2013. , pp.1-8.

Green, M. and Smith, M. 2016. Developers are not the enemy! : The need for
usable security APIs. IEEE Security & Privacy. 14(5): pp.40-46.

Gregoire, J. et al. 2007. On the secure software development process: CLASP
and SDL compared. In: Third International Workshop on Software Engineering
for Secure Systems, 20-26 May 2007. IEEE, pp.1-1.

Gu, Y. and Li, P. 2010. Design and research on vulnerability database. In: Third
International Conference on Information and Computing, 4-6 June 2010. Wuxi,
PR China, pp.209-212.

Guttman, B. 1995. An introduction to computer security: The NIST handbook.
Gaithersburg, MD: Dept. of Commerce, Technology Administration, National
Institute of Standards and Technology.

Hafiz, M. 2011. Security on demand. Doctoral dissertation. University of Illinois
at Urbana-Champaign.

Halkidis, S. T., Chatzigeorgiou, A. and Stephanides, G. 2006. A qualitative
analysis of software security patterns. Computers & Security. 25(5): pp.379-
392.

Hans, K. 2010. Cutting Edge Practices for Secure Software Engineering.
International Journal of Computer Science and Security IJCSS. 4(4): pp.403-
408.

Happel, J. 2017. Web Application Penetration Testing With Burp Suite.
Available from: https://www.pluralsight.com/courses/web-application-
penetration-testing-with-burp-suite [Accessed October 2017].

264

Heim, M. 1991. The erotic ontology of cyberspace. In: M. Benedikt. ed.
Cyberspace: First steps. Cambridge: MIT Press. pp.59-80.

Höst, M., Wohlin, C. and Thelin, T. 2005. Experimental context classification:
Incentives and experience of subjects. In: Proceedings of the 27th International
Conference on Software Engineering 2005. ACM, pp.470-478.

Howard, M. and Lipner, S. 2011. The security development lifecycle. 2nd ed.
The University of California: Microsoft Press.

Howard, M. and Lipner, S. 2009. The security development lifecycle: SDL: A
process for developing demonstrably more secure software. 2nd ed. California:
Microsoft Press.

Howard, M. and Lipner, S. 2006. The security development lifecycle: A process
for developing demonstrably more secure software. The University of California:
Microsoft Press.

Howard, M. 2005. How do they do it?-A look inside the security development
lifecycle at Microsoft. MSDN Magazine. (November): pp.107-114.

Howard, M. 2004. Building more secure software with improved development
processes. IEEE Security & Privacy. (6): pp.63-65.

Huang, C. et al. 2013. A novel approach to evaluate software vulnerability
prioritization. Journal of Systems and Software. 86(11): pp.2822-2840.

Hui, Z. et al. 2010. Review of software security defects taxonomy. In:
International Conference on Rough Sets and Knowledge Technology, 15-17
October 2010. Beijing, China, pp.310-321.

IEEE 1994. IEEE standard classification for software anomalies. (1044-1993).
IEEE.

IEEE 1990. IEEE standard glossary of software engineering terminology
(610.12-1990). Piscataway: IEEE.

Ilyin, Y. 2015. Can we beat software vulnerabilities? Available from:
https://business.kaspersky.com/can-we-beat-software-vulnerabilities/2425
[Accessed Aug 22, 2014].

Jafari, A.J. and Rasoolzadegan, A. 2016. Securing gang of four design patterns.
In: Proceedings of the 23rd Conference on Pattern Languages of Programs,
October 24 - 26 2016. The Hillside Group, pp.5.

Jang-Jaccard, J. and Nepal, S. 2014. A survey of emerging threats in
cybersecurity. Journal of Computer and System Sciences. 80(5): pp.973-993.

265

Jorgensen, P. C. 2013. Software testing: A craftsman’s approach. New York,
NY: CRC press.

Julisch, K. 2013. Understanding and overcoming cyber security anti-patterns.
Computer Networks. 57(10): pp.2206-2211.

Juristo, N. and Moreno, A. M. 2013. Basics of software engineering
experimentation. Boston: Springer Science & Business Media.

Kalaimannan, E. and Gupta, J. N. 2017. The security development lifecycle in
the context of accreditation policies and standards. IEEE Security & Privacy.
15(1): pp.52-57.

Kidwell, P. A. 1998. Stalking the elusive computer bug. IEEE Annals of the
History of Computing. 20(4): pp.5-9.

Kis, M. 2002. Information security antipatterns in software requirements
engineering. In: 9th Conference of Pattern Languages of Programs (PloP),
September 8th-12th 2002. PLoP, pp.1-7, Volume 11.

Kissel, R., 2013. NIST IR 7298 Revision 2: Glossary of Key Information Security
Terms. 7. Gaithersburg, MD: National Institute of Standards and Technology
(NIST). [Accessed July 2016].

Koenig, A. 1995. Patterns and antipatterns. Journal of Object-Oriented
Programming. 8(1): pp.46-48.

Kotzé, P., Renaud, K. and Van Biljon, J. 2008. Don’t do this–Pitfalls in using
anti-patterns in teaching human–computer interaction principles. Computers &
Education. 50(3): pp.979-1008.

Kotzé, P. et al. 2006. Patterns, anti-patterns and guidelines–effective aids to
teaching HCI principles. In: Inventivity: Teaching Theory, Design and Innovation
in HCI, Proceedings of of HCIEd2006-1 First Joint BCS/IFIP WG13. 1/ICS/EU
CONVIVIO HCI Educators' Workshop, 23-24 March 2006, Limerick, Ireland
2006. Citeseer, pp.109-114.

Krsul, I. V. 1998. Software vulnerability analysis. PhD. Purdue University.

Lee, E.A. 2008. Cyber physical systems: Design challenges. In: 11th IEEE
International Symposium on Object Oriented Real-Time Distributed Computing
(ISORC), May 05 - 07 2008. IEEE, pp.363-369.

Leveson, N. 2004. A new accident model for engineering safer systems. Safety
Science. 42(4): pp.237-270.

Levi, M., et al., 2016. The implications of economic cybercrime for policing. City
of London Corporation.[Online] Available from:

266

http://orca.cf.ac.uk/88156/1/Economic-Cybercrime-FullReport.pdf [Accessed
January 2016].

Levy, S. 2001. Hackers: Heroes of the computer revolution. Garden City:
Penguin Books.

Li, F. et al. 2017. Cyberspace-oriented access control: Model and policies. In:
IEEE Second International Conference on Data Science in Cyberspace (DSC),
26-29 June 2017. IEEE, pp.261-266.

Lightsein, H. 2008. First Recorded Usage of "Hacker". Available from:
https://manybutfinite.com/post/first-recorded-usage-of-hacker/ [Accessed 30
September 2017].

Liu, Q. and Zhang, Y. 2011. VRSS: A new system for rating and scoring
vulnerabilities. Computer Communications. 34(3): pp.264-273.

Lohr, S. and Markoff, J. 2006. Windows is so slow, but why. The New York
Times. [online]. March 27, 2006.

Lomont, C. C. and Jacobus, C. J. 2014. System and methods for detecting
software vulnerabilities and malicious code. Google Patents.(8,806,619)
[Online] Available from: https://patents.google.com/patent/US8806619B2/en
[Accessed 30 October 2017] .

Long, J. 2001. Software reuse antipatterns. ACM SIGSOFT Software
Engineering Notes. 26(4): pp.68-76.

Longstaff, T. A. et al. 1997. Security of the Internet. The Froehlich/Kent
Encyclopedia of Telecommunications. 15: pp.231-255.

Loureiro, N. 2002. Programming PHP with security in mind. Linux Journal.
2002(102): pp.2-3.

Mansourov, N. 2011. System assurance beyond detecting vulnerabilities.
Amsterdam: Elsevier/Morgan Kaufmann.

Mansourov, N. and Campara, D. 2010. Chapter 5 - knowledge of risk as an
element of cybersecurity argument. In: N. Mansourov and D. Campara.
eds. System assurance beyond detecting vulnerabilities. 1st ed. Boston:
Morgan Kaufmann. pp.111-146.

Martin, B., et al., 2011. 2011 CWE/SANS top 25 most dangerous software
errors. 7515. The MITRE Corporation.[Online] Available from:
http://cwe.mitre.org/top25/archive/2010/2010_cwe_sans_top25.pdf [Accessed
November 2014].

267

Maymí, F. et al. 2018. Towards a definition of cyberspace tactics, techniques
and procedures. In: IEEE International Conference on Big Data, 1-14 Dec.
2018. IEEE, pp.4674-4679.

McConnell, S. 1993. Code complete: A practical handbook of software
construction. Redmond: Microsoft Press.

McGraw, G. 2012. Software Security. Datenschutz Und Datensicherheit-DuD.
36(9): pp.662-665.

McGraw, G. 2009. Software security. Security & Privacy. 2(2): pp.80-83.

McGraw, G. 2006. Software security: Building security in. Boston: Addison
Wesley.

McLellan, V. 1981. Case of the purloined password: The F.B.I. wants to know
who swiped an electronic file opening access to all sorts of data at a subsidiary
of Dun and Bradstreet. The New York Times. [online]. July 26: pp.F4.

McMillan, R. 2012. The world’s first computer password? It was useless too.
Wired.Com. (January): pp.1-27.

Meyers, S. D. 2005. Effective C++ : 55 specific ways to improve your programs
and designs. 3rd ed. London: Addison-Wesley.

Miller, B.P., et al., 1995. Technical Report CS-TR-1995-1268, University of
Wisconsin.[Online] Available from:
http://www.eecs.northwestern.edu/~robby/courses/395-495-2009-fall/fuzz-
revisited.pdf [Accessed 9 November 2017].

MITRE Corporation 2016. CVE-2016-8820. Available from:
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2016-8820 [Accessed
June 2016].

MITRE Corporation 2015. Common Attack Pattern Enumeration and
Classification (CAPEC). Available from: https://capec.mitre.org/ [Accessed 20
June 2016].

MITRE Corporation 2015. Common Vulnerabilities and Exposures (CVE).
Available from: https://cve.mitre.org/ [Accessed November 2014].

MITRE Corporation 2015. Common Weakness Enumeration. Available from:
http://cwe.mitre.org/ [Accessed November 2014].

MITRE Corporation 2015. CWE-120: Buffer Copy without Checking Size of
Input ('Classic Buffer Overflow'). Available from:
http://cwe.mitre.org/data/definitions/120.html [Accessed 15 October 2014].

268

MITRE Corporation 2015. Common Weakness Enumeration (CWE). Available
from: https://cwe.mitre.org/ [Accessed November 2014].

MITRE Corporation 2014. Common Attack Pattern Enumeration and
Classification. Available from: http://capec.mitre.org/index.html [Accessed
December 2014].

MITRE Corporation 2004. A CVE Based Vulnerability Database. Available from:
https://www.cvedetails.com/ [Accessed November 2014].

Moral-García, S. et al. 2014. Enterprise security pattern: a new type of security
pattern. Security and Communication Networks. 7(11): pp.1670-1690.

Morgan, S. 2016. Is poor software development the biggest cyber threat?
Available from: http://www.csoonline.com/article/2978858/application-
security/is-poor-software-development-the-biggest-cyber-threat.html [Accessed
January 2015].

Mouratidis, H., Giorgini, P. and Manson, G. 2003. Integrating security and
systems engineering: Towards the modelling of secure information systems. In:
J. Eder and M. Missikoff. eds. Advanced information systems
engineering: International conference on advanced information systems
engineering. Lecture notes in computer Science 2681. Berlin: Springer. pp.63-
78.

Murdico, V. 2007. Bugs per lines of code. Available from:
http://amartester.blogspot.co.uk/2007/04/bugs-per-lines-of-code.html [Accessed
1 February 2015].

Nafees, T. et al. 2017. Idea-caution before exploitation: The use of
cybersecurity domain knowledge to educate software engineers against
software vulnerabilities. In: Engineering Secure Software and Systems 9th
International Symposium 2017. Springer, pp.133-142.

National Cyber Security Centre, 2016. National Cyber Security Strategy 2016.
HM Government.[Online] Available from:
https://www.enisa.europa.eu/topics/national-cyber-security-strategies/ncss-
map/national_cyber_security_strategy_2016.pdf [Accessed December 2016].

Newman, R. C. 2010. Computer security : Protecting digital resources. London:
Jones and Bartlett Publishers.

Newton, N. 2010. The use of semi-structured interviews in qualitative research:
strengths and weaknesses. Exploring Qualitative Methods. 1(1): pp.1-11.

Nielsen, J. 1993. Usability engineering. Revised ed. Heidelberg: Elsevier.

269

NIST 2015. National Vulnerability Database. Available from: https://nvd.nist.gov/
[Accessed 12 December 2015].

NIST 2011. National Vulnerability Database (NVD). Available from:
https://nvd.nist.gov/ [Accessed December 2014].

NIST, 2011. National Initiative for Cybersecurity Education Strategic
Plan. NIST.[Online] Available
from: https://www.nist.gov/sites/default/files/documents/2017/04/14/nice-
strategic-plan_sep2012.pdf [Accessed August 2015].

Orman, H. 2003. The Morris worm: A fifteen-year perspective. IEEE Security &
Privacy. 99(5): pp.35-43.

OWASP 2015. Buffer Overflows. Available from:
https://www.owasp.org/index.php/Buffer_Overflows [Accessed April 2015].

Pesante, L. 2002. Encyclopedia of software engineering. US: Wiley Online
Library.

Petersen, K. and Wohlin, C. 2009. Context in industrial software engineering
research. In: Proceedings of the 2009 3rd International Symposium on
Empirical Software Engineering and Measurement 2009. IEEE Computer
Society, pp.401-404.

Poller, A. et al. 2017. Can security become a routine?: A study of organizational
change in an agile software development group. In: ACM Conference on
Computer Supported Cooperative Work and Social Computing, February 25 -
March 01 2017. , pp.2489-2503.

Radatz, J., Geraci, A. and Katki, F. 1990. IEEE standard glossary of software
engineering terminology. IEEE Std. 610121990(121990): pp.3.

Raymond, E.,Steven, 2017. A Brief History of Hackerdom. 2017. Thyrsus
Enterprises.[Online] Available from:
https://immagic.com/eLibrary/ARCHIVES/GENERAL/AUTHOR_P/R000825P.pd
f [Accessed 01 October 2017].

Riehle, D. 1997. Composite design patterns. ACM SIGPLAN Notices. 32(10):
pp.218-228.

Robson, C. 2002. Real world research: A resource for social scientists and
practitioner-researchers. 2nd ed. Oxford: Blackwell Publishing.

Runeson, P. et al. 2012. Case study research in software engineering:
Guidelines and examples. Hoboken: John Wiley & Sons.

270

Russell, D. and Gangemi, G. 1991. Computer security basics. Cambridge:
O'Reilly Media.

Russinovich, M. and Solomon, D. A. 2009. Windows internals: Including
windows server 2008 and windows vista. WA, USA: Microsoft press.

Schumacher, M. et al. 2013. Security patterns: Integrating security and systems
engineering. West Sussex: John Wiley & Sons.

Seacord, R. 2006. Secure coding in C and C of strings and integers. IEEE
Security & Privacy. 4(1): pp.74-76.

Secunia 2015. Secunia vulnerability database. Available from:
http://secunia.com/ [Accessed October 2014].

Severance, C. 2016. Bruce Schneier: the security mindset. Computer. 49(2):
pp.7-8.

Shiralkar, T. and Grove, B., 2009. Guidelines for Secure Coding. OWASP.
[Accessed January 2015].

Shostack, A., 2008. Experiences threat modeling at Microsoft. 413. Dept. of
Computing, Lancaster University: Microsoft. [Accessed 12 September 2015].

Shull, F., Seaman, C. and Zelkowltz, M. 2006. Victor r. Basili's contributions to
software quality. IEEE Software. 23(1): pp.16-18.

Sjoberg, D. I. K. et al. 2008. Building theories in software engineering. In: D.
Sjøberg I. K., et al. . eds. Guide to advanced empirical software engineering.
Heidelberg: Springer. pp.312-336.

Sommerville, I. 2010. Software engineering. New York: Addison-Wesley.

Stallings, W. et al. 2012. Computer security: Principles and practice. New
Jersey,USA: Pearson Education.

Steel, C. and Nagappan, R. 2006. Core security patterns: Best practices and
strategies for J2EE", web services, and identity management. India: Pearson
Education.

Stroustrup, B. 1994. The design and evolution of C. India: Pearson Education.

Such, J. M. et al. 2016. Information assurance techniques: Perceived cost
effectiveness. Computers & Security. 60: pp.117-133.

Sutter, H. and Alexandrescu, A. 2004. C coding standards: 101 rules,
guidelines, and best practices. India: Pearson Education.

271

Sutter, H., 2002. The New C : Smart (er) Pointers. Dr. Dobb's Journal.[Online]
Available from: http://www.drdobbs.com/cpp/the-new-csmarter-
pointers/184403837 [Accessed December 2016].

Symantec Corporation, 2016. 2016 Internet Security Threat Report. 04/16
21365088. Symantec Corporation.[Online] Available from:
https://www.symantec.com/content/dam/symantec/docs/reports/istr-21-2016-
en.pdf [Accessed 06 August 2016].

Symantec Corporation, 2008. Internet Security Threat Report. 23. USA:
Symantec Corporation.[Online] Available
from: https://www.symantec.com/content/dam/symantec/docs/reports/istr-22-
2017-en.pdf [Accessed 23 April 2016].

The PHP Group, 2017. Deprecated features in PHP 5.3.x. The PHP
Group.[Online] Available from:
http://php.net/manual/en/migration53.deprecated.php [Accessed 11 November
2017].

Todorov, A. 2015. User guide for open source project bug submissions.
Available from: http://opensource.com/business/13/10/user-guide-bugs-open-
source-projects [Accessed 2013].

U.K National Crime Agency 2017. National cyber crime unit (NCCU). Available
from: http://www.nationalcrimeagency.gov.uk/about-us/what-we-do/national-
cyber-crime-unit [Accessed 14 December 2017].

Vacca, J. 2009. Computer and information security handbook. Waltham,MA:
Morgan Kauffman.

Van Biljon, J. et al. 2004. The use of anti-patterns in human computer
interaction: Wise or III-advised? In: Proceedings of the 2004 Annual Research
Conference of the South African Institute of Computer Scientists and
Information Technologists on IT Research in Developing Countries 2004. South
African Institute for Computer Scientists and Information Technologists, pp.176-
185.

Van Wyk, K. R. and McGraw, G. 2005. Bridging the gap between software
development and information security. Security & Privacy, IEEE. 3(5): pp.75-79.

Von Solms, R. and Van Niekerk, J. 2013. From information security to cyber
security. Computers & Security. 38: pp.97-102.

Walker, N. et al. 2014. A method for resolving security vulnerabilities through
the use of design patterns. In: Anon. Cyberpatterns. Oxford: Springer. pp.149-
155.

272

Walton, R. 2006. The Computer Misuse Act. Information Security Technical
Report; Information Security Technical Report. 11(1): pp.39-45.

Weir, C., Rashid, A. and Noble, J., 2017. Developer Essentials: Top Five
Interventions to Support Secure Software Development. Lancaster University.
[Accessed August 2017].

Wichers, D., 2017. OWASP Top-10 2017. OWASP. [Accessed March 2017].

Wijayasekara, D., Manic, M. and McQueen, M. 2015. Vulnerability identification
and classification via text mining bug databases. In: IECON 2014 - 40th Annual
Conference of the IEEE Industrial Electronics Society. 29 Oct-1 Nov. 2015.
IEEE, pp.3612-3618.

Witschey, J. et al. 2015. Quantifying developers' adoption of security tools. In:
Proceedings of the 2015 10th Joint Meeting on Foundations of Software
Engineering, August 31 - September 04 2015. , pp.260-271.

Wohlin, C. et al. 2014. Experimentation in software engineering. Heidelberg:
Springer.

Wright, K. 2015. 6 truly shocking cyber security statistics. Available from:
https://www.itgovernance.co.uk/blog/6-truly-shocking-cyber-security-statistics/
[Accessed 16 August 2015].

Xiao, S., Witschey, J. and Murphy-Hill, E. 2014. Social influences on secure
development tool adoption: Why security tools spread. In: Proceedings of the
17th ACM Conference on Computer Supported Cooperative Work & Social
Computing, February 15 - 19 2014. , pp.1095-1106.

Xie, J., Lipford, H.R. and Chu, B. 2011. Why do programmers make security
errors? In: IEEE Symposium on Visual Languages and Human-Centric
Computing, 18-22 Sept 2011. IEEE, pp.161-164.

Yoshioka, N., Washizaki, H. and Maruyama, K. 2008. A survey on security
patterns. Progress in Informatics. 5(5): pp.35-47.

Yskout, K., Scandariato, R. and Joosen, W. 2012. Does organizing security
patterns focus architectural choices? In: Software Engineering (ICSE), 2012
34th International Conference on, June 02 - 09, 2012 2012. IEEE, pp.617-627.

Yskout, K., Scandariato, R. and Joosen, W. 2012. Does organizing security
patterns focus architectural choices? In: ICSE '12 Proceedings of the 34th
International Conference on Software Engineering, June 02 - 09 2012. , pp.617-
627.

273

Yun-hua, G. and Pei, L., 2010. Design and research on vulnerability database.
In: ICIC 2010 - 3rd International Conference on Information and Computing,
2010. IEEE, pp.209-212.

