
Dakota State University
Beadle Scholar

Masters Theses & Doctoral Dissertations

Spring 3-1-2009

A Hierarchical Approach for Useable and
Consistent CAPEC-based Attack Patterns
Patrick H. Engebretson
Dakota State University

Follow this and additional works at: https://scholar.dsu.edu/theses

This Dissertation is brought to you for free and open access by Beadle Scholar. It has been accepted for inclusion in Masters Theses & Doctoral
Dissertations by an authorized administrator of Beadle Scholar. For more information, please contact repository@dsu.edu.

Recommended Citation
Engebretson, Patrick H., "A Hierarchical Approach for Useable and Consistent CAPEC-based Attack Patterns" (2009). Masters Theses
& Doctoral Dissertations. 274.
https://scholar.dsu.edu/theses/274

https://scholar.dsu.edu?utm_source=scholar.dsu.edu%2Ftheses%2F274&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.dsu.edu/theses?utm_source=scholar.dsu.edu%2Ftheses%2F274&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.dsu.edu/theses?utm_source=scholar.dsu.edu%2Ftheses%2F274&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.dsu.edu/theses/274?utm_source=scholar.dsu.edu%2Ftheses%2F274&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:repository@dsu.edu

A HIERARCHICAL APPROACH FOR USEABLE AND

CONSISTENT CAPEC-BASED ATTACK PATTERNS

A dissertation submitted to Dakota State University in partial fulfillment of the

requirements for the degree of

Doctorate of Science

in

Information Systems

March, 2009

By

Patrick H. Engebretson

Dissertation Committee:

Dr. Josh Pauli

Dr. Kevin Streff

Dr. Tom Halverson

Dr. Rich Avery

Dr. Surendra Sarnikar

ii

DISSERTATION APPROVAL FORM

We certify that we have read this project and that, in our opinion, it is satisfactory in scope

and quality as a project for the degree of Doctorate of Science in Information Systems.

Student Name:

Dissertation Title:

Dissertation Chair: Date:

Committee member: Date:

Committee member: Date:

Committee member: Date:

iii

ACKNOWLEDGEMENTS

 This dissertation is dedicated to all of those people who have played a part in its

creation. I may have written the words, but I couldn‟t have completed it without the

countless sacrifices of those around me.

To my parents Marge and Larry Engebretson, both teachers, who taught me the

value of hard work and worthiness of dedicating yourself to the education of others. To my

mother and father-in-law, who supported our family and encouraged us to never take our

“eye off the prize”. A special thanks to “Grammy Joyce” for the many hours of babysitting

while I worked to complete this project. To my daughter Maggie, who ultimately inspired

me to leave my job at the bank and pursue higher-education. To my daughter Molly,

whose smile and excitement make the long hours and hard work worthwhile. To my

brother, for understanding the many cancelled trips and hurried phone conversations when

my dissertation called.

Of all those who played a part in my success, no one deserves more credit than my

wife. To Lori Ann Engebretson, the love of my life. She encouraged me to walk away

from an easy-going, well paying job and pursue my dream of teaching. She encouraged

this path knowing that money would be tight and all roads would lead away from

Watertown. Her support has never faltered or wavered. She is the one who has had to

sacrifice more than anyone else. When I was crabby, stressed, tired, and unpleasant or

when our girls were unruly and she was exhausted, she continued to hold our family

together through unmatched love, dedication, and faith. I couldn‟t have asked for a more

perfect wife, friend, and soul mate. This dissertation belongs as much to her as to me.

iv

 To each of my committee members, thanks for being part of my DSc journey. With

all of your other commitments to the university, you dedicated time to take part in my

dissertation research and provided valuable insight into the completion of my degree.

 To Dr. Sarnikar for teaching me the meaning of evaluation and helping me to

overcome my fear of “validation”. You pushed me to validate my work and I‟m grateful

for the confidence it has inspired.

 To Dr. Rich Avery, thank you for agreeing to serve as the external member, for

always providing timely feedback, and for your openness and willingness to work with the

committee.

To Dr. Kevin Streff, who worked extremely hard on my behalf to secure my

position and acceptance into the D.Sc. program, for showing me the ropes when I first

arrived on campus, for being both a mentor and a friend over the past three years, and for

providing an excellent example of what can be accomplished through hard work and

dedication.

To Dr. Tom Halverson, Dean of the College of Business and Information Systems,

for taking a chance on a new teacher, for trusting me enough to give me classes which

pushed me outside of my comfort zone, and for giving me the freedom and power to teach

my classes in my own way. Because of the opportunity you have given me, I have found

my true calling in life; teaching.

To Dr. Josh Pauli, my friend and mentor, thank you for your countless hours of

guidance, at the office and at home, dissertation related, and other. For your quick turn-

arounds and willingness to drop everything to talk “diss”. Thanks for always reminding

me that “It‟s all worth it in the end!”. It‟s hard to believe how far we‟ve come from an idea

v

that was hatched in your garage on a hot August day. There is little doubt in my mind that

you‟ve read this dissertation more times than the rest of the world will read combined.

You‟ve taught me how to research and how to write. I‟m truly thankful for all of your

efforts.

 And finally; to wrap up on a lighter note and keep people guessing, I want to thank

(in no particular order and for reasons too varied to mention): my students, McDonalds,

Subway, and One Stop (all fast food actually), Mickeys, the Minnesota Vikings, the Tour

de France, DefCon, 2600 magazine, Linus Torvalds, Hoglund & McGraw, the Matrix (just

the first one), bicycles, XBOX 360 and PSP, Pandora Radio, and Lyle Lovett.

vi

ABSTRACT

The inability to gather, analyze and share various aspects of an attack has made it

difficult to effectively counter real-world information system attacks. The lack of a

formally defined vocabulary which can express an “attacker‟s-perspective” makes

collaboration of academic research difficult. These problems lead to significant confusion

by security managers and decision makers who are constantly bombarded by the media and

security vendors attempting to describe or prevent the latest attack (Hoglund & McGraw,

2004).

 The Common Attack Pattern Enumeration Classification (CAPEC) Release 1

Dictionary defines attack patterns as a formalized representation of a computer attacker‟s

tools, methodologies, and perspective (capec.mitre.org, 2007). CAPEC provides a formal

definition of each attack by providing descriptive textual fields. These fields, defined as

elements, provide explicit details for each identified attack pattern. The current CAPEC

release includes a list of 101 specific information system attacks. Each attack pattern may

include up to 30 elements to describe attack details.

 While CAPEC has addressed the need to create a standard for representing and

defining attacks from an attacker‟s perspective, issues pertaining to usability and

consistency exist. The goal of this research is to further refine and extend the CAPEC

framework in order to provide usability and consistency. Issues of usability arise when

CAPEC adopters attempt to leverage the Release 1 dictionary because of the sheer amount

of information presented (Engebretson, Pauli, & Streff, 2008). Furthermore, while the

vii

details of each attack pattern are extremely valuable, CAPEC does not provide a consistent

level of documentation for each element among the 101 attack patterns.

 Our approach includes three distinct processes to take the vast repository of CAPEC

information and create a usable and consistent model for leveraging attack pattern details in

system security configurations.

 Process one creates a framework for general parent mitigations for each attack

pattern. Parent mitigations are abstracted directly from the “solutions and mitigation”

element in CAPEC and adds the appropriate National Institute of Standards and

Technology (NIST) based Parent Mitigation element (Engebretson et al., 2008). These

solutions and mitigations improve the resistance of the target software and reduce the

likelihood of the attack‟s success. They also improve the resilience of the target software

and reduce the impact of the attack if it is successful.

 Process two re-includes a Parent level Threat as an attack pattern element. The

Parent Threat element places all 101 of the attack patterns into context without having to

manually interact with both the full Release 1 dictionary and the CAPEC Classification

Tree, thus ridding our approach of this manual research. We also use the Parent Threat

element to provide structure in our hierarchy-based graphical models. Textual attack

descriptions for viewing attack patterns are created to provide additional details about each

attack pattern in a consistent manner.

 Process three creates two security metrics, Knock-Out Effect (KOE) and Parent

Mitigation Power (PMP), to provide usability to CAPEC. The addition of security metrics

to our approach allows adopters to quickly and accurately leverage the vast amount of

viii

information provided by the CAPEC standard from both the individual attack pattern and

parent mitigation perspectives.

 The result of this dissertation is an approach for increasing the usability and

consistency of the CAPEC standard. The use of a taxonomy for cataloging and organizing

attacks can increase awareness and communication about attacks as well as provide a

framework for collecting consistent data about each attack (Hansman & Hunt, 2005).

 Process one abstracts nearly 400 unique mitigation strategies into one of 17

commonly accepted, Parent Mitigations. Process two re-includes the “Parent Threat”

element into the dictionary to provide consistency and context to each attack pattern. The

creation of graphical hierarchies and textual attack descriptions are used to provide CAPEC

with visual and textual representations for each attack without becoming overwhelming to

the user. The introduction of a defined hierarchy between descriptive elements assists with

learning and processing attack patterns. The significance of this process is a much clearer

and less convoluted picture of the attack, resulting in a more usable and appropriate

element set.

 Process three creates security metrics derived from defined mitigation strategies,

which creates a measurable numeric value which can allow security personnel to make

more informed security decisions, play "what-if" security scenarios, and quickly analyze

the cost-benefit for mitigation strategies.

ix

DECLARATION

I hereby certify that this project constitutes my own product, that where the

language of others is set forth, quotation marks so indicate, and that appropriate credit is

given where I have used the language, ideas, expressions or writings of another.

I declare that the project describes original work that has not previously been

presented for the award of any other degree of any institution.

Signed,

<Student name>

x

TABLE OF CONTENTS

DISSERTATION APPROVAL FORM ... ii

ACKNOWLEDGEMENTS ... iii

ABSTRACT ... vi

DECLARATION .. ix

LIST OF TABLES ... xii

LIST OF FIGURES ... xvii

1. INTRODUCTION ... 1

1.1. Background ... 1

1.2. Problem Definition ... 4

1.3. Objectives and Approach .. 7

1.4. Results and Significance ... 17

1.5. Outline .. 18

2. LITERATURE REVIEW ... 20

2.1. Risk Assessment ... 20

2.2. Attack Modeling ... 27

2.2.1. Attack Trees ... 29

2.3. Attack Patterns .. 33

3. ABSTRACTING PARENT MITIGATIONS .. 38

3.1. Abstracting Parent Mitigations from the CAPEC Dictionary 41

3.2. Results of Case Study ... 67

xi

3.3. Discussion and Validation .. 74

4. MODELING HIERARCHY-BASED ATTACK PATTERNS 77

4.1. Re-including Parent Threats ... 80

4.2. Trimming the Element Set .. 86

4.3. Building Hierarchy-Based Graphical Trees and Textual Attack Descriptions 88

4.4. Results of Case Study ... 94

4.5. Discussion and Validation .. 118

5. CREATING CAPEC-BASED SECURITY METRICS ... 127

5.1. Knock-Out Effect (KOE) .. 129

5.2. Parent Mitigation Power (PMP) ... 135

5.3. Case Study Results ... 141

5.4. Discussion and Results ... 173

6. CONCLUSIONS .. 176

6.1. Contributions and Applicability.. 176

6.2. Limitations .. 180

6.3. Future Work .. 180

REFERENCES CITED ... 182

APPENDIX I: 101 Attack Patterns: Complete ... 190

xii

LIST OF TABLES

Table Page

Table 1. NIST 800-53 17 Family Level Controls and Their Unique Identifier. 40

Table 2. Selected Parent Threats and Corresponding Attack Patterns for Case Study. 43

Table 3. Table Used to Abstract the Parent Mitigations. ... 46

Table 4. Individually Listed Controls for Attack Pattern 3. .. 46

Table 5. Matching NIST Child Mitigations for the First CAPEC Control for Attack Pattern

3. .. 49

Table 6. Addition of Parent Mitigations for the First CAPEC Control for Attack Pattern 3.

 ... 50

Table 7. Matching NIST Child Mitigations for the First and Second CAPEC Control for

Attack Pattern 3. .. 51

Table 8. Addition of Parent Mitigations for the First CAPEC Control for Attack Pattern 3.

 ... 51

Table 9. Matching NIST Child Mitigations for All CAPEC Controls Assigned for Attack

Pattern 3. .. 53

Table 10. Process 1 Results for Attack Pattern 3. .. 53

Table 11. Individually Listed Controls for Attack Pattern 75. .. 54

Table 12. Matching NIST Child Mitigations for the First CAPEC Control for Attack

Pattern 75. .. 55

Table 13. Addition of Parent Mitigation Column for the First CAPEC Control for Attack

Pattern 75. .. 55

Table 14. Matching NIST Child Mitigations for the First and Second CAPEC Control for

Attack Pattern 75. .. 57

Table 15. Addition of Parent Mitigations for the First CAPEC Control for Attack Pattern

75. .. 58

Table 16. Matching NIST Child Mitigations for Three CAPEC Control Assigned for

Attack Pattern 75. .. 60

xiii

Table 17. Abstracted Parent Mitigation Table for Three CAPEC Controls for Attack

Pattern 75. .. 60

Table 18. Matching NIST Child Mitigations for Four CAPEC Controls Assigned for Attack

Pattern 75. .. 63

Table 19. Abstracted Parent Mitigation Table for Four Attack Pattern 75 Solutions. 64

Table 20. Matching NIST Child Mitigations for all CAPEC Controls Assigned for Attack

Pattern 75. .. 66

Table 21. Complete Abstracted Parent Mitigation Table for Attack Pattern 75. 67

Table 22. Process 1 Results for Attack Pattern 87 (“Forceful Browsing”). 68

Table 23. Process 1 Results for Attack Pattern 94 (“Man in the Middle”). 69

Table 24. Process 1 Results for Attack Pattern 55 (“Rainbow Table Password Cracking”).

 ... 69

Table 25. Process 1 Results for Attack Pattern 60 (“Reusing Session ID‟s”). 70

Table 26. Process 1 Results for Attack Pattern 82 (“XMLDoS”). 71

Table 27. Process 1 Results for Attack Pattern 65 (“Passive Sniffing”). 71

Table 28. Process 1 Results for Attack Pattern 101 (“Server Side Includes”). 72

Table 29. Process 1 Results for Attack Pattern 10 (“Buffer Overflow via Environment

Variables”). .. 73

Table 30. Process 1Results for Attack Pattern 29 (“Race Conditions, Time of Check and

Time of Use”). ... 74

Table 31. Sample Table Used to Abstract the Parent Threat. .. 80

Table 32. Addition of Parent Threat Column for Attack Pattern 3 (“Using „Ghost‟

Characters to Bypass Input Filters”). ... 81

Table 33. Addition of Parent Threat Column for Attack Pattern 75 (“Manipulating Writable

Configuration Files”). .. 82

Table 34. Example of Textual Attack Description. .. 92

Table 35. Textual Attack Description for Attack Pattern 3 (“Using „Ghost‟ Characters to

Bypass Input Filters”). ... 93

xiv

Table 36. Textual Attack Description for Attack Pattern 75 (“Manipulating Writable

Configuration Files”). .. 94

Table 37. Addition of Parent Threat Column for Attack Pattern 87 (“Forceful Browsing”).

 ... 95

Table 38. Addition of Parent Threat Column for Attack Pattern 94 (“Man in the Middle”).

 ... 96

Table 39. Addition of Parent Threat Column for Attack Pattern 55 (“Rainbow Table

Password Cracking”). .. 96

Table 40. Addition of Parent Threat Column for Attack Pattern 60 (“Reusing Session

Id‟s”). ... 97

Table 41. Addition of Parent Threat Column for Attack Pattern 82 (XML Denial of

Service”). ... 98

Table 42. Addition of Parent Threat Column for Attack Pattern 65 (“Passive Sniffing”). . 98

Table 43. Addition of Parent Threat Column for Attack pattern 101 (“Server Side

Includes”). .. 99

Table 44. Addition of Parent Threat Column for Attack Pattern 10 (“Buffer Overflow via

Environment Variables”). .. 100

Table 45. Addition of Parent Threat Column for Attack Pattern 29 (“Race Conditions,

Time of Check Time of Use”). .. 101

Table 46. Textual Attack Description for Attack Pattern 87 (“Forceful Browsing”). 111

Table 47. Textual Attack Description for Attack Pattern 94 (“Man in the Middle”). 112

Table 48. Textual Attack Description for Attack Pattern 55 (“Rainbow Table Password

Cracking”). ... 113

Table 49. Textual Attack Description for Attack Pattern 60 (“Reusing Session ID‟s”). .. 114

Table 50. Textual Attack Description for Attack Pattern 82 (“XML Denial of Service”). 115

Table 51. Textual Attack Description for Attack Pattern 101 (“Server Side Includes”). . 116

Table 52. Textual Description for Attack Pattern 10 (“Buffer Overflow via Environment

Variable”)... 117

Table 53. Textual Attack Description for Attack Pattern 65 (“Passive Sniffing”). 117

xv

Table 54. Textual Description for Attack Pattern 29 (“Race Conditions Time of Check and

Time of Use”). ... 118

Table 55. Results of Usability and Consistency Study for Attack Pattern 43. 122

Table 56. Results of Usability and Consistency Study for Attack Pattern 67. 122

Table 57. Results of Usability and Consistency Study for Attack Pattern 34. 122

Table 58. Results of Usability and Consistency Study for Attack Pattern 86. 123

Table 59. Results of Usability and Consistency Study for Attack Pattern 9 123

Table 60. Results of Usability and Consistency Study for Attack Pattern 6 123

Table 61. Results from the Amount of Data Question. ... 124

Table 62. Results from the Usability / Format Question. .. 125

Table 63. Sample Table Used to Complete Step 1 of Process 3. 130

Table 64. Addition of KOE Column for Attack Pattern 3 (“Using Leading „Ghost‟

Character Sequences to Bypass Input Filters”). ... 130

Table 65. Addition of KOE Column for Attack Pattern 75 (“Manipulating Writable

Configuration Files”). .. 131

Table 66. Textual Attack Description with KOE for Attack Pattern 3 (“Using „Ghost‟

Characters to Bypass Input Filters”). ... 134

Table 67. Textual Attack Description with KOE for Attack Pattern 75 (“Manipulating

Writable Configuration Files”). ... 135

Table 68. Tabular Format for Presenting PMP Results. .. 141

Table 69. Addition of KOE Column for Attack Pattern 87 (“Forceful Browsing”). 142

Table 70. Addition of KOE Column for Attack Pattern 94 (“Man in the Middle”). 143

Table 71. Addition of KOE Column for Attack Pattern 55 (“Rainbow Table Password

Cracking”). ... 143

Table 72. Addition of KOE Column for Attack Pattern 60 (“Resuing Session ID‟s”). 144

Table 73. Addition of KOE Column for Attack Pattern 82 (“XML Denial of Service”). . 145

xvi

Table 74. Addition of KOE Column for Attack Pattern 65 (“Passive Sniffing”). 145

Table 75. Addition of KOE Column for Attack Pattern 101 (“Server Side Includes”). 146

Table 76. Addition of KOE Column for Attack Pattern 10 (“Buffer Overflow via

Environment Variables”). .. 147

Table 77. Addition of KOE Column for Attack Pattern 29 (“Race Conditions Time of

Check and Time of Use”). ... 148

Table 78. Textual Attack Description with KOE for Attack Pattern 87 (“Forceful

Browsing”). .. 158

Table 79. Textual Attack Description with KOE for Attack Pattern 94 (“Man in the

Middle”). .. 159

Table 80. Textual Attack Description with KOE for Attack Pattern 55 (“Rainbow Table

Password Cracking”). .. 160

Table 81. Textual Attack Description with KOE for Attack Pattern 60 (“Reusing Session

ID‟s”). .. 161

Table 82. Textual Attack Description for Attack Pattern 82 (“XML Denial of Service”). 162

Table 83. Textual Attack Description for Attack Pattern 101 (“Server Side Includes”). .. 163

Table 84. Textual Attack Description for Attack Pattern 10 (“Buffer Overflow via

Environment Variable”). .. 164

Table 85. Textual Attack Description for Attack Pattern 65 (“Passive Sniffing”). 164

Table 86. Textual Attack Description for Attack Pattern 29 (“Race Conditions Time of

Check and Time of Use”). ... 165

Table 87. Summarized Parent Mitigation Power. .. 172

Table 88. SANS Remediation Cost versus Process 3 KOE. .. 175

xvii

LIST OF FIGURES

Figure Page

Figure 1. High-Level Overview of Our Approach with Problem Addressed. 9

Figure 2. Trimmed Hierarchical Model for Viewing Attack Patterns. 12

Figure 3. Attack Tree for Accessing a Physical Safe adopted from “Secrets and Lies”

(Schneier, 2000). .. 30

Figure 4. Attack Tree with Cost-Per-Node Included adopted from “Attack Trees”

(Schneier, 1999). .. 31

Figure 5. Partial Attack Tree for Gaining Root Access to a Web Server adopted from

“Modeling Internet Attacks” (Tidwell et al., 2001). .. 32

Figure 6. Steps Required to Abstract Parent Mitigations from the CAPEC Release 1

Dictionary. ... 44

Figure 7. The Required Steps to Complete Process 2. ... 78

Figure 8. Benefit of Adding Parent Threat Element for Locating Related Threats. 84

Figure 9. Hierarchy Model for Attack Patterns and Elements. .. 90

Figure 10. Graphical Hierarchy Tree for Attack Pattern 3 (“Using „Ghost‟ Characters to

Bypass Input Filters”). ... 91

Figure 11. Graphical Hierarchy Tree for Attack Pattern 75 (“Manipulating Writable

Configuration Files”). .. 92

Figure 12. Graphical Hierarchy Tree for Attack Pattern 87 (“Forceful Browsing”). 102

Figure 13. Graphical Hierarchy Tree for Attack Pattern 94 (“Man in the Middle”). 103

Figure 14. Graphical Hierarchy Tree for Attack Pattern 94 (“Rainbow Table Password

Cracking”). ... 104

Figure 15. Graphical Hierarchy Tree for Attack Pattern 60 (“Reusing Session ID‟s”). 105

Figure 16. Graphical Hierarchy Tree for Attack Pattern 82 (“XML Denial of Service”). 106

Figure 17. Graphical Hierarchy Tree for Attack Pattern 101 (“Server Side Includes”). ... 107

xviii

Figure 18. Graphical Hierarchy Tree for Attack Pattern 10 (“Buffer Overflow via

Environment Variables”). .. 108

Figure 19. Graphical Hierarchy Tree for Attack Pattern 65 (“Passive Sniffing”). 109

Figure 20. Graphical Hierarchy Tree for Attack Pattern 65 (“Race Conditions Time of

Check and Time of Use”). ... 110

Figure 21. Individual Steps to Complete Process 3. .. 128

Figure 22. Graphical Hierarchy Tree with KOE for Attack Pattern 3 (“Using „Ghost‟

Characters to Bypass Input Filters”). ... 132

Figure 23. Graphical Hierarchy Tree with KOE for Attack Pattern 75 (“Manipulating

Writable Configuration Files”). ... 133

Figure 24. Attack Pattern Forest View with Maximum Number of Entries for Each Level.

 ... 137

Figure 25. Forest View Hierarchy with Additional PMP and Maximum Number of Entries

for Each Level. ... 138

Figure 26. Sample of the Forest View Including Multiple Hierarchies Funneling From

Parent Threat to PMP. .. 139

Figure 27. Graphical Hierarchy Tree with KOE for Attack Pattern 87 (“Forceful

Browsing”). .. 149

Figure 28. Graphical Hierarchy Tree with KOE for Attack Pattern 94 (“Man in the

Middle”). .. 150

Figure 29. Graphical Hierarchy Tree with KOE for Attack Pattern 94 (“Rainbow Table

Password Cracking”). .. 151

Figure 30. Graphical Hierarchy Tree with KOE for Attack Pattern 60 (“Reusing Session

ID‟s”). .. 152

Figure 31. Graphical Hierarchy Tree with KOE for Attack Pattern 82 (“XML Denial of

Service”). ... 153

Figure 32. Graphical Hierarchy Tree with KOE for Attack Pattern 101 (“Server Side

Includes”). .. 154

Figure 33. Graphical Hierarchy Tree with KOE for Attack Pattern 10 (“Buffer Overflow

via Environment Variables”). .. 155

xix

Figure 34. Graphical Hierarchy Tree with KOE for Attack Pattern 65 (“Passive Sniffing”).

 ... 156

Figure 35. Graphical Hierarchy Tree with KOE for Attack Pattern 65 (“Race Conditions

Time of Check and Time of Use”)... 157

Figure 36. Forest Hierarchy View Including all 11 Attack Patterns from Case Study. 166

Figure 37. Forest Hierarchy View Including all 11 Attack Patterns from Case Study with

17 Parent Mitigations. .. 167

Figure 38. Complete results of Case Study in Forest View. .. 168

Figure 39. Zoomed in View of Forest View for Purpose of Calculating PMP “x” Value. 169

Figure 40. Complete Case Study Results for PMP “x” Value ... 170

Figure 41. Complete Case Study Results Including KOE and PMP 171

Figure 42. Detailed Diagram of Our Approach ... 177

1

1. INTRODUCTION

1.1. Background

In the United States and around the globe, information systems make up a critical

component of communication, commerce, and control of the physical infrastructure

(Benioff & Lazowska, 2005). Along with data, infrastructure components include

networks, computers, routers, domain servers, switches, and transmission lines (Bishop,

2003). Taken together, these systems allow for the exchange and flow of information.

These connections can be tied directly to one another through dedicated paths or indirectly

through the ubiquity of interlaced, non-centralized networks. Unbounded networks, such as

the Internet, represent a growing collection of interconnected systems, devices and

organizations (Ellison et al., 1999). Because of their distributed nature and lack of central

control, unbounded networks increase both risk and exposure to abuse. It is not possible for

any system connected to an unbounded network to be completely immune from attack

(Ellison et al., 1997). The digital infrastructure of unbound networks provides new areas

and avenues for malicious exploitation leaving governments, corporations, and private

citizens vulnerable to such attacks. The protection and securing of this infrastructure is

vital, as their destruction would have an immediate impact on the economy, livelihood, and

psychology of the nation (Chakrabarti & Manimaran, 2002; Lewis, 2006).

The US Department of Homeland Security defines critical infrastructure into 11

sectors (Lewis, 2006).

2

1. Agriculture

2. Water

3. Public Health

4. Emergency Services

5. Defense Industrial Base

6. Telecommunications

7. Energy

8. Transportation

9. Banking and Finance

10. Chemical and Hazardous Materials

11. Postal and Shipping

Each of the 11 critical infrastructures relies heavily on the use of information

technology and interconnected systems through the use of unbounded networks (Ellison et

al., ; Rinaldi, Peerenboom, & Kelly, 2001).

Integrating security throughout the entire organization has long been understood as being

very important (Hoglund & McGraw, 2004).

A wide variety of standards and technologies have emerged to address the rise of

security risks. Generally, these standards and technologies are grouped into one of four

categories, which include: 1) standards and policies, 2) library and tools, 3) administrative

and system management, and 4) physical tools (Wang & Wang, 2003). Standards and

policies are a series of best practices that work to alleviate specific security issues.

Libraries and tools are integrated directly into the software development process and have

3

the ability to provide protection from the planning phase. Administrative and management

technologies include any tool that a system administrator would use to guard against

security attacks. Physical tools include physical and external hardware designed for the

specific purpose of security protection (Wang & Wang, 2003). Most security managers

attempt to provide system security by using a combination of these standards and

technologies. Unfortunately, these standards and technologies alone are not enough to fully

prevent all attacks from executing and causing harm to the software system.

The loss of confidentiality, integrity and availability of information systems due to

security problems such as Trojan horses, backdoors, denial of services, viruses, worms,

misuse, buffer overflows, and configuration errors continues to rise. Even though these

attacks have been studied, the appropriate mitigation strategies and solutions are not well

understood.

Each year, the number, severity and sophistication of computer, network, and

software security attacks continues to increase at an alarming rate (Hansman & Hunt,

2005). The ability to organize, comprehend and disseminate these attacks is a critical

component in defending against them. System administrators, managers, and security

experts must be able to understand the individual characteristics of each attack as well as

how the attacks relate to one another (Jajodia, 2007). As the complexity of systems,

networks and software continues to grow, the ability to keep track of attack specific details

and relationships becomes increasingly difficult.

The process of learning, dissecting and understanding computer, network, and

software security attacks requires an extra ordinary amount of effort. The need for a

standard which addresses multiple audiences is important as security depends on people in

4

many different capacities, such as requirement specifiers, designers, coders, users,

maintenance personnel, managers, and administrators (Neumann, 2004). The use of a

formal language and defined structure provides a modular approach which eases the

inclusion and discovery of new attacks as well as giving users an increased ability to

predict new attacks (DeLooze, 2004).

In March of 2007, the National Cyber Security Division of the Department of

Homeland Security in conjunction with Cigital and MITRE Corporation released an

official dictionary of 101 attack patterns. The Common Attack Pattern Enumeration and

Classification (CAPEC) Release 1 Dictionary provides an official schema and formal

representation for defining attack patterns (Barnum & Amit, 2006a; capec.mitre.org, 2007).

CAPEC further organizes attack patterns by gathering and displaying both primary and

supporting data elements for each identified attack (Sean Barnum, 2007) .

1.2. Problem Definition

 The inability to gather, analyze and share various aspects of an attack has made it

difficult to effectively counter real-world information system attacks. The lack of a

formally defined vocabulary which can express an “attacker‟s-perspective” makes

collaboration of research difficult. Simultaneously, this problem leads to significant

confusion by security managers and decision makers who are constantly bombarded by the

media and security vendors attempting to describe or prevent the latest attack (Hoglund &

McGraw, 2004).

 A taxonomy is needed in order to facilitate a comprehensive understanding of

information system attacks (Chakrabarti & Manimaran, 2002). While a wide variety of

5

network, computer and software security attack classifications have been suggested, very

few have attempted to address more than one specific audience (Lindqvist & Jonsson,

1997). CAPEC provides a useful framework for classifying attacks, but each of the 101

attack patterns provides approximately 30 descriptive fields, thus making it difficult to

implement. (Pauli & Engebretson, 2008a, 2008b).

While CAPEC has addressed the need to create an industry standard for

representing attacks from an attacker‟s perspective, several issues pertaining to usability

and consistency remain as introduced below.

1. CAPEC’s Release 1 Dictionary is inconsistent level of information for

“Solutions and Mitigation” element. CAPEC includes nearly 400 individually

prescribed controls in the “Solutions and Mitigations” element. These controls can

be used to mitigate or reduce the effects of the defined 101 attack patterns. The

current level of detail documented in the “Solutions and Mitigations” element is

inconsistent. Some attack patterns provide an extremely granular level of detail. For

example, one of the prescribed mitigations for attack pattern 42 (MIME

Conversion) calls for disabling “the 7 to 8 bit conversion by removing the F=9 flag

from all Mailer specifications in the sendmail.cf file.” (capec.mitre.org, 2007). This

level of detail may lead CAPEC adopters to believe that they need not be concerned

with MIME Conversion attacks if they implement a Microsoft Exchange server

rather than a Sendmail-based email server. Such a mistake could lead to an

increased attack exposure and a false sense of security. The reverse is also true;

some attack patterns provide only a high level overview of potential mitigation

strategies. Attack pattern 9 (Buffer Overflow in Local Command-Line Utilities)

6

includes the “Do not unnecessarily expose services” mitigation (capec.mitre.org,

2007). This is too vague and undefined to be of use. The Solutions and Mitigations

is also inconsistent in its specificity of mitigation. As demonstrated in the example

above some solutions are presented at the architectural level while others are

presented at the system or product level.

2. CAPEC’s Release 1 Dictionary is inconsistent use of elements to describe

attack patterns. In many cases attack pattern elements are missing completely.

CAPEC‟s disjointed structure leads to confusion and frustration when attempting to

make use of the current CAPEC Dictionary (Engebretson et al., 2008). The

inconsistent use of elements makes it problematic to discern the relationship, if any,

between the descriptive fields. The lack of a defined and consistent structure makes

it difficult for new adopters to fully understand the context of each attack. This

problem is exacerbated when descriptive elements are missing. The current

inconsistent use of elements and presentation of information represents a significant

challenge to increased adoption of CAPEC (Engebretson et al., 2008; J Pauli &

Engebretson, 2008a, 2008b).

3. The volume of information presented to users is overwhelming. CAPEC defines

101 unique attack patterns. Each attack pattern can make use of up to 28 elements

to describe attack details. Given the number of attacks and volume of information

presented about each attack, deep understanding of the CAPEC library is difficult

(Pauli & Engebretson, 2008a). This issue is further complicated by the inability to

7

quickly and accurately discern related attack patterns. Ideally, a user interested in

CAPEC attack patterns should be able to quickly and accurately identify the threat

family that the particular attack pattern belongs to. The lack of a formally defined

“Parent Threat” element results in a disjointed presentation. The parent threat data

is currently available via the CAPEC website, but it is not part of the 101 formal

attack pattern definitions. This structure leads to confusion and frustration when

attempting to make use of the current CAPEC Dictionary (Engebretson & Pauli,

2008).

4. CAPEC R1 does not include associated metrics to measure the effectiveness of

chosen mitigation strategies. The CAPEC Release 1 Dictionary does not include

any metrics which can be used to measure the effectiveness of prescribed mitigation

strategies. Metrics are a critical component in aiding security related decisions. The

lack of a defined metric remains a significant hurdle to the widespread adoption of

CAPEC outside of academia. The creation of a metric would provide value for

many potential CAPEC adopters including software designers, administrators,

managers and researchers (Engebretson & Pauli, 2008).

1.3. Objectives and Approach

Our objective is to develop and demonstrate an approach that meets the needs of the

problem definition.

1. Create a Parent Mitigation element for inclusion into the CAPEC standard to

provide consistency to the currently given child mitigations. This objective will

8

simultaneously create a manageable and serviceable list of accepted mitigation

strategies.

2. Creation of an enhanced CAPEC view to augment the existing CAPEC standard by

re-include the Parent Threat element into the view to provide logical grouping of

the 101 Attack Patterns at the Parent Threat level.

3. Further refine the enhanced CAPEC view by trimming the element set. Only

descriptive elements which have an entry in each of the 101 attack patterns will be

considered for inclusion into the view. This will provide a consistent framework

for viewing the details of each attack pattern.

4. Create a graphical representation and textual description of each attack pattern for

purpose of viewing information in a condensed and meaningful way. This will

provide contextual information for each attack.

5. Create security metrics from the CAPEC standard which can be used to make

security related decisions. These metrics provide a numeric value to help make

security decisions for different situations that include specific threats.

Our objectives are accomplished through the creation of an approach that includes

three processes which provide a level of consistency and standardization to the CAPEC

library that it had previously lacked. Our models specify which information needs to be

documented for each attack and how that information is documented. We also provide

context through the use of standardized threats and mitigations. These threats and

mitigations frame each attack and provide relationship data between each attack element.

9

Our approach is best understood when broken down into three distinct processes which

provide a level of consistency to make the CAPEC library more useable for multiple

audiences including requirement specifiers, designers, coders, users, maintenance

personnel, managers, and administrators. A breakdown of our approach is introduced in

Figure 1.

Figure 1. High-Level Overview of Our Approach with Problem Addressed.

Process one creates a framework for introducing a series of general Parent

Mitigations for each attack pattern. Attack patterns can be defined as a formalized

representation of an attacker‟s perspective including specific and clear terminology

(Barnum, 2008). Parent mitigations are abstracted directly from the “solutions and

mitigation” element currently defined in the CAPEC Release 1 Dictionary. CAPEC

provides the following definition for the “Solutions and Mitigations” element: “the actions

or approaches that can potentially prevent or mitigate the risk of this type of attack. These

solutions and mitigations are targeted to improve the resistance of the target software and

10

thereby reduce the likelihood of the attack‟s success or to improve the resilience of the

target software and thereby reduce the impact of the attack if it is successful” (Barnum,

2008).

This element is a required field in order to make the standard effective for

mitigating attacks (Engebretson et al., 2008). Ideally, a user concerned with a given attack

pattern must be able to review the CAPEC standard for the particular attack and formulate

a plan for reducing exposure to the attack. However, as previously highlighted some attack

patterns provide details that are too granular while others provide information that are too

vague. The objective of this process is to leverage this vast repository of attack pattern

information and add an addition layer of information thus providing a uniform standard for

mitigation strategies for each attack pattern.

Process one adds the appropriate NIST-based Parent Mitigation element. In the first

step, mitigations are listed individually from the CAPEC “Solutions and Mitigation”

element to create a list. Each mitigation is then matched up to a corresponding NIST Child

Element from the NIST 800-53r2 control list (NIST, 2007). The final step in Process 1 is to

abstract the NIST Child level control to its corresponding Parent level control. The Parent

level control is then documented as a new mitigation element. This process is repeated for

each control listed under the current CAPEC “Solutions and Mitigation” element.

Just as adding a level of consistency to the mitigation element is an important step

in increasing usability, another benefit of this process is the creation of a unifying Parent

Threat element (Engebretson et al., 2008). While this information is available via the

CAPEC website, it is currently separated from the formal attack pattern definitions

(capec.mitre.org, 2007). Process 2 re-includes a Parent level threat as an attack pattern

11

element. The goal of adding the Parent Threat element to the formal definition set is to

assist in placing all 101 of the attack patterns into context without having to manually

interact with both the full Release 1 dictionary and the CAPEC Classification Tree. Adding

Parent Threat as a formal element increases usability by simplifying the process of

identifying threat families. We also use the Parent Threat element to provide structure and

introduce the top node in our hierarchy-based model for viewing attack patterns. The

purpose of this hierarchy is to logically group each attack pattern with related attack

patterns from the same Parent Threat.

An illustration of this point can be seen by examining attack pattern 101, “Server

Side Includes”. The CAPEC website provides the following elements to describe Attack

Pattern 101: Attack Pattern ID, Typical Severity, Description, Attack Pattern Prerequisites,

Typical Likelihood of Exploit, Methods of Attack, Examples-Instances, Attacker Skill or

Knowledge Required, Resources Required, Probing Techniques, Solutions and Mitigations,

Attack Motivation Consequences, Context Description, Injection Vector, Payload,

Activation Zone, Payload Activation Impact, Related Weaknesses, Related Security

Principles, Related Guidelines, Purpose, CIA Impact, Technical Context, and Source.

In order to determine the general threat classification, a CAPEC user is forced to

navigate away from the “Full CAPEC Dictionary” on the CAPEC web site and search the

“CAPEC Classification Tree”. The user must then wade through three levels of detail to

uncover “Server Side Includes” (attack pattern 101) as a member of the “Injection” threat

family.

Our hierarchy structure also increases usability by documenting relationships

between the descriptive elements. In order to facilitate learning and foster a deeper

12

understanding of attack patterns, our model reduces the number of descriptive elements

displayed. Using a smaller number of elements presents adopters with a more manageable

and usable dataset. Trimming the current CAPEC dataset and presenting the elements in a

hierarchical fashion was a technique previously used to introduce students to the concept of

attack patterns without overwhelming the audience (Pauli & Engebretson, 2008a). The

trimmed element set provides usability, consistency, structure, and logical organization to

the model. The top of this model will include the 11 Parent Threats and be tied together at

the bottom of the hierarchy by 17 Parent Mitigations which were introduced in Process 1.

An example of this model is shown in Figure 2.

Figure 2. Trimmed Hierarchical Model for Viewing Attack Patterns.

The hierarchy can be traversed in either direction. Each attack pattern is framed by

the use of Parent Threats at the top of the hierarchy and Parent Mitigations at the bottm.

These elements serve to provide natural grouping and context. Process 3 creates two

13

security metrics as part of each hierarchy and textual attack description. Our first metric,

Knock-Out Effect (KOE), is the total number of Parent Mitigations abstracted in Process 1

for each attack pattern. KOE provides a metric for quickly determining the number of

Parent Mitigations needed to fully mitigate an individual attack pattern. This metric

remains the same for each attack pattern no matter what the system configuration is.

Our second metric, Parent Mitigation Power (PMP), is calculated at the conclusion

of Process 3. PMP is a numeric summary expressing two types of mitigation in a “X.Y”

format, where:

 X = Number of unique attacks that the parent mitigation helped to mitigate.

 Y = Total number of child mitigations that can be traced back to the parent

mitigation.

 It is important to note the goal of our approach is not to challenge or advocate

replacement of the current CAPEC standard. Original element details will always be

readily available in addition to the hierarchy and textual attack descriptions that our

approach creates.

Our approach will make use of the design science research methodology.

Specifically use the seminal work which formalized these concepts for the IS world to

ensure that our methodology is appropriately applied (Hevner, March, Park, & Ram, 2004).

Design science was chosen because of its natural fit with our approach. The goal of design

science is to extend human and organizational capabilities through the creation of artifacts

and models. Our artifact is a model which combines two federally funded standards, NIST

and CAPEC, into a singular consistent framework.

14

Our work can be evaluated by examining each of the seven guidelines prescribed by

Hevner et al., (2004).

 Guideline 1: Design as an Artifact

o Requirement: “Design-science must produce a viable artifact in the form of

a construct, a model, a method, or an instantiation.” (Hevner et al., 2004)

o How our work meets Guideline 1: Our work provides an innovative

solution, in the form of a model, which solves a previously identified and

unsolved problem.

 Guideline 2: Problem Relevance

o Requirement: “The objective of design-science research is to develop

technology based solutions to important and relevant business problems”

(Hevner et al., 2004)

o How our work meets Guideline 2: Our work is based on problems which

have been identified, discussed, and accepted into the knowledgebase.

Specifically, CAPEC is too large and inconsistent to be useful outside of a

theoretical context. (Pauli & Engebretson, 2008a, 2008b).

 Guideline 3: Design Evaluation

o Requirement: “The utility, quality, and efficacy of a design artifact must be

rigorously demonstrated via well-executed evaluation methods.” (Hevner et

al., 2004)

o How our work meets Guideline 3: Our work can be viewed as functional,

complete, and consistent. Furthermore our work was completed in an

15

iterative sequence which allowed several cycles of incremental activity and

evaluation while the model was being developed. Our model solves each of

the identified problem statements. We make use of informed argument,

experimental and analytical validation techniques. We provide details of the

validation techniques in the Discussion section of each chapter. We provide

further validation through the execution and simulation of our model by use

of a case study comprised of 11 attack patterns.

 Guideline 4: Research Contributions

o Requirement: “Effective design-science research must provide clear and

verifiable contributions in the areas of the design artifact, design

foundations, and/or design methodologies.” (Hevner et al., 2004)

o How our work meets Guideline 4: Our approach provides new and

interesting contributions by providing an artifact which solves a heretofore

unsolved problem. Our contribution is a model. This design artifact applies

existing knowledge in new and innovative ways.

 Guideline 5: Research Rigor

o Requirement: “Design-science research relies upon the application of

rigorous methods in both the construction and evaluation of the design

artifact.” (Hevner et al., 2004)

o How our work meets Guideline 5: “The artifact itself must be rigorously

defined, formally represented, coherent, and internally consistent” (Hevner

et al., 2004). Our work clearly follows this guideline through the creation of

a defined, represented, consistent model which is presented in Figure 1. We

16

provide further rigor through application of the knowledgebase. Both

CAPEC and NIST are well established, highly respected standards. Our

work relies on the use and application of these bodies to provide rigor.

 Guideline 6: Design as a Search Process

o Requirement: “The search for an effective artifact requires utilizing

available means to reach desired ends while satisfying laws in the problem

environment.” (Hevner et al., 2004)

o How our work meets Guideline 6: Our artifact was created through an

iterative process. Our development cycle consisted of construction,

feedback, and incorporation of feedback into a new model. This process

was repeated over a half a dozen times.

 Guideline 7: Communication of Research

o Requirement: “Design-science research must be presented effectively both

to technology-oriented as well as management-oriented audiences.” (Hevner

et al., 2004)

o How our work meets Guideline 7: This dissertation and the subsequent

academic publications serve to provide communication to technical

audiences. Our approach as provided in this dissertation is well documented

and can be used to establish repeatability for further research. The scenarios

provided in each chapter, future grant applications, and whitepapers will

provide communication to business oriented audiences. Research

communication is also being achieved by incorporating the research results

into teaching.

17

1.4. Results and Significance

 The result of this dissertation is an approach for increasing the usability and

consistency of the CAPEC standard. The use of a taxonomy for cataloging and organizing

attacks can increase awareness and communication about attacks as well as provide a

framework for collecting consistent data about each attack (Hansman & Hunt, 2005).

While the current CAPEC standard provides a significant amount of information, there are

tremendous variations in the depth and breadth of the “Mitigations and Solutions” currently

outlined for each attack pattern. The result of our approach is the abstraction of nearly 400

unique mitigation strategies into one of 17 commonly accepted and federally standardized

Parent Mitigations.

The introduction of a “Parent Mitigation” element into the dictionary provides

consistency to the CAPEC Release 1 Dictionary. Because the current “Mitigation and

Solutions” element provides valuable information, we are not advocating its removal. One

intention of our approach is to add the “Parent Mitigation” element to provide a more

manageable number of mitigations. This is a valuable step to the increased adoption and

wide spread acceptance of the CAPEC Release 1 Dictionary.

The re-inclusion of a “Parent Threat” element into the dictionary provides

consistency and context to the CAPEC Release 1 Dictionary. We present a new model for

presenting CAPEC attack patterns by refining nearly 30 descriptive elements to provide a

standardized set of useable and consistent elements. The creation of a graphical hierarchy

provides CAPEC with a new visual representation for each attack without becoming

overwhelming to the user. The introduction of a defined hierarchy between descriptive

elements assists with learning and processing attack patterns. The significance of this

18

process is a much clearer and less convoluted picture of the attack, resulting in a more

usable element set.

The creation of security metrics derived from defined mitigation strategies increases

the usability of CAPEC for several audiences. This process creates measurable numeric

values which can allow security personnel to make more informed security decisions and

play "what-if" scenarios.

A deep understanding of attack patterns can lead to the permeation of security

throughout an organization, as well as heighten awareness of known exploits,

vulnerabilities and weaknesses (Gegick & Williams, 2005). Integrating attack pattern

knowledge into managerial level IT security decisions can result in a higher level of

security by creating less exposure to identified bugs and known flaws (Hoglund &

McGraw, 2004). Attack patterns can be used by developers, administrators and managers

to provide a deeper understanding of security (S. Barnum, 2007).

1.5. Outline

 The study is structured where Chapter 2 covers related work. Chapter 3 covers

Process 1 of our approach for abstracting Parent Mitigations from the CAPEC attack

pattern dictionary. Chapter 4 covers Process 2 of our approach of formally re-including the

Parent Threat element into the attack dictionary. Chapter 4 also covers the new models

created for viewing and using CAPEC attack patterns. This process includes trimming the

element set, defining a hierarchy, and creating a graphical representation and textual attack

description for each attack. Chapter 5 covers the creation, explanation, and use of our

19

Knock-Out Effect and Parent Mitigation Power security metrics. This is Process 3 of our

approach. Chapter 6 is the Conclusions reached from this study.

20

2. LITERATURE REVIEW

2.1. Risk Assessment

The identification and mitigation of risks to information systems are paramount to

the sustainability and survival of organizations (Rowe, 1977; Stoneburner, Goguen, &

Feringa, 2002). The study and analysis of risk has become common practice throughout

several industries including medical, insurance, earth science, financial, investment, public

health, environmental, engineering and economics. The concept of studying, analyzing and

scientifically framing the risk assessment procedure specifically for use in protecting and

safeguarding information systems has been grossly under-managed and underutilized

(Coleman & Jamieson, 1991; Farbey, Land, & Targett, 1992; Willcocks, 1992).

Information technology risks can be defined as the probability of a threat to a

system, the probability of a vulnerability being discovered, or the probability of equipment

or software malfunctioning (Whitman & Mattord, 2003). Risk assessment is an analysis

that identifies the risks and protection requirements for the system through a formal

process. It is also a key component of risk management that brings together important

information for officials regarding the identification of threats and vulnerabilities and

includes the potential impact on an organization‟s operations, assets or individuals which

can result in the loss of confidentiality, integrity, or availability (Grance, Hash, & Stevens,

2003; McCumber, 2004). By identifying and computing the probability of a threat

occurring and separately determining the ramifications of the particular threat, an

organization can begin to determine its risk level (Blakley, McDermott, & Geer, 2001).

21

Early information system risk assessment models can be traced back to system

security modeling. Security modeling allowed for the definition of relationships. In this

model, users were defined as subjects and data was defined as objects. This process

allowed for enforcing the state of information within a system (Bell, 1996).

Attackers are constantly evolving their attacks and technologies through the

creation of new tools and the discovery of new vulnerabilities (Recipes). In order to be

effective against such attackers, the risk assessment process must be updated regularly and

allow for flexibility in dealing with these new threats and vulnerabilities (Myerson, 2002).

The risk assessment process defines threats as that which could cause potential harm to

resources or the organization; while a vulnerability is defined as weakness in the asset

which could be exploited by a threat (Ciampa, 2005; Hansche, Berti, & Hare, 2003;

Hoglund & McGraw, 2004).

The keys to completing a viable and accurate risk assessment are clear and

complete documentation of the information system, its relationship to other systems, and

the information system‟s relationship to the business itself (P. Fung & Longley, 2003). The

accurate documentation of each system and its contents naturally leads to a more precise

risk assessment. Knowing where your critical information is stored and who has access to it

is equally important as knowing the probability and impact of a particular threat to a

system. Often times this documentation process is overlooked or simply not addressed.

Because media outlets tend to sensationalize hacker activity and malicious code such as

viruses and worms, many companies disproportionately invest in attempting to mitigate

these types of risks(P. Fung & Longley, 2003). The blending of these two points can lead

to disastrous results. A clear illustration of this problem was brought to light recently when

22

a laptop containing the confidential records of 26.5 million retired veterans was stolen from

the home of a Veterans Affairs employee. The largest security breach in the history of the

United States Government was not the result of nefarious hacker activity or the use of some

exotic code exploit, rather it was simple theft (Burger, 2006). Proper documentation and

risk assessment would have prevented the employee from leaving the government facility

with such a valuable asset.

As businesses continue to grow and become more dependent on large scale

computing systems, managers and organizations must learn to effectively identify and

assess risks to these systems. Organizations have several choices and methodologies for

attempting to quantify risk. Bayesian Probabilistic Risk Analysis is the process of risk

management which includes identifying system weaknesses and reducing the probability of

the particular system from being impacted by the exposed weaknesses (Ali, Hilton, &

Peter, 1985). Bayesian risk analysis was originally developed for use in the nuclear power

industry. A measurement of risk can be determined by answering four fundamental

questions (Ali et al., 1985; Bedford & Cooke, 2001).

 What can go wrong?

 How frequently can it be expected to happen?

 What would be its consequences?

 How certain are we about the answers to the first three questions?

While much has changed through the use of advanced computer modeling and the

creation of complex risk assessment software, the answers to these four questions can still

provide a highly useful and accurate level of information system risk analysis.

23

 The ability to defend an information system depends upon fully understanding the

risks associated with that system and applying controls commensurate with the defined

level of risk (Holden, 2003). This process of risk assessment helps organizations and

managers appropriately spend time and money defending and protecting assets which need

it most. In this way, risk assessment can be seen as a productivity tool that saves the

organization time, money and reputation.

 While several common underlying themes are often found in the risk assessment

process such as, risk = impact x probability, there are often many different and widely

accepted models used to complete the actual risk assessment (Woerner, 2007). Some

methodologies focus on system failure to help identify risk (Gautam, Kenneth, &

Kazuhiko, 1989). These models present a qualitative modeling technique to enhance the

risk assessment process and facilitate the design of a risk assessment system. This approach

helps overcome uncertainties associated with the unpredictability of human behavior and

the failure rate of information systems, which must be factored into an overall risk rating

(Gautam et al., 1989).

Other approaches call for the combined use of a knowledge based system and

qualitative problem solving which can result in the creation of a generic and portable risk

assessment tool (Gautam et al., 1989). A prevalent theme in the use of such knowledge

based systems is the incorporation of event and fault trees. Event and fault tree analysis

involves identifying unique potential failure as individual “tree-roots or trunks”, then

properly identifying each of the potentially impacted system as a branch on the tree. The

result of this concept is that given a particular failure, a detailed list of all potentially

impacted systems can be accurately generated (Haasl, Roberts, Vesely, & Goldberg, 1981).

24

One of the primary advantages of developing a knowledge based system using fault tree

analysis is that it provides for an excellent tool to model “what-if” scenarios. By examining

the potential system failures, organizations and managers can get a broad and accurate

picture of potential risk.

Another popular method for measuring risk is through the concept of Annualized

Loss Expectation. Annualized Loss Expectation helps to quantify risk in terms of a

financial definition where companies predict a specific value or cost associated with the

occurrence of a particular risk (Blakley et al., 2001). Using this model, an organization

calculates risk by multiplying a specific dollar amount against the probability of the risk‟s

occurrence. Cost is estimated by totaling both the direct and indirect dollar amounts over

the course of one year, which are related to the occurrence of the risk. Examples of direct

and indirect dollar amounts include physical damage, equipment replacement, labor costs

to repair, decreased employee productivity, lost sales, reputation damage, and legal costs.

Probability is determined by weighing the likelihood of a risk event on a 1 to “x” scale.

This probability is then multiplied by the cost associated with the annual loss resulting in a

final dollar value which is representative of risk for the particular system (Visintine, 2003).

Others methodologies have taken a different approach to defining the risk

assessment process. One model defines risk assessment in six distinct steps (Ye, Barry, &

Betsy, 2006). This approach begins with identifying a cost factor rating system. Once the

rating system has been defined, risks are identified. The next step is assigning risk

probability. This is followed by analyzing risk severity where an overall risk can be

normalized on a scale from 1-100. The scale of 1-100 can then be disseminated into the

following categories. Systems with an overall risk from 0-5 are considered “low risk”, 5-15

25

are marked as “moderate risk”, 15-50 are said to be “high risk” while 50-100 should be

labeled as “very high risk”. The final step is to offer ways of reducing the presented risk

(Ye et al., 2006).

Not every framework for assessing risk is concerned with both impact and

probability. Some risk assessments focus solely on the probability of the risk occurring

(Benoit, Michel, & Suzanne, 2005). This type of risk assessment can be especially useful

when the impact or occurrence of a particular risk results in an irreversible state. The

medical community provides several examples of this type of risk assessment. Often times

medical risk assessments will focus solely on the probability of a particular disease because

the resulting impact is death. In these cases, because the impact is irreversible, it is no

longer given consideration (Benoit et al., 2005).

Many organizations mistakenly assume that increased spending on security

investments will lead to a direct decrease in overall information system risk. The level of

risk obtained from an organization‟s completed risk assessment often determines the

organization‟s willingness to invest in appropriate security controls (Cavusoglu, Mishra, &

Raghunathan, 2004). This type of organizational philosophy illustrates the importance of

an appropriate and accurate risk assessment as there are clear implications to an

organization‟s financial health and bottom line.

The process of assessing risk is often too difficult to perform accurately without the

use of automated software. Because of the complexity involved in accurate risk assessment,

there is a need for the creation of an automated system (Hamdi & Boudriga, 2003).

Several standards have been introduced which can help organizations understand

and complete the risk assessment process. ISO 27001, COBIT and NIST each provide

26

guidance to ensure that risk assessment is handled appropriately (Brenner, 2007; NIST,

2002; von Solms, 2005).

 Completing an accurate risk assessment is both valuable and necessary for an

organization and its ability to properly protect its information system assets. Upon

completion of the risk assessment process the organization and management staff will be

ready to make precise and informed decisions with regard to budgeting, staffing and

resource management. A well defined risk assessment leads to a deeper and more complete

understanding of both the overall level of risk associated with the implemented technology

and the risks associated with each individual system.

Upon completion of the risk assessment process, organizations have four options

when addressing each risk (Blakley et al., 2001).

1. Liability Transfer: This occurs when a business is able to convey the risk to another

party outside of the organization, effectively removing the responsibility or

accountability for the particular risk. Most often this is accomplished through use of

a disclaimer or other type of binding agreement.

2. Indemnification: Indemnifying risks is effectively insuring the organization against

the occurrence of a particular risk.

3. Mitigation: This is the process of reducing identified risks through procedure,

processes, or controls. Mitigations can be used to specifically reduced the impact,

probability, or both impact and probability of a risk.

4. Retention: This is an organization‟s acceptance of a given risk. The specific risk is

acknowledged and documented during the risk assessment process but no further

steps are taken to reduce the current level of risk. This path is typically chosen

27

when the probability or impact of a risk occurring is very small. Retention is also a

viable option when the “return on risk reduction spending” does not produce a

meaningful return.

 Accurate, complete, and meaningful risk assessment of a business‟s information

systems is a vital function for every organization across all industries. As standards

continue to mature, processes continue to evolve, and new forms of risk assessment are

introduced, organizations must find way to make sense of it all. A thorough risk assessment

process gives companies a greater degree of power by ensuring risks have been accounted

for and accurate, meaningful controls are in place (Peltier, 2005).

2.2. Attack Modeling

Modeling is a technique for organizing and viewing the details of a system or

process. Models can provide relevant information through the process of abstraction and

demonstration of relationships (Booch, Rumbaugh, & Jacobson, 1999). The goal of

modeling is to better understand the systems or processes we are studying; modeling

accomplishes this goal by providing the following (Booch et al., 1999; Scheer &

Habermann, 2000).

 Aiding in the visualization of a system or process

 Specifying the structure or behavior of a system or process

 Providing a template which can be used to further advance, create, or study a

system or process

28

 Providing documentation

Attack modeling is an approach for documenting commonly occurring computer,

hardware, software, or network attack details while providing information in a structured

and reusable form (Moore, Ellison, & Linger, 2001). Attack models can be used by system

administrators, security analysts, system developers and managers. Attacks on information

systems are often described via a single vulnerability or exploit and therefore lack the

descriptive depth needed to fully capture the complexity and detail of most attacks

(Templeton & Levitt, 2001). Utilizing modeling to describe attacks can help to fill in the

appropriate level of detail.

Proper techniques for avoiding and mitigating information system attacks require an

awareness of the risks associated with a particular system. Knowledge sharing through

modeling can be useful for increasing awareness and collaboration of information system

attack details (Steffan & Schumacher, 2002). Analysis, prediction and collaboration of

attacks are valuable tools in the effort to protect information systems. The use of models to

describe attacks can be extremely helpful in providing these tools (Daley, Larson, &

Dawkins, 2002). A coherent model of exploits and vulnerabilities provides a solid

foundation which can be used to educate system administrators as well as offering valuable

details for appropriately responding to such attacks (Tidwell, Larson, Fitch, & Hale, 2001).

Attack Trees and Threat Models are two examples of common techniques used to

organize and present details of attacks. Attack Trees offer a goal-oriented perspective for

modeling the behavior and effects of an attack while Threat Modeling is often used to

29

provide descriptions of threats at the code level (Schneier, 2000; Swiderski & Snyder,

2004).

2.2.1. Attack Trees

Attack trees provide a formal and systematic way of describing threats and counter

measures to threats for a given information system (Schneier, 1999). Attack trees provide

users with an ability to make calculations and compare various types of attacks. These

graphical representations also allow us to visualize, enumerate and weigh information

system attacks (Salter, Saydjari, Schneier, & Wallner, 1998). Each attack tree consists of a

root and leaf structure. The end goal of the attack is represented as the tree‟s root while the

various ways of achieving that goal are represented by its leaves. Despite this apparent

simplicity, attack trees can be extremely useful in threat analysis (C. Fung et al., 2005). It is

important to note that some leaves have sub-nodes (child-leaves). This structure indicates

there are multiple steps needed to accomplish the goal. Each leaf node can be either

conjunctive or disjunctive in nature (Tidwell et al., 2001). Conjunctive leaves are

represented using an “AND” and inform the user that all of the child nodes must be

completed in order to satisfy their parent node. Disjunctive leaf nodes are considered stand-

alone alternatives and do not require other leaves to be satisfied before accomplishing its

parent node. Disjunctive leaf nodes are represented using the “OR” designation. Upon

completion of the attack tree each node can be evaluated and assigned a value of either “I”

for impossible or “P” for possible depending on the probability of the attack. An example

of a simple attack tree is introduced in Figure 3 (Schneier, 2000).

30

Figure 3. Attack Tree for Accessing a Physical Safe adopted from “Secrets and Lies” (Schneier, 2000).

Figure 3 illustrates the classic example of an attack against a physical safe

(Schneier, 2000). The goal, represented by the root, is to gain access to a physical safe

(open safe). The leaves, listed individually below the goal, represent different approaches

for achieving the goal.

Upon completion of the attack tree, it is possible to assign a cost to each node. Doing so

allows for further analysis and comparison of the various attack costs. Evaluating the costs

of cyber and network attacks is an integral part of understanding both the risks and their

mitigating countermeasures (Futoransky, Notarfrancesco, Richarte, & Sarraute). Attackers

often demonstrate a negative correlation between the use of an attack and its cost. The

insight gained from this process can be extremely helpful in determining which specific

31

attacks an information system may face (Schechter, 2005). Figure 4, introduces the costs

associated with each node of the “Open Safe” attack tree (Schneier, 1999).

Figure 4. Attack Tree with Cost-Per-Node Included adopted from “Attack Trees” (Schneier, 1999).

As shown in Figure 4, it is possible to “Cut Open the Safe” for $10,000 while

“Learning Combo” through eavesdropping would cost the attacker $60,000 (Listening to

Conversation + Get Target to State Combo). This type of analysis can be helpful in

determining which specific attacks you are likely to encounter.

Attack trees can also be useful for examining technical attacks and environments.

Consider the various scenarios in which an attacker could gain root (administrative) access

to a web server. Figure 5, introduces a partially completed attack tree for completing this

attack (Tidwell et al., 2001).

32

Figure 5. Partial Attack Tree for Gaining Root Access to a Web Server adopted from “Modeling Internet Attacks”

(Tidwell et al., 2001).

In this example, attack tree nodes are assigned weighted values to represent the

likelihood of success in achieving the root goal. Assigned values range from 1 (Least

Likely) to 10 (Most Likely). The “Steal Password” leaf is made up from the children nodes

“Sniff Network” and “Root Telnet”. The lowest child score is inherited by the parent to

signal the path of least resistance. As a result of this process, “Steal Password” would be

assigned a value of 3. Ranking the listed attacks would result in the following (From “Most

Likely” to occur to “Least Likely” to occur).

 Sendmail Exploit (6)

 Steal Password (3)

 Poor Configuration (2)

Attack trees provide an effective aid for modeling threats (Mauw & Oostdijk,

2005). The ability to clearly model and understand threats is vital to today‟s security

33

professionals. Carnegie Mellon CERT shows a dramatic growth in the number of new

vulnerabilities reported each year. 262 new vulnerabilities were catalogedin 1998, while

7236 new vulnerabilities were recorded in 2007 (CERT, 2007). As the number of reported

vulnerabilities continues to rise, the need for additional ways to manage and visualize the

complexity of such attacks grows as well. Attack trees can be an effective methodology for

understanding threat-based inter-relationships and ranking threats according to risk (Byres,

Franz, & Miller, 2004).

2.3. Attack Patterns

An attack is a specific action carried out to exploit a vulnerability (Fong, Gaucher,

Okun, Black, & Dalci, 2008). The Common Attack Pattern Enumeration and Classification

(CAPEC) framework is a model for identifying, classifying, cataloging, sharing and

refining various types of information about attacks (Barnum & Amit, 2006a). The CAPEC

framework provides this information through descriptive schema or elements used to

specify the various components which make up an attack. Each attack pattern is a

generalized outline of the attack which has been developed by reviewing large sets of

exploits (McGraw, 2006). Attack patterns also detail the approach and methodology used

by attackers to generate an exploit (Barnum & Sethi).

Like attack trees, attack patterns represent the objective of the attacker and the

techniques which may be used by attackers to achieve their goals and provide an organized

way to analyze the details of a specific attack (Barnum & Amit, 2006b; Viega & McGraw,

2002). The ability to view threats from an attackers perspective is a vital component in

protecting information systems (Arce, 2004). Security research is often slowed because of

34

the level of secrecy surrounding attacks, vulnerabilities and exploits (Barnum & Amit,

2006b; Logan & Clarkson, 2005). Attack patterns can be used to expose the details of such

attacks. In the past, security experts have been hesitant to create and share the details of

exploits, fearing such data could be used to further malicious attacker‟s knowledge

(Russell, 2002).

Creating a deeper understanding of attackers, attacks, and countermeasures can lead to a

more effective ability to combat and counter these threats (Schneier, 1999). Fostering this

deep understanding of attack patterns can also lead to the permeation of security

throughout the software development life cycle and heighten the awareness of known

exploits, vulnerabilities and weaknesses (Gegick & Williams, 2005). Integrating and

increasing attack pattern knowledge can result in adding security by creating less exposure

to identified bugs and known flaws (Hoglund & McGraw, 2004). Attack patterns can also

be used to create a security checklist, which in turn can lead to a higher level of security (S.

Barnum, 2007).

The origins of attack patterns can be traced back to the 1960‟s when the foundation

for today‟s attack patterns were established as the concept of a general and repeatable

solution to identified system development problems (Gamma, Helm, Johnson, & Vlissides,

1995). More recently the concept of presenting from an attacker‟s perspective was done on

an individual basis, with no agreed upon formula, structure, or common language for

consistently presenting such a viewpoint (Hoglund & McGraw, 2004).

The lack of a common vocabulary makes it difficult to gather, analyze, and share

pertinent information which could be used to advance the discipline of software

security(Hoglund & McGraw, 2004). The term “attack pattern” was introduced in 2001 to

35

describe the concept of combining various types of malicious attacks and present the

attacker‟s perspective within a specified framework (Gamma et al., 1995; Moore et al.,

2001). Further research was done to formally define descriptive attack pattern elements and

the create 48 original and complete attack patterns (Hoglund & McGraw, 2004).

 The National Cyber Security Division of the Department of Homeland Security in

conjunction with Cigital and MITRE Corporation agreed to sponsor CAPEC (S. Barnum,

2007; Barnum & Amit, 2006b). The final result of this collective effort was published in

March of 2007 as the CAPEC Release 1 Dictionary and included a formalized attack-

driven perspective of software security with 101 different attack patterns outlined (Barnum

& Amit, 2006a).

The Common Attack Pattern Enumeration and Classification (CAPEC) list provides

an official schema and formal representation for defining individual attack patterns

(Barnum, 2008; Barnum & Amit, 2006a). CAPEC formally organizes and presents each

attack pattern by gathering and displaying both primary and supporting data elements (Sean

Barnum, 2007). Primary elements include the following list (Barnum, 2008;

capec.mitre.org, 2007).

 Attack Pattern ID

 Attack Pattern Name

 Description

 Related Weaknesses

 Related Vulnerabilities

 Methods of Attack

 Examples-Instances

36

 References

 Solutions and Mitigations

 Typical Severity

 Typical Likelihood of Exploit

 Attack Prerequisites

 Attacker Skill or Knowledge Requirements

 Resources Required

 Attack Motivation-Consequences

 Context Description

Supporting elements include the following list (Barnum, 2008; capec.mitre.org, 2007).

 Injection Vector

 Payload

 Activation Zone

 Payload Activation Impact

 Probing Techniques

 Indicators/Warnings of Attack

 Obfuscation Techniques

 Related Attack Patterns

 Relevant Security Requirements

 Relevant Design Patterns

 Relevant Security Principles

 Related Guidelines

37

Exploration and examination of the various techniques used by malicious attackers

are important steps in providing better security for our technology resources (Skoudis &

Liston, 2006). “Know thy enemy” is a classic adage amongst security researchers which

suggests that security professionals need the ability to understand system vulnerability

from the perspective of a potential attacker (Fadia, 2002; Jones, Shema, & Johnson, 2002;

Koziol et al., 2004; McClure, Scambray, & Kurtz, 2005). The best penetration tests are

built on a solid understanding of both design and risks (McGraw, 2006). This type of

understanding can only be achieved when we have a formal set of definitions to build and

share knowledge. CAPEC attack patterns provide such a framework.

38

3. ABSTRACTING PARENT MITIGATIONS

 The CAPEC Release 1 Dictionary includes nearly 400 individually prescribed

controls which can be used to mitigate or reduce the effects of the defined attack patterns.

This current level of detail in the “Solutions and Mitigations” element tends to be too

inconsistent (Engebretson & Pauli, 2008). Some attack patterns provide an extremely

granular level of detail. For example, one of the prescribed mitigations for attack pattern 1

(Accessing Functionality Not Proper Constrained by ACLs) calls for changing a Java

setting. Specifically the Solutions and Mitigations element prescribes, “In a J2EE setting,

deployers can associate a role that is impossible for authenticator to grant users, such as

„NoAccess‟, with all Servlets to which access is guarded by a limited number of servlets

visible to, and accessible by, the user”. This level of detail can lead CAPEC adopters to

assume that attacks based off accessing functionality not properly constrained by ACL‟s

are confined only to environments where Java or J2EE are deployed. Such a belief could

lead to an increased attack exposure and a false sense of security because attacks that focus

on “Accessing Functionality Not Properly Constrained by ACLs” include a much broader

attack vector than just the Java environments.

The reverse is also true. Some attack patterns provide only a brief overview of

potential mitigation strategies. Attack pattern 5 (Analog In-Band Switching Signals (aka

Blue Boxing)) includes “Upgrade phone lines” as a mitigation strategy. This generalized

strategy is too open-ended to be of use to many users. This type of vagueness leaves many

basic questions unanswered related to infrastructure, physical design, layout, speed, and

quality issues.

39

In order to increase the effectiveness and consistency of mitigation strategies, we

propose the inclusion of a new element to the CAPEC standard. Our Parent Mitigation

element is directly abstracted from the currently prescribed CAPEC “Solutions and

Mitigations” element.

We examined several standards when looking for a complete set of parent

mitigation strategies to complement the CAPEC Dictionary. It is vital to make use of a

predefined, currently accepted and standardized list of controls to remove the heuristic tone

of an ad-hoc approach. Our approach is both detailed and specific to ensure individuals

following our prescribed processes will reach the same findings.

We reviewed COBIT 4.1, ISO 27002:2005, and NIST SP 800-53 for an acceptable

list of controls to use as Parent Mitigations in our approach (ISACA, 2008; ISO, 2005;

NIST, 2007). After reviewing the controls outlined in each of these standards, we choose to

make use of NIST 800-53 (revision 2). Both NIST and CAPEC have strong ties to the

United States Federal government. NIST is a non-regulatory federal agency funded through

the U.S. Department of Commerce, while CAPEC is the direct result of funding from the

Department of Homeland Security (NIST, 2006). CAPEC is a federally funded

classification of attacks and NIST is a federally funded list of controls.

During the selection process, we were able to reject the controls outlined in the

COBIT standard, because it is less specific to Information Systems or Information

Technology details than the controls outlined in ISO (Flowerday & Von Solms, 2005).

Because of the technical nature of attack patterns, we focus on controls which provide the

most technical details. ISO was rejected because of its emphasis on being a management

system, rather than a technology specification (Calder, 2006). We are providing a technical

40

specification for mitigations as part of our approach. We view NIST as a stronger match

than the business process-oriented ISO standard.

Additionally, we chose to use NIST because the controls provide a ready-made

hierarchy which fits within our Parent-Child model. This additional level of detail and

structure not only correlates directly with our work, but will also be used in future work to

further extend the relationship between NIST and CAPEC.

NIST 800-53 provides an established and usable control-based hierarchy. At the top

level this hierarchy consists of Family controls which are general and wide-reaching. The

final draft of 800-53-r2 includes a total of 17 Family controls which are presented in a

well-defined and organized structure. A two character identifier is used to uniquely identify

individual family controls. NIST Family level controls and their corresponding identifiers

are introduced in Table 1 (NIST, 2007).

Table 1. NIST 800-53 17 Family Level Controls and Their Unique Identifier.

IDENTIFIER FAMILY

AC Access Control

AT Awareness and Training

AU Audit and Accountability

CA Certification, Accreditation, and Security Assessments

CM Configuration Management

CP Contingency Planning

IA Identification and Authentication

IR Incident Response

MA Maintenance

MP Media Protection

PE Physical and Environmental Protection

PL Planning

PS Personnel Security

RA Risk Assessment

SA System and Services Acquisition

SC System and Communications Protection

SI System and Information Integrity

41

Each of the 17 Family level controls is further broken down into individual controls

identified by NIST. In order to identify individual NIST controls, a number is appended to

the family identifier. This combination of “Family identifier – control number” is used to

uniquely identify each control outlined in the NIST 800-53r2 (NIST, 2007). For example,

CM-8 corresponds to the 8
th

 control listed under the “Configuration Management” Family

control. Our approach introduces the appropriate NIST control into the existing CAPEC

dictionary as a “Parent Mitigation” to provide a more generalized mitigation strategy for

each of the 400 CAPEC attack patterns. Our process groups all 400 mitigations into 17

standardized Parent Mitigations.

3.1. Abstracting Parent Mitigations from the CAPEC Dictionary

 To illustrate our approach we completed a case study utilizing the CAPEC attack

pattern dictionary. This case study consists of 11 unique attack patterns. In order to provide

adequate sampling, we‟ve chosen one attack pattern from each of the 11 Parent Threats

outlined on the CAPEC classification tree. Parent Threats are as follows (Engebretson &

Pauli, 2008):

 Abuse of Functionality

 Spoofing

 Probabilistic Techniques

 Exploration of Authentication

 Resource Depletion

42

 Exploitation of Privilege/Trust

 Injection (Injecting Control Plane content through the Data Plane)

 Data Structure Attacks

 Data Leakage Attacks

 Resource Manipulation

 Time and State Attacks

The same 11 attack patterns were used to demonstrate the three processes that make

up our approach. The entire approach was carried out for all 101 attack patterns and a

complete listing of these results can be found in Appendix 1. The chosen attack patterns for

the case study and corresponding Parent Threat are introduced in Table 2.

43

Table 2. Selected Parent Threats and Corresponding Attack Patterns for Case Study.

Parent Threat
Attack Patter Name (Attack Pattern

Number)

Abuse of Functionality Forceful Browsing (87)

Spoofing Man in the Middle Attack (94)

Probabilistic Techniques Rainbow Table Password Cracking (55)

Exploration of Authentication Reusing Session IDs (Session Replay) (60)

Resource Depletion XML Denial of Service (XDoS) (82)

Exploitation of Privilege/Trust
Manipulating Writeable Configuration Files

(75)

Injection (Injecting Control Plane content

through the Data Plane)
Server Side Includes (SSI) Injection (101)

Data Structure Attacks
Buffer Overflow via Environment Variables

(10)

Data Leakage Attacks
Passively Sniff and Capture Application

Code Bound for Authorize Client (65)

Resource Manipulation
Using Leading „Ghost‟ Character Sequences

to Bypass Input Filters (3)

Time and State Attacks
Leveraging Time-of-Check and Time-of-

Use (TOCTOU) Race Conditions (29)

NIST provides significant detail for each child control including unique control

number, name, brief control description, and supplemental guidance. The control

description provides a concise description of the control. The supplemental guidance

provides additional examples and requirements (NIST, 2007). Both the control description

and the supplemental guidance are useful in order to accurately match the NIST and

CAPEC controls. The process matches a CAPEC Solutions and Mitigations element and

one of the NIST details.

 The process of abstracting Parent Mitigations from the CAPEC Attack Pattern

Release 1 Dictionary is made up of 4 steps as introduced in Figure 6.

44

Figure 6. Steps Required to Abstract Parent Mitigations from the CAPEC Release 1 Dictionary.

The process of abstracting Parent Mitigations starts by breaking down the attack

pattern‟s Solutions and Mitigation element into a list of individual controls as shown in

step 1. Step 2 introduces a line item review of each mitigation strategy. Using the control

definitions outlined in NIST 800-53, we match each CAPEC control to a corresponding

NIST control. Although we are only interested in the NIST Family control, we map each of

the current CAPEC mitigations to the detailed controls in NIST 800-53 to ensure accuracy.

Step 3 allows us to determine the appropriate Family level controls for inclusion into the

CAPEC standard. The abstracted NIST Family controls are then added to the CAPEC

45

Dictionary as a Parent Mitigation element. Step 4 checks for the repeating of this process

until each of the Solutions and Mitigations listed in step 1 have been abstracted.

The detailed steps in Process 1 are listed below.

1. Create a table to create a list of individual controls taken directly from the attack

pattern‟s Solutions and Mitigations element. Controls should be listed 1 per row

under the column heading “Solutions and Mitigations”.

2. Select an individual control from the table created in step 1 and match the CAPEC

Solutions and Mitigations element to the appropriate 800-53r2 NIST Child

Mitigation(s). It is possible that individual controls from step 1 will match up with

more than one NIST Child control. For this reason, it is important to review

individual CAPEC controls against all of the 800-53r2 NIST controls. When a

definition match is found, record the NIST Child Mitigation abbreviation under the

column heading “NIST Child Mitigation”. When multiple matches for a single

control are found, they should be recorded in the same cell and separated by a

comma.

3. Abstract the individual NIST Child Mitigation(s) to its corresponding NIST Family

Control by removing the specific control number from the recorded Child

Mitigation. It is important to review the table to verify if this Parent Threat has been

previously recorded. If not, record the NIST Family Control under the Parent

Mitigation column heading in the table.

4. If another Solutions and Mitigations control is listed, repeat steps 2-3. Continue this

process until all controls for the attack pattern have been abstracted.

46

Table 3 introduces the table which is required to complete this process.

Table 3. Table Used to Abstract the Parent Mitigations.

Attack Pattern Solutions and

Mitigations

NIST Child

Mitigation(s)

Parent Mitigation(s)

Our case study begins with a detailed analysis of attack pattern ID 3: “Using

Leading 'Ghost' Character Sequences to Bypass Input Filters”. Attack pattern 3 belongs to

the Resource Manipulation Threat Family as first introduced in Table 2. Step 1 requires

that we create a table to list individual controls from the CAPEC definition for attack

pattern 3. We utilize the first two columns presented in Table 3 to complete step 1.

Examination of the CAPEC Dictionary provides three individual mitigations for this attack

as introduced in Table 4.

Table 4. Individually Listed Controls for Attack Pattern 3.

Attack Pattern Solutions and Mitigations

Using Leading

'Ghost' Character

Sequences to Bypass

Input Filters

Perform white list, rather than black list, input validation.

Cononicalize all data prior to validation.

Take an iterative approach to input validation (defense in depth)

 Step 2 of Process 1 requires that we select an individual control from step 1 and

match the control to the appropriate NIST 800-53r2 Child Mitigation(s). Careful review

and examination is needed to align this control with the appropriate control descriptions

47

provided as part of the NIST 800-53r2 standard. The first individual Solution and

Mitigation listed in Table 3 is “Perform white list, rather than black list, input validation”.

The NIST child mitigation definitions which relate to this control are listed below:

 AC-3 ACCESS ENFORCEMENT

o Access Enforcement (AC-3) was chosen because “white list” is a type of

access control enforcement (Chow, Hui, Yiu, Chow, & Lui, 2005).

Furthermore, examination of the NIST AC-3 Supplemental Guidance

provides the following detail which aligns closely with the CAPEC control,

“Access control policies and associated access enforcement mechanisms are

employed by the organization to control access between users (or processes)

and objects (e.g., devices, files, records, processes, programs, domains) in

the information system. In addition to controlling access at the information

system level, access enforcement mechanisms are employed at the

application level, when necessary, to provide increased information security

for the organization.” (NIST, 2007).

 AC-4 INFORMATION FLOW ENFORCEMENT

o Selection of Information Flow Enforcement (AC-4) can be justified by

examination of the NIST child control description, “The information system

enforces assigned authorizations for controlling the flow of information

within the system and between interconnected systems in accordance with

applicable policy.” (NIST, 2007) as well as the supplemental guidance

which provides the following information, “Flow control is based on the

characteristics of the information and/or the information path. Specific

48

examples of flow control enforcement can be found in boundary protection

devices (e.g., proxies, gateways, guards, encrypted tunnels, firewalls, and

routers) that employ rule sets or establish configuration settings that restrict

information system services or provide a packet filtering capability” (NIST,

2007). White list input validation is an effective means of controlling the

flow of information.

 CM-7 LEAST FUNCTIONALITY

o Least functionality (CM-7) was chosen as a result of CAPEC‟s use of the

terms “white list rather than black list”. White lists are more restrictive in

nature and employ the concept of least functionality by allowing denying

any services not explicitly allowed. Black lists are less restrictive by

allowing any service not explicitly blocked (Emmanuel & Yu).

 SI-9 INFORMATION INPUT RESTRICTIONS

o Information Input Restrictions (SI-9) present a natural fit with the given

CAPEC control as the NIST control description provides the following

definition, “The organization restricts the capability to input information to

the information system” (NIST, 2007). Both the NIST and CAPEC controls

are describing an input validation process.

 SI-10 INFORMATION ACCURACY, COMPLETENESS, VALIDITY, AND

AUTHENTICITY

o Information Accuracy, Completeness, Validity, and Authenticity (SI-10)

provides the following information in the supplemental guidance, “Checks

for accuracy, completeness, validity, and authenticity of information are

49

accomplished as close to the point of origin as possible. Rules for checking

the valid syntax of information system inputs (e.g., character set, length,

numerical range, acceptable values) are in place to verify that inputs match

specified definitions for format and content. Inputs passed to interpreters are

prescreened to prevent the content from being unintentionally interpreted as

commands.” (NIST, 2007). This description presents another clear example

of input validation and is therefore included as a match for the prescribed

CAPEC mitigation.

The completed second step for the first control in attack pattern 3 is introduced in

Table 5.

Table 5. Matching NIST Child Mitigations for the First CAPEC Control for Attack Pattern 3.

Attack Pattern Solutions and Mitigations NIST Child Mitigation(s)

Using Leading

'Ghost' Character

Sequences to

Bypass Input

Filters

Perform white list, rather than black

list, input validation.

AC-3, AC-4, CM-7, SI-9, SI-10

Step 3 requires that we abstract the individual Child Mitigations chosen in step 2.

Step 3 also necessitates that each Parent Mitigation be recorded only one time. Parent

Mitigations are abstracted by recording a single entry for each unique NIST Family

mitigation shown under the NIST Child Mitigations column. Table 6 introduces the

completed table for the first CAPEC mitigation including the abstracted Parent Mitigation

column.

50

Table 6. Addition of Parent Mitigations for the First CAPEC Control for Attack Pattern 3.

Attack Pattern Solutions and

Mitigations

NIST Child

Mitigation(s)

Parent Mitigation(s)

Using Leading

'Ghost' Character

Sequences to Bypass

Input Filters

Perform white list,

rather than black list,

input validation.

AC-3, AC-4, CM-7,

SI-9, SI-10

AC, SI, CM

Step 4 of Process 1 mandates that we repeat step 2 if another CAPEC control exists.

The second control outlined for attack pattern 3 by CAPEC is “Canonicalize all data prior

to validation”. Using the NIST 800-53 guidelines, we correlate this with the following

NIST controls:

 SI-9 INFORMATION INPUT RESTRICTIONS

o Canonicalization is the process by which a potentially flexible data type can

be altered into one that has guaranteed characteristics. Canonicalization is a

frequent technique for input data validation and therefore relates well to the

NIST standard SI-9 (Fithen, 2005). An example of canonicalization is seen

when the same input data can be encoded in many ways, such as ASCII or

Unicode. This transformation of data into a known and expected type is a

useful form or input validation.

 SI-10 INFORMATION ACCURACY, COMPLETENESS, VALIDITY, AND

AUTHENTICITY

o Canonicalization is a frequent technique for input data validation and

therefore relates well to the NIST standard SI-10 (Fithen, 2005). An

example of canonicalization is seen when the same input data can be

51

encoded in many ways, such as ASCII or Unicode. This transformation of

data into a known and expected type is a useful form or input validation.

The first two controls for attack pattern 3 and the corresponding NIST Child

Mitigations are introduced in Table 7.

Table 7. Matching NIST Child Mitigations for the First and Second CAPEC Control for Attack Pattern 3.

Attack Pattern Solutions and Mitigations NIST Child Mitigation(s)

Using Leading

'Ghost' Character

Sequences to

Bypass Input

Filters

Perform white list, rather than black

list, input validation.

AC-3, AC-4, CM-7, SI-9, SI-10

Canonicalize all data prior to

validation

SI-9, SI-10

Repeating step 3 requires that we abstract the individual Child Mitigations chosen

in step 2. Table 8 introduces the completed table for the second CAPEC mitigation

including the addition of the abstracted Parent Mitigation column and values. Because

System and Information Integrity (SI) has already been listed in first row, it is not

necessary to repeat the Parent Mitigation.

Table 8. Addition of Parent Mitigations for the First CAPEC Control for Attack Pattern 3.

Attack Pattern Solutions and

Mitigations

NIST Child

Mitigation(s)

Parent Mitigation(s)

Using Leading

'Ghost' Character

Sequences to Bypass

Input Filters

Perform white list,

rather than black list,

input validation.

AC-3, AC-4, CM-7,

SI-9, SI-10

AC, SI, CM

 Canonicalize all data

prior to validation

SI-9, SI-10

52

The final control for attack pattern 3 is listed as: “Take an iterative approach to

input validation (defense in depth)”. We correlate this CAPEC mitigation with the

following NIST control.

 SI-10 INFORMATION ACCURACY, COMPLETENESS, VALIDITY, AND

AUTHENTICITY

o Justification for the selection of Information Accuracy, Completeness,

Validity and Authenticity (SI-10) can be found in both the control

description, “The information system checks information for accuracy,

completeness, validity, and authenticity.” as well as the supplemental

guidance “Rules for checking the valid syntax of information system inputs

(e.g., character set, length, numerical range, acceptable values) are in place

to verify that inputs match specified definitions for format and content.

Inputs passed to interpreters are prescreened to prevent the content from

being unintentionally interpreted as commands. The extent to which the

information system is able to check the accuracy, completeness, validity,

and authenticity of information is guided by organizational policy and

operational requirements.” (NIST, 2007) Both of these definitions pertain

directly with input validation.

The three original CAPEC controls and the justified NIST Child Mitigations are

introduced in Table 9.

53

Table 9. Matching NIST Child Mitigations for All CAPEC Controls Assigned for Attack Pattern 3.

Attack Pattern Solutions and Mitigations NIST Child Mitigation(s)

Using Leading

'Ghost' Character

Sequences to

Bypass Input

Filters

Perform white list, rather than black

list, input validation.

AC-3, AC-4, CM-7, SI-9, SI-10

Canonicalize all data prior to

validation

SI-9, SI-10

Take an iterative approach to input

validation (defense in depth)

SI-10

Because System and Information Integrity (SI) has already been listed in the Parent

Mitigation column, we do not relist this information again.

Table 10. Process 1 Results for Attack Pattern 3.

Attack Pattern Solutions and

Mitigations

NIST Child

Mitigation(s)

Parent Mitigation(s)

Using Leading

'Ghost' Character

Sequences to Bypass

Input Filters

Perform white list,

rather than black list,

input validation.

AC-3, AC-4, CM-7,

SI-9, SI-10

AC, SI, CM

Canonicalize all data

prior to validation

SI-9, SI-10

Take an iterative

approach to input

validation (defense

in depth)

SI-10

The original CAPEC Solutions and Mitigations element provides three controls for

attack pattern 3. Our process of abstraction results in the same number of controls needed

to mitigate the risk. We are not concerned with reducing the number of controls for each

attack pattern. Our approach reduces the total mitigations from nearly 400 (from CAPEC)

to no more than 17 (from the NIST “Family”). Adding the “Parent” mitigation into the

CAPEC dictionary brings a level of consistency. The CAPEC Dictionary‟s mitigation

54

strategies are now standardized into 17 “Parents” at the same level of abstraction. Users are

less likely to dismiss a particular attack pattern because the mitigation is too detailed or too

specific. This is currently a risk for CAPEC adopters who believe that they are not at risk

for a given attack because they do not have the specific technology mentioned in the

CAPEC mitigation.

 This same process was followed for attack pattern 75: “Manipulating Writable

Configuration Files”. Attack pattern 75 belongs to the Exploitation of Privilege/Trust

family. The CAPEC Dictionary provides five individual mitigations for this attack as

introduced in Table 11.

Table 11. Individually Listed Controls for Attack Pattern 75.

Attack Pattern Solutions and Mitigations

Manipulating

Writable

Configuration Files

Design: Enforce principle of least privilege

Design: Backup copies of all configuration files

Implementation: Integrity monitoring for configuration files

Implementation: Enforce audit logging on code and configuration

promotion procedures.

Implementation: Load configuration from separate process and

memory space, for example a separate physical device like a CD

 The first Solution and Mitigation listed in Table 11 is “Design: Enforce principle of

least privilege”. NIST provides a clear match with this control.

 AC-6 LEAST PRIVILEGE

o Least Privilege was chosen as a result of a direct match between the CAPEC

and NIST controls. The AC-6 NIST control definition provides the

following definition: “The information system enforces the most restrictive

55

set of rights/privileges or accesses needed by users (or processes acting on

behalf of users) for the performance of specified tasks.” (NIST, 2007).

The completed process for the first control in attack pattern 75 is introduced in

Table 12.

Table 12. Matching NIST Child Mitigations for the First CAPEC Control for Attack Pattern 75.

Attack Pattern Solutions and Mitigations NIST Child Mitigation(s)

Manipulating

Writable

Configuration

Files

Design: Enforce principle of least

privilege

AC-6

Next we abstract the Parent Mitigations from the individual Child Mitigations.

Table 13 introduces the completed table for the first CAPEC mitigation, including the

abstracted Parent Mitigation column.

Table 13. Addition of Parent Mitigation Column for the First CAPEC Control for Attack Pattern 75.

Attack Pattern Solutions and

Mitigations

NIST Child

Mitigation(s)

Parent Mitigation(s)

Manipulating

Writable

Configuration Files

Design: Enforce

principle of least

privilege

AC-6 AC

The second control outlined for attack pattern 75 by CAPEC is “Design: Backup

copies of all configuration files”. Using the NIST 800-53 guidelines, we correlate this with

the following NIST controls:

56

 CP-9 INFORMATION SYSTEM BACKUP

o Information System Backup (CP-9) was chosen as a counterpart for the

CAPEC solution because of the direct match between the CAPEC and NIST

controls. Both mitigations are directly concerned with backups. Specifically,

NIST provides the following information as part of the control description,

“The organization conducts backups of user-level and system-level

information (including system state information) contained in the

information system” (NIST, 2007). Because configuration files are an

important component of system backups, the CAPEC and NIST controls

present a natural fit.

 CP-10 INFORMATION SYSTEM RECOVERY AND RECONSTITUTION

o Information system recovery and reconstitution (CP-10) is included as a

result of both the NIST control definition as well as the supplemental

guidance. The NIST control provides the following description,” The

organization employs mechanisms with supporting procedures to allow the

information system to be recovered and reconstituted to a known secure

state after a disruption or failure.” (NIST, 2007). Backup of the

configuration files is a crucial component of a “mechanism to allow the

information system to be recovered and reconstituted to a known secure

state after a disruption or failure.” Without a backup of the current

configuration file, a complete system restore would result in the loading of a

default configuration file.

57

 CM-2 BASELINE CONFIGURATION

o Baseline Configuration (CM-2) was selected as a result of the NIST control

definition, “The organization develops, documents, and maintains a current

baseline configuration of the information system.” (NIST, 2007). One

component of maintaining a baseline configuration is through the backup of

the configuration.

The first two controls for attack pattern 75, and corresponding NIST Child

Mitigations are introduced in Table 14.

Table 14. Matching NIST Child Mitigations for the First and Second CAPEC Control for Attack Pattern 75.

Attack Pattern Solutions and Mitigations NIST Child Mitigation(s)

Manipulating

Writable

Configuration

Files

Design: Enforce principle of least

privilege

AC-6

Design: Backup copies of all

configuration files

CP-9, CP-10, CM-2

Table 15 introduces the completed table for the second CAPEC mitigation

including the abstracted Parent Mitigation column and values. Even though “Contingency

Planning” has two entries (CP-9, CP-10) in the NIST Child Mitigation(s) column, the

Parent Mitigation is listed only once.

58

Table 15. Addition of Parent Mitigations for the First CAPEC Control for Attack Pattern 75.

Attack Pattern Solutions and

Mitigations

NIST Child

Mitigation(s)

Parent Mitigation(s)

Manipulating

Writable

Configuration Files

Design: Enforce

principle of least

privilege

AC-6 AC

Design: Backup

copies of all

configuration files

CP-9, CP-10, CM-2 CP, CM

The next CAPEC mitigation for attack pattern 75 is “Implementation: Integrity

Monitoring for Configuration Files”. We correlate this CAPEC mitigation with the

following NIST controls.

 AU-6 AUDIT MONITORING, ANALYSIS, AND REPORTING

o Audit Monitoring, Analysis, and Reporting (AU-6) was chosen because of

its close natural match to the CAPEC solution “monitoring for configuration

files”. Both mitigations pertain directly to monitoring. Specifically NIST

uses the following definition, “The organization regularly reviews/analyzes

information system audit records for indications of inappropriate or unusual

activity, investigates suspicious activity or suspected violations, reports

findings to appropriate officials, and takes necessary actions.” (NIST, 2007).

 CA-7 CONTINUOUS MONITORING

o Justification for Continuous Monitoring (CA-7) again stems from the key

mitigation strategy of monitoring. Moreover, the NIST control definition

provides the following information, “The organization monitors the security

controls in the information system on an ongoing basis.” and the

59

supplemental guidance for CA-7 offers this insight, “This control is closely

related to and mutually supportive of the activities required in monitoring

configuration changes to the information system.” (NIST, 2007).

 CM-4 MONITORING CONFIGURATION CHANGES

o Monitoring Configuration Changes (CM-4) is included as a direct match

between CAPEC‟s solution and NIST‟s control definition, “The

organization monitors changes to the information system” (NIST, 2007).

 CM-6 CONFIGURATION SETTINGS

o Configuration Settings (CM-6) is added to the list of applicable child

controls because of the NIST supplemental guidance which states

“Organizations monitor and control changes to the configuration settings in

accordance with organizational policies and procedures” (NIST, 2007).

 SI-4 INFORMATION SYSTEM MONITORING TOOLS AND TECHNIQUES

o Information systems monitoring tools and techniques (SI-4) is justified

through examination of the following control definition “The organization

employs tools and techniques to monitor events on the information system”

(NIST, 2007). Both the CAPEC and NIST controls make use of information

system monitoring for protection purposes and are therefore directly

connected.

 SI-7 SOFTWARE AND INFORMATION INTEGRITY

o The final NIST control selected as a match for the CAPEC solution and

mitigation element is Software and Information Integrity (SI-7). This control

was selected based off the NIST supplemental guidance, which directly

60

addresses monitoring the integrity of the information system. Specifically

NIST provides the following information, “The organization employs

integrity verification applications on the information system to look for

evidence of information tampering, errors, and omissions.” (NIST, 2007).

The first three original CAPEC controls and the justified NIST Child Mitigations

are introduced in Table 16.

Table 16. Matching NIST Child Mitigations for Three CAPEC Control Assigned for Attack Pattern 75.

Attack Pattern Solutions and Mitigations NIST Child Mitigation(s)

Manipulating

Writable

Configuration

Files

Design: Enforce principle of least

privilege

AC-6

Design: Backup copies of all

configuration files

CP-9, CP-10, CM-2

Implementation: Integrity

monitoring for configuration files

AU-6, CA-7, CM-4, CM-6, SI-

4, SI-7

Table 17 introduces the complete abstracted table including the Parent Mitigation

column for CAPEC attack pattern 75.

Table 17. Abstracted Parent Mitigation Table for Three CAPEC Controls for Attack Pattern 75.

Attack Pattern Solutions and Mitigations NIST Child

Mitigation(s)

Parent Mitigation(s)

Manipulating

Writable

Configuration Files

Design: Enforce principle

of least privilege

AC-6 AC

Design: Backup copies of

all configuration files

CP-9, CP-10,

CM-2

CP, CM

Implementation: Integrity

monitoring for

configuration files

AU-6, CA-7,

CM-4, CM-6,

SI-4, SI-7

AU, CA, SI

61

The fourth control listed in the CAPEC Solutions and Mitigations element is

“Implementation: Enforce audit logging on code and configuration promotion procedures”.

We correlate this CAPEC mitigation with the following NIST controls:

 AU-1 AUDIT AND ACCOUNTABILITY POLICY AND PROCEDURES

o Audit and Accountability Policy and Procedures (AU-1) was selected as a

result of the NIST control definition, “The organization develops,

disseminates, and periodically reviews/updates: (i) a formal, documented,

audit and accountability policy that addresses purpose, scope, roles,

responsibilities, management commitment, coordination among

organizational entities, and compliance; and (ii) formal, documented

procedures to facilitate the implementation of the audit and accountability

policy and associated audit and accountability controls.” (NIST, 2007). Both

of these controls deal directly with auditing and their subsequent

procedures.

 AU-2 AUDITABLE EVENTS

o Auditable Events (AU-2) was selected as a match because of the NIST

supplemental guidance which states the following, “The purpose of this

control is to identify important events which need to be audited as

significant and relevant to the security of the information system. The

organization specifies which information system components carry out

auditing activities.” (NIST, 2007). Both the CAPEC and NIST controls are

focused on the auditing process.

62

 CM-3 CONFIGURATION CHANGE CONTROL

o Configuration Change Control (CM-3) can be justified by examination of

both the control definition which states, “The purpose of this control is to

identify important events which need to be audited as significant and

relevant to the security of the information system. The organization

specifies which information system components carry out auditing

activities.” (NIST, 2007). Additionally, the supplemental guidance offers the

following information, “Configuration change control includes changes to

the configuration settings for information technology products (e.g.,

operating systems, firewalls, routers).” and “The organization audits

activities associated with configuration changes to the information system.”

(NIST, 2007). Each of these statements lines up with the currently selected

CAPEC Solution and Mitigation.

 CM-4 MONITORING CONFIGURATION CHANGES

o Monitoring Configuration Changes was (CM-4) was selected because of the

control definition which states, “The organization monitors changes to the

information system” (NIST, 2007). This correlates well with the CAPEC

mitigation of logging configuration changes.

 CM-5 ACCESS RESTRICTIONS FOR CHANGE

o Access Restrictions for Change (CM-5) was chosen as a result of the

following information provided by NIST for CM-5, “The organization: (i)

approves individual access privileges and enforces physical and logical

access restrictions associated with changes to the information system; and

63

(ii) generates, retains, and reviews records reflecting all such changes.”

(NIST, 2007). This definition clearly aligns itself to the monitoring and

logging of configuration changes.

 CM-6 CONFIGURATION SETTINGS

o NIST‟s Configuration Settings (CM-6) control was selected because of the

supplemental guidance which provides the following definition,

“Organizations monitor and control changes to the configuration settings in

accordance with organizational policies and procedures.” (NIST, 2007).

Again, clear parallels between the two controls are easily identified. Both

controls pertain directly with logging and monitoring of configuration

settings.

The first three original CAPEC controls and the justified NIST Child Mitigations

are introduced in Table 18.

Table 18. Matching NIST Child Mitigations for Four CAPEC Controls Assigned for Attack Pattern 75.

Attack Pattern Solutions and Mitigations NIST Child Mitigation(s)

Manipulating

Writable

Configuration

Files

Design: Enforce principle of least

privilege

AC-6

Design: Backup copies of all

configuration files

CP-9, CP-10, CM-2

Implementation: Integrity

monitoring for configuration files

AU-6, CA-7, CM-4, CM-6, SI-

4, SI-7

Implementation: Enforce audit

logging on code and configuration

promotion procedures.

AU1, AU2, CM3, CM4, CM5,

CM6

64

Audit and Accountability (AU) and Configuration Management (CM) have already

been listed under the Parent Mitigation column, so there is no need to fill in this

information again. Table 19 introduces the complete abstracted table including the Parent

Mitigation column for CAPEC attack pattern 75.

Table 19. Abstracted Parent Mitigation Table for Four Attack Pattern 75 Solutions.

Attack Pattern Solutions and

Mitigations

NIST Child

Mitigation(s)

Parent Mitigation(s)

Manipulating

Writable

Configuration Files

Design: Enforce

principle of least

privilege

AC-6 AC

Design: Backup

copies of all

configuration files

CP-9, CP-10, CM-2 CP, CM

Implementation:

Integrity monitoring

for configuration

files

AU-6, CA-7, CM-4,

CM-6, SI-4, SI-7

AU, CA, SI

Implementation:

Enforce audit

logging on code and

configuration

promotion

procedures.

AU1, AU2, CM3,

CM4, CM5, CM6

 The final Solution and Mitigation listed in Table 10 is “Implementation: Load

configuration from separate process and memory space, for example a separate physical

device like a CD”. NIST Child Mitigation definitions which relate to this control are as

follows:

 AC-5 SEPARATION OF DUTIES

o Separation of Duties (AC-5) was chosen as a match for the CAPEC solution

because of the link between the CAPEC and NIST controls. Specifically

65

NIST provides the following detail in the control definition, “The

information system enforces separation of duties through assigned access

authorizations.” (NIST, 2007). Loading the configuration from a separate

space is an example of separation of process duties.

 SC-2 APPLICATION PARTITIONING

o Justification for the selection of Application Partitioning (SC-2) stems from

the correlation between the CAPEC control and the NIST supplemental

guidance, “The information system separates user functionality (including

user interface services) from information system management

functionality.” (NIST, 2007). Loading the configuration is a clear example

of application management functionality.

 SC-3 SECURITY FUNCTION ISOLATION

o Security and Function Isolation (SC-3) is included as a result of the NIST

supplemental guidance which states, “The information system isolates

security functions from nonsecurity functions by means of partitions,

domains, etc., including control of access to and integrity of, the hardware,

software, and firmware that perform those security functions. The

information system maintains a separate execution domain (e.g., address

space) for each executing process” (NIST, 2007). Loading the configuration

file from a separate space is clearly aligned with this NIST control.

All five of the original CAPEC controls and the justified NIST Child Mitigations

are introduced in Table 20.

66

Table 20. Matching NIST Child Mitigations for all CAPEC Controls Assigned for Attack Pattern 75.

Attack Pattern Solutions and Mitigations NIST Child Mitigation(s)

Manipulating

Writable

Configuration

Files

Design: Enforce principle of least

privilege

AC-6

Design: Backup copies of all

configuration files

CP-9, CP-10, CM-2

Implementation: Integrity

monitoring for configuration files

AU-6, CA-7, CM-4, CM-6, SI-

4, SI-7

Implementation: Enforce audit

logging on code and configuration

promotion procedures.

AU-1, AU-2, CM-3, CM-4,

CM-5, CM-6

Implementation: Load

configuration from separate process

and memory space, for example a

separate physical device like a CD

AC-5, SC-2, SC-3

Because Access Control (AC) has already been listed under the Parent Mitigation

column, we are only required to list Systems and Communication Protection (SC) as a new

entry. Table 21 introduces the complete abstracted table including the Parent Mitigation

column for CAPEC attack pattern 75.

67

Table 21. Complete Abstracted Parent Mitigation Table for Attack Pattern 75.

Attack Pattern Solutions and

Mitigations

NIST Child

Mitigation(s)

Parent Mitigation(s)

Manipulating

Writable

Configuration Files

Design: Enforce

principle of least

privilege

AC-6 AC

Design: Backup

copies of all

configuration files

CP-9, CP-10, CM-2 CP, CM

Implementation:

Integrity monitoring

for configuration

files

AU-6, CA-7, CM-4,

CM-6, SI-4, SI-7

AU, CA, SI

Implementation:

Enforce audit

logging on code and

configuration

promotion

procedures.

AU1, AU2, CM3,

CM4, CM5, CM6

Implementation:

Load configuration

from separate

process and memory

space, for example a

separate physical

device like a CD

AC-5, SC-2, SC-3

SC

3.2. Results of Case Study

In addition to the two attack patterns shown in section 3.1, our case study followed

each of the required four steps in Process 1 for the nine remaining attack patterns identified

in Table 2. Table 22 introduces the complete results for attack pattern 87 (“Forceful

Browsing”).

68

Table 22. Process 1 Results for Attack Pattern 87 (“Forceful Browsing”).

Table 23 introduces the results of Process 1 for attack pattern 94 (“Man in the

Middle”).

Attack Pattern Solutions and Mitigations NIST Child

Mitigation(s)

Parent

Mitigation(s)

Forceful Browsing:

87

Authenticate request to every

resource. In addition, every page

or resource must ensure that the

request it is handling has been

made in an authorized context.

AC17, IA2, IA3,

MA4, SC8, SC23,

SI10

AC, IA, MA,

SC, SI

Forceful browsing can also be

made difficult to a large extent by

not hard coding names of

application pages or resources.

This way, the attacker cannot

figure out, from the application

alone, the resources available

from the present context.

SC18, AT3, CA2,

CA4, PL2, SA3,

SA8, SA10

AT, CA,

PL,SA

69

Table 23. Process 1 Results for Attack Pattern 94 (“Man in the Middle”).

Table 24 introduces the results of Process 1 for attack pattern 55 (“Rainbow Table

Password Cracking”).

Table 24. Process 1 Results for Attack Pattern 55 (“Rainbow Table Password Cracking”).

Table 25 introduces the results of Process 1 for attack pattern 60 (“Reusing Session

ID‟s”).

Attack Pattern Solutions and Mitigations NIST Child

Mitigation(s)

Parent

Mitigation(s)

Man in the Middle:

94

Get your Public Key signed by a

Certificate Authority

CA4, IA5, IA7, SC13,

SC17

CA, IA, SC

Encrypt your communication

using cryptography (SSL,...)

AC3, AC4, SC7,

AC17, IA7, SC8,

SC9, SC12, SC13,

SI7

AC ,SI

Use Strong mutual authentication

to always fully authenticate both

ends of any communications

channel.

AC17, IA1, IA2, IA3,

IA4, IA5, SC8, SC11,

SC23, SI10

Exchange public keys using a

secure channel

SC17, SC12, SC13

Attack Pattern Solutions and Mitigations NIST Child

Mitigation(s)

Parent

Mitigation(s)

Rainbow Table

Pswd Cracking: 55

Use salt when computing

password hashes. That is,

concatenate the salt (random bits)

with the original password prior

to hashing it.

SI7, SC13, IA5 SI, SC, IA

70

Table 25. Process 1 Results for Attack Pattern 60 (“Reusing Session ID‟s”).

Table 26 introduces the results of Process 1 for attack pattern 82 (“XML Denial of

Service”).

Attack Pattern Solutions and Mitigations NIST Child

Mitigation(s)

Parent

Mitigation(s)

Reusing Session

ID's: 60

Always invalidate a session ID

after the user logout.

AC3, IA5, SC10,

SC23, IA4

AC, IA, SC

Setup a session time out for the

session IDs.

AC11, AC12,

SC23, IA4

Protect the communication

between the client and server. For

instance it is best practice to use

SSL to mitigate man in the

middle attack.

AC4, IA2, IA3,

IA7, SC8, SC9,

SC11, SC12, SC13,

SC16, SC17, SC20,

SC21, SC22, SC23

SA

Do not code send session ID with

GET method, otherwise the

session ID will be copied to the

URL. In general avoid writing

session IDs in the URLs. URLs

can get logged in log files, which

are vulnerable to an attacker.

SC9, SC4, SC14,

SC16, SA8

Encrypt the session data

associated with the session ID.

AC3, SC4, SC7,

SC23

Use multifactor authentication. IA2

71

Table 26. Process 1 Results for Attack Pattern 82 (“XMLDoS”).

Table 27 introduces the results of Process 1 for attack pattern 65 (“Passive

Sniffing”).

Table 27. Process 1 Results for Attack Pattern 65 (“Passive Sniffing”).

Attack Pattern Solutions and Mitigations NIST Child

Mitigation(s)

Parent

Mitigation(s)

XMLDoS (XDoS):

82

Design: Utilize a Security

Pipeline Interface (SPI) to

mediate communications between

service requester and service

provider The SPI should be

designed to throttle up and down

and handle a variety of payloads.

AC4, SI9, SI10,

AC3, CM6

AC, SI, CM

Design: Utilize clustered and fail

over techniques, leverage

network transports to provide

availability such as HTTP load

balancers

AC4, CA3, SC6,

SI4, CP10, SC5,

SC22

CA,SC, CP

Implementation: Check size of

XML message before parsing

SI7, SI9, SI10

Attack Pattern Solutions and Mitigations NIST Child

Mitigation(s)

Parent

Mitigation(s)

Passive Sniffing:

65

Do not store secrets in client code

CM6, PE19,

RA3, SA8, PL4

CM, PE, RA,

SA, PL

Use Well-Known Cryptography

Appropriately and Correctly

AC3, AC17, IA7,

MA4, SC8, SC9,

SC12, SC13

AC, IA, MA,

SC

Use Authentication Mechanisms,

Where Appropriate, Correctly

IA2, IA7, SC23,

SI10

SI

72

Table 28 introduces the results of Process 1 for attack pattern 101 (“Server Side

Includes”).

Table 28. Process 1 Results for Attack Pattern 101 (“Server Side Includes”).

Table 29 introduces the results of Process 1 for attack pattern 10 (“Buffer Overflow

via Environment Variables”).

Attack Pattern Solutions and Mitigations NIST Child

Mitigation(s)

Parent

Mitigation(s)

Server Side

Includes (SSI): 101

Set the OPTIONS

IncludesNOEXEC in the global

access.conf file or local .htaccess

(Apache) file to deny SSI

execution in directories that do

not need them

CM1, CM6, CM7,

SI6, SC3, AC6

CM, SI, SC,

AC

All user controllable input must

be appropriately sanitized before

use in the application. This

includes omitting, or encoding,

certain characters or strings that

have the potential of being

interpreted as part of an SSI

directive

SI7, SI9, SI10

Server Side Includes must be

enabled only if there is a strong

business reason to do so. Every

additional component enabled on

the web server increases the

attack surface as well as

administrative overhead

AC6

73

Table 29. Process 1 Results for Attack Pattern 10 (“Buffer Overflow via Environment Variables”).

Table 30 introduces the results of Process 1 for attack pattern 29 (“Race Conditions,

Time of Check and Time of Use”).

Attack Pattern Solutions and Mitigations NIST Child

Mitigation(s)

Parent

Mitigation(s)

Buffer Overflow

via Environment

Variables: 10

Do not expose environment

variable to the user.

AC6, CM6, RA3,

RA5, SA10, SA11,

SC4, SI10

AC, CM, RA,

SA, SC, SI

Do not use untrusted data in your

environment variables.

AC3, CM6, IA2,

SC23, SI17, SI19,

SI10

IA,

Use a language or compiler that

performs automatic bounds

checking

SA8, PL2 PL

There are tools such as Sharefuzz

(http://sharefuzz.sourceforge.net/)

which is an environment variable

fuzzer for Unixes that support

loading a shared library. You can

use Sharefuzz to determine if you

are exposing an environment

variable vulnerable to buffer

overflow.

MA3, PL6 RA5,

SA10, SA11, SI2,

SI4

MA

74

Table 30. Process 1Results for Attack Pattern 29 (“Race Conditions, Time of Check and Time of Use”).

3.3. Discussion and Validation

While CAPEC‟s Release 1 Dictionary provides a solid framework, the current

format and presentation of information provided in the Solutions and Mitigations element

is inconsistent. There are tremendous variations in the depth and breadth of the

“Mitigations and Solutions” currently outlined for each attack pattern. Some attack patterns

provide detail that is too granular while others provide information that is vague. This

chapter introduced the process to add a new Parent Mitigation element to provide

consistency and mitigation strategies to be used by CAPEC adopters.

Our approach injects a Parent Mitigation element into the dictionary to provide

consistency to the CAPEC Release 1 Dictionary. Because the current Mitigation and

Solutions element provides valuable information, we are not advocating its removal. Our

Attack Pattern Solutions and Mitigations NIST Child

Mitigation(s)

Parent

Mitigation(s)

Race Conditions

(TOCTOU): 29

Use safe libraries to access

resources such as files.

SI7, SC18, SI, SC

Be aware that improper use of

access function calls such as

chown(), tempfile(), chmod(),

etc. can cause a race condition.

AT2, AC3, IA2 AT, AC, IA

Use synchronization to control

the flow of execution.

SC3, AC4

Use static analysis tools to find

race conditions.

SA11,SI10

Pay attention to concurrency

problems related to the access of

resources.

SA8, SC4 SA

75

intention is to add a Parent Mitigation element to provide a manageable and consistent

number of more abstracted mitigations.

There is significant value in completing this abstraction process. Adding the Parent

Mitigation into the CAPEC dictionary provides a needed level of consistency and

standardization. The CAPEC Dictionary‟s mitigation strategies are now standardized into

17 “Parents” (down from the nearly 400) each at the same level of abstraction. By

abstracting these mitigations into 17 categories, users are less likely to dismiss a particular

attack pattern because the mitigation is too detailed or too vague. This is currently a risk for

CAPEC adopters who believe that they are not at risk for a given attack because they do

not have the specific technology mentioned in the CAPEC mitigation.

Validation for Process 1 can be found by connecting our work to a strong

theoretical basis. Overcoming usability issues associated with the organization and

presentation of large amounts of information is a difficult task (English, Hearst, Sinha,

Swearingen, & Yee, 2002). Faceted classification analysis can be used to create common

categories from large amounts of data. Research has shown that these categories can be

used to organize, manage, and aid in the meaningful classification of large data collections

(Hearst, 2006). Similar to the use of faceted classification theory, the inclusion of the

Parent Mitigation element allows for the categorization and classification of the CAPEC

standard via common mitigation strategies. The Parent Mitigation element can be viewed

as a facet by which the CAPEC standard can be examined and organized.

Faceted theories make use of classification systems which are organized according

to specific disciplines. In this regard each facet is unique to the discipline that will utilize

the classification (Hong). The inclusion of a Parent Mitigation element can be viewed as a

76

facet which is specific to, and accepted by, the information assurance discipline. The NIST

800-53r2 makes use of a similar classification structure through the use of a Family level

mitigation. Prior classification based on the Solutions and Mitigations element was not

possible. Individual mitigations were unique to their corresponding attack pattern. The

inclusion of a Parent Mitigation element allows for creation of classification system based

off of 17 common mitigations.

 The use of hierarchical faceted theory allows users to more intuitively access

subcategories and underlying data (Hearst, 2006). The inclusion of the Parent Mitigation

element provides similar results. CAPEC users can now access a broad category of

common mitigation strategies. These strategies can be further drilled down to find the

detailed and specific mitigations.

The use of faceted analysis allows for multiple perspectives of the same unit

(Kwasnik, 1999). The inclusion of the Parent Mitigation element allows CAPEC users to

view attack information by attack pattern name as well as by common attack pattern

mitigation strategies.

The results from Process 1 are used in the completion of Process 2 and Process 3.

The creation of a Parent Mitigation element is used by Process 2 to provide attack pattern

context and serve as the root view in our new model for viewing attack pattern information.

Parent Mitigations also provide the means for building security metrics which are presented

in Process 3.

77

4. MODELING HIERARCHY-BASED ATTACK PATTERNS

 Process 2 presents a new attack pattern model which focuses on the re-inclusion of

the Parent Threat element and the inclusion of the Parent Mitigation element to logically

group each of the 101 attack patterns. This model creates a graphical hierarchy for each of

the attack patterns and groups them not only by Parent Threats (such as “Spoofing” and

“Injection”), but also by Parent Mitigations (such as “Access Control” and “Configuration

Management”). We also provide individual textual attack descriptions for each of the 101

attack patterns to provide a stand-alone, perspective of each attack pattern. Process 2

allows individual attack patterns to be traced upward to its Parent Threat and downward to

its Parent Mitigation in a hierarchical tree. The traceability from the top of the tree (Parent

Threat), through the selected elements of the attack patterns, to the roots of the tree (Parent

Mitigation) eases the introduction of the CAPEC standard to audiences who are not

familiar with attack patterns. This grouping also allows experienced users to leverage the

attack information from a standardized set of elements. There is a great amount of

information in the CAPEC dictionary that we are capturing and documenting with this fan-

in/fan-out approach.

Process 2 includes four steps as introduced in Figure 7.

78

Figure 7. The Required Steps to Complete Process 2.

Step 1 includes Parent Threat information as a required element for each attack

pattern in the CAPEC Release 1 dictionary. Step 2 reduces the number of the descriptive

elements used to document each attack pattern. Step 2 is completed by populating each of

the selected elements and ensuring that each element has at least one entry. The purpose of

reducing the element set is to create a user-friendly model for viewing the most critical

information about each of the 101 attack patterns without overwhelming the user.

Justification for the selected elements is presented later in this chapter. Step 3 creates a

graphical hierarchy tree which is used to model each attack pattern. The elements selected

79

in step 2 will be used in our new model. Step 4 creates a textual attack description which is

based on the trimmed element set.

Process 2 begins with the re-inclusion of a Parent Threat element into the CAPEC

Dictionary to increase the usability of the standard. Currently each attack pattern can be

traced to one of 11 Parent Threats via a Classification Tree which is available on the

CAPEC website (capec.mitre.org, 2007). The Parent Threat information is not officially

included in the CAPEC Dictionary as one of the formally defined attack pattern descriptive

elements. As a result, finding the Parent Threat and related CAPEC attack patterns is a

time-consuming and error prone task. This disjointed structure leads to confusion and

frustration when attempting to make use of the current CAPEC Dictionary because this

vital element is not included (Engebretson & Pauli, 2008). By including a Parent Threat

element into the tree, we provide contextual information for the attack patterns and each

related attack pattern.

The number of elements used to describe each attack pattern can present a

significant problem when attempting to make use of the current CAPEC dictionary in an

applied setting (Pauli & Engebretson, 2008a, 2008b). Step 2 trims the element set to

provide only meaningful information of the attack pattern without overwhelming the user.

The full dictionary with all descriptive elements will continue to be available for review.

Step 3 and 4 utilize the trimmed element set created in Step 2 to build hierarchies

for presenting attack pattern information and viewing relationships among attack patterns.

These hierarchies are derived directly from the 11 Parent Threats and are tied together by

17 Parent Mitigations introduced in chapter 3.

80

4.1. Re-including Parent Threats

Step 1 of Process 2 is completed by executing the following steps:

1. Open the completed table for the given attack pattern which was created in Process

1. Insert a Parent Threat column to the left of the Attack Pattern column. The new

Parent Threat column will become the first column in the table.

2. Navigate to the CAPEC Classification Tree and select the “Expand All” link.

3. Locate the required attack pattern in the Classification Tree, which is listed under

the attack pattern column of the chosen table.

4. Trace up the expanded classification tree to find the top level Threat Family.

5. Record this top level Family Threat in the Parent Threat column.

A template for this new table is introduced in Table 31.

Table 31. Sample Table Used to Abstract the Parent Threat.

Parent Threat Attack

Pattern

Solutions and

Mitigations

NIST Child

Mitigation(s)

Parent

Mitigation(s)

CAPEC provides the following top level threats in the Classification Tree:

 Abuse of Functionality

 Spoofing

 Probabilistic Techniques

 Exploration of Authentication

 Resource Depletion

81

 Exploitation of Privilege/Trust

 Injection

 Data Structure Attacks

 Data Leakage Attacks

 Resource Manipulation

 Time/State Attacks

The results of our case study for step 1 are presented below where Table 32

introduces the results of step 1 for Process 2 for attack pattern 3.

Table 32. Addition of Parent Threat Column for Attack Pattern 3 (“Using „Ghost‟ Characters to Bypass Input Filters”).

Parent

Threat

Attack

Pattern

Solutions and

Mitigations

NIST Child

Mitigation(s)

Parent

Mitigation(s)

Resource

Manipulation

Using

Leading

'Ghost'

Character

Sequences to

Bypass Input

Filters

Perform white list,

rather than black list,

input validation.

AC-3, AC-4, CM-7,

SI-9, SI-10

AC, CM, SI

Canonicalize all data

prior to validation

SI-9, SI-10

Take an iterative

approach to input

validation (defense

in depth)

SI-10

Table 33 introduces the results of Step 1 for Process 2 for attack pattern 75.

82

Table 33. Addition of Parent Threat Column for Attack Pattern 75 (“Manipulating Writable Configuration Files”).

Parent

Threat

Attack Pattern Solutions and

Mitigations

NIST Child

Mitigation(s)

Parent

Mitigation(s)

Exploitation

of Privilege

/ Trust

Manipulating

Writable

Configuration

Files 75

Design: Enforce

principle of least

privilege

AC-6 AC

Design: Backup

copies of all

configuration

files

CP-9, CP-10,

CM-2

CP, CM

Implementation:

Integrity

monitoring for

configuration

files

AU-6, CA-7,

CM-4, CM-6,

SI-4, SI-7

AU, CA, SI

Implementation:

Enforce audit

logging on code

and

configuration

promotion

procedures.

AU1, AU2,

CM3, CM4,

CM5, CM6

Implementation:

Load

configuration

from separate

process and

memory space,

for example a

separate physical

device like a CD

AC-5, SC-2,

SC-3

SC

We use attack pattern 101 “Server Side Includes” as an example to introduce one

benefit of this Process. CAPEC provides the following elements to describe Attack Pattern

101:

 Attack Pattern ID, Typical Severity, Description, Attack Pattern Prerequisites,

Typical Likelihood of Exploit, Methods of Attack, Examples-Instances, Attacker

83

Skill or Knowledge Required, Resources Required, Probing Techniques, Solutions

and Mitigations, Attack Motivation Consequences, Context Description, Injection

Vector, Payload, Activation Zone, Payload Activation Impact, Related Weaknesses,

Related Security Principles, Related Guidelines, Purpose, CIA Impact, Technical

Context, and Source.

Parent Threat is not listed among the elements currently used to describe the attack.

In order to determine the general threat classification that attack pattern 101 is derived

from, a CAPEC user is currently required to search the expanded CAPEC Classification

Tree for the given attack pattern by Attack Pattern ID or Attack Pattern Title. The

Classification Tree document is separate from the CAPEC Release 1 dictionary forcing the

user to move away from the descriptive elements provided within the dictionary. Within

the Classification Tree, the user must wade through three levels of detail to uncover

“Server Side Includes” (attack pattern 101) as a member of the “Injection” Threat Family.

Step 1 in Process 2 will eliminate this manual process.

Adding the Parent Threat element to the formal definition set for all 101 of the

attack patterns provides a context for viewing attack pattern information without having to

manually interact with both the Full Dictionary and the Classification Tree. Adding Parent

Threat as a formal element to our hierarchy increases usability by removing this manual

search.

Step 1 allows users to quickly and accurately locate related threats. Figure 8

introduces a side-by-side comparison of the current and proposed steps which are required

to locate threat-related CAPEC attack patterns.

84

Figure 8. Benefit of Adding Parent Threat Element for Locating Related Threats.

Both approaches in Figure 8 assume the user is currently reviewing the details

(elements) of a specific attack pattern. Process 2 not only reduces the number of required

steps, but includes the necessary information needed to know from what Parent Threat the

chosen attack pattern is derived. There is no heuristic nature to this process as the

relationship between attack pattern and Parent Threat is already documented in the CAPEC

Classification Tree.

85

In addition to the Parent Threat element, we considered proposing a “Related

CAPEC Attack Pattern” element. However due to the criticism of the large number of

descriptive elements currently used for each attack pattern, we chose not to create an

additional element (Pauli & Engebretson, 2008a, 2008b). Adopters who are interested in

finding related CAPEC attack patterns will be aided by the creation of our new Parent

Threat element.

 To demonstrate how this process makes the CAPEC dictionary more usable, we

introduce attack pattern 98 “Phishing”. It is not possible to find related attacks or a general

threat for attack pattern 98 in CAPEC‟s current format. By leveraging our process, it is

now explicitly known that “Phishing” is a type of “Spoofing” attack. Furthermore, CAPEC

lists the following attack patterns under “Spoofing”.

 Leveraging/Manipulating Configuration File Search Paths (Attack Pattern 38)

 Man in the Middle Attack (Attack Pattern 94)

 Utilizing Rest‟s Trust in the System Resources to Register Man in the Middle

(Attack Pattern 57)

 Reflection Attack in Authentication Protocol (Attack Pattern 90)

 Pharming (Attack Pattern 89)

Because the Parent Threat is included as one of the attack pattern elements, it is

now known what related threats should also be considered in addition to “Phishing” when

concerned with “Spoofing”.

86

4.2. Trimming the Element Set

 The current CAPEC Release 1 dictionary includes 101 attack patterns with each

attack pattern including up to 31 descriptive elements. The volume of information

presented in the current CAPEC dictionary presents a major obstacle for the learning and

application of the standard (Pauli & Engebretson, 2008a, 2008b). Furthermore, the

currently prescribed element set is inconsistent. For example, attack patterns 17

(Accessing, Modifying or Executing Executable Files), 33 (HTTP Request Smuggling) and

67 (String Format Overflow in syslog()) each include the Injection Vector, Payload, and

Activation Zone elements while attack patterns 1 (Accessing Functionality Not Properly

Constrained by ACLs), 22 (Exploiting Trust in Client), and 44 (Overflow Binary Resource

File) do not. Reducing the element set provides a level of consistency and usability by

leveraging our newly added Parent Threat and Parent Mitigation elements.

Step 2 of Process 2 is the refining of the CAPEC descriptive elements. The outcome

of this process is a new model for viewing relevant information about each attack pattern.

We trim the CAPEC elements by focusing on elements which can be used to portray the

attack fully and provide a meaningful representation for the user. It is important that our

new model makes use of a reduced number of elements while still describing the attack

pattern in totality. We selected the following attack pattern elements:

 Parent Threat

 Attack Pattern ID

 Attack Pattern Name

 Description

 Solutions and Mitigations

87

 Parent Mitigation

To complete step 2, we ensure that each element (listed above) for each attack

pattern has at least one entry. We avoid the large number of descriptive elements which

lead to information overload when attempting to make use of the CAPEC dictionary (Pauli

& Engebretson, 2008a, 2008b). The process of trimming the element set from 31 to 6 is

justified by examining each of the selected elements. The Parent Threat element is

included because it increases usability by grouping related attack patterns as introduced in

step 1. Leveraging the significant work done in creating the Parent Threat element requires

the use of the Attack Pattern ID. As a result, we include both the Attack Pattern ID and the

Parent Threat. Parent Mitigation is added because it documents a consistent and usable

mitigation strategy for each attack pattern. Parent Mitigation is based on the Solutions and

Mitigations element so we include both of these elements into our model. Finally, Attack

Pattern Name and Description are included as they are essential to complete the description

of the attack pattern. The use of a hierarchy capped by Parent Threat and Parent Mitigation

elements allows for the tracing of attack patterns from individual Parent Mitigations up to

Parent Threats and vice versa.

Previously accepted models have made use of a reduced CAPEC element set for the

purpose of introducing new audiences to the CAPEC standard without overwhelming them

(Pauli & Engebretson, 2008b). However, like the current CAPEC dictionary, previous

models were inconsistent in their use of the descriptive elements. Our model requires that

each of the selected elements is used for all 101 attack patterns.

88

The goal of trimming the element set is not to advocate element set replacement,

but rather to present CAPEC adopters with a simple, easy-to-use, organized, and uniform

presentation of all 101 attack patterns. The original CAPEC library will be available for

further detail review.

The new hierarchy model will be used to complete steps 3 and 4 of Process 2. The

use of a hierarchy makes the graphical trees more usable because it demonstrates

previously undefined relationships. The new model allows us to view relationship between

elements, attack patterns, Parent Threats, and Parent Mitigations. The use of a graphical

tree allows users to view details from either the Parent Threat or Parent Mitigation point of

view. The model will be used to make the textual attack descriptions more usable by

providing a stand-alone view of each attack pattern. The use of a textual attack description

is beneficial for allowing users to view details from an attack pattern-driven point of view.

Our usable model is consistent because all hierarchy trees and textual descriptions

are completely populated.

4.3. Building Hierarchy-Based Graphical Trees and Textual Attack Descriptions

Hierarchy-based representations of attack patterns have been previously used to

facilitate learning of the CAPEC standard (Pauli & Engebretson, 2008a). One of the major

categories for learning strategies is the creation or use of a hierarchy (Weinstein & Mayer,

1986). Information presented in a hierarchical fashion is easier to learn and recall than

information presented in a format with not clear connection between details (Weinstein &

Mayer, 1986). Presenting attack pattern elements via a hierarchy allows users to see the

connections between each of the elements. This knowledge can then be leveraged when

89

analyzing and designing secure software, building networks, or making security related

decisions.

Our model includes both a defined graphical tree hierarchy for describing element

organization, structure and relationships as well as textual attack descriptions for presenting

readable attack pattern details. The use of a hierarchy can also help to define relationships

among the 101 attack patterns, 17 Parent Mitigations, and 11 Parent Threats.

We apply our hierarchy in a fan-in-fan-out manner to the trimmed element set

selected in section 4.3. The highest level of our hierarchy provides general and wide-

ranging information. The Parent Threat element is used at the top level because it is broad.

There are only 11 possible Parent Threats. Subsequent hierarchy levels become specific in

nature and scope. Attack pattern ID, Attack Pattern Name, Description, and the Solutions

and Mitigations elements are each specific to a single attack pattern and cannot be

generalized. The model concludes with a fan-out approach as it abstracts back out to more

general information in the Parent Mitigation element. This element represents a direct

abstraction of the 400+ Solutions and Mitigations into 17 possible mitigations. Our

hierarchy model for attack pattern elements is introduced in Figure 9.

90

Figure 9. Hierarchy Model for Attack Patterns and Elements.

The hierarchical tree is completed by filling in each of the elements described in

Figure 9. The purpose of this representation is to show relationships between elements and

attack patterns. This representation can also be used to group attack patterns by related

Parent Threats or Parent Mitigations. The textual attack descriptions, which are presented

in a tabular format for each attack pattern, aid in documenting all of the selected elements

and information for each attack pattern. Textual attack descriptions also provide

consistency and usability for each attack pattern.

Step 3 of Process 2 creates both the graphical hierarchies and the textual attack

descriptions for the attack pattern. We create the graphical hierarchies by filling in the

required elements outlined in figure 9. The case study results for step 3 for Process 2 for

91

attack pattern 3 and 75 are presented below. The remaining graphical hierarchies for our

case study are shown in section 4.4.

The completed graphical hierarchy for attack patterns 3 is introduced in Figure 10.

Parent Threat: Resource Manipulation

Parent Mitigation: AC, CM, SI

Name: Using ‘Ghost’ Characters to Bypass Input Filters

Description:

The API that is being targeted ignores the leading ghost characters, and processes the

attacker‟s input. This occurs when the targeted API will accept input data in several

syntactic forms and interpret it in the equivalent way, while the filter does not take into

account the full spectrum of the syntactic forms

Solutions and Mitigations:

 Perform white list rather than black list input validation.

 Canonicalize all data prior to validation.

 Take an iterative approach to input validation (defense in depth).

ID: 3

Figure 10. Graphical Hierarchy Tree for Attack Pattern 3 (“Using „Ghost‟ Characters to Bypass Input Filters”).

The completed graphical hierarchy for attack patterns 75 is introduced in Figure 11.

92

Parent Threat: Exploitation of Privilege / Trust

Parent Mitigation: AC, CP, CM, AU, CA, SI, SC

Name: Manipulating Writable Configuration Files

Description:

An attacker modifies the contents of configuration files that influence/control the operation of the

target software. This attack exploits the ever-growing number, size and complexity of

configuration files and the often lax access controls on these files.

This attack exploits a program's trust in configuration files that may have weaker permissions.

System configuration in distributed systems such as J2EE servers have many administration

points.

Solutions and Mitigations:

 Design: Enforce principle of least privilege

 Design: Backup copies of all configuration files

 Implementation: Integrity monitoring for configuration files

 Implementation: Enforce audit logging on code and configuration promotion procedures.

 Implementation: Load configuration from separate process and memory space, for example a

separate physical device like a CD

ID: 75

Figure 11. Graphical Hierarchy Tree for Attack Pattern 75 (“Manipulating Writable Configuration Files”).

 Step 4 creates a textual attack description which presents attack pattern information

in a tabular format. This process is completed by extracting information from the

hierarchies into the textual template provided in table 34.

Table 34. Example of Textual Attack Description.

Attack Pattern ID

Attack Pattern Name

Description

Parent Threat

Solutions and Mitigations

Parent Mitigation

93

The outcome of step 4 provides a trimmed element set which is usable, readable,

and presents information from the individual attack pattern perspective for each of the 101

CAPEC attacks. The textual attack descriptions for attack patterns 3 and 75 are introduced

below. The outcome of step 4 for the remaining attack patterns can be found in section 4.4.

Table 35 introduces the completed textual attack description for attack pattern 3.

Table 35. Textual Attack Description for Attack Pattern 3 (“Using „Ghost‟ Characters to Bypass Input Filters”).

Attack Pattern ID 3

Attack Pattern Name Using „Ghost‟ Characters to Bypass Input Filters

Description The API that is being targeted ignores the leading ghost

characters, and processes the attacker‟s input. This occurs when

the targeted API will accept input data in several syntactic

forms and interpret it in the equivalent way, while the filter does

not take into account the full spectrum of the syntactic forms

acceptable to the targeted API.

Parent Threat Resource Manipulation

Solutions and

Mitigations

Perform white list rather than black list input validation.

Canonicalize all data prior to validation.

Take an iterative approach to input validation (defense in

depth).

Parent Mitigation AC, CM, SI

Table 36 introduces the textual description for attack pattern 75.

94

Table 36. Textual Attack Description for Attack Pattern 75 (“Manipulating Writable Configuration Files”).

Attack Pattern ID 75

Attack Pattern Name Manipulating Writable Configuration Files

Description An attacker modifies the contents of configuration files that

influence/control the operation of the target software. This

attack exploits the ever-growing number, size and complexity of

configuration files and the often lax access controls on these

files.

This attack exploits a program's trust in configuration files that

may have weaker permissions. System configuration in

distributed systems such as J2EE servers have many

administration points. For example, permissions may be set on

the administrative GUI, the configuration file for the server as a

whole, configuration files for specific domains and applications,

special jar and other class files used to load resources at

runtime, and even policy specific in .war and .ear files. A

mistake in permissions setting in either the file acl or the content

is an opening an attacker can use to elevate privilege.

Parent Threat Exploitation of Privilege / Trust

Solutions and

Mitigations

Design: Enforce principle of least privilege

Design: Backup copies of all configuration files

Implementation: Integrity monitoring for configuration files

Implementation: Enforce audit logging on code and

configuration promotion procedures.

Implementation: Load configuration from separate process and

memory space, for example a separate physical device like a CD

Parent Mitigation AC, CP, CM, AU, CA, SI, SC

4.4. Results of Case Study

Our case study presents one attack pattern from each Parent Threat. The results of

our case study for Step 1 are presented below where Table 37 introduces the results of Step

1 for Process 2 for attack pattern 87.

95

Table 37. Addition of Parent Threat Column for Attack Pattern 87 (“Forceful Browsing”).

Table 38 introduces the results of Step 1 for Process 2 for attack pattern 94.

Parent

Threat

Attack

Pattern

Solutions and

Mitigations

NIST Child

Mitigation(s)

Parent

Mitigation(s)

Abuse of

Functionality

Forceful

Browsing: 87

Authenticate request to

every resource. In

addition, every page or

resource must ensure that

the request it is handling

has been made in an

authorized context.

AC17, IA2,

IA3, MA4,

SC8, SC23,

SI10

AC, IA, MA,

SC, SI

Forceful browsing can

also be made difficult to a

large extent by not hard

coding names of

application pages or

resources. This way, the

attacker cannot figure

out, from the application

alone, the resources

available from the present

context.

SC18, AT3,

CA2, CA4,

PL2, SA3,

SA8, SA10

AT, CA,

PL,SA

96

Table 38. Addition of Parent Threat Column for Attack Pattern 94 (“Man in the Middle”).

Table 39 introduces the results of Step 1 for Process 2 for attack pattern 55.

Table 39. Addition of Parent Threat Column for Attack Pattern 55 (“Rainbow Table Password Cracking”).

Table 40 introduces the results of Step 1 for Process 2 for attack pattern 60.

Parent

Threat

Attack Pattern Solutions and

Mitigations

NIST Child

Mitigation(s)

Parent

Mitigation(s)

Spoofing Man the

Middle: 94

Get your Public Key

signed by a Certificate

Authority

CA4, IA5,

IA7, SC13,

SC17

CA, IA, SC

Encrypt your

communication using

cryptography (SSL,...)

AC3, AC4,

SC7, AC17,

IA7, SC8,

SC9, SC12,

SC13, SI7

AC ,SI

Use Strong mutual

authentication to always

fully authenticate both

ends of any

communications

channel.

AC17, IA1,

IA2, IA3, IA4,

IA5, SC8,

SC11, SC23,

SI10

Exchange public keys

using a secure channel

SC17, SC12,

SC13

Parent

Threat

Attack

Pattern

Solutions and

Mitigations

NIST Child

Mitigation(s)

Parent

Mitigation(s)

Probabilistic

Techniques

Rainbow

Table Pswd

Cracking: 55

Use salt when computing

password hashes. That is,

concatenate the salt

(random bits) with the

original password prior

to hashing it.

SI7, SC13,

IA5

SI, SC, IA

97

Table 40. Addition of Parent Threat Column for Attack Pattern 60 (“Reusing Session Id‟s”).

Table 41 introduces the results of Step 1 for Process 2 for attack pattern 82.

Parent

Threat

Attack

Pattern

Solutions and

Mitigations

NIST Child

Mitigation(s)

Parent

Mitigation(s)

Exploitation

of

Authorization

Reusing

Session

ID's: 60

Always invalidate a

session ID after the user

logout.

AC3, IA5,

SC10, SC23,

IA4

AC, IA, SC

Setup a session time out

for the session IDs.

AC11, AC12,

SC23, IA4

Protect the

communication between

the client and server. For

instance it is best

practice to use SSL to

mitigate man in the

middle attack.

AC4, IA2, IA3,

IA7, SC8, SC9,

SC11, SC12,

SC13, SC16,

SC17, SC20,

SC21, SC22,

SC23

SA

Do not code send session

ID with GET method,

otherwise the session ID

will be copied to the

URL. In general avoid

writing session IDs in the

URLs. URLs can get

logged in log files, which

are vulnerable to an

attacker.

SC9, SC4,

SC14, SC16,

SA8

Encrypt the session data

associated with the

session ID.

AC3, SC4,

SC7, SC23

Use multifactor

authentication.

IA2

98

Table 41. Addition of Parent Threat Column for Attack Pattern 82 (XML Denial of Service”).

Table 42 introduces the results of Step 1 for Process 2 for attack pattern 65.

Table 42. Addition of Parent Threat Column for Attack Pattern 65 (“Passive Sniffing”).

Table 43 introduces the results of Step 1 for Process 2 for attack pattern 101.

Parent

Threat

Attack

Pattern

Solutions and Mitigations NIST Child

Mitigation(s)

Parent

Mitigation(s)

Resource

Depletion

XMLDoS

(XDoS):

82

Design: Utilize a Security

Pipeline Interface (SPI) to

mediate communications

between service requester

and service provider The SPI

should be designed to throttle

up and down and handle a

variety of payloads.

AC4, SI9,

SI10, AC3,

CM6

AC, SI, CM

Design: Utilize clustered and

fail over techniques, leverage

network transports to provide

availability such as HTTP

load balancers

AC4, CA3,

SC6, SI4,

CP10, SC5,

SC22

CA,SC, CP

Implementation: Check size

of XML message before

parsing

SI7, SI9,

SI10

Parent

Threat

Attack

Pattern

Solutions and Mitigations NIST Child

Mitigation(s)

Parent

Mitigation(s)

Data

Leakage

Attacks

Passive

Sniffing:

65

Do not store secrets in client code

CM6, PE19,

RA3, SA8,

PL4

CM, PE, RA,

SA, PL

Use Well-Known Cryptography

Appropriately and Correctly

AC3, AC17,

IA7, MA4,

SC8, SC9,

SC12, SC13

AC, IA, MA,

SC

Use Authentication Mechanisms,

Where Appropriate, Correctly

IA2, IA7,

SC23, SI10

SI

99

Table 43. Addition of Parent Threat Column for Attack pattern 101 (“Server Side Includes”).

Table 44 introduces the results of Step 1 for Process 2 for attack pattern 10.

Parent

Threat

Attack Pattern Solutions and Mitigations NIST Child

Mitigation(s)

Parent

Mitigation(s)

Injection Server Side

Includes (SSI):

101

Set the OPTIONS

IncludesNOEXEC in the

global access.conf file or

local .htaccess (Apache)

file to deny SSI execution

in directories that do not

need them

CM1, CM6,

CM7, SI6, SC3,

AC6

CM, SI, SC,

AC

All user controllable input

must be appropriately

sanitized before use in the

application. This includes

omitting, or encoding,

certain characters or

strings that have the

potential of being

interpreted as part of an

SSI directive

SI7, SI9, SI10

Server Side Includes must

be enabled only if there is

a strong business reason to

do so. Every additional

component enabled on the

web server increases the

attack surface as well as

administrative overhead

AC6

100

Table 44. Addition of Parent Threat Column for Attack Pattern 10 (“Buffer Overflow via Environment Variables”).

Table 45 introduces the results of Step 1 for Process 2 for attack pattern 29.

Parent

Threat

Attack

Pattern

Solutions and Mitigations NIST Child

Mitigation(s)

Parent

Mitigation(s)

Data

Structure

Attacks

Buffer

Overflow via

Environment

Variables: 10

Do not expose environment

variable to the user.

AC6, CM6,

RA3, RA5,

SA10, SA11,

SC4, SI10

AC, CM,

RA, SA, SC,

SI

Do not use untrusted data in your

environment variables.

AC3, CM6,

IA2, SC23,

SI17, SI19,

SI10

IA,

Use a language or compiler that

performs automatic bounds

checking

SA8, PL2 PL

There are tools such as Sharefuzz

(http://sharefuzz.sourceforge.net/)

which is an environment variable

fuzzer for Unixes that support

loading a shared library. You can

use Sharefuzz to determine if you

are exposing an environment

variable vulnerable to buffer

overflow.

MA3, PL6

RA5, SA10,

SA11, SI2,

SI4

MA

101

Table 45. Addition of Parent Threat Column for Attack Pattern 29 (“Race Conditions, Time of Check Time of Use”).

Step 3 of Process 2 requires us to create both the graphical hierarchies and the

textual attack descriptions for the attack pattern. We create the graphical hierarchies by

filling in the required elements outlined in Figure 9 for each attack pattern. The completed

graphical hierarchy for attack pattern 87 is introduced in Figure 12.

Parent

Threat

Attack Pattern Solutions and Mitigations NIST Child

Mitigation(s)

Parent

Mitigation(s)

Time

and

State

Attacks

Race

Conditions

(TOCTOU): 29

Use safe libraries to access

resources such as files.

SI7, SC18, SI, SC

Be aware that improper use

of access function calls

such as chown(),

tempfile(), chmod(), etc.

can cause a race condition.

AT2, AC3, IA2 AT, AC, IA

Use synchronization to

control the flow of

execution.

SC3, AC4

Use static analysis tools to

find race conditions.

SA11,SI10

Pay attention to

concurrency problems

related to the access of

resources.

SA8, SC4 SA

102

Parent Threat: Abuse of Functionality

Parent Mitigations: IA, MA, SC, SI, AT, CA, PL, SA, AC

Name: Forceful Browsing

Description:

An attacker employs forceful browsing to access portions of a website that are otherwise unreachable through

direct URL entry.

Usually, a front controller or similar design pattern is employed to protect access to portions of a web

application.

Forceful browsing enables an attacker to access information, perform privileged operations and otherwise reach

sections of the web application that have been improperly protected.

Solutions and Mitigations

 Authenticate request to every resource. In addition, every page or resource must ensure that

the request it is handling has been made in an authorized context.

 Forceful browsing can also be made difficult to a large extent by not hardcoding names of

application pages or resources. This way, the attacker cannot figure out, from the application

alone, the resources available from the present context.

ID: 87

Figure 12. Graphical Hierarchy Tree for Attack Pattern 87 (“Forceful Browsing”).

The completed graphical hierarchy for attack pattern 94 is introduced in Figure 13.

103

Parent Threat: Spoofing

Parent Mitigation: CA, IA, SC, AC, SI

Name: Man in the Middle

Description:

This type of attack targets the communication between two components (typically client and server). The

attacker places himself in the communication channel between the two components. Whenever one component

attempts to communicate with the other (data flow, authentication challenges, etc.), the data first goes to the

attacker, who has the opportunity to observe or alter it, and it is then passed on to the other component as if it

was never intercepted. This interposition is transparent leaving the two compromised components unaware of the

potential corruption or leakeage of their communications. The potential for Man-in-the-Middle attacks yields an

implicit lack of trust in communication or identify between two components.

Solutions and Mitigations:

 Get your Public Key signed by a Certificate Authority

 Encrypt your communication using cryptography (SSL,...)

 Use Strong mutual authentication to always fully authenticate both

ends of any communications channel.

 Exchange public keys using a secure channel

ID: 94

Figure 13. Graphical Hierarchy Tree for Attack Pattern 94 (“Man in the Middle”).

The completed graphical hierarchy for attack pattern 55 is introduced in Figure 14.

104

Parent Threat: Probabilistic Techniques

Parent Mitigation: SI, SC, IA

Name: Rainbow Table Password Cracking

Description:

An attacker gets access to the database table where hashes of passwords are stored. He then uses a rainbow table

of precomputed hash chains to attempt to look up the original password. Once the original password

corresponding to the hash is obtained, the attacker uses the original password to gain access to the system.

 A password rainbow table stores hash chains for various passwords. A password chain is computed,

starting from the original password, P, via a a reduce(compression) function R and a hash function H. A

recurrence relation exists where Xi+1 = R(H(Xi)), X0 = P. Then the hash chain of length n for the original

password P can be formed: X1, X2, X3, ... , Xn-2, Xn-1, Xn, H(Xn). P and H(Xn) are then stored together in

the rainbow table.

Solutions and Mitigations

 Use salt when computing password hashes. That is,

concatenate the salt (random bits) with the original password

prior to hashing it.

ID: 55

Figure 14. Graphical Hierarchy Tree for Attack Pattern 94 (“Rainbow Table Password Cracking”).

The completed graphical hierarchy for attack pattern 60 is introduced in Figure 15.

105

Parent Threat: Exploitation of Authentication

Parent Mitigation: AC, SI, SC, IA

Name: Reusing Session ID’s

Description:

This attack targets the reuse of valid session ID to spoof the target system

in order to gain privileges. The attacker tries to reuse a stolen session ID

used previously during a transaction to perform spoofing and session

hijacking. Another name for this type of attack is Session Replay.

Solutions and Mitigations

 Always invalidate a session ID after the user logout.

 Setup a session time out for the session IDs.

 Protect the communication between the client and server. For instance it is best practice to

use SSL to mitigate man in the middle attack.

 Do not code send session ID with GET method, otherwise the session ID will be copied to

the URL. In general avoid writing session IDs in the URLs. URLs can get logged in log files,

which are vulnerable to an attacker.

 Encrypt the session data associated with the session ID.

 Use multifactor authentication.

ID: 60

Figure 15. Graphical Hierarchy Tree for Attack Pattern 60 (“Reusing Session ID‟s”).

The completed graphical hierarchy for attack pattern 82 is introduced in Figure 16.

106

Parent Threat: Resource Depletion

Parent Mitigation: AC, SI, CM, CA, SC, CP

Name: XML Denial of Service (XDoS)

Description:

XML Denial of Service (XDoS) can be applied to any technology that utilizes XML data. This is, of course,

most distributed systems technology including Java, .Net, databases, and so on. XDoS is most closely associated

with web services, SOAP, and Rest, because remote service requesters can post malicious XML payloads to the

service provider designed to exhaust the service provider's memory, CPU, and/or disk space. The main weakness

in XDoS is that the service provider generally must inspect, parse, and validate the XML messages to determine

routing, workflow, security considerations, and so on. It is exactly these inspection, parsing, and validation

routines that XDoS targets. There are three primary attack vectors that XDoS can navigate

Target CPU through recursion: attacker creates a recursive payload and sends to service provider

Target memory through jumbo payloads: service provider uses DOM to parse XML. DOM creates in memory

representation of XML document, but when document is very large (for example, north of 1 Gb) service provider

host may exhaust memory trying to build memory objects.

XML Ping of death: attack service provider with numerous small files that clog the system.

All of the above attacks exploit the loosely coupled nature of web services, where the service provider has little

to no control over the service requester and any messages the service requester sends.

Solutions and Mitigations

 Design: Utilize a Security Pipeline Interface (SPI) to mediate communications between

service requester and service provider The SPI should be designed to throttle up and down

and handle a variety of payloads.

 Design: Utilize clustered and fail over techniques, leverage network transports to provide

availability such as HTTP load balancers

 Implementation: Check size of XML message before parsing

ID: 82

Figure 16. Graphical Hierarchy Tree for Attack Pattern 82 (“XML Denial of Service”).

The completed graphical hierarchy for attack pattern 101 is introduced in Figure 17.

107

Parent Threat: Injection

Parent Mitigation: CM, SI, SC, AC

Name: Server Side Includes

Description:

An attacker can use Server Side Include (SSI) Injection to send code to a web application that then

gets executed by the web server. Doing so enables the attacker to achieve similar results to Cross

Site Scripting, viz., arbitrary code execution and information disclosure, albeit on a more limited

scale, since the SSI directives are nowhere near as powerful as a full-fledged scripting language.

Nonetheless, the attacker can conveniently gain access to sensitive files, such as password files,

and execute shell commands.

Solutions and Mitigatins:

 Set the OPTIONS IncludesNOEXEC in the global access.conf file or local .htaccess

(Apache) file to deny SSI execution in directories that do not need them

 All user controllable input must be appropriately sanitized before use in the application. This

includes omitting, or encoding, certain characters or strings that have the potential of being

interpreted as part of an SSI directive

 Server Side Includes must be enabled only if there is a strong business reason to do so. Every

additional component enabled on the web server increases the attack surface as well as

administrative overhead

ID: 101

Figure 17. Graphical Hierarchy Tree for Attack Pattern 101 (“Server Side Includes”).

The completed graphical hierarchy for attack pattern 10 is introduced in Figure 18.

108

Parent Threat: Data Structure Attacks

Parent Mitigation: AC, CM, RA, SA, SC, SA, IA, PL, MA

Name: Buffer Overflow via Environment Variables

Description:

This attack pattern involves causing a buffer overflow through

manipulation of environment variables. Once the attacker finds that they

can modify an environment variable, they may try to overflow associated

buffers. This attack leverages implicit trust often placed in environment

variables.

Solutions and Mitigations:

 Do not expose environment variable to the user.

 Do not use untrusted data in your environment variables.

 Use a language or compiler that performs automatic bounds checking

 There are tools such as Sharefuzz (http://sharefuzz.sourceforge.net/) which is an environment

variable fuzzer for Unixes that support loading a shared library. You can use Sharefuzz to

determine if you are exposing an environment variable vulnerable to buffer overflow.

ID: 10

Figure 18. Graphical Hierarchy Tree for Attack Pattern 10 (“Buffer Overflow via Environment Variables”).

The completed graphical hierarchy for attack pattern 65 is introduced in Figure 19.

109

Parent Threat: Data Leakage Attacks

Parent Mitigation: CM, PE, RA, SA, PL, AC, IA, MA, SC, SI

Name: Passive Sniffing

Description:

Attackers can capture application code bound for the client and can use it, as-is or

through reverse-engineering, to glean sensitive information or exploit the trust

relationship between the client and server.

Such code may belong to a dynamic update to the client, a patch being applied to a

client component or any such interaction where the client is authorized to communicate

with the server.

Solutions and Mitigations:

 Do not store secrets in client code

 Use Well-Known Cryptography Appropriately and Correctly

 Use Authentication Mechanisms, Where Appropriate,

Correctly

ID: 65

Figure 19. Graphical Hierarchy Tree for Attack Pattern 65 (“Passive Sniffing”).

The completed graphical hierarchy for attack pattern 29 is introduced in Figure 20.

110

Parent Threat: Time and State Attacks

Parent Mitigation: SI, SC, AT, AC, IA, SA

Name: Race Conditions (Time of Check and Time of Use)

Description:

This attack targets a race condition occurring between the time of check (state) for a

resource and the time of use of a resource. The typical example is the file access. The

attacker can leverage a file access race condition by "running the race", meaning that he

would modify the resource between the first time the target program accesses the file

and the time the target program uses the file. During that period of time, the attacker

could do something such as replace the file and cause an escalation of privilege.

Solutions and Mitigations:

 Use safe libraries to access resources such as files.

 Be aware that improper use of access function calls such as chown(), tempfile(),

chmod(), etc. can cause a race condition.

 Use synchronization to control the flow of execution.

 Use static analysis tools to find race conditions.

 Pay attention to concurrency problems related to the access of resources.

ID: 29

Figure 20. Graphical Hierarchy Tree for Attack Pattern 65 (“Race Conditions Time of Check and Time of Use”).

Step 4 calls for the creation of a textual attack description and is completed by

extracting information from the hierarchies into the textual template provided in Table 35.

Table 46 introduces the textual attack description for attack pattern 87.

111

Table 46. Textual Attack Description for Attack Pattern 87 (“Forceful Browsing”).

Attack Pattern ID 87

Attack Pattern Name Forceful Browsing

Description An attacker employs forceful browsing to access portions of a

website that are otherwise unreachable through direct URL

entry.

Usually, a front controller or similar design pattern is employed

to protect access to portions of a web application.

Forceful browsing enables an attacker to access information,

perform privileged operations and otherwise reach sections of

the web application that have been improperly protected.

Parent Threat Abuse of Functionality

Solutions and

Mitigations

Authenticate request to every resource. In addition, every page

or resource must ensure that the request it is handling has been

made in an authorized context.

Forceful browsing can also be made difficult to a large extent by

not hardcoding names of application pages or resources. This

way, the attacker cannot figure out, from the application alone,

the resources available from the present context.

Parent Mitigation IA, MA, SC, SI, AT, CA, PL, SA, AC

Table 47 introduces the textual attack description for attack pattern 94.

112

Table 47. Textual Attack Description for Attack Pattern 94 (“Man in the Middle”).

Attack Pattern ID 94

Attack Pattern Name Man in the Middle

Description This type of attack targets the communication between two

components (typically client and server). The attacker places

himself in the communication channel between the two

components. Whenever one component attempts to

communicate with the other (data flow, authentication

challenges, etc.), the data first goes to the attacker, who has the

opportunity to observe or alter it, and it is then passed on to the

other component as if it was never intercepted. This

interposition is transparent leaving the two compromised

components unaware of the potential corruption or leakeage of

their communications. The potential for Man-in-the-Middle

attacks yields an implicit lack of trust in communication or

identify between two components.

Parent Threat Spoofing

Solutions and

Mitigations

Get your Public Key signed by a Certificate Authority

Encrypt your communication using cryptography (SSL,...)

Use Strong mutual authentication to always fully authenticate

both ends of any communications channel.

Exchange public keys using a secure channel

Parent Mitigation CA, IA, SC, AC, SI

Table 48 introduces the textual attack description for attack pattern 55.

113

Table 48. Textual Attack Description for Attack Pattern 55 (“Rainbow Table Password Cracking”).

Attack Pattern ID 55

Attack Pattern Name Rainbow Table Password Cracking

Description An attacker gets access to the database table where hashes of

passwords are stored. He then uses a rainbow table of

precomputed hash chains to attempt to look up the original

password. Once the original password corresponding to the

hash is obtained, the attacker uses the original password to gain

access to the system.

 A pasword rainbow table stores hash chains for various

passwords. A password chain is computed, starting from the

original password, P, via a a reduce(compression) function R

and a hash function H. A recurrence relation exists where Xi+1

= R(H(Xi)), X0 = P. Then the hash chain of length n for the

original password P can be formed: X1, X2, X3, ... , Xn-2, Xn-

1, Xn, H(Xn). P and H(Xn) are then stored together in the

rainbow table.

Parent Threat Probabilistic Techniques

Solutions and

Mitigations

Use salt when computing password hashes. That is, concatenate

the salt (random bits) with the original password prior to

hashing it.

Parent Mitigation SI, SC, IA

Table 49 introduces the textual attack description for attack pattern 60.

114

Table 49. Textual Attack Description for Attack Pattern 60 (“Reusing Session ID‟s”).

Attack Pattern ID 60

Attack Pattern Name Reusing Session ID‟s

Description This attack targets the reuse of valid session ID to spoof the

target system in order to gain privileges. The attacker tries to

reuse a stolen session ID used previously during a transaction to

perform spoofing and session hijacking. Another name for this

type of attack is Session Replay.

Parent Threat Exploitation of Authentication

Solutions and

Mitigations

Always invalidate a session ID after the user logout.

Setup a session time out for the session IDs.

Protect the communication between the client and server. For

instance it is best practice to use SSL to mitigate man in the

middle attack.

Do not code send session ID with GET method, otherwise the

session ID will be copied to the URL. In general avoid writing

session IDs in the URLs. URLs can get logged in log files,

which are vulnerable to an attacker.

Encrypt the session data associated with the session ID.

Use multifactor authentication.

Parent Mitigation AC, IA, SC, SA

Table 50 introduces the textual attack description for attack pattern 82.

115

Table 50. Textual Attack Description for Attack Pattern 82 (“XML Denial of Service”).

Attack Pattern ID 82

Attack Pattern Name XMLDoS (XDoS)

Description XML Denial of Service (XDoS) can be applied to any

technology that utilizes XML data. This is, of course, most

distributed systems technology including Java, .Net, databases,

and so on. XDoS is most closely associated with web services,

SOAP, and Rest, because remote service requesters can post

malicious XML payloads to the service provider designed to

exhaust the service provider's memory, CPU, and/or disk space.

The main weakness in XDoS is that the service provider

generally must inspect, parse, and validate the XML messages to

determine routing, workflow, security considerations, and so on.

It is exactly these inspection, parsing, and validation routines

that XDoS targets.

There are three primary attack vectors that XDoS can navigate

Target CPU through recursion: attacker creates a recursive

payload and sends to service provider

Target memory through jumbo payloads: service provider uses

DOM to parse XML. DOM creates in memory representation of

XML document, but when document is very large (for example,

north of 1 Gb) service provider host may exhaust memory trying

to build memory objects.

XML Ping of death: attack service provider with numerous

small files that clog the system.

All of the above attacks exploit the loosely coupled nature of

web services, where the service provider has little to no control

over the service requester and any messages the service

requester sends.

Parent Threat Resource Depletion

Solutions and

Mitigations

Design: Utilize a Security Pipeline Interface (SPI) to mediate

communications between service requester and service provider

The SPI should be designed to throttle up and down and handle

a variety of payloads.

Design: Utilize clustered and fail over techniques, leverage

network transports to provide availability such as HTTP load

balancers

Implementation: Check size of XML message before parsing

Parent Mitigation AC, SI, CM, CA, SC, CP

116

Table 51 introduces the textual attack description for attack pattern 101.

Table 51. Textual Attack Description for Attack Pattern 101 (“Server Side Includes”).

Attack Pattern ID 101

Attack Pattern Name Server Side Includes (SSI)

Description An attacker can use Server Side Include (SSI) Injection to send

code to a web application that then gets executed by the web

server. Doing so enables the attacker to achieve similar results

to Cross Site Scripting, viz., arbitrary code execution and

information disclosure, albeit on a more limited scale, since the

SSI directives are nowhere near as powerful as a full-fledged

scripting language. Nonetheless, the attacker can conveniently

gain access to sensitive files, such as password files, and

execute shell commands.

Parent Threat Injection

Solutions and

Mitigations

Set the OPTIONS IncludesNOEXEC in the global access.conf

file or local .htaccess (Apache) file to deny SSI execution in

directories that do not need them

All user controllable input must be appropriately sanitized

before use in the application. This includes omitting, or

encoding, certain characters or strings that have the potential of

being interpreted as part of an SSI directive

Server Side Includes must be enabled only if there is a strong

business reason to do so. Every additional component enabled

on the web server increases the attack surface as well as

administrative overhead

Parent Mitigation CM, SI, SC, AC

Table 52 introduces the textual attack description for attack pattern 10.

117

Table 52. Textual Description for Attack Pattern 10 (“Buffer Overflow via Environment Variable”).

Attack Pattern ID 10

Attack Pattern Name Buffer Overflow via Environment Variables

Description This attack pattern involves causing a buffer overflow through

manipulation of environment variables. Once the attacker finds

that they can modify an environment variable, they may try to

overflow associated buffers. This attack leverages implicit trust

often placed in environment variables.

Parent Threat Data Structure Attacks

Solutions and

Mitigations

Do not expose environment variable to the user.

Do not use untrusted data in your environment variables.

Use a language or compiler that performs automatic bounds

checking

There are tools such as Sharefuzz

(http://sharefuzz.sourceforge.net/) which is an environment

variable fuzzer for Unixes that support loading a shared library.

You can use Sharefuzz to determine if you are exposing an

environment variable vulnerable to buffer overflow.

Parent Mitigation AC, CM, RA, SA, SC, SA, IA, PL, MA

Table 53 introduces the textual attack description for attack pattern 65.

Table 53. Textual Attack Description for Attack Pattern 65 (“Passive Sniffing”).

Attack Pattern ID 65

Attack Pattern Name Passive Sniffing

Description Attackers can capture appplication code bound for the client and

can use it, as-is or through reverse-engineering, to glean

sensitive information or exploit the trust relationship between

the client and server.

Such code may belong to a dynamic update to the client, a patch

being applied to a client component or any such interaction

where the client is authorized to communicate with the server.

Parent Threat Data Leakage Attack

Solutions and

Mitigations

Do not store secrets in client code

Use Well-Known Cryptography Appropriately and Correctly

Use Authentication Mechanisms, Where Appropriate, Correctly

Parent Mitigation CM, PE, RA, SA, PL, AC, IA, MA, SC, SI

118

Table 54 introduces the textual attack description for attack pattern 29.

Table 54. Textual Description for Attack Pattern 29 (“Race Conditions Time of Check and Time of Use”).

Attack Pattern ID 29

Attack Pattern Name Race Conditions (Time of Check and Time of Use)

Description This attack targets a race condition occurring between the time

of check (state) for a resource and the time of use of a resource.

The typical example is the file access. The attacker can leverage

a file access race condition by "running the race", meaning that

he would modify the resource between the first time the target

program accesses the file and the time the target program uses

the file. During that period of time, the attacker could do

something such as replace the file and cause an escalation of

privilege.

Parent Threat Time and State Attacks

Solutions and

Mitigations

Use safe libraries to access resources such as files.

Be aware that improper use of access function calls such as

chown(), tempfile(), chmod(), etc. can cause a race condition.

Use synchronization to control the flow of execution.

Use static analysis tools to find race conditions.

Pay attention to concurrency problems related to the access of

resources.

Parent Mitigation SI, SC, AT, AC, IA, SA

4.5. Discussion and Validation

 While the current CAPEC standard provides a significant amount of valuable

information, there are tremendous variations in the depth and breadth of the defined

element set currently outlined for each attack pattern. Users who are presented with vast

amounts of information need assistance and a proper plan to avoid feeling overwhelmed,

lost, or even frustrated (Rockland, 2000). Process 2 includes a Parent Threat element into

the dictionary to provide consistency and usability to the CAPEC Release 1 Dictionary. We

119

proposed a new model for presenting CAPEC attack patterns which provides a

standardized element set to provide context and describe how the elements are related.

Because the current elements provide valuable information, we are not advocating their

removal. Our intention is to present the data in a manageable and consistent manner. Full

details of the Release 1 dictionary will be readily available. This is a valuable step to the

increased adoption and wide spread acceptance of the CAPEC Release 1 Dictionary.

Our hierarchies allow CAPEC attack pattern information to be viewed from two

distinct points of view. Graphical hierarchies allow for viewing element, attack pattern,

Parent Threat, and Parent Mitigation relationships. This allows users to trace both up from

individual Parent Mitigations or down from individual Parent Threats. The textual attack

descriptions present an attack pattern point of view. The creation of this model provides a

stand-alone description for understanding the attack pattern.

Validation for Process 2 was provided through the execution of a controlled

experiment which produced positive preliminary results to support our claims of increased

usability and consistency. Because utilizing subjects who demonstrate an interest in the

topic being examined is important for usability studies (Borlund & Ingwersen, 1997), we

included a total of ten participants from the undergraduate Computer and Network Security

majors at Dakota State University in our experiment. The data from all ten participants was

used for analysis. Subjects volunteered for participation and were not compensated for their

time. All participants were tested in a computer lab environment with identical computer

hardware and software.

The ten participants were divided into two groups where the first group was asked

to examine attack pattern details using the current CAPEC Release 1 Dictionary. The

120

second group was asked to examine attack pattern details utilizing the trimmed element set

created as a result of Process 2. Group assignment was based on a coin toss; the first five

participants to flip “heads” were assigned to the CAPEC group. The remaining five

participants were assigned to the trimmed element set group.

The experiment covered a total of six randomly selected attack patterns. For each

attack pattern, participants were given ten minutes to complete an assigned task using their

predetermined dictionary. All participants worked individually on the same attack pattern

at the same time and were asked to complete two tasks per attack pattern. The first task

was to locate the selected attack pattern using their assigned dictionary. The second task

was to count the number of individual prescribed Solutions and Mitigations for the given

attack pattern. There was a master clock to ensure accurate timing. The master clock was

set to 0:00 at the beginning of each new attack pattern. Once the attack pattern was

revealed to the group, the master clock was started. Participants were asked to record the

number of mitigations they found and the time it took to complete both tasks.

Each participant was assigned a number which could be used to track which attack

dictionary the subject was using. No other identifying information was collected. Data was

recorded by individual participants utilizing Microsoft Notepad. Participants were

instructed to create a single Microsoft Notepad log; data from each of the attack pattern

experiments was recorded on a single line.

At the conclusion of the experiment participants were asked to answer two

questions.

121

1. “In the process of attempting to locate specific information about specific

attack patterns, did you think there was too much data, not enough data, or

just the right amount of data about each attack pattern?” Answers for the

first question ranged from a low score of, “1 = The dictionary did not

contain enough data / elements”, a medium score of “5 = The amount of

information in the dictionary was appropriate”, and a high score of “10 =

The dictionary contained too much data”.

2. "Concerning usability (structure, organization, ease of use, format, and

ability to locate information quickly), how likely are you to use this

dictionary again?" Answers for the second question ranged from a low score

of “1 = Not Useable / Will Never Use Again”, a medium score of “5 =

Indifferent”, and a high score of “10 = Very Useable / Will Definitely Use

Again”.

The results of our experiment demonstrate positive preliminary results for both

usability and consistency as introduced in Tables 55-60 where “Average Time to Complete

Task” is the mean number of seconds it took to participants to complete the experiment.

“Average Mitigation Count” is a measurement of the mean number of mitigations found by

each participant. “High Mitigation Count” represents the highest number of mitigations

recorded by any single participant in the group. “Low Mitigation Count” represents the

lowest number of mitigations recorded by any single participant in the group. “% of Users

Who Found the Same” represents the percentage of the group member who agreed on the

number of mitigations listed in dictionary. CAPEC represents the group who utilized the

122

CAPEC dictionary and TAD represents the group who utilized our textual attack

descriptions.

Table 55. Results of Usability and Consistency Study for Attack Pattern 43.

 CAPEC TAD

Average Time to Complete Task 61.4 13

Average Mitigation Count 3.2 3

High Mitigation Count 5 3

Low Mitigation Count 2 3

% of Users Who Found the Same 60 100

Table 56. Results of Usability and Consistency Study for Attack Pattern 67.

 CAPEC TAD

Average Time to Complete Task 57.4 15.4

Average Mitigation Count 1.4 1

High Mitigation Count 2 1

Low Mitigation Count 1 1

% of Users Who Found the Same 60 100

Table 57. Results of Usability and Consistency Study for Attack Pattern 34.

 CAPEC TAD

Average Time to Complete Task 41.8 13.8

Average Mitigation Count 1.2 1

High Mitigation Count 2 1

Low Mitigation Count 1 1

% of Users Who Found the Same 80 100

123

Table 58. Results of Usability and Consistency Study for Attack Pattern 86.

 CAPEC TAD

Average Time to Complete Task 50 19.6

Average Mitigation Count 8.6 9

High Mitigation Count 9 9

Low Mitigation Count 7 9

% of Users Who Found the Same 80 100

Table 59. Results of Usability and Consistency Study for Attack Pattern 9

 CAPEC TAD

Average Time to Complete Task 45.2 9.6

Average Mitigation Count 6.4 7

High Mitigation Count 7 7

Low Mitigation Count 4 7

% of Users Who Found the Same 80 100

Table 60. Results of Usability and Consistency Study for Attack Pattern 6

 CAPEC TAD

Average Time to Complete Task 29.2 9.2

Average Mitigation Count 2.8 3

High Mitigation Count 3 3

Low Mitigation Count 2 3

% of Users Who Found the Same 80 100

 Participants who used our dictionary were able to complete the assigned tasks

quicker. Furthermore, participants who utilized our dictionary were more consistent in

identifying the number of prescribed mitigations. Throughout each of the six exercises,

participants using our approach found the same number of mitigations 100% of the time.

124

In zero of the six exercises did subjects using the original CAPEC dictionary agree 100%

of the time and they matched what was documented.

When asked the question “In the process of attempting to locate specific

information about specific attack patterns, did you think there was too much data, not

enough data, or just the right amount of data (about each attack pattern)”, CAPEC users

averaged a 7.4 out of 10 while participants who used our approach averaged a 4.4 out of

10. These results are introduced in Table 61.

Table 61. Results from the Amount of Data Question.

Participant CAPEC TAD

1 9

 2 9

 3 8

 4 3

 5 8

 6

5

7

3

8

5

9

5

10

4

Average 7.4 4.4

As introduced earlier a score of 5 meant that the participant felt there was an

appropriate amount of data presented in the given dictionary. Scores above 5 indicated that

the user felt there was too much information presented in the dictionary while scores below

5 indicated that there was too little information presented in the dictionary. The farther

away from 5 (either higher or lower) means a stronger indicator towards too much / too

little information.

125

The results from Table 62 show that our When asked the question, "Concerning

usability (structure, organization, ease of use, format, and ability to locate information

quickly), how likely are you to use this dictionary again?", CAPEC users averaged a 4.2

out of 10 while participants who used our dictionary averaged a 9.2 out of 10. These results

are introduced in Table 62.

Table 62. Results from the Usability / Format Question.

Participant CAPEC TAD

1 6

 2 4

 3 6

 4 2

 5 3

 6

10

7

9

8

9

9

10

10

8

Average 4.2 9.2

As introduced earlier the higher the score the more usable the participant deemed

the dictionary to be and the more the likely the participant was to reuse this dictionary

again in the future. Scores above 5 indicated that the participant felt the dictionary was

useable while scores below 5 indicated that the participants felt the dictionary was not

usable.

The results of Process 2 are required to complete the final Process of our approach;

the creation of CAPEC-based security metrics. Such metrics will be useful in leveraging

126

the vast quantity of information in the current CAPEC dictionary and provide an applied

metric for assisting in security related decisions.

127

5. CREATING CAPEC-BASED SECURITY METRICS

 Our third process creates two security metrics to measure NIST-based mitigation

strategies when applied to the CAPEC dictionary. This approach re-organizes the work

from chapter 4 into a usable hierarchy that is based on the 11 Parent Threats. Leveraging

the hierarchy model introduced in chapter 4, we group the entire attack dictionary by the 17

Parent Mitigations presented in chapter 3. The creation of CAPEC-based security metrics is

useful in leveraging the vast quantity of information in the current CAPEC dictionary as

well as providing an easy-to-use metric for assisting in security related decisions.

The security metrics are created at two distinct levels. The first metric, Knockout

Effect (KOE), is at the individual attack pattern level. The second metric, Parent Mitigation

Power (PMP), encompasses all 101 attack patterns viewed as a whole. These metrics assist

users in making security decisions when attempting to mitigate a single attack pattern or

determining how effective a single mitigation is across multiple attack patterns.

Knock-out Effect (KOE) is a measure of how many Parent Mitigation strategies are

needed to fully mitigate a detailed attack pattern. Each of the 101 attack patterns has a

KOE calculated and stored as part of the graphical hierarchy and the textual attack

description. The addition of KOE aids in the consistency and usability of CAPEC by

allowing users to quickly determine the number of Parent Mitigations required to fully

mitigate a given attack pattern.

Parent Mitigation Power (PMP) is a measure of the total number of unique attack

patterns that were partially mitigated by an individual Parent Mitigation strategy and the

128

total number of Child Mitigation strategies that can be traced to the Parent Mitigation. It is

important to note that KOE for each of the 101 attack patterns must be completed before

the PMP can be computed. We continue our case study to illustrate our approach to

leveraging these metrics by including 1 attack pattern from each of the 11 Parent Threats.

Process 3 builds on the work outlined in Process 1 and Process 2 and is introduced in

Figure 21 where KOE is calculated before PMP. Once these two metrics are calculated our

entire approach is complete. The values calculated for KOE and PMP will not change

regardless of the chosen system implementation.

Figure 21. Individual Steps to Complete Process 3.

129

5.1. Knock-Out Effect (KOE)

Process 3 begins by calculating the Knock-out Effect for the current attack pattern.

This is a numeric value created by adding the total number of Parent Mitigations which

were previously abstracted for the attack pattern in Process 2. The KOE value is recorded

in both the graphical hierarchy as well as the textual attack description for each attack

pattern. Step 1 of Process 3 is repeated for any remaining attack patterns. The detailed

actions needed to create the KOE are listed below.

1. Open the completed table for the given attack pattern which was updated in Process

2 (Table 30). Insert a KOE column to the right of the Parent Mitigation column.

The new KOE column will become the last column in the table.

2. Count the total number of entries in the Parent Mitigation column for the attack

pattern. Enter this value in the newly created KOE column.

3. Add the KOE to the previously created graphical hierarchy by appending the KOE

value to the Attack Pattern Name field.

4. Add KOE to the textual attack description by appending the KOE value to the

Attack Pattern Name field.

5. Repeat steps 2-4 for any remaining attack patterns.

After a KOE value for all 101 attack patterns has been successfully processed we

move to step 3 of Process 3. Step 3 introduces a new security metric (PMP) which is based

off of the data resulting from the conglomeration of all 101 attack patterns into a hierarchy.

An example of the new table used in step 1 is introduced in Table 55.

130

Table 63. Sample Table Used to Complete Step 1 of Process 3.

Parent

Threat

Attack

Pattern

Solutions

and

Mitigations

NIST Child

Mitigation(s)

Parent

Mitigation(s)

KOE

Step 1 of Process 3 adds the KOE value to the previously used attack pattern tables.

KOE counts the total number Parent Mitigations necessary to fully mitigate/prevent the

attack pattern from harming the implementation. KOE measures Parent Mitigations

because they are easily understood by all users and do not provide too much detail that may

intimidate users into non-action. The underlying Child Mitigations that are needed to

adequately mitigate the attack pattern are readily available for review as part of the

hierarchy. KOE is a count of the total number of Parent Mitigations listed. Table 56

introduces the results of steps 1 and 2 Process 3 for attack pattern 3 “Using Leading

„Ghost‟ Character Sequences to Bypass Input Filters”.

Table 64. Addition of KOE Column for Attack Pattern 3 (“Using Leading „Ghost‟ Character Sequences to Bypass Input

Filters”).

Parent

Threat

Attack

Pattern

Solutions and

Mitigations

NIST Child

Mitigation(s)

Parent

Mitigation

KOE

Resource

Manipulation

Using

Leading

'Ghost'

Character

Sequences

to Bypass

Input

Filters

Perform white

list, rather than

black list, input

validation.

AC-3, AC-4,

CM-7, SI-9,

SI-10

AC, CM, SI 3

Canonicalize all

data prior to

validation

SI-9, SI-10

Take an iterative

approach to

input validation

(defense in

depth)

SI-10

131

Table 57 introduces the results of Step 1 and 2 for Process 3 for attack pattern 75

“Manipulating Writable Configuration Files”.

Table 65. Addition of KOE Column for Attack Pattern 75 (“Manipulating Writable Configuration Files”).

Parent

Threat

Attack

Pattern

Solutions and

Mitigations

NIST Child

Mitigation(s)

Parent

Mitigation(s)

KOE

Exploitation

of Privilege

/ Trust

Manipulating

Writable

Configuration

Files 75

Design: Enforce

principle of least

privilege

AC-6 AC 7

Design: Backup

copies of all

configuration

files

CP-9, CP-10,

CM-2

CP, CM

Implementation:

Integrity

monitoring for

configuration

files

AU-6, CA-7,

CM-4, CM-6,

SI-4, SI-7

AU, CA, SI

Implementation:

Enforce audit

logging on code

and configuration

promotion

procedures.

AU1, AU2,

CM3, CM4,

CM5, CM6

Implementation:

Load

configuration

from separate

process and

memory space,

for example a

separate physical

device like a CD

AC-5, SC-2,

SC-3

SC

Step 3 adds the KOE value to the graphical hierarchy trees created for each attack

pattern. The KOE for each attack pattern is shown as part of the Attack Pattern Name field.

132

This allows the total number of Parent Mitigations to be known early in the hierarchy

without having to manually count the bottom of the hierarchy. The completed graphical

hierarchy tree with KOE for attack pattern 3 is introduced in Figure 22.

Parent Threat: Resource Manipulation

Parent Mitigation: AC, CM, SI

Name: Using ‘Ghost’ Characters to Bypass Input Filters (3)

Description:

The API that is being targeted ignores the leading ghost characters, and processes the

attacker‟s input. This occurs when the targeted API will accept input data in several

syntactic forms and interpret it in the equivalent way, while the filter does not take into

account the full spectrum of the syntactic forms

Solutions and Mitigations:

 Perform white list rather than black list input validation.

 Canonicalize all data prior to validation.

 Take an iterative approach to input validation (defense in depth).

ID: 3

Figure 22. Graphical Hierarchy Tree with KOE for Attack Pattern 3 (“Using „Ghost‟ Characters to Bypass Input Filters”).

The completed graphical hierarchy with KOE for attack pattern 75 is introduced in

Figure 23.

133

Parent Threat: Exploitation of Privilege / Trust

Parent Mitigation: AC, CP, CM, AU, CA, SI, SC

Name: Manipulating Writable Configuration Files (7)

Description:

An attacker modifies the contents of configuration files that influence/control the operation of the

target software. This attack exploits the ever-growing number, size and complexity of

configuration files and the often lax access controls on these files.

This attack exploits a program's trust in configuration files that may have weaker permissions.

System configuration in distributed systems such as J2EE servers have many administration

points.

Solutions and Mitigations:

 Design: Enforce principle of least privilege

 Design: Backup copies of all configuration files

 Implementation: Integrity monitoring for configuration files

 Implementation: Enforce audit logging on code and configuration promotion procedures.

 Implementation: Load configuration from separate process and memory space, for example a

separate physical device like a CD

ID: 75

Figure 23. Graphical Hierarchy Tree with KOE for Attack Pattern 75 (“Manipulating Writable Configuration Files”).

Step 4 updates each of the textual attack descriptions with the KOE value. The

addition of this step adds significant value by allowing users to quickly ascertain the KOE

without having to navigate away from the textual attack descriptions. KOE is appended to

the Attack Pattern Name field of each textual attack description. The results of step 4 for

attack pattern 3 and 75 are introduced in Tables 58 and 59, respectively.

134

Table 66. Textual Attack Description with KOE for Attack Pattern 3 (“Using „Ghost‟ Characters to Bypass Input

Filters”).

Attack Pattern ID 3

Attack Pattern Name Using „Ghost‟ Characters to Bypass Input Filters (3)

Description The API that is being targeted ignores the leading ghost

characters, and processes the attacker‟s input. This occurs when

the targeted API will accept input data in several syntactic

forms and interpret it in the equivalent way, while the filter does

not take into account the full spectrum of the syntactic forms

acceptable to the targeted API.

Parent Threat Resource Manipulation

Solutions and

Mitigations

Perform white list rather than black list input validation.

Canonicalize all data prior to validation.

Take an iterative approach to input validation (defense in

depth).

Parent Mitigation AC, CM, SI

Table 59 introduces the textual attack description for attack pattern 75

“Manipulating Writable Configuration Files”.

135

Table 67. Textual Attack Description with KOE for Attack Pattern 75 (“Manipulating Writable Configuration Files”).

Attack Pattern ID 75

Attack Pattern Name Manipulating Writable Configuration Files (7)

Description An attacker modifies the contents of configuration files that

influence/control the operation of the target software. This

attack exploits the ever-growing number, size and complexity of

configuration files and the often lax access controls on these

files.

This attack exploits a program's trust in configuration files that

may have weaker permissions. System configuration in

distributed systems such as J2EE servers have many

administration points. For example, permissions may be set on

the administrative GUI, the configuration file for the server as a

whole, configuration files for specific domains and applications,

special jar and other class files used to load resources at

runtime, and even policy specific in .war and .ear files. A

mistake in permissions setting in either the file acl or the content

is an opening an attacker can use to elevate privilege.

Parent Threat Exploitation of Privilege / Trust

Solutions and

Mitigations

Design: Enforce principle of least privilege

Design: Backup copies of all configuration files

Implementation: Integrity monitoring for configuration files

Implementation: Enforce audit logging on code and

configuration promotion procedures.

Implementation: Load configuration from separate process and

memory space, for example a separate physical device like a CD

Parent Mitigation AC, CP, CM, AU, CA, SI, SC

Step 5 requires the repeating of steps 2-4 for any remaining attack patterns.

5.2. Parent Mitigation Power (PMP)

Parent Mitigation Power (PMP) is a two part metric designated in the “x.y”

notation. “x” counts the number of unique Attack Patterns that the Parent Mitigation helped

mitigate. “y” counts the total number of Child Mitigations that can be traced to back to the

136

Parent Mitigation. This provides the ability to measure the impact provided by each of the

17 Parent Mitigations. This can useful for answering “what-if” scenarios such as “Which

mitigation provides the most „bang for the buck‟?” and “If I only have „x‟ number of

security dollars to spend, which mitigations should I invest in?”

The PMP security metric mandates a single graphical hierarchy model of all 101

attack patterns. Because of the exhaustive nature of the CAPEC definition of each attack

pattern, there is severe fan-out as Child Mitigations and Parent Mitigations are listed. Once

all the graphical hierarchies are compiled into a single view, it is obvious that there is an

abundance of mapped Child Mitigations (with their NIST details) and Parent Mitigations.

The hierarchy model introduced in chapter 4 (Figure 9) can also be expanded to

incorporate the entire CAPEC dictionary into a single hierarchy structure. This process

allows us to leverage the vast mappings created in earlier steps by providing a “forest”

view of all 101 CAPEC attack patterns. This forest view is the basis for our PMP metric.

When the hierarchy model is used to view individual attack patterns, the model again uses

a fan-in-fan-out approach. Our forest view also utilizes this approach by providing abstract

details at the top and bottom of the model while providing specific attack pattern

information in the middle. The forest view is useful for examining relationship between

attack patterns as a whole. Figure 24 introduces the forest view hierarchy along with the

maximum number of entries for each level. Section 5.3 will show the completed results of

this table for the 11 attack patterns used in our case study.

137

Figure 24. Attack Pattern Forest View with Maximum Number of Entries for Each Level.

For readability purposes we modify Figure 24 to include an additional level. This is

accomplished by adding a new row at the bottom to list each of the 17 Parent Mitigations

once. This allows us to tie each of the Parent Mitigations into a single Parent Mitigation

instance. This value will serve as the “x” value for our PMP metric. This process also

provides a location to record the PMP values and fits in with the fan-in-fan-out approach

we have made use of throughout our research. Figure 25 introduces the new hierarchy with

PMP level included, and the maximum number of entries for each field.

138

Figure 25. Forest View Hierarchy with Additional PMP and Maximum Number of Entries for Each Level.

Using a model of all 101 attack patterns as outlined in Figure 25 allows for the

review of each attack pattern from both a top-down or bottom-up perspective. From the

top-down perspective, the Parent Threat (such as “Spoofing”) shows all of the attack

patterns derived from it. Similarly, the bottom-up perspective shows all of the attack

patterns that a Parent Mitigation (such as “Auditing and Accountability”) helps to prevent.

An abbreviated outline of this model is introduced in Figure 26.

139

Attack Pattern ID

Description

Attack Pattern

Name (KOE)

Child Mitigation

Parent Mitigation

PMP

Attack Pattern ID

Description

Attack Pattern

Name (KOE)

Child Mitigation

Parent Mitigation

Attack Pattern ID

Description

Attack Pattern

Name (KOE)

Child Mitigation

Parent Mitigation

PMPPMPPMP

Parent

Threat

Parent

Threat

Figure 26. Sample of the Forest View Including Multiple Hierarchies Funneling From Parent Threat to PMP.

Adding PMP to the bottom of our hierarchy groups all of the individual Parent

Mitigations into no more than 11 Parent Threats at the top and no more than 17 Parent

Mitigations at the bottom. Adding a single instance of Parent Mitigation at the bottom of

our figure rids the hierarchies of repeating Parent Mitigations and summarizes what

mitigation strategies are needed to protect the implementation.

 After all of the attack patterns have been added to the forest view presented in

Figure 26, we connect each of the individually listed Parent Mitigations to a single instance

of the newly added PMP level. This is completed by connecting every attack pattern Parent

Mitigation into a single instance of Parent Mitigation at the bottom of our hierarchy. Upon

140

completion of this work we are ready to calculate PMP. The detailed steps required to

calculate PMP are listed below.

1. Calculate the PMP by recording the number of attack patterns each Parent

Mitigation traces back to. Record this value in the “x” position of the metric.

2. Utilize a “.” To separate the two-part metric.

3. Calculate the “y” value by adding the total number of entries (across all 101 attack

patterns) found in the NIST Child Mitigation(s) column, which relates to the Parent

Mitigation. Record this value in the “y” position of the PMP metric.

4. Record the Parent Mitigation and its corresponding PMP in a new table for

readability.

Step 1 of PMP creation calculates the initial “x” PMP value by adding the total

number of attack patterns each Parent Mitigation helps to mitigate. This is the total number

of attack patterns which can be partially or fully mitigated by the given Parent Mitigation.

This process can be accomplished by manually counting the total number of times each

Parent Mitigation is used in the Parent Mitigation Row or by counting the total number of

arrows coming out of the PMP row for each Parent Mitigation. This value is recorded in

place of the “x” for PMP.

We calculate the “y” value by adding the total number of times that a related NIST

Child Mitigation appears across all 101 attack Patterns. This information is found by

reviewing the NIST Child Mitigation column for each attack pattern, as shown in Table 53.

Both the “x” and “y” values (along with the Parent Mitigation name) are recorded in the

141

PMP level of the hierarchy introduced in Figure 26. Complete results of these steps will be

shown in section 5.3.

 The final step in Process 3 is to review the PMP values and present them in a two

column table for ease of use and readability. This table will allow users to quickly review

PMP without having to review the graphical hierarchies or the textual attack descriptions.

An outline of this table is introduced in table 60.

Table 68. Tabular Format for Presenting PMP Results.

Parent Mitigation PMP

5.3. Case Study Results

Table 61 introduces the results of Steps 1 and 2 for Process 3 for attack pattern 87

where the KOE column and values are added to the right side of to the individual attack

pattern tables.

142

Table 69. Addition of KOE Column for Attack Pattern 87 (“Forceful Browsing”).

Table 62 introduces the results of Step 1 and 2 for Process 3 for attack pattern 94

Parent

Threat

Attack

Pattern

Solutions and

Mitigations

NIST Child

Mitigation(s)

Parent

Mitigation(s)

KOE

Abuse of

Functionality

Forceful

Browsing:

87

Authenticate

request to every

resource. In

addition, every

page or resource

must ensure that

the request it is

handling has been

made in an

authorized context.

AC17, IA2,

IA3, MA4,

SC8, SC23,

SI10

AC, IA, MA,

SC, SI

9

Forceful browsing

can also be made

difficult to a large

extent by not hard

coding names of

application pages

or resources. This

way, the attacker

cannot figure out,

from the

application alone,

the resources

available from the

present context.

SC18, AT3,

CA2, CA4,

PL2, SA3,

SA8, SA10

AT, CA,

PL,SA

143

Table 70. Addition of KOE Column for Attack Pattern 94 (“Man in the Middle”).

Table 63 introduces the results of Step 1 and 2 for Process 3 for attack pattern 55.

Table 71. Addition of KOE Column for Attack Pattern 55 (“Rainbow Table Password Cracking”).

Table 64 introduces the results of Step 1 and 2 for Process 3 for attack pattern 60.

Parent

Threat

Attack

Pattern

Solutions and

Mitigations

NIST Child

Mitigation(s)

Parent

Mitigation(s)

KOE

Spoofing Man the

Middle: 94

Get your Public Key

signed by a Certificate

Authority

CA4, IA5,

IA7, SC13,

SC17

CA, IA, SC 5

Encrypt your

communication using

cryptography (SSL,...)

AC3, AC4,

SC7, AC17,

IA7, SC8,

SC9, SC12,

SC13, SI7

AC ,SI

Use Strong mutual

authentication to

always fully

authenticate both ends

of any

communications

channel.

AC17, IA1,

IA2, IA3,

IA4, IA5,

SC8, SC11,

SC23, SI10

Exchange public keys

using a secure channel

SC17, SC12,

SC13

Parent

Threat

Attack

Pattern

Solutions and

Mitigations

NIST Child

Mitigation(s)

Parent

Mitigation(s)

KOE

Probabilistic

Techniques

Rainbow

Table

Pswd

Cracking:

55

Use salt when

computing password

hashes. That is,

concatenate the salt

(random bits) with

the original

password prior to

hashing it.

SI7, SC13,

IA5

SI, SC, IA 3

144

Table 72. Addition of KOE Column for Attack Pattern 60 (“Resuing Session ID‟s”).

Table 65 introduces the results of Step 1 and 2 for Process 3 for attack pattern 82.

Parent

Threat

Attack

Pattern

Solutions and

Mitigations

NIST Child

Mitigation(s)

Parent

Mitigation(s)

KOE

Exploitation

of

Authorization

Reusing

Session

ID's: 60

Always invalidate a

session ID after the

user logout.

AC3, IA5,

SC10, SC23,

IA4

AC, IA, SC 4

Setup a session time

out for the session

IDs.

AC11, AC12,

SC23, IA4

Protect the

communication

between the client

and server. For

instance it is best

practice to use SSL

to mitigate man in

the middle attack.

AC4, IA2,

IA3, IA7,

SC8, SC9,

SC11, SC12,

SC13, SC16,

SC17, SC20,

SC21, SC22,

SC23

SA

Do not code send

session ID with GET

method, otherwise

the session ID will be

copied to the URL. In

general avoid writing

session IDs in the

URLs. URLs can get

logged in log files,

which are vulnerable

to an attacker.

SC9, SC4,

SC14, SC16,

SA8

Encrypt the session

data associated with

the session ID.

AC3, SC4,

SC7, SC23

Use multifactor

authentication.

IA2

145

Table 73. Addition of KOE Column for Attack Pattern 82 (“XML Denial of Service”).

Table 66 introduces the results of Step 1 and 2 for Process 2 for attack pattern 65.

Table 74. Addition of KOE Column for Attack Pattern 65 (“Passive Sniffing”).

Parent

Threat

Attack

Pattern

Solutions and

Mitigations

NIST Child

Mitigation(s)

Parent

Mitigation(s)

KOE

Resource

Depletion

XMLDoS

(XDoS):

82

Design: Utilize a Security

Pipeline Interface (SPI)

to mediate

communications between

service requester and

service provider The SPI

should be designed to

throttle up and down and

handle a variety of

payloads.

AC4, SI9,

SI10, AC3,

CM6

AC, SI, CM 6

Design: Utilize clustered

and fail over techniques,

leverage network

transports to provide

availability such as

HTTP load balancers

AC4, CA3,

SC6, SI4,

CP10, SC5,

SC22

CA,SC, CP

Implementation: Check

size of XML message

before parsing

SI7, SI9,

SI10

Parent

Threat

Attack

Pattern

Solutions and

Mitigations

NIST Child

Mitigation(s)

Parent

Mitigation(s)

KOE

Data

Leakage

Attacks

Passive

Sniffing

: 65

Do not store secrets in

client code

CM6, PE19,

RA3, SA8,

PL4

CM, PE, RA,

SA, PL

10

Use Well-Known

Cryptography

Appropriately and

Correctly

AC3, AC17,

IA7, MA4,

SC8, SC9,

SC12, SC13

AC, IA, MA,

SC

Use Authentication

Mechanisms, Where

Appropriate, Correctly

IA2, IA7,

SC23, SI10

SI

146

Table 67 introduces the results of Step 1 and 2 for Process 3 for attack pattern 101.

Table 75. Addition of KOE Column for Attack Pattern 101 (“Server Side Includes”).

Table 68 introduces the results of Step 1 and 2 for Process 3 for attack pattern 10.

Parent

Threat

Attack

Pattern

Solutions and

Mitigations

NIST Child

Mitigation(s)

Parent

Mitigation(s)

KOE

Injection Server Side

Includes

(SSI): 101

Set the OPTIONS

IncludesNOEXEC in

the global access.conf

file or local .htaccess

(Apache) file to deny

SSI execution in

directories that do not

need them

CM1, CM6,

CM7, SI6,

SC3, AC6

CM, SI, SC,

AC

4

All user controllable

input must be

appropriately

sanitized before use

in the application.

This includes

omitting, or

encoding, certain

characters or strings

that have the

potential of being

interpreted as part of

an SSI directive

SI7, SI9, SI10

Server Side Includes

must be enabled only

if there is a strong

business reason to do

so. Every additional

component enabled

on the web server

increases the attack

surface as well as

administrative

overhead

AC6

147

Table 76. Addition of KOE Column for Attack Pattern 10 (“Buffer Overflow via Environment Variables”).

Table 69 introduces the results of Step 1 and 2 for Process 3 for attack pattern 29.

Parent

Threat

Attack

Pattern

Solutions and

Mitigations

NIST Child

Mitigation(s)

Parent

Mitigation(s)

KOE

Data

Structure

Attacks

Buffer

Overflow

via

Environment

Variables:

10

Do not expose

environment variable

to the user.

AC6, CM6,

RA3, RA5,

SA10, SA11,

SC4, SI10

AC, CM, RA,

SA, SC, SI

9

Do not use untrusted

data in your

environment

variables.

AC3, CM6,

IA2, SC23,

SI17, SI19,

SI10

IA,

Use a language or

compiler that

performs automatic

bounds checking

SA8, PL2 PL

There are tools such

as Sharefuzz

(http://sharefuzz.sour

ceforge.net/) which is

an environment

variable fuzzer for

Unixes that support

loading a shared

library. You can use

Sharefuzz to

determine if you are

exposing an

environment variable

vulnerable to buffer

overflow.

MA3, PL6

RA5, SA10,

SA11, SI2,

SI4

MA

148

Table 77. Addition of KOE Column for Attack Pattern 29 (“Race Conditions Time of Check and Time of Use”).

 Step 3 of Process 3 appends KOE to the graphical hierarchy trees. Figure 27

introduces the KOE metric included as part of the “Name” field in the graphical hierarchy

trees.

Parent

Threat

Attack

Pattern

Solutions and

Mitigations

NIST Child

Mitigation(s)

Parent

Mitigation(s)

KOE

Time

and

State

Attacks

Race

Conditions

(TOCTOU):

29

Use safe libraries to

access resources such

as files.

SI7, SC18, SI, SC 6

Be aware that improper

use of access function

calls such as chown(),

tempfile(), chmod(),

etc. can cause a race

condition.

AT2, AC3,

IA2

AT, AC, IA

Use synchronization to

control the flow of

execution.

SC3, AC4

Use static analysis

tools to find race

conditions.

SA11,SI10

Pay attention to

concurrency problems

related to the access of

resources.

SA8, SC4 SA

149

Parent Threat: Abuse of Functionality

Parent Mitigations: IA, MA, SC, SI, AT, CA, PL, SA, AC

Name: Forceful Browsing (9)

Description:

An attacker employs forceful browsing to access portions of a website that are otherwise unreachable through

direct URL entry.

Usually, a front controller or similar design pattern is employed to protect access to portions of a web

application.

Forceful browsing enables an attacker to access information, perform privileged operations and otherwise reach

sections of the web application that have been improperly protected.

Solutions and Mitigations

 Authenticate request to every resource. In addition, every page or resource must ensure that

the request it is handling has been made in an authorized context.

 Forceful browsing can also be made difficult to a large extent by not hardcoding names of

application pages or resources. This way, the attacker cannot figure out, from the application

alone, the resources available from the present context.

ID: 87

Figure 27. Graphical Hierarchy Tree with KOE for Attack Pattern 87 (“Forceful Browsing”).

The completed graphical hierarchy for attack patterns 94 is introduced in Figure 28.

150

Parent Threat: Spoofing

Parent Mitigation: CA, IA, SC, AC, SI

Name: Man in the Middle (5)

Description:

This type of attack targets the communication between two components (typically client and server). The

attacker places himself in the communication channel between the two components. Whenever one component

attempts to communicate with the other (data flow, authentication challenges, etc.), the data first goes to the

attacker, who has the opportunity to observe or alter it, and it is then passed on to the other component as if it

was never intercepted. This interposition is transparent leaving the two compromised components unaware of the

potential corruption or leakeage of their communications. The potential for Man-in-the-Middle attacks yields an

implicit lack of trust in communication or identify between two components.

Solutions and Mitigations:

 Get your Public Key signed by a Certificate Authority

 Encrypt your communication using cryptography (SSL,...)

 Use Strong mutual authentication to always fully authenticate both

ends of any communications channel.

 Exchange public keys using a secure channel

ID: 94

Figure 28. Graphical Hierarchy Tree with KOE for Attack Pattern 94 (“Man in the Middle”).

The completed graphical hierarchy tree for attack patterns 55 is introduced in

Figure 29.

151

Parent Threat: Probabilistic Techniques

Parent Mitigation: SI, SC, IA

Name: Rainbow Table Password Cracking (3)

Description:

An attacker gets access to the database table where hashes of passwords are stored. He then uses a rainbow table

of precomputed hash chains to attempt to look up the original password. Once the original password

corresponding to the hash is obtained, the attacker uses the original password to gain access to the system.

 A password rainbow table stores hash chains for various passwords. A password chain is computed,

starting from the original password, P, via a a reduce(compression) function R and a hash function H. A

recurrence relation exists where Xi+1 = R(H(Xi)), X0 = P. Then the hash chain of length n for the original

password P can be formed: X1, X2, X3, ... , Xn-2, Xn-1, Xn, H(Xn). P and H(Xn) are then stored together in

the rainbow table.

Solutions and Mitigations

 Use salt when computing password hashes. That is,

concatenate the salt (random bits) with the original password

prior to hashing it.

ID: 55

Figure 29. Graphical Hierarchy Tree with KOE for Attack Pattern 94 (“Rainbow Table Password Cracking”).

The completed graphical hierarchy tree for attack patterns 60 is introduced in

Figure 30.

152

Parent Threat: Exploitation of Authentication

Parent Mitigation: AC, SI, SC, IA

Name: Reusing Session ID’s (4)

Description:

This attack targets the reuse of valid session ID to spoof the target system

in order to gain privileges. The attacker tries to reuse a stolen session ID

used previously during a transaction to perform spoofing and session

hijacking. Another name for this type of attack is Session Replay.

Solutions and Mitigations

 Always invalidate a session ID after the user logout.

 Setup a session time out for the session IDs.

 Protect the communication between the client and server. For instance it is best practice to

use SSL to mitigate man in the middle attack.

 Do not code send session ID with GET method, otherwise the session ID will be copied to

the URL. In general avoid writing session IDs in the URLs. URLs can get logged in log files,

which are vulnerable to an attacker.

 Encrypt the session data associated with the session ID.

 Use multifactor authentication.

ID: 60

Figure 30. Graphical Hierarchy Tree with KOE for Attack Pattern 60 (“Reusing Session ID‟s”).

The completed graphical hierarchy tree for attack patterns 82 is introduced in

Figure 31.

153

Parent Threat: Resource Depletion

Parent Mitigation: AC, SI, CM, CA, SC, CP

Name: XML Denial of Service (XDoS) (6)

Description:

XML Denial of Service (XDoS) can be applied to any technology that utilizes XML data. This is, of course,

most distributed systems technology including Java, .Net, databases, and so on. XDoS is most closely associated

with web services, SOAP, and Rest, because remote service requesters can post malicious XML payloads to the

service provider designed to exhaust the service provider's memory, CPU, and/or disk space. The main weakness

in XDoS is that the service provider generally must inspect, parse, and validate the XML messages to determine

routing, workflow, security considerations, and so on. It is exactly these inspection, parsing, and validation

routines that XDoS targets. There are three primary attack vectors that XDoS can navigate

Target CPU through recursion: attacker creates a recursive payload and sends to service provider

Target memory through jumbo payloads: service provider uses DOM to parse XML. DOM creates in memory

representation of XML document, but when document is very large (for example, north of 1 Gb) service provider

host may exhaust memory trying to build memory objects.

XML Ping of death: attack service provider with numerous small files that clog the system.

All of the above attacks exploit the loosely coupled nature of web services, where the service provider has little

to no control over the service requester and any messages the service requester sends.

Solutions and Mitigations

 Design: Utilize a Security Pipeline Interface (SPI) to mediate communications between

service requester and service provider The SPI should be designed to throttle up and down

and handle a variety of payloads.

 Design: Utilize clustered and fail over techniques, leverage network transports to provide

availability such as HTTP load balancers

 Implementation: Check size of XML message before parsing

ID: 82

Figure 31. Graphical Hierarchy Tree with KOE for Attack Pattern 82 (“XML Denial of Service”).

The completed graphical hierarchy tree for attack patterns 101 is introduced in

Figure 32.

154

Parent Threat: Injection

Parent Mitigation: CM, SI, SC, AC

Name: Server Side Includes (4)

Description:

An attacker can use Server Side Include (SSI) Injection to send code to a web application that then

gets executed by the web server. Doing so enables the attacker to achieve similar results to Cross

Site Scripting, viz., arbitrary code execution and information disclosure, albeit on a more limited

scale, since the SSI directives are nowhere near as powerful as a full-fledged scripting language.

Nonetheless, the attacker can conveniently gain access to sensitive files, such as password files,

and execute shell commands.

Solutions and Mitigatins:

 Set the OPTIONS IncludesNOEXEC in the global access.conf file or local .htaccess

(Apache) file to deny SSI execution in directories that do not need them

 All user controllable input must be appropriately sanitized before use in the application. This

includes omitting, or encoding, certain characters or strings that have the potential of being

interpreted as part of an SSI directive

 Server Side Includes must be enabled only if there is a strong business reason to do so. Every

additional component enabled on the web server increases the attack surface as well as

administrative overhead

ID: 101

Figure 32. Graphical Hierarchy Tree with KOE for Attack Pattern 101 (“Server Side Includes”).

The completed graphical hierarchy tree for attack patterns 10 is introduced in

Figure 33.

155

Parent Threat: Data Structure Attacks

Parent Mitigation: AC, CM, RA, SA, SC, SA, IA, PL, MA

Name: Buffer Overflow via Environment Variables (9)

Description:

This attack pattern involves causing a buffer overflow through

manipulation of environment variables. Once the attacker finds that they

can modify an environment variable, they may try to overflow associated

buffers. This attack leverages implicit trust often placed in environment

variables.

Solutions and Mitigations:

 Do not expose environment variable to the user.

 Do not use untrusted data in your environment variables.

 Use a language or compiler that performs automatic bounds checking

 There are tools such as Sharefuzz (http://sharefuzz.sourceforge.net/) which is an environment

variable fuzzer for Unixes that support loading a shared library. You can use Sharefuzz to

determine if you are exposing an environment variable vulnerable to buffer overflow.

ID: 10

Figure 33. Graphical Hierarchy Tree with KOE for Attack Pattern 10 (“Buffer Overflow via Environment Variables”).

The completed graphical hierarchy tree for attack patterns 65 is introduced in

Figure 34.

156

Parent Threat: Data Leakage Attacks

Parent Mitigation: CM, PE, RA, SA, PL, AC, IA, MA, SC, SI

Name: Passive Sniffing (10)

Description:

Attackers can capture application code bound for the client and can use it, as-is or

through reverse-engineering, to glean sensitive information or exploit the trust

relationship between the client and server.

Such code may belong to a dynamic update to the client, a patch being applied to a

client component or any such interaction where the client is authorized to communicate

with the server.

Solutions and Mitigations:

 Do not store secrets in client code

 Use Well-Known Cryptography Appropriately and Correctly

 Use Authentication Mechanisms, Where Appropriate,

Correctly

ID: 65

Figure 34. Graphical Hierarchy Tree with KOE for Attack Pattern 65 (“Passive Sniffing”).

The completed graphical hierarchy tree for attack patterns 29 is introduced in

Figure 35.

157

Parent Threat: Time and State Attacks

Parent Mitigation: SI, SC, AT, AC, IA, SA

Name: Race Conditions (Time of Check and Time of Use) (6)

Description:

This attack targets a race condition occurring between the time of check (state) for a

resource and the time of use of a resource. The typical example is the file access. The

attacker can leverage a file access race condition by "running the race", meaning that he

would modify the resource between the first time the target program accesses the file

and the time the target program uses the file. During that period of time, the attacker

could do something such as replace the file and cause an escalation of privilege.

Solutions and Mitigations:

 Use safe libraries to access resources such as files.

 Be aware that improper use of access function calls such as chown(), tempfile(),

chmod(), etc. can cause a race condition.

 Use synchronization to control the flow of execution.

 Use static analysis tools to find race conditions.

 Pay attention to concurrency problems related to the access of resources.

ID: 29

Figure 35. Graphical Hierarchy Tree with KOE for Attack Pattern 65 (“Race Conditions Time of Check and Time of

Use”).

Step 4 of Process 3 appends KOE to the textual attack descriptions for each attack

pattern. KOE is show in the textual attack descriptions in order to increase usability. Users

who are reviewing textual attack descriptions are not required to look outside of the

descriptions for the KOE value. The KOE is included as part of the “Attack Pattern Name”

for each of the results below. Table 70 introduces the textual attack description with KOE

for attack pattern 87.

158

Table 78. Textual Attack Description with KOE for Attack Pattern 87 (“Forceful Browsing”).

Attack Pattern ID 87

Attack Pattern Name Forceful Browsing (9)

Description An attacker employs forceful browsing to access portions of a

website that are otherwise unreachable through direct URL

entry.

Usually, a front controller or similar design pattern is employed

to protect access to portions of a web application.

Forceful browsing enables an attacker to access information,

perform privileged operations and otherwise reach sections of

the web application that have been improperly protected.

Parent Threat Abuse of Functionality

Solutions and

Mitigations

Authenticate request to every resource. In addition, every page

or resource must ensure that the request it is handling has been

made in an authorized context.

Forceful browsing can also be made difficult to a large extent by

not hardcoding names of application pages or resources. This

way, the attacker cannot figure out, from the application alone,

the resources available from the present context.

Parent Mitigation IA, MA, SC, SI, AT, CA, PL, SA, AC

Table 71 introduces the textual attack description for attack pattern 94.

159

Table 79. Textual Attack Description with KOE for Attack Pattern 94 (“Man in the Middle”).

Attack Pattern ID 94

Attack Pattern Name Man in the Middle (5)

Description This type of attack targets the communication between two

components (typically client and server). The attacker places

himself in the communication channel between the two

components. Whenever one component attempts to

communicate with the other (data flow, authentication

challenges, etc.), the data first goes to the attacker, who has the

opportunity to observe or alter it, and it is then passed on to the

other component as if it was never intercepted. This

interposition is transparent leaving the two compromised

components unaware of the potential corruption or leakeage of

their communications. The potential for Man-in-the-Middle

attacks yields an implicit lack of trust in communication or

identify between two components.

Parent Threat Spoofing

Solutions and

Mitigations

Get your Public Key signed by a Certificate Authority

Encrypt your communication using cryptography (SSL,...)

Use Strong mutual authentication to always fully authenticate

both ends of any communications channel.

Exchange public keys using a secure channel

Parent Mitigation CA, IA, SC, AC, SI

Table 72 introduces the textual attack description for attack pattern 55.

160

Table 80. Textual Attack Description with KOE for Attack Pattern 55 (“Rainbow Table Password Cracking”).

Attack Pattern ID 55

Attack Pattern Name Rainbow Table Password Cracking (3)

Description An attacker gets access to the database table where hashes of

passwords are stored. He then uses a rainbow table of

precomputed hash chains to attempt to look up the original

password. Once the original password corresponding to the

hash is obtained, the attacker uses the original password to gain

access to the system.

 A pasword rainbow table stores hash chains for various

passwords. A password chain is computed, starting from the

original password, P, via a a reduce(compression) function R

and a hash function H. A recurrence relation exists where Xi+1

= R(H(Xi)), X0 = P. Then the hash chain of length n for the

original password P can be formed: X1, X2, X3, ... , Xn-2, Xn-

1, Xn, H(Xn). P and H(Xn) are then stored together in the

rainbow table.

Parent Threat Probabilistic Techniques

Solutions and

Mitigations

Use salt when computing password hashes. That is, concatenate

the salt (random bits) with the original password prior to

hashing it.

Parent Mitigation SI, SC, IA

Table 73 introduces the textual attack description for attack pattern 60.

161

Table 81. Textual Attack Description with KOE for Attack Pattern 60 (“Reusing Session ID‟s”).

Attack Pattern ID 60

Attack Pattern Name Reusing Session ID‟s (4)

Description This attack targets the reuse of valid session ID to spoof the

target system in order to gain privileges. The attacker tries to

reuse a stolen session ID used previously during a transaction to

perform spoofing and session hijacking. Another name for this

type of attack is Session Replay.

Parent Threat Exploitation of Authentication

Solutions and

Mitigations

Always invalidate a session ID after the user logout.

Setup a session time out for the session IDs.

Protect the communication between the client and server. For

instance it is best practice to use SSL to mitigate man in the

middle attack.

Do not code send session ID with GET method, otherwise the

session ID will be copied to the URL. In general avoid writing

session IDs in the URLs. URLs can get logged in log files,

which are vulnerable to an attacker.

Encrypt the session data associated with the session ID.

Use multifactor authentication.

Parent Mitigation AC, IA, SC, SA

Table 74 introduces the textual attack description for attack pattern 82.

162

Table 82. Textual Attack Description for Attack Pattern 82 (“XML Denial of Service”).

Attack Pattern ID 82

Attack Pattern Name XMLDoS (XDoS) (6)

Description XML Denial of Service (XDoS) can be applied to any

technology that utilizes XML data. This is, of course, most

distributed systems technology including Java, .Net, databases,

and so on. XDoS is most closely associated with web services,

SOAP, and Rest, because remote service requesters can post

malicious XML payloads to the service provider designed to

exhaust the service provider's memory, CPU, and/or disk space.

The main weakness in XDoS is that the service provider

generally must inspect, parse, and validate the XML messages to

determine routing, workflow, security considerations, and so on.

It is exactly these inspection, parsing, and validation routines

that XDoS targets.

There are three primary attack vectors that XDoS can navigate

Target CPU through recursion: attacker creates a recursive

payload and sends to service provider

Target memory through jumbo payloads: service provider uses

DOM to parse XML. DOM creates in memory representation of

XML document, but when document is very large (for example,

north of 1 Gb) service provider host may exhaust memory trying

to build memory objects.

XML Ping of death: attack service provider with numerous

small files that clog the system.

All of the above attacks exploit the loosely coupled nature of

web services, where the service provider has little to no control

over the service requester and any messages the service

requester sends.

Parent Threat Resource Depletion

Solutions and

Mitigations

Design: Utilize a Security Pipeline Interface (SPI) to mediate

communications between service requester and service provider

The SPI should be designed to throttle up and down and handle

a variety of payloads.

Design: Utilize clustered and fail over techniques, leverage

network transports to provide availability such as HTTP load

balancers

Implementation: Check size of XML message before parsing

Parent Mitigation AC, SI, CM, CA, SC, CP

163

Table 75 introduces the textual attack description for attack pattern 101.

Table 83. Textual Attack Description for Attack Pattern 101 (“Server Side Includes”).

Attack Pattern ID 101

Attack Pattern Name Server Side Includes (SSI) (4)

Description An attacker can use Server Side Include (SSI) Injection to send

code to a web application that then gets executed by the web

server. Doing so enables the attacker to achieve similar results

to Cross Site Scripting, viz., arbitrary code execution and

information disclosure, albeit on a more limited scale, since the

SSI directives are nowhere near as powerful as a full-fledged

scripting language. Nonetheless, the attacker can conveniently

gain access to sensitive files, such as password files, and

execute shell commands.

Parent Threat Injection

Solutions and

Mitigations

Set the OPTIONS IncludesNOEXEC in the global access.conf

file or local .htaccess (Apache) file to deny SSI execution in

directories that do not need them

All user controllable input must be appropriately sanitized

before use in the application. This includes omitting, or

encoding, certain characters or strings that have the potential of

being interpreted as part of an SSI directive

Server Side Includes must be enabled only if there is a strong

business reason to do so. Every additional component enabled

on the web server increases the attack surface as well as

administrative overhead

Parent Mitigation CM, SI, SC, AC

Table 76 introduces the textual attack description for attack pattern 10.

164

Table 84. Textual Attack Description for Attack Pattern 10 (“Buffer Overflow via Environment Variable”).

Attack Pattern ID 10

Attack Pattern Name Buffer Overflow via Environment Variables (9)

Description This attack pattern involves causing a buffer overflow through

manipulation of environment variables. Once the attacker finds

that they can modify an environment variable, they may try to

overflow associated buffers. This attack leverages implicit trust

often placed in environment variables.

Parent Threat Data Structure Attacks

Solutions and

Mitigations

Do not expose environment variable to the user.

Do not use untrusted data in your environment variables.

Use a language or compiler that performs automatic bounds

checking

There are tools such as Sharefuzz

(http://sharefuzz.sourceforge.net/) which is an environment

variable fuzzer for Unixes that support loading a shared library.

You can use Sharefuzz to determine if you are exposing an

environment variable vulnerable to buffer overflow.

Parent Mitigation AC, CM, RA, SA, SC, SA, IA, PL, MA

Table 77 introduces the textual attack description for attack pattern 65.

Table 85. Textual Attack Description for Attack Pattern 65 (“Passive Sniffing”).

Attack Pattern ID 65

Attack Pattern Name Passive Sniffing (10)

Description Attackers can capture application code bound for the client and

can use it, as-is or through reverse-engineering, to glean

sensitive information or exploit the trust relationship between

the client and server.

Such code may belong to a dynamic update to the client, a patch

being applied to a client component or any such interaction

where the client is authorized to communicate with the server.

Parent Threat Data Leakage Attack

Solutions and

Mitigations

Do not store secrets in client code

Use Well-Known Cryptography Appropriately and Correctly

Use Authentication Mechanisms, Where Appropriate, Correctly

Parent Mitigation CM, PE, RA, SA, PL, AC, IA, MA, SC, SI

165

Table 78 introduces the textual attack description for attack pattern 29.

Table 86. Textual Attack Description for Attack Pattern 29 (“Race Conditions Time of Check and Time of Use”).

Attack Pattern ID 29

Attack Pattern Name Race Conditions (Time of Check and Time of Use) (6)

Description This attack targets a race condition occurring between the time

of check (state) for a resource and the time of use of a resource.

The typical example is the file access. The attacker can leverage

a file access race condition by "running the race", meaning that

he would modify the resource between the first time the target

program accesses the file and the time the target program uses

the file. During that period of time, the attacker could do

something such as replace the file and cause an escalation of

privilege.

Parent Threat Time and State Attacks

Solutions and

Mitigations

Use safe libraries to access resources such as files.

Be aware that improper use of access function calls such as

chown(), tempfile(), chmod(), etc. can cause a race condition.

Use synchronization to control the flow of execution.

Use static analysis tools to find race conditions.

Pay attention to concurrency problems related to the access of

resources.

Parent Mitigation SI, SC, AT, AC, IA, SA

 This concludes the work for calculating and documenting KOE. Before we can

calculate the PMP metric we are required to compile each of the individual attack patterns

into a forest view as introduced in Figure 36.

166

87

Description

Forceful

Browsing

(9)

Child

Mitigation

IA, MA, SC,

SI, AT, CA,

PL, SA, AC

Spoofing

Exploitation

of Priv /

Trust

Probabalistc

Techniques

Exploitation of

Authentcation

Resource

Depletion
Injection

Data

Structure

Attacks

Data

Leakage

Attacks

Resource

Manipulation

Abuse of

Functionality

Time and

State

Attacks

94

Description

Man In

The

Middle

(5)

Child

Mitigation

CA, IA, SC,

AC, SI

55

Description

Rainbow

Table

(3)

Child

Mitigation

SI, SC, IA

60

Description

Reusing

Session

Ids

(4)

Child

Mitigation

AC, IA, SC,

SA

82

Description

XDoS

(6)

Child

Mitigation

AC, SI, CM,

CA, SC, CP

75

Description

Manipulating

Writable

Config Files

(7)

Child

Mitigation

AC, CP,

CM, AU,

CA, SI, SC

101

Description

Server

Side

Includes

(4)

Child

Mitigation

CM, SI, SC,

AC

10

Description

Buffer

Overflow

(9)

Child

Mitigation

AC, CM,

RA, SA,

SC, SI, IA,

PL, MA

65

Description

Passive

Sniffing

(10)

Child

Mitigation

CM, PE, RA,

SA, PL, AC,

IA, MA, SC,

SI

3

Description

Using

Ghost

Chars to

Bypass

(3)

Child

Mitigation

AC, CM, SI

29

Description

Race

Conditions

(6)

Child

Mitigation

SI, SC, AT,

AC, IA, SA

Figure 36. Forest Hierarchy View Including all 11 Attack Patterns from Case Study.

In order to conserve space, the “Description” and “Child Mitigations” are labeled

generically. The details for these fields can be found in the textual attack descriptions and

the CAPEC Release 1 dictionary.

More work is required before we can calculate PMP. We next add each of the 17

Parent Mitigations at the bottom of Figure 36. This additional level will be used to tie each

of the individually listed Parent Mitigations into a single instance. The result of this

process is introduced in Figure 37.

167

87

Description

Forceful

Browsing

(9)

Child

Mitigation

IA, MA, SC,

SI, AT, CA,

PL, SA, AC

AC

Spoofing

Exploitation

of Priv /

Trust

Probabalistc

Techniques

Exploitation of

Authentcation

Resource

Depletion
Injection

Data

Structure

Attacks

Data

Leakage

Attacks

Resource

Manipulation

Abuse of

Functionality

Time and

State

Attacks

94

Description

Man In

The

Middle

(5)

Child

Mitigation

CA, IA, SC,

AC, SI

AT

55

Description

Rainbow

Table

(3)

Child

Mitigation

SI, SC, IA

AU

60

Description

Reusing

Session

Ids

(4)

Child

Mitigation

AC, IA, SC,

SA

CA

82

Description

XDoS

(6)

Child

Mitigation

AC, SI, CM,

CA, SC, CP

CM

75

Description

Manipulating

Writable

Config Files

(7)

Child

Mitigation

AC, CP,

CM, AU,

CA, SI, SC

CP

101

Description

Server

Side

Includes

(4)

Child

Mitigation

CM, SI, SC,

AC

IA

10

Description

Buffer

Overflow

(9)

Child

Mitigation

AC, CM,

RA, SA,

SC, SI, IA,

PL, MA

IR

65

Description

Passive

Sniffing

(10)

Child

Mitigation

CM, PE, RA,

SA, PL, AC,

IA, MA, SC,

SI

MA

3

Description

Using

Ghost

Chars to

Bypass

(3)

Child

Mitigation

AC, CM, SI

MP

29

Description

Race

Conditions

(6)

Child

Mitigation

SI, SC, AT,

AC, IA, SA

PE SISCSARAPSPL

Figure 37. Forest Hierarchy View Including all 11 Attack Patterns from Case Study with 17 Parent Mitigations.

 Before we can calculate the PMP metric we must cross reference each of the

individually listed Parent Mitigations for each attack pattern back to a single Parent

Mitigation (added in Figure 37). Figure 38 introduces the completed process of each Parent

Mitigation cross referenced to a single Parent Mitigation.

168

87

Description

Forceful

Browsing

(9)

Child

Mitigation

IA, MA, SC,

SI, AT, CA,

PL, SA, AC

AC

Spoofing

Exploitation

of Priv /

Trust

Probabalistc

Techniques

Exploitation of

Authentcation

Resource

Depletion
Injection

Data

Structure

Attacks

Data

Leakage

Attacks

Resource

Manipulation

Abuse of

Functionality

Time and

State

Attacks

94

Description

Man In

The

Middle

(5)

Child

Mitigation

CA, IA, SC,

AC, SI

AT

55

Description

Rainbow

Table

(3)

Child

Mitigation

SI, SC, IA

AU

60

Description

Reusing

Session

Ids

(4)

Child

Mitigation

AC, IA, SC,

SA

CA

82

Description

XDoS

(6)

Child

Mitigation

AC, SI, CM,

CA, SC, CP

CM

75

Description

Manipulating

Writable

Config Files

(7)

Child

Mitigation

AC, CP,

CM, AU,

CA, SI, SC

CP

101

Description

Server

Side

Includes

(4)

Child

Mitigation

CM, SI, SC,

AC

IA

10

Description

Buffer

Overflow

(9)

Child

Mitigation

AC, CM,

RA, SA,

SC, SI, IA,

PL, MA

IR

65

Description

Passive

Sniffing

(10)

Child

Mitigation

CM, PE, RA,

SA, PL, AC,

IA, MA, SC,

SI

MA

3

Description

Using

Ghost

Chars to

Bypass

(3)

Child

Mitigation

AC, CM, SI

MP

29

Description

Race

Conditions

(6)

Child

Mitigation

SI, SC, AT,

AC, IA, SA

PE SISCSARAPSPL

Figure 38. Complete results of Case Study in Forest View.

 Figure 38 completes the work necessary to calculate the PMP values. The first step

in PMP creation requires that we calculate the PMP “x” value by counting the number of

arrows entering each PMP field. Figure 39 zooms in on the first 4 entries of Figure 38 in

order to clarify the counting process.

169

87

Description

Forceful Browsing (9)

Child Mitigation

IA, MA, SC, SI, AT, CA, PL,

SA, AC

AC

Spoofing Exploitation of Priv / TrustProbabalistc Techniques Exploitation of Authentcation Resource Depletion Injection Data Structure Attacks Data Leakage Attacks Resource ManipulationAbuse of Functionality Time and State Attacks

94

Description

Man In The Middle (5)

Child Mitigation

CA, IA, SC, AC, SI

AT

55

Description

Rainbow Table

(3)

Child Mitigation

SI, SC, IA

AU

60

Description

Reusing Session Ids

(4)

Child Mitigation

AC, IA, SC, SA

CA

82

Description

XDoS

(6)

Child Mitigation

AC, SI, CM, CA, SC, CP

CM

75

Description

Manipulating Writable

Config Files (7)

Child Mitigation

AC, CP, CM, AU, CA, SI,

SC

CP

101

Description

Server Side Includes (4)

Child Mitigation

CM, SI, SC, AC

IA

10

Description

Buffer Overflow (9)

Child Mitigation

AC, CM, RA, SA, SC, SI,

IA, PL, MA

IR

65

Description

Passive Sniffing (10)

Child Mitigation

CM, PE, RA, SA, PL, AC,

IA, MA, SC, SI

MA

3

Description

Using Ghost Chars to

Bypass

(3)

Child Mitigation

AC, CM, SI

MP

29

Description

Race Conditions

(6)

Child Mitigation

SI, SC, AT, AC, IA, SA

PE SISCSARAPSPL

AC AT AU CA

Figure 39. Zoomed in View of Forest View for Purpose of Calculating PMP “x” Value.

170

Figure 39 shows ten arrows entering the AC Parent Mitigation. This Value is

recorded as the “x” value in PMP. Figure 39 shows two arrows entering the AT box, one

entering AU, and four entering CA. Each of these values are recorded in the bottom level

(PMP) of the hierarchy. The complete results of step 1, are introduced in Figure 40.

87

Description

Forceful

Browsing

(9)

Child

Mitigation

IA, MA, SC,

SI, AT, CA,

PL, SA, AC

AC

10.

Spoofing

Exploitation

of Priv /

Trust

Probabalistc

Techniques

Exploitation of

Authentcation

Resource

Depletion
Injection

Data

Structure

Attacks

Data

Leakage

Attacks

Resource

Manipulation

Abuse of

Functionality

Time and

State

Attacks

94

Description

Man In

The

Middle

(5)

Child

Mitigation

CA, IA, SC,

AC, SI

AT

2.

55

Description

Rainbow

Table

(3)

Child

Mitigation

SI, SC, IA

AU

1.

60

Description

Reusing

Session

Ids

(4)

Child

Mitigation

AC, IA, SC,

SA

CA

4.

82

Description

XDoS

(6)

Child

Mitigation

AC, SI, CM,

CA, SC, CP

CM

6.

75

Description

Manipulating

Writable

Config Files

(7)

Child

Mitigation

AC, CP,

CM, AU,

CA, SI, SC

CP

2.

101

Description

Server

Side

Includes

(4)

Child

Mitigation

CM, SI, SC,

AC

IA

5.

10

Description

Buffer

Overflow

(9)

Child

Mitigation

AC, CM,

RA, SA,

SC, SI, IA,

PL, MA

IR

0.

65

Description

Passive

Sniffing

(10)

Child

Mitigation

CM, PE, RA,

SA, PL, AC,

IA, MA, SC,

SI

MA

2.

3

Description

Using

Ghost

Chars to

Bypass

(3)

Child

Mitigation

AC, CM, SI

MP

0.

29

Description

Race

Conditions

(6)

Child

Mitigation

SI, SC, AT,

AC, IA, SA

PE

1.

SI

9.
SC

10.

SA

5.

RA

2.

PS

0.

PL

2.

Figure 40. Complete Case Study Results for PMP “x” Value

171

 Step 2 separates the “x” and “y” values with the use of a period. Step 3 calculates

the PMP “y” value by examining the number of directly related NIST Children to each

Parent Mitigation. This value is calculated by examining the previously created KOE

tables (Tables 56-57 and 61-69). Figure 41 introduces the complete case study results for

KOE and PMP value.

87

Description

Forceful

Browsing

(9)

Child

Mitigation

IA, MA, SC,

SI, AT, CA,

PL, SA, AC

AC

10.25

Spoofing

Exploitation

of Priv /

Trust

Probabalistc

Techniques

Exploitation of

Authentcation

Resource

Depletion
Injection

Data

Structure

Attacks

Data

Leakage

Attacks

Resource

Manipulation

Abuse of

Functionality

Time and

State

Attacks

94

Description

Man In

The

Middle

(5)

Child

Mitigation

CA, IA, SC,

AC, SI

AT

2.11

55

Description

Rainbow

Table

(3)

Child

Mitigation

SI, SC, IA

AU

1.3

60

Description

Reusing

Session

Ids

(4)

Child

Mitigation

AC, IA, SC,

SA

CA

4.5

82

Description

XDoS

(6)

Child

Mitigation

AC, SI, CM,

CA, SC, CP

CM

6.15

75

Description

Manipulating

Writable

Config Files

(7)

Child

Mitigation

AC, CP,

CM, AU,

CA, SI, SC

CP

2.3

101

Description

Server

Side

Includes

(4)

Child

Mitigation

CM, SI, SC,

AC

IA

5.23

10

Description

Buffer

Overflow

(9)

Child

Mitigation

AC, CM,

RA, SA,

SC, SI, IA,

PL, MA

IR

0.0

65

Description

Passive

Sniffing

(10)

Child

Mitigation

CM, PE, RA,

SA, PL, AC,

IA, MA, SC,

SI

MA

2.3

3

Description

Using

Ghost

Chars to

Bypass

(3)

Child

Mitigation

AC, CM, SI

MP

0.0

29

Description

Race

Conditions

(6)

Child

Mitigation

SI, SC, AT,

AC, IA, SA

PE

1.1

SI

9.33
SC

10.54

SA

5.12

RA

2.4

PS

0.0

PL

2.4

Figure 41. Complete Case Study Results Including KOE and PMP

172

Figure 41 is different from each of the previous figures because it includes a

complete PMP value as show in the bottom level of the hierarchy. Step 4 creates a new

table summarizing the complete PMP values for our case study. This allows users to

quickly and accurately review PMP values without being overwhelmed by the Forest view

presented in Figure 41. Table 79 introduces the PMP summary table.

Table 87. Summarized Parent Mitigation Power.

PM PMP

AC 10.25

AT 2.11

AU 1.3

CA 4.5

CM 6.15

CP 2.3

IA 5.23

MA 2.3

PE 1.1

PL 2.4

RA 2.4

SA 5.12

SC 10.54

SI 9.33

Access Control (AC), System and Communication Protection (SC), System and

Information Integrity (SI), and Identification and Authentication (IA) were the most

common “x” values. These four Parent Mitigations account for 35 total attack pattern

touches. The remaining 13 Parent Mitigations account for only 26 total attack pattern

touches. PMP is useful for security managers and decision makers to better leverage where

and when to allocate resources.

173

System and Communication Protection (SC), System and Information Integrity

(SI), Access Control (AC), and Identification and Authentication (IA) were the most used

“y” values. The “y” values from these four Parent Mitigations make up 135 NIST Child

Mitigation touches, while the remaining 13 Parent Mitigations are used a total of 61 times.

These findings conclude that System and Communication Protection (SC) is the most

commonly recommended NIST mitigation for the CAPEC Release 1 dictionary.

5.4. Discussion and Results

The Knock-Out Effect (KOE) security metric allows for the necessary mitigation

strategies for each attack pattern to be calculated and documented. The higher the KOE, the

more Child Mitigations it will take to fully prevent and/or recover from a specific attack.

KOE is not a listing of necessary mitigation strategies, but rather a numeric count as to how

many Child Mitigations are necessary. The exact listing of the Child Mitigations is

included as part of the “solutions and mitigation” element for each attack pattern in the full

release of the CAPEC dictionary.

The creation of the Parent Mitigation Power (PMP) security metric is a measurable

score associated with the chosen mitigation strategies of a specific implementation.

Depending on what Parent and Child Threats are to be mitigated, a specific set of Child

Mitigations will be employed. Because every Child Mitigation can be traced to a Parent

Mitigation, we are able to measure how big of an impact each Parent Mitigation is having

on the overall security posture of the system.

Validation for Process 3 can be found through an analytical evaluation of our

results with other relevant findings. In January of 2009 SANS released a list of the “Top

25 Most Dangerous Programming Errors”. This list is the result of a collaborative effort

174

between the SANS Institute, MITRE, and prominent software security experts from the

United States and Europe (Christey, 2009). The intended purpose of the list is to raise

awareness and educate consumers, programmers, and IT managers about the most common

programmatic mistakes which lead to serious software vulnerabilities. The vulnerabilities

are considered serious because they allow attackers to steal data, compromise systems, or

deny access to critical resources (Christey, 2009). Specific details for each of the Top 25

errors are provided which include Common Weakness Enumeration (CWE) ID, Name,

Supporting Data Fields, Discussion, Prevention and Mitigations, Related CWEs, Related

Attack Patterns, Attack Frequency, Ease of Detection, Remediation Cost, and Attacker

Awareness.

KOE in our approach is a count of the number of Parent Mitigations needed to fully

mitigate a given attack pattern. Attack patterns with larger KOE scores require more effort

to mitigate than attack patterns with smaller KOE scores. One of the descriptive fields

provided for each of the Top 25 Programming Errors is “Remediation Cost”. Remediation

Cost is defined as “the amount of effort required to fix the weakness” (Christey, 2009).

Given the structure of the SANS Top 25 Programming Errors, it is possible to correlate our

KOE scores with the SANS Top 25 list. Correlation of data between the KOE and SANS

list can be used to provide validation for our metric.

The completion of Process 3 for all 101 attack patterns resulted in KOE scores

ranging from 1-10. The SANS Institute ranks Remediation Cost on a 5 point scale with the

following values: Low, Low-Medium, Medium, Medium-High, High in the new Top 25.

Table 80 introduces the corresponding KOE and Remediation Cost for each of matching

attacks between CAPEC and the Top 25.

175

Table 88. SANS Remediation Cost versus Process 3 KOE.

Error / Attack Remediation Cost KOE

Error Message Info Leak / 54 Low 2

SQL Injection / 66 Low 3

OS Command Injection / 88 Medium 3

Race Condition / 29 Medium-High 8

Cross Site Request Forgery / 62 High 6

 Table 80 shows a high degree of correlation between our newly generate KOE and

SANS Remediation Cost ranking. It is important to note that only the Errors which had a

directly matching name from the CAPEC Dictionary list were considered for comparison.

Our research resulted in the full creation of 101 graphical hierarchies and 101

textual attack descriptions. Our approach also calculated and documented the KOE for

each of the 101 attack patterns. We combined each of the graphical hierarchies into a

single forest view and calculated the PMP values for all 17 Parent Mitigations across each

of the 101 attack patterns. This work is significant as the results will not have to be

completed again to be useful. Our approach and subsequent metrics can be used

immediately to aid in security related decisions.

176

6. CONCLUSIONS

6.1. Contributions and Applicability

 Our main contribution is an approach which meets the objectives of the problem

definition. Our approach makes CAPEC more useable and consistent and is made up of

three processes.

1. Abstracting Parent Mitigations

2. Creation of Trimmed Hierarchies for Modeling Attack Patterns

3. Creation of Security Metrics

A breakdown of our approach is introduced in Figure 42.

177

Figure 42. Detailed Diagram of Our Approach

Our approach introduces a Parent Mitigation element to provide consistency and

usability to the CAPEC Release 1 dictionary by incorporating the 800:53r2 NIST control

repository directly into the CAPEC dictionary. Utilization of the existing NIST control

group is important because it provides an accepted level of standardization. There is

significant value in completing the abstraction process because CAPEC provides nearly

400 individual controls listed in the current attack pattern dictionary. Each of the

mitigation strategies are now standardized into 17 Parent Mitigations at the same level of

abstraction thus allowing adopters to make better use of the CAPEC dictionary. By

abstracting these mitigations into 17 categories, users are less likely to dismiss a particular

178

attack pattern because the mitigation is too detailed or too vague. This is currently a risk for

CAPEC adopters who believe that they are not at risk for a given attack because they do

not have the specific technology mentioned in the CAPEC mitigation.

Modeling hierarchy-based attack patterns begins by re-including a Parent Threat

element into the dictionary to provide consistency and usability to the CAPEC Release 1

Dictionary. We presented a new model for viewing CAPEC attack patterns which creates a

standardized element set that provides context for how the elements are related. Because

the current elements provide valuable information, we are not advocating their removal.

Rather our intention is to present the data in a manageable and consistent manner and full

details of the Release 1 dictionary will be readily available. Because the current dictionary

can easily overwhelm users, creating consistent and useable views for each attack pattern is

a valuable step to increasing the adoption and wide spread acceptance of the CAPEC

standard.

Our models allow CAPEC attack pattern information to be viewed from two

distinct points of view. Graphical hierarchies allow for viewing element, attack pattern,

Parent Threat and Parent Mitigation relationships. This allows users to trace both up from

individual Parent Mitigations or down from individual Parent Threats. The textual attack

descriptions present an attack pattern point of view. The creation of this model provides a

stand-alone description for understanding the attack pattern.

The ability to accurately implement controls and answer security questions like: “Is

my security better this year?”, “What am I getting for my security dollars?” and “How do I

compare with my peers?” requires the use of security metrics (Geer, Hoo, & Jaquith, 2003).

Metrics are also required to gauge the suitability and effectiveness of controls (Geer et al.,

179

2003). The creation of the Knock-Out Effect (KOE) security metric allows for the

necessary mitigation strategies for each attack pattern to be calculated and documented.

The higher the KOE, the more Child Mitigations it will take to fully prevent and/or recover

from a specific attack. KOE is not a listing of necessary mitigation strategies, but rather a

numeric count as to how many Child Mitigations are necessary. The exact listing of the

Child Mitigations is included as part of the “solutions and mitigation” element for each

attack pattern in the full release of the CAPEC dictionary and the textual attack

descriptions.

The creation of the Parent Mitigation Power (PMP) security metric is a score

associated with the chosen mitigation strategies of a specific implementation. Depending

on what Parent and Child Threats are to be mitigated, a specific set of Child Mitigations

will be employed. Because every Child Mitigation can be traced to a Parent Mitigation, we

are able to measure the impact each Parent Mitigation is having on the overall security

posture of the system.

Our research resulted in the creation of a hierarchy including all 101 attack patterns,

101 textual attack descriptions, calculated the KOE for each of the 101 attack patterns, and

calculated the PMP values for all 17 Parent Mitigations. Our approach can be used

immediately to aid security related decisions. It is important to note that the results from

our approach will always be the same regardless of who is completing the processes as

long as they are followed explicitly.

180

6.2. Limitations

 During Process 1 (Abstracting Parent Mitigations) it may be possible for others to

reach different conclusions when matching CAPEC Solutions and Mitigations to NIST

Parent Mitigations. Repeating this process several times and accumulating the results

would help to alleviate this risk. Rigorous research methods need to be employed to ensure

the elements and views proposed in Process 2 are appropriate for the target audience. Our

approach justified the selection of each element and view, but need to be justified in an

applied setting. The use of surveys and qualitative research method tools would ensure that

each element and view is appropriate when applied outside of an academic environment.

 Another identified limitation of our current approach is the lack of an automated

tool for presenting CAPEC attack pattern information. While our approach has made

CAPEC more consistent and usable, the implementation of CAPEC in an applied

environment still requires manual review of the documentation. This causes the amount of

time required to appropriately use CAPEC to be long. Automated tools would help in

reducing the time factor of our approach and reduce or eliminate human error.

 Due to the severe fan-in-fan-out and abundance of mappings, the completed Forest

view, containing all 101 attack patterns, is overwhelming. New views, which include

subsets of the tree, are needed if the Forest view is to be useful. The use of an automated

tool would be beneficial for showing various components of the Forest view.

6.3. Future Work

Incorporating our work into an automated system would allow for a much quicker

way of interacting with the standard. For example, a tool that assisted in managing and

181

displaying the various views would be of great benefit because of the static nature of our

work. Such a tool would allow security “what-if” scenarios to be quickly and accurately

answered. The tool would present a variety of views and information including: full attack

pattern information, graphical hierarchy trees, textual attack descriptions, attacks related by

Parent Threat, KOE and PMP values, and a full forest view. The ability to quickly and

accurately switch between each of these views would be a positive because time would be

saved and human error avoided.

The work completed here needs to be forwarded on to the CAPEC community for

review and consideration. Our research shares a common goal with the CAPEC organizers:

increasing usability and consistency of the standard. The CAPEC community may be able

to make use of both the Parent Threat and Parent Mitigations elements as well as the KOE

and PMP metrics.

Other future work includes addressing the issues outlined in 6.2. Specifically,

future work calls for ensuring that the views and metrics are both useful and accurate for

end users and adopters. The use of surveys and other quantitative research methods needs

to be employed to be certain that the appropriate elements and the appropriate number of

elements are being used. The use of research methods also need to be applied to measure

the appropriateness and effectiveness of our security metrics.

Given the vast repository of information which can be leveraged between the NIST

and CAPEC standards, other future work could be conducted to include new security

metrics.

182

REFERENCES CITED

Ali, M., Hilton, E. R., & Peter, S. B. (1985). Bayesian Probabilistic Risk Analysis. 13(1),

5-12.

Arce, I. (2004). More Bang For the Bug: An Account of 2003's Attack Trends. Attack

Trends.

Barnum, S. (2007). Attack Patterns as a Knowledge Resource for Building Secure

Software. In A. Sethi (Ed.). OMG Software Assurance Workshop: Cigital.

Barnum, S. (2007). Attack Patterns: Knowing Your Enemy in Order to Defeat Them. Paper

presented at the Black Hat DC 2007.

Barnum, S. (2008). Common Attack Pattern Enumeration and Classification (CAPEC)

Schema Description.

Barnum, S., & Amit, S. (2006a). Further Information on Attack Patterns. Build Security In

Setting a Higher Standard for Software Assurance, from https://buildsecurityin.us-

cert.gov/daisy/bsi/articles/knowledge/attack/589.html

Barnum, S., & Amit, S. (2006b, 2006-11-07). Introduction to Attack Patterns. from

https://buildsecurityin.us-cert.gov/daisy/bsi/articles/knowledge/attack/585-BSI.html

Barnum, S., & Sethi, A. Attack Pattern Glossary. Build Security In. https://buildsecurityin.

uscert. gov/daisy/bsi/articles/knowledge/attack/590. pdf.

Bedford, T., & Cooke, R. (2001). Probabilistic Risk Analysis: Foundations and Methods:

Cambridge University Press.

Bell, D. (1996). The Bell-LaPadula Model. Journal of Computer Security, 4(2), 3.

Benioff, M. R., & Lazowska, E. D. (2005). Cyber Security: A Crisis of Prioritization.

President's Information Technology Advisory Committee

Benoit, A. A., Michel, P., & Suzanne, R. (2005). A Framework for Information

Technology Outsourcing Risk Management. 36(4), 9-28.

Bishop, M. (2003). What Is Computer Security? University of California,Davis.

Blakley, B., McDermott, E., & Geer, D. (2001). Information Security is Information Risk

Management. Paper presented at the Proceedings of the 2001 workshop on New

security paradigms.

Booch, G., Rumbaugh, J., & Jacobson, I. (1999). The unified modeling language user

guide: Addison-Wesley Reading Mass.

183

Borlund, P., & Ingwersen, P. (1997). The Development of a Method for the Evaluation of

Interactive Information Retrieval Systems. Journal of Documentation, 53, 225-250.

Brenner, J. (2007). ISO 27001: Risk management and compliance. Risk Management

Magazine, 54(1), 24-29.

Burger, A. K. (2006). US Mobile Security, Part 1: How Great Is the Risk?

Byres, E. J., Franz, M., & Miller, D. (2004). The Use of Attack Trees in Assessing

Vulnerabilities in SCADA Systems. International Infrastructure Survivability

Workshop (IISW'04), IEEE, Lisbon, Portugal, December, 4.

Calder, A. (2006). Information Security Based on ISO 27001/ISO 17799: A Management

Guide: Van Haren Publishing.

capec.mitre.org. (2007). CAPEC - Common Attack Pattern Enumeration and Classification

(CAPEC). from http://capec.mitre.org/

Cavusoglu, H., Mishra, B., & Raghunathan, S. (2004). A Model for Evaluating IT Security

Investments. 47(7), 87-92.

CERT. (2007). Vulnerability Remediation Statistics. Full Statistics, from

http://www.cert.org/stats/fullstats.html

Chakrabarti, A., & Manimaran, G. (2002). Internet Infrastructure Security: a Taxonomy.

Network, IEEE, 16(6), 13-21.

Chow, S. S. M., Hui, L. C. K., Yiu, S. M., Chow, K. P., & Lui, R. W. C. (2005). A Generic

Anti-Spyware Solution by Access Control List at Kernel Level. The Journal of

Systems & Software, 75(1-2), 227-234.

Christey, S. (2009). CWE/SANS TOP 25 Most Dangerous Programming Errors. SANS

Institute

Ciampa, M. (2005). Security+ Guide to Network Security Fundamentals (2nd ed.):

Thomson Course Technology.

Coleman, T., & Jamieson, M. (1991). Information systems: evaluating intangible benefits

at the feasibility stage of project appraisal. Unpublished MBA thesis, City

University Business School, London.

Daley, K., Larson, R., & Dawkins, J. (2002). A structural framework for modeling multi-

stage network attacks. Parallel Processing Workshops, 2002. Proceedings.

International Conference on, 5-10.

DeLooze, L. L. (2004). Classification of Computer Attacks Using a Self-Organizing Map.

Information Assurance Workshop, 2004. Proceedings from the Fifth Annual IEEE

SMC, 365-369.

http://capec.mitre.org/
http://www.cert.org/stats/fullstats.html

184

Ellison, R. J., Fisher, D., Linger, R. C., Lipson, H. F., Longstaff, T., & Mead, N. R. (1997).

Survivable Network Systems: An Emerging Discipline. Software Engineering

Institute at Carnegie Mellon University, CMU/SEI-97-TR-013, November.

Ellison, R. J., Fisher, D. A., Linger, R. C., Lipson, H. F., Longstaff, T. A., & Mead, N. R.

An Approach to Survivable Systems. NATO 1 stSymposium on Protecting Inform.

Systems in the 21 stCentury, 25-27.

Ellison, R. J., Fisher, D. A., Linger, R. C., Lipson, H. F., Longstaff, T. A., & Mead, N. R.

(1999). Survivability: Protecting Your Critical Systems.

Emmanuel, W., & Yu, S. Protecting Networks: Introduction to Network Security.

cng.ateneo.net: Ateneo de Manila University.

Engebretson, P., & Pauli, J. (2008, November, 2008). Realizing Knock-Out Effect and

Parent Mitigation Power for Detailed Attack Patterns: A Case Study. Paper

presented at the Software Engineering and Applications (SEA 08), Orlando, FL,

USA.

Engebretson, P., Pauli, J., & Streff, K. (2008, July, 2008). Abstracting Parent Mitigations

from the CAPEC Attack Pattern Dictionary. Paper presented at the Security and

Management (SAM 08), Las Vegas, NV, USA.

English, J., Hearst, M., Sinha, R., Swearingen, K., & Yee, K. P. (2002). Hierarchical

Faceted Metadata in Site Search Interfaces.

Fadia, A. (2002). Network Security: A Hacker's Perspective: Course Technology.

Farbey, B., Land, F., & Targett, D. (1992). Evaluating investments in IT. JIT. Journal of

information technology(Print), 7(2), 109-122.

Fithen, W. (2005). Ensure that Input Is Properly Canonicalized. Retrieved. from.

Flowerday, S., & Von Solms, R. (2005). Real-Time Information Integrity = Systems

Integrity + Data Integrity + Continuous Assurances. Computers & Security, 24(8),

604-613.

Fong, E., Gaucher, R., Okun, V., Black, P. E., & Dalci, E. (2008). Building a Test Suite for

Web Application Scanners. Hawaii International Conference on System Sciences,

Proceedings of the 41st Annual, 478-478.

Fung, C., Chen, Y. L., Wang, X., Lee, J., Tarquini, R., Anderson, M., et al. (2005).

Survivability Analysis of Distributed Systems Using Attack Tree Methodology.

Military Communications Conference, 2005. MILCOM 2005. IEEE, 1-7.

Fung, P., & Longley, D. (2003). Electronic Information Security Documentation. 25-31.

185

Futoransky, A., Notarfrancesco, L., Richarte, G., & Sarraute, C. Building Computer

Network Attacks: Technical report, CoreLabs.

Gamma, E., Helm, R., Johnson, R., & Vlissides, J. (1995). Design Patterns: Elements of

Reusable Object-Oriented Software: Addison-Wesley Longman Publishing Co.,

Inc. Boston, MA, USA.

Gautam, B., Kenneth, A. D., & Kazuhiko, K. (1989). Applications of Qualitative Modeling

to Knowledge-Based Risk Assessment Studies. Paper presented at the Proceedings

of the 2nd international conference on Industrial and engineering applications of

artificial intelligence and expert systems - Volume 1.

Geer, D., Hoo, K. S., & Jaquith, A. (2003). Information Security: Why the Future Belongs

to the Quants. IEEE SECURITY & PRIVACY, 24-32.

Gegick, M., & Williams, L. (2005). Matching attack patterns to security vulnerabilities in

software-intensive system designs. 1-7.

Grance, T., Hash, J., & Stevens, M. (2003). NIST Special Publication 800-64, Security

Considerations in the Information System Development Life Cycle. October,

Retrieved on, 26, 800-864.

Haasl, D. F., Roberts, N. H., Vesely, W. E., & Goldberg, F. F. (1981). Fault Tree

Handbook: NUREG-0492, Nuclear Regulatory Commission, Washington, DC

(USA). Office of Nuclear Regulatory Research.

Hamdi, M., & Boudriga, N. (2003). Algebraic Specification of Network Security Risk

Management. 52-60.

Hansche, S., Berti, J., & Hare, C. (2003). Official (ISC) 2 Guide to the CISSP Exam:

Auerbach Publications.

Hansman, S., & Hunt, R. (2005). A taxonomy of network and computer attacks. Computers

& Security, 24(1), 31-43.

Hearst, M. A. (2006). Clustering Versus Faceted Categories for Information Exploration.

49(4), 59-61.

Hevner, A. R., March, S. T., Park, J., & Ram, S. (2004). Design Science in Information

Systems Research (Vol. 28, pp. 75-106): MIS RESEARCH CENTER-SCHOOL

OF MANAGEMENT.

Hoglund, G., & McGraw, G. (2004). Exploiting Software: How to Break Code: Pearson

Higher Education.

Holden, G. (2003). Guide to Network Defense and Countermeasures: Course Technology

Press United States.

186

Hong, M. A Phenomenon Approach to Faceted Classification. Paper presented at the 53rd

Conference of the Japan Society of Library and Information Science (JSLIS).

ISACA. (2008). COBIT 4.1. from www.isaca.org/cobit/

ISO. (2005). 27002:2005. from

http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=

50297

Jajodia, S. (2007). Topological analysis of network attack vulnerability. Conference on

Computer and Communications Security: Proceedings of the 2 nd ACM symposium

on Information, computer and communications security, 20(22), 2-2.

Jones, K., Shema, M., & Johnson, B. C. (2002). Anti-Hacker Tool Kit: McGraw-Hill

Osborne Media.

Koziol, J., Litchfield, D., Aitel, D., Anley, C., Eren, S., Mehta, N., et al. (2004). The

Shellcoder's Handbook: Discovering and Exploiting Security Holes: John Wiley &

Sons.

Kwasnik, B. H. (1999). The Role of Classification in Knowledge Representation and

Discovery. Library Trends 48(1), 22-47.

Lewis, T. G. (2006). Critical Infrastructure Protection in Homeland Security: Defending a

Networked Nation: Wiley-Interscience.

Lindqvist, U., & Jonsson, E. (1997). How to Systematically Classify Computer Security

Intrusions. IEEE Symposium on Security and Privacy, 83-99.

Logan, P. Y., & Clarkson, A. (2005). Teaching students to hack: curriculum issues in

information security. Proceedings of the 36th SIGCSE technical symposium on

Computer science education, 157-161.

Mauw, S., & Oostdijk, M. (2005). Foundations of attack trees. Information Security and

Cryptography (LNCS 3935), D. Won and S. Kim (Eds.), Springer, Berlin-

Heidelberg, Germany, 186–198.

McClure, S., Scambray, J., & Kurtz, G. (2005). Hacking Exposed 5th Edition (Hacking

Exposed): McGraw-Hill Osborne Media.

McCumber, J. (2004). Assessing and Managing Security Risk in It Systems: A Structured

Methodology: Auerbach Pub.

McGraw, G. (2006). Software Security: Building Security In: Addison-Wesley

Professional.

http://www.isaca.org/cobit/
http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=50297
http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=50297

187

Moore, A. P., Ellison, R. J., & Linger, R. C. (2001). Attack Modeling for Information

Security and Survivability: Carnegie Mellon University, Software Engineering

Institute.

Myerson, J. M. (2002). Identifying Enterprise Network Vulnerabilities. 12(3), 135-144.

Neumann, P. G. (2004). Principled Assuredly Trustworthy Composable Architectures.

Final Report, DARPA, 1.

NIST. (2002). 800-30. Risk Management Guide for Information Technology Systems, 800-

830.

NIST. (2006). 800-53. Retrieved. from.

NIST. (2007). 800-53 Rev. 2. Retrieved. from.

Pauli, J., & Engebretson, P. (2008a). Hierarchy-Drive Approach for Attack Patterns in

Software Security Education. Paper presented at the 5th International Conference

on Information Technology : New Generations, Las Vegas.

Pauli, J., & Engebretson, P. (2008b). Towards a Specification Prototype for Hierarchy-

Driven Attack Patterns. Paper presented at the 5th International Conference on

Information Technology : New Generations (ITNG 2008), Las Vegas.

Peltier, T. R. (2005). Information Security Risk Analysis: Auerbach Pub.

Recipes, S. Gray Hat Hacking: The Ethical Hacker‟s Handbook.

Rinaldi, S. M., Peerenboom, J. P., & Kelly, T. K. (2001). Identifying, Understanding, and

Analyzing Critical Infrastructure Interdependencies. Control Systems Magazine,

IEEE, 21(6), 11-25.

Rockland, R. H. (2000). Reducing the information overload: a method on helping students

research engineering topics using the Internet. Education, IEEE Transactions on,

43(4), 420-425.

Rowe, W. D. (1977). An Anatomy of Risk. New York et al.

Russell, R. (2002). Hack Proofing Your Network: Syngress.

Salter, C., Saydjari, O. S., Schneier, B., & Wallner, J. (1998). Toward a secure system

engineering methodolgy. Proceedings of the 1998 workshop on New security

paradigms, 2-10.

Schechter, S. E. (2005). Toward Econometric Models of the Security Risk from Remote

Attacks.

Scheer, A. W., & Habermann, F. (2000). Enterprise resource planning: making ERP a

success. Communications of the ACM, 43(4), 57-61.

188

Schneier, B. (1999). Attack Trees. Dr. Dobb’s Journal, 24(12), 21-29.

Schneier, B. (2000). Secrets & Lies: Digital Security in a Networked World: John Wiley &

Sons, Inc. New York, NY, USA.

Skoudis, E., & Liston, T. (2006). Counter Hack Reloaded A Step-by-Step Guide to

Computer Attacks and Effective Defenses (2nd ed.). Upper Saddle River: Prentice

Hall.

Steffan, J., & Schumacher, M. (2002). Collaborative attack modeling. Paper presented at

the Proceedings of the 2002 ACM symposium on Applied computing.

Stoneburner, G., Goguen, A., & Feringa, A. (2002). Risk Management Guide for

Information Technology Systems. NIST Special Publication, 800-830.

Swiderski, F., & Snyder, W. (2004). Threat Modeling: Microsoft Press.

Templeton, S. J., & Levitt, K. (2001). A requires/provides model for computer attacks.

Proceedings of the 2000 workshop on New security paradigms, 31-38.

Tidwell, T., Larson, R., Fitch, K., & Hale, J. (2001). Modeling Internet Attacks.

Proceedings of the 2001 IEEE Workshop on Information Assurance and Security,

59.

Viega, J., & McGraw, G. (2002). Building Secure Software: Addison-Wesley Boston.

Visintine, V. (2003). An Introduction to Information Risk Assessment. SANS institute, 8.

von Solms, B. (2005). Information Security governance: COBIT or ISO 17799 or both?

Computers & Security, 24(2), 99-104.

Wang, H., & Wang, C. (2003). Taxonomy of Security Considerations and Software

Quality. Communications of the ACM, 46(6), 75-78.

Weinstein, C. E., & Mayer, R. E. (1986). The Teaching of Learning Strategies. Handbook

of research on teaching, 3, 315-327.

Whitman, M. E., & Mattord, H. J. (2003). Principles of information security: Boston,

Mass.; London: Thomson/Course Technology.

Willcocks, L. (1992). Evaluating Information Technology Investments: Research Findings

and Reappraisal. Information Systems Journal, 2(4), 243-268.

Woerner, R. (2007). Security Friday Fast Fact: Risky Business (without Tom Cruise).

Ye, Y., Barry, B., & Betsy, C. (2006). Assessing COTS Integration Risk Using Cost

Estimation Inputs. Paper presented at the Proceeding of the 28th international

conference on Software engineering.

189

190

APPENDIX I: 101 Attack Patterns: Complete

Textual Attack Descriptions

Attack Pattern ID 1

Attack Pattern Name (KOE) Accessing Functionality Not Properly Constrained by ACLs (2)

Description In applications, particularly web applications, access to functionality is

mitigated by the authorization framework, whose job it is to map ACLs

to elements of the application's functionality; particularly URL's for

web apps. In the case that the application deployer failed to specify an

ACL for a particular element, an attacker may be able to access it with

impunity. An attacker with the ability to access functionality not

properly constrained by ACLs can obtain sensitive information and

possibly compromise the entire application. Such an attacker can

access resources that must be available only to users at a higher

privilege level, can access management sections of the application or

can run queries for data that he is otherwise not supposed to.

Parent Threat Exploitation of Privilege/Trust

Solutions and Mitigations 1. In a J2EE setting, deployers can associate a role that is impossible

for the authenticator to grant users, such as "NoAccess", with all

Servlets to which access is guarded by a limited number of servlets

visible to, and accessible by, the user.. Having done so, any direct

access to those protected Servlets will be prohibited by the web

container. In a more general setting, the deployer must mark every

resource besides the ones supposed to be exposed to the user as

accessible by a role impossible for the user to assume. The default

security setting must be to deny access and then grant access only

to those resources intended by business logic.

Parent Mitigation AC, IA

Attack Pattern ID 2

Attack Pattern Name (KOE) Inducing Account Lockout, (2)

Description An attacker leverages the security functionality of the system aimed at

thwarting potential attacks to launch a denial of service attack against a

legitimate system user. Many systems, for instance, implement a

password throttling mechanism that locks an account after a certain

number of incorrect log in attempts. An attacker can leverage this

throttling mechanism to lock a legitimate user out of their own

account. The weakness that is being leveraged by an attacker is the

very security feature that has been put in place to counteract attacks.

Parent Threat Abuse of Functionality

Solutions and Mitigations 1. implement intelligent password throttling mechanisms such as

those which take IP address into account, in addition to the login

name.

2. When implementing security features, consider how they can be

misused and made to turn on themselves.

Parent Mitigation IA, PL

191

Attack Pattern ID 3

Attack Pattern Name (KOE) Using Leading 'Ghost' Character Sequences to Bypass Input Filters (3)

Description An attacker intentionally introduces leading characters that enable

getting the input past the filters.

Parent Threat Resource Manipulation

Solutions and Mitigations 1. Perform white list rather than black list input validation.

2. Canonicalize all data prior to validation.

3. Take an iterative approach to input validation (defense in depth).

Parent Mitigation AC, CM, SL

Attack Pattern ID 4

Attack Pattern Name (KOE) Using Alternative IP Address Encodings (3)

Description This attack relies on the attacker using unexpected formats for

representing IP addresses. Networked applications may expect network

location information in a specific format, such as fully qualified

domains names, URL, IP address, or IP Address ranges. The issue that

the attacker can exploit is that these design assumptions may not be

validated against a variety of different possible encodings and network

address location formats. Applications that use naming for creating

policy namespaces for managing access control may be susceptible to

queryin directly by IP addresses, which is ultimately a more generally

authoritative way of communicating on a network.

Alternative IP addresses can be used by the attacker to bypass

application access control in order to gain access to data that is only

protected by obscuring its location.

In addition this type of attack can be used as a reconnaissance

mechansim to provide entry point information that the attacker gathers

to penetrate deeper into the system.

Parent Threat Resource Manipulation

Solutions and Mitigations 1. Design: Default deny access control policies

2. Design: Input validation routines should check and enforce both

input data types and content against a positive specification. In

regards to IP addresses, this should include the authorized manner

for the application to represent IP addresses and not accept user

specified IP addresses and IP address formats (such as ranges)

3. Implementation: Perform input validation for all remote content.

Parent Mitigation AC SC SI

192

Attack Pattern ID 5

Attack Pattern Name (KOE) Analog In-band Switching Signals (aka Blue Boxing) (2)

Description This attack against older telephone switches and trunks has been

around for decades. The signal is sent by the attacker to impersonate a

supervisor signal. This has the effect of rerouting or usurping

command of the line and call. While the US infrastructure proper may

not contain widespread vulnerabilities to this type of attack, many

companies are connected globally through call centers and business

process outsourcing. These international systems may be operated in

countries which have not upgraded telco infrastructure and so are

vulnerable to Blue boxing.

Blue boxing is a result of failure on the part of the system to enforce

strong authentication for administrative functions. While the

infrastructure is different than standard current applications like web

applications, there are hisotrical lessons to be learned to upgrade the

access control for administrative functions.

Parent Threat Injection (Injecting Control Plane content through the Data Plane)

Solutions and Mitigations 1. Implementation: Upgrade phone lines. Note this may be

prohibitively expensive

2. Use strong access control such as two factor access control for

adminsitrative access to the switch

Parent Mitigation AC, MA

Attack Pattern ID 6

Attack Pattern Name (KOE) Argument Injection (2)

Description An attack of this type exploits a programs' vulnerabilities that allows

an attacker's commands to be directly or indirectly applied as

arguments, for example as shell commands. This may allow an attacker

access to files, network resources, media, and in short anything

accessible through the shell.

The argument injection attack uses the exposed service or method as a

launch pad to invoke other programs. If the service does not validate or

filter the input data then the client program is granted access to execute

commands using the server's privileges. The OS commands can be

appended to standard input for shell programs, HTTP Requests, and

XML messages.

Parent Threat Injection (Injecting Control Plane content through the Data Plane)

Solutions and Mitigations 1. Design: Do not program input values directly on command shell,

instead treat user input as guilty until proven innocent. Build a

function that takes user input and converts it to applications

specific types and values, stripping or filtering out all unauthorized

commands and characters in the process.

2. Design: Limit program privileges, so if metacharcters or other

methods circumvent program input validation routines and shell

access is attained then it is not running under a privileged account.

chroot jails create a sandbox for the application to execute in,

making it more difficult for an attacker to elevate privilege even in

the case that a compromise has occurred.

3. Implementation: Implement an audit log that is written to a

separate host, in the event of a compromise the audit log may be

able to provide evidence and details of the compromise.

Parent Mitigation AT, PL

193

Attack Pattern ID 7

Attack Pattern Name (KOE) Blind SQL Injection (2)

Description Blind SQL Injection results from an insufficient mitigation for SQL

Injection. Although suppressing database error messages are

considered best practice, the suppression alone is not sufficient to

prevent SQL Injection. Blind SQL Injection is a form of SQL Injection

that overcomes the lack of error messages. Without the error messages

that facilitate SQL Injection, the attacker constructs input strings that

probe the target through simple Boolean SQL expressions. The

attacker can determine if the syntax and structure of the injection was

successful based on whether the query was executed or not. Applied

iteratively, the attacker determines how and where the target is

vulnerable to SQL Injection.

Parent Threat Injection

Solutions and Mitigations 1. Security by Obscurity is not a solution to preventing SQL

Injection. Rather than suppress error messages and exceptions, the

application must handle them gracefully, returning either a custom

error page or redirecting the user to a default page, without

revealing any information about the database or the application

internals.

2. Strong input validation - All user-controllable input must be

validated and filtered for illegal characters as well as SQL content.

Keywords such as UNION, SELECT or INSERT must be filtered

in addition to characters such as a single-quote(') or SQL-

comments (--) based on the context in which they appear.

Parent Mitigation SI, CM

Attack Pattern ID 8

Attack Pattern Name (KOE) Buffer Overflow in an API Call (2)

Description This attack targets libraries or shared code modules which are

vulnerable to buffer overflow attacks. An attacker who has access to an

API may try to embed malicious code in the API function call and

exploit a buffer overflow vulnerability in the function's

implementation. All clients that make use of the code library thus

become vulnerable by association. This has a very broad effect on

security across a system, usually affecting more than one software

process.

Parent Threat Buffer Overflow, API Abuse, Injection

Solutions and Mitigations 1. Use a language or compiler that performs automatic bounds

checking.

2. Use secure functions not vulnerable to buffer overflow.

3. If you have to use dangerous functions, make sure that you do

boundary checking.

4. Compiler-based canary mechanisms such as StackGuard,

ProPolice and the Microsoft Visual Studio /GS flag. Unless this

provides automatic bounds checking, it is not a complete solution.

5. Use OS-level preventative functionality. Not a complete solution.

Parent Mitigation AT, SC

194

Attack Pattern ID 9

Attack Pattern Name (KOE) Buffer Overflow in Local Command-Line Utilities (5)

Description This attack targets command-line utilities available in a number of

shells. An attacker can leverage a vulnerability found in a command-

line utility to escalate privilege to root.

Parent Threat Data Structure Attacks

Solutions and Mitigations 1. Carefully review the service's implementation before making it

available to user. For instance you can use manual or automated

code review to uncover vulnerabilities such as buffer overflow.

2. Use a language or compiler that performs automatic bounds

checking.

3. Use an abstraction library to abstract away risky APIs. Not a

complete solution.

4. Compiler-based canary mechanisms such as StackGuard,

ProPolice and the Microsoft Visual Studio /GS flag. Unless this

provides automatic bounds checking, it is not a complete solution.

5. Operational: Use OS-level preventative functionality. Not a

complete solution.

6. Apply the latest patches to your user exposed services. This may

not be a complete solution, specially against zero day attack.

7. Do not unnecessarily expose services.

Parent Mitigation RA, SI, CM, SA, AC

Attack Pattern ID 10

Attack Pattern Name (KOE) Buffer Overflow Via Environment Variables (4)

Description This attack pattern involves causing a buffer overflow through

manipulation of environment variables. Once the attacker finds that

they can modify an environment variable, they may try to overflow

associated buffers. This attack leverages implicit trust often placed in

environment variables.

Parent Threat Injection (Injecting Control Plane content through the Data Plane)

Solutions and Mitigations 1. Do not expose environment variable to the user.

2. Do not use untrusted data in your environment variables.

3. Use a language or compiler that performs automatic bounds

checking

4. You can use Sharefuzz to determine if you are exposing an

environment variable vulnerable to buffer overflow

Parent Mitigation SI,AC,CM, RA

195

Attack Pattern ID 11

Attack Pattern Name (KOE) Cause Web Server Misclassification (2)

Description An attack of this type exploits a Web server's decision to take action

based on filename or file extension. Because different file types are

handled by different server processes, misclassification may force the

Web server to take unexpected action, or expected actions in an

unexpected sequence. This may cause the server to exhaust resources,

supply debug or system data to the attacker, or bind an attacker to a

remote process.

Parent Threat Resource Manipulation

Solutions and Mitigations 1. Implementation: Server routines should be determined by content

not determined by filename or file extension.

Parent Mitigation CM, IA

Attack Pattern ID 12

Attack Pattern Name (KOE) Choosing a Message/Channel Identifier on a Public/Multicast Channel

(2)

Description Attackers aware that more data is being fed into a multicast or public

information distribution means can 'select' information bound only for

another client, even if the distribution means itself forces users to

authenticate in order to connect initally.

Doing so allows the attacker to gain access to possibly privileged

information, possibly perpetrate other attacks through the distribution

means by impersonation.

If the channel/message being manipulated is an input rather than output

mechanism for the system, (such as a command bus), this style of

attack could change its identifier from a less privileged to more so

privileged channel or command.

Parent Threat Abuse of Functionality

Solutions and Mitigations 1. Associate some ACL (in the form of a token) with an

authenticated user which they provide middleware. The

middleware uses this token as part of its channel/message selection

for that client, or part of a discerning authorization decision for

privileged channels/messages. The purpose is to architect the

system in a way that associates proper authentication/authorization

with each channel/message.

2. Rearchitect system input/output channels as appropriate to

distribute self-protecting data. That is, encrypt (or otherwise

protect) channels/messages so that only authorized readers can see

them.

Parent Mitigation IA, SC

196

Attack Pattern ID 13

Attack Pattern Name (KOE) Subverting Environment Variable Values (3)

Description The attacker directly or indirectly modifies environment variables used

by or controlling the target software. The attacker‟s goal is to cause

the target software to deviate from its expected operation in a manner

that benefits the attacker.

Parent Threat Resource Manipulation

Solutions and Mitigations 1. Protect environment variables against unauthorized read and write

access.

2. Protect the configuration files which contain environment

variables against illegitimate read and write access.

3. Assume all input is malicious. Create a white list that defines all

valid input to the software system based on the requirements

specifications. Input that does not match against the white list

should not be permitted to enter into the system.

4. Apply the least privilege principles. If a process has no legitimate

reason to read an environment variable do not give that privilege.

Parent Mitigation AC, SM, SI

Attack Pattern ID 14

Attack Pattern Name (KOE) Client-side Induction-induced Buffer Overflow (10)

Description This type of attack exploits a buffer overflow vulnerability in targeted

client software through injection of malicious content from a custom-

built hostile service.

Parent Threat Data Structure Attacks

Solutions and Mitigations 1. The client software should not install untrusted code from a non

authenticated server.

2. The client software should have the latest patches and should be

audited for vulnerabilities before being used to communicate with

potentially hostile servers.

3. Perform input validation for length of buffer inputs.

4. Use a language or compiler that performs automatic bounds

checking.

5. Use an abstraction library to abstract away risky APIs. Not a

complete solution.

6. Compiler-based canary mechanisms such as StackGuard,

ProPolice and the Microsoft Visual Studio /GS flag. Unless this

provides automatic bounds checking, it is not a complete solution.

7. Ensure all buffer uses are consistently bounds-checked.

8. Use OS-level preventative functionality. Not a complete solution.

Parent Mitigation AC, CM, IA SA, SI, AU, CA, MA, RA, AT

197

Attack Pattern ID 15

Attack Pattern Name (KOE) Command Delimiters (4)

Description An attack of this type exploits a programs' vulnerabilities that allows

an attacker's commands to be concatenated onto a legitimate command

with the intent of targeting other resources such as the file system or

database. The system that uses a filter or a blacklist input validation, as

opposed to whitelist validation is vulnerable to an attacker who

predicts delimiters (or combinations of delimiters) not present in the

filter or blacklist. As with other injection attacks, the attacker uses the

command delimiter payload as an entry point to tunnel through the

application and activate additional attacks through SQL queries, shell

commands, network scanning, and so on.

Parent Threat Injection

Solutions and Mitigations 1. Design: Perform whitelist validation against a positive

specification for command length, type, and parameters.

2. Design: Limit program privileges, so if commands circumvent

program input validation or filter routines then commands do not

running under a privileged account

3. Implementation: Perform input validation for all remote content.

4. Implementation: Use type conversions such as JDBC prepared

statements.

Parent Mitigation AC, CM, SA, RA

Attack Pattern ID 16

Attack Pattern Name (KOE) Dictionary-based Password Attack (10)

Description An attacker tries each of the words in a dictionary as passwords to gain

access to the system via some user's account. If the password chosen

by the user was a word within the dictionary, this attack will be

successful (in the absence of other mitigations). This is a specific

instance of the password brute forcing attack pattern.

Parent Threat Probabilistic Techniques

Solutions and Mitigations 1. Create a strong password policy and ensure that your system

enforces this policy.

2. Implement an intelligent password throttling mechanism. Care

must be taken to assure that these mechanisms do not excessively

enable account lockout attacks such as CAPEC-02.

Parent Mitigation AC, AT, AU, CA, CM, IA, MP, PL, PS, SI

198

Attack Pattern ID 17

Attack Pattern Name (KOE) Accessing, Modifying or Executing Executable Files(3)

Description An attack of this type exploits a system's configuration that allows an

attacker to either directly access an executable file, for example

through shell access; or in a possible worst case allows an attacker to

upload a file and then execute it. Web servers, ftp servers, and message

oriented middleware systems which have many integration points are

particularly vulnerable, because both the programmers and the

administrators must be in synch regarding the interfaces and the correct

privileges for each interface.

Parent Threat Exploitation of Privilege/Trust

Solutions and Mitigations 1. Design: Enforce principle of least privilege

2. Design: Run server interfaces with a non-root account and/or

utilize chroot jails or other configuration techniques to constrain

privileges even if attacker gains some limited access to commands.

3. Implementation: Perform testing such as pentesting and

vulnerability scanning to identify directories, programs, and

interfaces that grant direct access to executables.

Parent Mitigation AC, AU, IA

Attack Pattern ID 18

Attack Pattern Name (KOE) Embedding Scripts in Nonscript Elements (5)

Description This attack is a form of Cross-Site Scripting (XSS) where malicious

scripts are embedded in elements that are not expected to host scripts

such as image tags (), comments in XML documents (< !-

CDATA->), etc. These tags may not be subject to the same input

validation, output validation, and other content filtering and checking

routines, so this can create an opportunity for an attacker to tunnel

through the application's elements and launch a XSS attack through

other elements.

Parent Threat Injection

Solutions and Mitigations 1. Design: Use browser technologies that do not allow client side

scripting.

2. Implementation: Ensure all content that is delivered to client is

sanitized against an acceptable content specification.

3. Implementation: Perform input validation for all remote content.

4. Implementation: Perform output validation for all remote content.

5. Implementation: Disable scripting languages such as Javascript in

browser

6. Implementation: Session tokens for specific host

7. Implementation: Service provider should not use the

XMLHttpRequest method to create a local proxy for content from

other sites, because the client will not be able to discern what

content comes from which host.

Parent Mitigation AC, SI, SC, IA, MP

199

Attack Pattern ID 19

Attack Pattern Name (KOE) Embedding Scripts within Scripts (6)

Description An attack of this type exploits a programs' vulnerabilities that are

brought on by allowing remote hosts to execute scripts. The attacker

leverages this capability to execute scripts to execute his/her own script

by embedding it within other scripts that the target software is likely to

execute. The attacker must have the ability to inject script into script

that is likely to be executed. If this is done, then the attacker can

potentially launch a variety of probes and attacks against the web

server's local environment, in many cases the so-called DMZ, back end

resources the web server can communicate with, and other hosts.

With the proliferation of intermediaries, such as Web App Firewalls,

network devices, and even printers having JVMs and Web servers,

there are many locales where an attacker can inject malicious scripts.

Since this attack pattern defines scripts within scripts, there are likely

privileges to execute said attack on the host.

Parent Threat Injection

Solutions and Mitigations 1. Design: Use browser technologies that do not allow client side

scripting.

2. Design: Utilize strict type, character, and encoding enforcement

3. Design: Server side developers should not proxy content via XHR

or other means, if a http proxy for remote content is setup on the

server side, the client's browser has no way of discerning where

the data is originating from.

4. Implementation: Ensure all content that is delivered to client is

sanitized against an acceptable content specification.

5. Implementation: Perform input validation for all remote content.

6. Implementation: Perform output validation for all remote content.

7. Implementation: Disable scripting languages such as Javascript in

browser

8. Implementation: Session tokens for specific host

9. Implementation: Patching software. There are many attack vectors

for XSS on the client side and the server side. Many vulnerabilities

are fixed in service packs for browser, web servers, and plug in

technologies, staying current on patch release that deal with XSS

countermeasures mitigates this.

10. Implementation: Privileges are constrained, if a script is loaded,

ensure system runs in chroot jail or other limited authority mode

Parent Mitigation PL, SC, AC, RA, AC, SI

200

Attack Pattern ID 20

Attack Pattern Name (KOE) Encryption Brute Force(4)

Description An attacker, armed with the cipher text and the encryption algorithm

used, performs an exhaustive (brute force) search on the key space to

determine the key that decrypts the cipher text to obtain the plaintext.

Parent Threat Probabilistic Techniques

Solutions and Mitigations 1. In theory a brute force attack performing an exhaustive keyspace

search will always succeed, so the goal is to have computational

security. Moore's law needs to be taken into account that suggests

that computing resources double every eighteen months.

Parent Mitigation AC, IA, PS, SC

Attack Pattern ID 21

Attack Pattern Name (KOE) Exploitation of Session IDs,Resource IDs, Trusted Credentials (3)

Description Attacks on session IDs and resource IDs take advantage of the fact that

some software accepts user input without verifying its authenticity.

Parent Threat Exploitation of Authentication

Solutions and Mitigations
1. Design: utilize strong federated identity such as SAML to encrypt

and sign identity tokens in transit.

2. Implementation: Use industry standards session key generation

mechanisms that utilize high amount of entropy to generate the

session key. Many standard web and application servers will

perform this task on your behalf.

Parent Mitigation AC, IA, SC

Attack Pattern ID 22

Attack Pattern Name (KOE) Exploitation Trust in Client (aka make client invisible) (3)

Description An attack of this type exploits a programs' vulnerabilities in

client/server communication channel authentication and data integrity.

Parent Threat Exploitation of Privlege/Trust

Solutions and Mitigations
1. Design: Ensure that client process and/or message is authenticated

so that anonymous communications and/or messages are not

accepted by the system.

Parent Mitigation AC, IA,SC

201

Attack Pattern ID 23

Attack Pattern Name (KOE) File System Function Injection, Content Based (7)

Description An attack of this type exploits the host's trust in executing remote

content including binary files. The files are poisoned with a malicious

payload (targeting the file systems accessible by the target software) by

the attacker and may be passed through standard channels such as via

email, and standard web content like PDF and multimedia files. The

attacker exploits known vulnerabilities or handling routines in the

target processes. Vulnerabilities of this type have been found in a wide

variety of commercial applications from Microsoft Office to Adobe

Acrobat and Apple Safari web browser. When the attacker knows the

standard handling routines and can identify vulnerabilities and entry

points they can be exploited by otherwise seemingly normal content.

Once the attack is executed, the attacker's program can access relative

directories such as C:\Program Files or other standard system

directories to launch further attacks. In a worst case scenario, these

programs are combined with other propagation logic and work as a

virus.

Parent Threat Injection (Injecting Control Plane content through the Data Plane)

Solutions and Mitigations 1. Enforce principle of least privilege

2. Validate all input for content including files. Ensure that if files

and remote content must be accepted that once accepted, they are

placed in a sandbox type location so that lower assurance clients

cannot write up to higher assurance processes (like Web server

processes for example)

3. Execute programs with constrained privileges, so parent process

does not open up further vulnerabilities. Ensure that all directories,

temporary directories and files, and memory are executing with

limited privileges to protect against remote execution.

4. Proxy communication to host, so that communications are

terminated at the proxy, sanitizing the requests before forwarding

to server host.

5. Virus scanning on host

6. Host integrity monitoring for critical files, directories, and

processes. The goal of host integrity monitoring is to be aware

when a security issue has occurred so that incident response and

other forensic activities can begin.

Parent Mitigation AC, CA, CM, CP, SI, SC, IR

202

Attack Pattern ID 24

Attack Pattern Name (KOE) Filter Failure Through Buffer Overflow (3)

Description In this attack, the idea is to cause an active filter to fail by causing an

oversized transaction. An attacker may try to feed overly long input

strings to the program in an attempt to overwhelm the filter (by causing

a buffer overflow) and hoping that the filter does not fail securely (i.e.

lets the user input into the system unfiltered).

Parent Threat Data Structure Attacks

Solutions and Mitigations 1. Make sure that ANY failure occurring in the filtering or input

validation routine is properly handled and that offending input is

NOT allowed to go through. Basically make sure that the vault is

closed when failure occurs.

2. Pre-design: Use a language or compiler that performs automatic

bounds checking.

3. Pre-design through Build: Compiler-based canary mechanisms

such as StackGuard, ProPolice and the Microsoft Visual Studio

/GS flag. Unless this provides automatic bounds checking, it is not

a complete solution.

4. Operational: Use OS-level preventative functionality. Not a

complete solution.

5. Design: Use an abstraction library to abstract away risky APIs.

Not a complete solution.

Parent Mitigation IR, SI, CM

Attack Pattern ID 25

Attack Pattern Name (KOE) Forced Deadlock (2)

Description This attack attempts to trigger and exploit a deadlock condition in the

target software to cause a denial of service. A deadlock can occur when

two or more competing actions are waiting for each other to finish, and

thus neither ever does. Deadlock condition are not easy to detect.

Parent Threat Time and State Attacks

Solutions and Mitigations 1. Use known algorithm to avoid deadlock condition (for instance

non-blocking synchronization algorithms).

2. For competing actions use well known libraries which implement

synchronization

Parent Mitigation SC, SI

203

Attack Pattern ID 26

Attack Pattern Name (KOE) Leveraging Race Conditions (5)

Description This attack targets a race condition occurring when multiple processes

access and manipulate the same resource concurrently and the outcome

of the execution depends on the particular order in which the access

takes place. The attacker can leverage a race condition by "running the

race", modifying the resource and modifying the normal execution

flow.

Parent Threat Time and State Attacks

Solutions and Mitigations 1. Use safe libraries to access resources such as files.

2. Be aware that improper use of access function calls such as

chown(), tempfile(), chmod(), etc. can cause a race condition.

3. Use synchronization to control the flow of execution.

4. Use static analysis tools to find race conditions.

5. Pay attention to concurrency problems

Parent Mitigation AC,MP,SA,SI,CM

Attack Pattern ID 27

Attack Pattern Name (KOE) Leveraging Race Conditions via Symbolic Links (3)

Description This attack leverages the use of symbolic links (Symlinks) in order to

write to sensitive files. An attacker can create a Symlink link to a target

file not otherwise accessible to her. When the privileged program tries

to create a temporary file with the same name as the Symlink link, it

will actually write to the target file pointed to by the attacker's Symlink

link. If the attacker can insert malicious content in the temporary file

she will be writing to the sensitive file by using the Symlink. The race

occurs because the system checks if the temporary file exists, then

creates the file. The attacker would typically create the Symlink during

the interval between the check and the creation of the temporary file.

Parent Threat Time and State Attack

Solutions and Mitigations 1. Use safe libraries when creating temporary files. For instance the

standard library function mkstemp can be used to safely create

temporary files. For shell scripts, the system utility mktemp does

the same thing.

2. Access to the directories should be restricted as to prevent

attackers from manipulating the files. Denying access to a file can

prevent an attacker from replacing that file with a link to a

sensitive file.

3. Follow the principle of least privilege when assigning access rights

to files.

4. Ensure good compartmentalization in the system to provide

protected areas that can be trusted.

Parent Mitigation SA, MP, SI

204

Attack Pattern ID 28

Attack Pattern Name (KOE) Fuzzing (4)

Description Fuzzing is a software testing method that feeds randomly constructed

input to the system and looks for an indication that a failure in response

to that input has occured. Fuzzing treats the system as a blackbox and

is totally free from any preconceptions or assumptions about the

system.

Parent Threat Probabilistic Techniques

Solutions and Mitigations 1. Test to ensure that the software behaves as per specification and

that there are no unintended side effects. Ensure that no

assumptions about the validity of data are made.

2. Use fuzz testing during the software QA process to uncover any

surprises, uncover any assumptions or unexpected behavior.

Parent Mitigation SI, SA, AC, RA

Attack Pattern ID 29

Attack Pattern Name (KOE) Leveraging Time-of-Check and Time-of-Use (TOCTOU) Race

Conditions (8)

Description An attack of this type exploits a system's configuration that allows an

attacker to either directly access an executable file, for example

through shell access; or in a possible worst case allows an attacker to

upload a file and then execute it. Web servers, ftp servers, and message

oriented middleware systems which have many integration points are

particularly vulnerable, because both the programmers and the

administrators must be in synch regarding the interfaces and the correct

privileges for each interface.

Parent Threat Time and State Attacks

Solutions and Mitigations 1. Use safe libraries to access resources such as files

2. Be aware that improper use of access function calls such as

chown(), tempfile(), chmod(), etc. can cause a race condition

3. Use synchronization to control the flow of execution

4. Use static analysis tools to find race conditions.

5. Pay attention to concurrency problems related to the access of

resources.

Parent Mitigation AC, AU, CM, MP, RA, SA, SC, SI

Attack Pattern ID 30

Attack Pattern Name (KOE) Hijacking a Privileged Thread of Execution (3)

Description Attackers can sometimes hijack a privileged thread from the

underlying system through synchronous (calling a privileged function

that returns incorrectly) or asynchronous (callbacks, signal handlers,

and similar) means.

Parent Threat Exploitation of Privilege/Trust

Solutions and Mitigations 1. Application Architects must be careful to design callback, signal,

and similar asynchronous constructs such that they shed excess

privilege prior to handing control to user-written (thus untrusted)

code.

2. Application Architects must be careful to design privileged code

blocks such that upon return (successful, failed, or unpredicted)

that privilege is shed prior to leaving the block/scope.

Parent Mitigation AC, SA, CM

205

Attack Pattern ID 31

Attack Pattern Name (KOE) Accessing / Intercepting / Modifying HTTP Cookies (3)

Description This attack relies on the use of HTTP Cookies to store credentials, state

information and other critical data on client systems.

The first form of this attack involves accessing HTTP Cookies to mine

for potentially sensitive data contained therein.

The second form of this attack involves intercepting this data as it is

transmitted from client to server. This intercepted information is then

used by the attacker to impersonate the remote user/session.

The third form is when the cookie‟s content is modified by the attacker

before it is sent back to the server. Here the attacker seeks to convince

the target server to operate on this falsified information.

Parent Threat Data Structure Attacks

Solutions and Mitigations 1. Use input validation for cookies

2. Generate and validate MAC for cookies

3. Use SSL/TLS to protect cookie in transit

4. Ensure the web server implements all relevant security patches,

many exploitable buffer overflows are fixed in patches issued for

the software.

Parent Mitigation SI, SC, CA

206

Attack Pattern ID 32

Attack Pattern Name (KOE) Embedding Scripts in HTTP Query Strings (4)

Description A variant of cross-site scripting called "reflected" cross-site scripting,

the HTTP Query Strings attack consists of passing a malicious script

inside an otherwise valid HTTP request query string. This is of

significant concern for sites that rely on dynamic, user-generated

content such as bulletin boards, news sites, blogs, and web enabled

administration GUIs. The malicious script may steal session data,

browse history, probe files, or otherwise execute attacks on the client

side. Once the attacker has prepared the malicious HTTP query it is

sent to a victim user (perhaps by email, IM, or posted on an online

forum), who clicks on a normal looking link that contains a poison

query string. This technique can be made more effective through the

use of services like http://tinyurl.com/, which makes very small URLs

that will redirect to very large, complex ones. The victim will not know

what he is really clicking on.

Parent Threat Injection (Injecting Control Plane content through the Data Plane)

Solutions and Mitigations 1. Design: Use browser technologies that do not allow client side

scripting.

2. Design: Utilize strict type, character, and encoding enforcement

3. Design: Server side developers should not proxy content via XHR

or other means, if a http proxy for remote content is setup on the

server side, the client's browser has no way of discerning where

the data is originating from.

4. Implementation: Ensure all content that is delivered to client is

sanitized against an acceptable content specification.

5. Implementation: Perform input validation for all remote content,

including remote and user-generated content

6. Implementation: Perform output validation for all remote content.

7. Implementation: Disable scripting languages such as Javascript in

browser

8. Implementation: Session tokens for specific host

9. Implementation: Patching software. There are many attack vectors

for XSS on the client side and the server side. Many vulnerabilities

are fixed in service packs for browser, web servers, and plug in

technologies, staying current on patch release that deal with XSS

countermeasures mitigates this.

10. Implementation: Privileges are constrained, if a script is loaded,

ensure system runs in chroot jail or other limited authority mode

Parent Mitigation SI, AC, CM, AU

207

Attack Pattern ID 33

Attack Pattern Name (KOE) HTTP Request Smuggling (3)

Description HTTP Request Smuggling results from the discrepancies in parsing

HTTP requests between HTTP entities such as web caching proxies or

application firewalls. Entities such as web servers, web caching

proxies, application firewalls or simple proxies often parse HTTP

requests in slightly different ways. Under specific situations where

there are two or more such entities in the path of the HTTP request, a

specially crafted request is seen by two attacked entities as two

different sets of requests. This allows certain requests to be smuggled

through to a second entity without the first one realizing it.

Parent Threat Resource Manipulation

Solutions and Mitigations 1. HTTP Request Smuggling is usually targeted at web servers.

Therefore, in such cases, careful analysis of the entities must occur

during system design prior to deployment. If there are known

differences in the way the entities parse HTTP requests, the choice

of entities needs consideration.

2. Employing an application firewall can help. However, there are

instances of the firewalls being susceptible to HTTP Request

Smuggling as well.

Parent Mitigation SA, SI, SC

Attack Pattern ID 34

Attack Pattern Name (KOE) HTTP Response Splitting (2)

Description This attack uses a maliciously-crafted HTTP request in order to cause a

vulnerable web server to respond with an HTTP response stream that

will be interpreted by the client as two separate responses instead of

one. This is possible when user-controlled input is used unvalidated as

part of the response headers. The target software, the client, will

interpret the injected header as being a response to a second request,

thereby causing the maliciously-crafted contents be displayed and

possibly cached.

Parent Threat Schema Poisoning

Solutions and Mitigations 1. To avoid HTTP Response Splitting, the application must not rely

on user-controllable input to form part of its output response

stream. Specifically, response splitting occurs due to injection of

CR-LF sequences and additional headers. All data arriving from

the user and being used as part of HTTP response headers must be

subjected to strict validation that performs simple character-based

as well as semantic filtering to strip it of malicious character

sequences and headers.

Parent Mitigation SI, SC

208

Attack Pattern ID 35

Attack Pattern Name (KOE) Leverage Executable Code in Nonexecutable Files (4)

Description An attack of this type exploits a system's trust in configuration and

resource files, when the executable loads the resource (such as an

image file or configuration file) the attacker has modified the file to

either execute malicious code directly or manipulate the target process

(e.g. application server) to execute based on the malicious

configuration parameters. Since systems are increasingly interrelated

mashing up resources from local and remote sources the possibility of

this attack occurring is high.

Parent Threat Resource Manipulation

Solutions and Mitigations 1. Design: Enforce principle of least privilege

2. Design: Run server interfaces with a non-root account and/or

utilize chroot jails or other configuration techniques to constrain

privileges even if attacker gains some limited access to commands.

3. Implementation: Perform testing such as pentesting and

vulnerability scanning to identify directories, programs, and

interfaces that grant direct access to executables.

4. Implementation: Implement host integrity monitoring to detect any

unwanted altering of configuration files.

5. Implementation: Ensure that files that are not required to execute,

such as configuration files, are not over-privileged, i.e. not allowed

to execute.

Parent Mitigation AC, CA, CP, CM

Attack Pattern ID 36

Attack Pattern Name (KOE) Using Unpublished Web Service APIs (5)

Description An attacker searches for and invokes Web Services APIs that the target

system designers did not intend to be publicly available. If these APIs

fail to authenticate requests the attacker may be able to invoke services

and/or gain privileges they are not authorized for.

Parent Threat Abuse of Functionality

Solutions and Mitigations 1. Authenticating both services and their discovery, and protecting

that authentication mechanism simply fixes the bulk of this

problem. Protecting the authentication involves the standard

means, including: 1) protecting the channel over which

authentication occurs, 2) preventing the theft, forgery, or

prediction of authentication credentials or the resultant tokens, or

3) subversion of password reset and the like.

Parent Mitigation AC, CA, CM, IA, SC

209

Attack Pattern ID 37

Attack Pattern Name (KOE) Lifting Data Embedded in Client Distributions (4)

Description An attacker can resort to stealing data embedded in client distributions

or client code in order to gain certain information. This information can

reveal confidential contents, such as account numbers, or can be used

as an intermediate step in a larger attack (such as by stealing

keys/credentials).

Parent Threat Exploitation of Privilege/Trust

Solutions and Mitigations 1. Never Use Unvalidated Input as Part of a Directive to any Internal

Component

2. Treat the Entire Inherited Process Context as Unvalidated Input

3. Use Well-Known Cryptography Appropriately and Correctly

Parent Mitigation AC, IA, SC, SI

Attack Pattern ID 38

Attack Pattern Name (KOE) Leveraging/Manipulating Configuration File Search Paths (8)

Description This attack loads a malicious resource into a program's standard path

used to bootstrap and/or provide contextual information for a program

like a path variable or classpath. J2EE applications and other

component based applications that are built from mutliple binaries can

have very long list of dependencies to execute. If one of these libraries

and/or references is controllable by the attacker then application

controls can be circumvented by the attacker.

A standard UNIX path looks similar to this

/bin:/sbin:/usr/bin:/usr/local/bin:/usr/sbin

If the attacker modifies the path variable to point to a locale that

includes malicious resources then the user unwittingly can execute

commands on the attacker's behalf:

/evildir/bin:/sbin:/usr/bin:/usr/local/bin:/usr/sbin

This is a form of usurping control of the program and the attack can be

done on the classpath, database resources, or any other resources built

from compound parts. At runtime detection and blocking of this attack

is nearly impossible, because the configuration allows execution.

Parent Threat Resource Manipulation

Solutions and Mitigations 1. Enforce principle of least privilege

2. Ensure that the program's compound parts, including all system

dependencies, classpath, path, and so on, are secured to the same

or higher level assurance as the program

3. Host integrity monitoring

Parent Mitigation AC, AU, CA, CM, MP, RA, SC, SI

210

Attack Pattern ID 39

Attack Pattern Name (KOE) Manipulating Opaque Client-based Data Tokens (6)

Description In circumstances where an application holds important data client-side

in tokens (cookies, URLs, data files, and so forth) that data can be

manipulated. If client

or server-side application components reinterpret that data as

authentication tokens or data (such as store item pricing or wallet

information) then even opaquely manipulating

that data may bear fruit for an Attacker. In this pattern an attacker

undermines the assumption that client side tokens have been

adequately protected from tampering through use of encryption or

obfuscation.

Parent Threat Probabilistic Techniques

Solutions and Mitigations 1. One solution to this problem is to protect encrypted data with a

CRC of some sort. If knowing who last manipulated the data is

important, then using a cryptographic "message authentication

code" (or hMAC) is prescribed. However, this guidance is not a

panecea. In particular, any value created by (and therefore

encrypted by) the client, which itself is a "malicous" value, all the

protective cryptography in the world can't make the value 'correct'

again. Put simply, if the client has control over the whole process

of generating and encoding the value--then simply protecting its

integrity doesn't help.

2. Make sure to protect client side authentication tokens for

confidentiality (encryption) and integrity (signed hash)

3. Make sure that all session tokens use a good source of randomness

4. Perform validation on the server side to make sure that client side

data tokens are consistent with what is expected.

Parent Mitigation AU, IA, SI, CM, SA, SC

Attack Pattern ID 40

Attack Pattern Name (KOE) Manipulating Writeable Terminal Devices (4)

Description This attack exploits terminal devices that allow themselves to be

written to by other users. The attacker sends command strings to the

target terminal device hoping that the target user will hit enter and

thereby execute the malicious command with their privileges. The

attacker can send the results (such as copying /etc/passwd) to a known

directory and collect once the attack has succeeded.

Parent Threat Injection

Solutions and Mitigations IA-2, IA-4, IA-5, AC-6

Parent Mitigation IA, AC

211

Attack Pattern ID 41

Attack Pattern Name (KOE) Using Meta-characters in E-mail Headers to Inject Malicious Payloads

(4)

Description This type of attack involves an attacker leveraging meta-characters in

email headers to inject improper behavior into email programs.

Email software has become increasingly sophisticated and feature-rich.

In addition, email applications are ubiquitous and connected directly to

the Web making them ideal targets to launch and propagate attacks. As

the user demand for new functionality in email applications grows,

they become more like browsers with complex rendering and plug in

routines. As more email functionality is included and abstracted from

the user, this creates opportunities for attackers. Virtually all email

applications do not list email header information by default, however

the email header contains valuable attacker vectors for the attacker to

exploit particularly if the behavior of the email client application is

known. Meta-characters are hidden from the user, but can containt

scripts, enumerations, probes, and other attacks against the user's

system.

Parent Threat Injection

Solutions and Mitigations 1. Design: Perform validation on email header data

2. Implementation: Implement email filtering solutions on mail

server or on MTA, relay server.

3. Implementation: Mail servers that perform strict validation may

catch these attacks, because metacharacters are not allowed in

many header variables such as dns names

Parent Mitigation AU, IA, SC, SI

Attack Pattern ID 42

Attack Pattern Name (KOE) MIME Conversion(1)

Description An attacker exploits a weakness in the MIME conversion routine to

cause a buffer overflow and gain control over the mail server

machine. The MIME system is designed to allow various different

information formats to be interpreted and sent via e-mail. Attack points

exist when data are converted to MIME compatible format and back.

Parent Threat Data Structure Attacks

Solutions and Mitigations 1. Stay up to date with third party vendor patches

2. Disable the 7 to 8 bit conversion. This can be done by removing

the F=9 flag from all Mailer specifications in the sendmail.cf file.

3. Use the sendmail restricted shell program (smrsh)

4. Use mail.local

Parent Mitigation SI

212

Attack Pattern ID 43

Attack Pattern Name (KOE) Exploiting Multiple Input Interpretation Layers (4)

Description An attacker supplies the target software with input data that contains

sequences of special characters designed to bypass input validation

logic. This exploit relies on the target making multiples passes over

the input data and processing a “layer” of special characters with each

pass. In this manner, the attacker can disguise input that would

otherwise be rejected as invalid by concealing it with layers of

special/escape characters that are stripped off by subsequent processing

steps.

 The goal is to first discover cases where the input validation layer

executes before one or more parsing layers. That is, user input may go

through the following logic in an application: <<parser1>> --> <<input

validator>> --> <<parser2>>. In such cases, the attacker will need to

provide input that will pass through the input validator, but after

passing through parser2, will be converted into something that the

input validator was supposed to stop.

Parent Threat Leverage Alternate Encoding

Solutions and Mitigations 1. An iterative approach to input validation may be required to

ensure that no dangerous characters are present. It may be

necessary to implement redundant checking across different input

validation layers. Ensure that invalid data is rejected as soon as

possible and do not continue to work with it.

2. Make sure to perform input validation on canonicalized data (i.e.

data that is data in its most standard form). This will help avoid

tricky encodings getting past the filters.

3. Assume all input is malicious. Create a white list that defines all

valid input to the software system based on the requirements

specifications. Input that does not match against the white list

should not be permitted to enter into the system.

Parent Mitigation SI, RA, CM, AT

213

Attack Pattern ID 44

Attack Pattern Name (KOE) Overflow Binary Resource File (6)

Description An attack of this type exploits a buffer overflow vulnerability in the

handling of binary resources. Binary resources may includes music

files like MP3, image files like JPEG files, and any other binary file.

These attacks may pass unnoticed to the client machine through normal

usage of files, such as a browser loading a seemingly innocent JPEG

file. This can allow the attacker access to the execution stack and

execute arbitrary code in the target process. This attack pattern is a

variant of standard buffer overflow attacks using an unexpected vector

(binary files) to wrap its attack and open up a new attack vector. The

attacker is required to either directly serve the binary content to the

victim, or place it in a locale like a MP3 sharing application, for the

victim to download. The attacker then is notified upon the download or

otherwise locates the vulnerability opened up by the buffer overflow.

Parent Threat Data Structure Attacks

Solutions and Mitigations 1. Perform appropriate bounds checking on all buffers.

2. Design: Enforce principle of least privilege

3. Design: Static code analysis

4. Implementation: Execute program in less trusted process space

environment, do not allow lower integrity processes to write to

higher integrity processes

5. Implementation: Keep software patched to ensure that known

vulnerabilities are not available for attackers to target on host.

Parent Mitigation CA, MA, AC, RA, SC, SI

Attack Pattern ID 45

Attack Pattern Name (KOE) Buffer Overflow via Symbolic Links (7)

Description This type of attack leverages the use of symbolic links to cause buffer

overflows. An attacker can try to create or manipulate a symbolic link

file such that its contents result in out of bounds data. When the target

software processes the symbolic link file, it could potentially overflow

internal buffers with insufficient bounds checking.

Parent Threat Data Structure Attacks

Solutions and Mitigations 1. Enforce principle of least privilege

2. Protect files, secure location (of files), encryption

3. Data sanitization

4. Abstraction, obfuscation, library checking

Parent Mitigation AC, AU, CA, CM, MP, SI, SC

214

Attack Pattern ID 46

Attack Pattern Name (KOE) Overflow Variables and Tags (4)

Description This type of attack leverages the use of tags or variables from a

formatted configuration data to cause buffer overflow. The attacker

crafts a malicious HTML page or configuration file that includes

oversized strings, thus causing an overflow.

Parent Threat Data Structure Attacks

Solutions and Mitigations 1. Use a language or compiler that performs automatic bounds

checking.

2. Use an abstraction library to abstract away risky APIs. Not a

complete solution.

3. Compiler-based canary mechanisms such as StackGuard,

ProPolice and the Microsoft Visual Studio /GS flag. Unless this

provides automatic bounds checking, it is not a complete solution.

4. Use OS-level preventative functionality. Not a complete solution.

5. Do not trust input data from user. Validate all user input.

Parent Mitigation SC,AC,SI,RA

Attack Pattern ID 47

Attack Pattern Name (KOE) Buffer Overflow via Parameter Expansion (5)

Description In this attack, the target software is given input that the attacker knows

will be modified and expanded in size during processing. This attack

relies on the target software failing to anticipate that the expanded data

may exceed some internal limit, thereby creating a buffer overflow.

Parent Threat Data Structure Attacks

Solutions and Mitigations 1. Ensure that when parameter expansion happens in the code that

the assumptions used to determine the resulting size of the

parameter are accurate and that the new size of the parameter is

visible to the whole system

Parent Mitigation CP, CM, CA, PL, SC

215

Attack Pattern ID 48

Attack Pattern Name (KOE) Passing Local Filenames to Functions That Expect a URL (4)

Description This attack relies on client side code to access local files and resources

instead of URLs. When the client browser is expecting a URL string,

but instead receives a request for a local file, that execution is likely to

occur in the browser process space with the browser's authority to local

files. The attacker can send the results of this request to the local files

out to a site that they control. This attack may be used to steal sensitive

authentication data (either local or remote), or to gain system profile

information to launch further attacks.

Parent Threat Abuse of Functionality

Solutions and Mitigations 1. Implementation: Ensure all content that is delivered to client is

sanitized against an acceptable content specification.

2. Implementation: Ensure all configuration files and resource are

either removed or protected when promoting code into production.

3. Design: Use browser technologies that do not allow client side

scripting.

4. Implementation: Perform input validation for all remote content.

5. Implementation: Perform output validation for all remote content.

6. Implementation: Disable scripting languages such as Javascript in

browser

Parent Mitigation SI, CM, SA, SC

Attack Pattern ID 49

Attack Pattern Name (KOE) Password Brute Forcing (4)

Description In this attack, the attacker tries every possible value for a password

until they succeed. A brute force attack, if feasible computationally,

will always be successful because it will essentially go through all

possible passwords given the alphabet used (lower case letters, upper

case letters, numbers, symbols, etc.) and the maximum length of the

password.

 A system will be particularly vulnerable to this type of an attack if it

does not have a proper enforcement mechanism in place to ensure that

passwords selected by users are strong passwords that comply with an

adequate password policy.

 In practice a pure brute force attack on passwords is rarely used,

unless the password is suspected to be weak. Other password cracking

methods exist that are far more effective (e.g. dictionary attacks,

rainbow tables, etc.).

Parent Threat Probabilistic Techniques

Solutions and Mitigations 1. Implement a password throttling mechanism. This mechanism

should take into account both the IP address and the log in name of

the user.

2. Put together a strong password policy and make sure that all user

created passwords comply with it. Alternatively automatically

generate strong passwords for users.

3. Passwords need to be recycled to prevent aging, that is every once

in a while a new password must be chosen.

Parent Mitigation IA, AC, CM, SC

216

Attack Pattern ID 50

Attack Pattern Name (KOE) Password Recovery Exploitation (2)

Description An attacker may take advantage of the application feature to help users

recover their forgotten passwords in order to gain access into the

system with the same privileges as the original user. Generally

password recovery schemes tend to be weak and insecure. Most of

them use only one security question . For instance, mother's maiden

name tends to be a fairly popular one. Unfortunately in many cases

this information is not very hard to find, especially if the attacker

knows the legitimate user.

These generic security questions are also re-used across many

applications, thus making them even more insecure. An attacker could

for instance overhear a coworker talking to a bank representative at the

work place and supplying their mother's maiden name for verification

purposes. An attacker can then try to log in into one of the victim's

accounts, click on "forgot password" and there is a good chance that

the security question there will be to provide mother's maiden name.

A weak password recovery scheme totally undermines the

effectiveness of a strong password scheme.

Parent Threat Abuse of Functionality

Solutions and Mitigations 1. Use multiple security questions (e.g. have three and make the user

answer two of them correctly). Let the user select their own

security questions or provide them with choices of questions that

are not generic.

2. E-mail the temporary password to the registered e-mail address of

the user rather than letting the user reset the password online.

3. Ensure that your password recovery functionality is not vulnerable

to an injection style attack.

Parent Mitigation IA, SA

217

Attack Pattern ID 51

Attack Pattern Name (KOE) Poison Web Service Registry (7)

Description SOA and Web Services often use a registry to perform look up, get

schema information, and metadata about services. A poisoned registry

can redirect (think phishing for servers) the service requester to a

malicious service provider, provide incorrect information in schema or

metadata (to effect a denial of service), and delete information about

service provider interfaces.

WS-Addressing is used to virtualize services, provide return addresses

and other routing information, however, unless the WS-Addressing

headers are protected they are vulnerable to rewriting. The attacker that

can rewrite WS-addressing information gains the ability to route

service requesters to any service providers, and the ability to route

service provider response to any service.

Content in a registry is deployed by the service provider. The registry

in an SOA or Web Services system can be accessed by the service

requester via UDDI or other protocol. The basic flow for the attacker

consists of either altering the data at rest in the registry or uploading

malicious content by spoofing a service provider. The service requester

is then redirected to send its requests and/or responses to services the

attacker controls.

Parent Threat Resource Manipulation

Solutions and Mitigations 1. Enforce principle of least privilege

2. Harden registry server and file access permissions

3. Implement communications to and from the registry using secure

protocols

Parent Mitigation AC, AU, CA, CM, MP, SI, SC

Attack Pattern ID 52

Attack Pattern Name (KOE) Embedding NULL Bytes (1)

Description An attacker embeds one or more null bytes in input to the target

software. This attack relies on the usage of a null-valued byte as a

string terminator in many environments. The goal is for certain

components of the target software to stop processing the input when it

encounters the null byte(s).

Parent Threat Resource Manipulation

Solutions and Mitigations 1. Properly handle the NULL characters supplied as part of user

input prior to doing anything with the data.

Parent Mitigation SI

218

Attack Pattern ID 53

Attack Pattern Name (KOE) Postfix, Null Terminate, and Backslash (3)

Description If a string is passed through a filter of some kind, then a terminal

NULL may not be valid. Using alternate representation of NULL

allows an attacker to embed the NULL midstring while postfixing the

proper data so that the filter is avoided. One example is a filter that

looks for a trailing slash character. If a string insertion is possible, but

the slash must exist, an alternate encoding of NULL in midstring may

be used.

Parent Threat Input Data Manipulation

Solutions and Mitigations 1. Properly handle Null characters. Make sure canonicalization is

properly applied. Do not pass Null characters to the underlying

APIs.

2. Assume all input is malicious. Create a white list that defines all

valid input to the software system based on the requirements

specifications. Input that does not match against the white list

should not be permitted to enter into the system.

Parent Mitigation SI, AC, CM

Attack Pattern ID 54

Attack Pattern Name (KOE) Probing an Application Through Targeting its Error Reporting (2)

Description An attacker, aware of an application's location (and possibly authorized

to use the application) can probe the application's structure and

evaluate its robustness by probing its error conditions (not unlike one

would during a 'fuzz' test, but more purposefully here) in order to

support attacks such as blind SQL injection, or for the more general

task of mapping the application to mount another subsequent attack.

Parent Threat Data Leakage Attacks

Solutions and Mitigations 1. Application designers can construct a 'code book' for error

messages. When using a code book, application error messages

aren't generated in string or stack trace form, but are cataloged and

replaced with a unique (often integer-based) value 'coding' for the

error. Such a technique will require helpdesk and hosting

personnel to use a 'code book' or similar mapping to decode

application errors/logs in order to respond to them normally.

2. Application designers can wrap application functionality

(preferably through the underlying framework) in an output

encoding scheme that obscures or cleanses error messages to

prevent such attacks. Such a technique is often used in conjunction

with the above 'code book' suggestion.

Parent Mitigation SC, SI

219

Attack Pattern ID 55

Attack Pattern Name (KOE) Rainbow table password cracking (3)

Description An attacker gets access to the database table where hashes of

passwords are stored. He then uses a rainbow table of precomputed

hash chains to attempt to look up the original password. Once the

original password corresponding to the hash is obtained, the attacker

uses the original password to gain access to the system.

 A password rainbow table stores hash chains for various

passwords. A password chain is computed, starting from the original

password, P, via a a reduce(compression) function R and a hash

function H. A recurrence relation exists where Xi+1 = R(H(Xi)), X0 =

P. Then the hash chain of length n for the original password P can be

formed: X1, X2, X3, ... , Xn-2, Xn-1, Xn, H(Xn). P and H(Xn) are

then stored together in the rainbow table.

 Constructing the rainbow tables takes a very long time and is

computationally expensive. A separate table needs to be constrcuted

for the various hash algorithms (e.g. SHA1, MD5, etc.). However,

once a rainbow table is computed, it can be very effective in cracking

the passwords that have been hashed without the use of salt.

Parent Threat Probabilistic Techniques

Solutions and Mitigations 1. Use salt when computing password hashes. That is, concatenate

the salt (random bits) with the original password prior to hashing

it.

Parent Mitigation SI, SC, IA

Attack Pattern ID 56

Attack Pattern Name (KOE) Removing/short-circuiting 'guard logic' (2)

Description Attackers can, in some cases, get around logic put in place to 'guard'

sensitive functionality or data.

The attack may involve gaining access to and calling protected

functionality (or accessing protected data) directly, may involve

subverting some aspect of the guard's implementation, or outright

removal of the guard, if possible.

Parent Threat Exploitation of Privilege/Trust

Solutions and Mitigations 1. Use Authentication Mechanisms, Where Appropriate, Correctly

2. Use Authorization Mechanisms Correctly

Parent Mitigation AC, IA

220

Attack Pattern ID 57

Attack Pattern Name (KOE) Utilizing REST's Trust in the System Resource to Register Man in the

Middle (3)

Description This attack utlizes a Rest(REpresentational State Transfer)-style

applications' trust in the system resources and environment to place

man in the middle once SSL is terminated. Rest applications premise is

that they leverage existing infrastructure to deliver web services

functionality.

Parent Threat Spoofing

Solutions and Mitigations 1. Implementation: Implement message level security such as HMAC

in the HTTP communication

2. Design: Utilize defense in depth, do not rely on a single security

mechanism like SSL

3. Design: Enforce principle of least privilege

Parent Mitigation SA, SI, AC

Attack Pattern ID 58

Attack Pattern Name (KOE) Restful Privilege Elevation (2)

Description Rest uses standard HTTP (Get, Put, Delete) style permissions methods,

but these are not necessarily correlated generally with back end

programs. Strict interpretation of HTTP get methods means that these

HTTP Get services should not be used to delete information on the

server, but there is no access control mechanism to back up this logic.

This means that unless the services are properly ACL'd and the

application's service implementation are following these guidelines

then an HTTP request can easily execute a delete or update on the

server side.

The attacker identifies a HTTP Get URL such as

http://victimsite/updateOrder, which calls out to a program to update

orders on a database or other resource. The URL is not idempotent so

the request can be submitted multiple times by the attacker,

additionally, the attacker may be able to exploit the URL published as

a Get method that actually performs updates (instead of merely

retrieving data). This may result in malicious or inadvertant altering of

data on the server.

Parent Threat Exploitation of Privilege/Trust

Solutions and Mitigations 1. Design: Enforce principle of least privilege

2. Implementation: Ensure that HTTP Get methods only retrieve

state and do not alter state on the server side

3. Implementation: Ensure that HTTP methods have proper ACLs

based on what the funcitonality they expose

Parent Mitigation AC, CM, SI

221

Attack Pattern ID 59

Attack Pattern Name (KOE) Session Credential Falsification through Prediction (3)

Description This attack targets predictable session ID in order to gain privileges.

The attacker can predict the session ID used during a transaction to

perform spoofing and session hijacking.

Parent Threat Exploitation of Authentication

Solutions and Mitigations 1. Use a strong source of randomness to generate a session ID.

Use adequate length session IDs.

2. Do not use information available to the user in order to generate

session ID (e.g., time)…

3. Encrypt the session ID if you expose it to the user. For instance

session ID can be stored in a cookie in encrypted format.

Parent Mitigation AC, SI, SC

Attack Pattern ID 60

Attack Pattern Name (KOE) Reusing Session ID‟s (aka Session Replay) (6)

Description This attack targets the reuse of valid session ID to spoof the target

system in order to gain privileges. The attacker tries to reuse a stolen

session ID used previously during a transaction to perform spoofing

and session hijacking. Another name for this type of attack is Session

Replay.

Parent Threat Exploitation of Authentication

Solutions and Mitigations 1. Always invalidate a session ID after the user logout.

2. Setup a session time out for the session IDs.

3. Protect the communication between the client and server. For

instance it is best practice to use SSL to mitigate man in the

middle attack

4. Do not code send session ID with GET method, otherwise the

session ID will be copied to the URL. In general avoid writing

session IDs in the URLs. URLs can get logged in log files, which

are vulnerable to an attacker.

5. Encrypt the session data associated with the session ID.

6. Use multifactor authentication

Parent Mitigation AC, SI, PS, SC, IA, SA

Attack Pattern ID 61

Attack Pattern Name (KOE) Session Fixation (3)

Description The attacker induces a client to establish a session with the target

software using a session identifier provided by the attacker. Once the

user successfully authenticates to the target software, the attacker uses

the (now privileged) session identifier in their own transactions

Parent Threat Exploitation of Authentication

Solutions and Mitigations 1. Use a strict session management mechanism that only accepts

locally generated session identifiers of their own choice.

2. Regenerate and destroy session identifiers when there is a change

in the level of privilege:

3. Use session identifiers that are difficult to guess or brute-force:

Parent Mitigation AC, IA, SC

222

Attack Pattern ID 62

Attack Pattern Name (KOE) Cross Site Request Forgery (aka Session Riding) (6)

Description An attacker crafts malicious web links and distributes them (via web

pages, email, etc.), typically in a targeted manner, hoping to induce

users to click on the link and execute the malicious action against some

third-party application. If successful, the action embedded in the

malicious link will be processed and accepted by the targeted

application with the users‟ privilege level.

 This type of attack leverages the persistence and implicit trust

placed in user session cookies by many web applications today. In such

an architecture, once the user authenticates to an application and a

session cookie is created on the user's system, all following

transactions for that session are authenticated using that cookie

including potential actions initiated by an attacker and simply "riding"

the existing session cookie.

Parent Threat Exploitation of Authentication

Solutions and Mitigations 1. Use cryptographic tokens to associate a request with a specific

action. The token can be regenerated at every request so that if a

request with an invalid token is encountered, it can be reliably

discarded. The token is considered invalid if it arrived with a

request other than the action it was supposed to be associated with.

2. Although less reliable, the use of the optional HTTP Referer

header can also be used to determine whether an incoming request

was actually one that the user is authorized for, in the current

context.

3. Additionally, the user can also be prompted to confirm an action

every time an action concerning potentially sensitive data is

invoked. This way, even if the attacker manages to get the user to

click on a malicious link and request the desired action, the user

has a chance to recover by denying confirmation. This solution is

also implicitly tied to using a second factor of authentication

before performing such actions.

4. In general, every request must be checked for the appropriate

authentication token as well as authorization in the current session

context.

Parent Mitigation AC, CA, CM, IA, SC, SI

223

Attack Pattern ID 63

Attack Pattern Name (KOE) Simple Script Injection (5)

Description An attacker embeds malicious scripts in content that will be served to

web browsers. The goal of the attack is for the target software, the

client-side browser, to execute the script with the users‟ privilege level.

Parent Threat Injection

Solutions and Mitigations 1. Design: Use browser technologies that do not allow client side

scripting.

2. Design: Utilize strict type, character, and encoding enforcement

3. Design: Server side developers should not proxy content via XHR

or other means, if a http proxy for remote content is setup on the

server side, the client's browser has no way of discerning where

the data is originating from.

4. Implementation: Ensure all content that is delivered to client is

sanitized against an acceptable content specification.

5. Implementation: Perform input validation for all remote content.

6. Implementation: Perform output validation for all remote content.

7. Implementation: Session tokens for specific host

8. Implementation: Patching software. There are many attack vectors

for XSS on the client side and the server side. Many vulnerabilities

are fixed in service packs for browser, web servers, and plug in

technologies, staying current on patch release that deal with XSS

countermeasures mitigates this.

Parent Mitigation CM, SI, SC, MP, AC

Attack Pattern ID 64

Attack Pattern Name (KOE) Using Slashes and URL Encoding Combined to Bypass Validation

Logic (3)

Description This attack targets the encoding of the URL combined with the

encoding of the slash characters. An attacker can take advantage of the

multiple way of encoding an URL and abuse the interpretation of the

URL. An URL may contain special character that need special syntax

handling in order to be interpreted. Special characters are represented

using a percentage character followed by two digits representing the

octet code of the original character (%HEX-CODE).

Parent Threat Resource Manipulation

Solutions and Mitigations 1. Assume all input is malicious. Create a white list that defines all

valid input to the software system based on the requirements

specifications.

2. When client input is required from web-based forms, avoid using

the “GET” method to submit data

3. Any security checks should occur after the data has been decoded

and validated as correct data format

Parent Mitigation SI, AC, CM

224

Attack Pattern ID 65

Attack Pattern Name (KOE) Passively Sniff and Capture Application Code bound for Authorized

Clients (7)

Description Attackers can capture application code bound for the client and can use

it, as-is or through reverse-engineering, to glean sensitive information

or exploit the trust relationship between the client and server.

Such code may belong to a dynamic update to the client, a patch being

applied to a client component or any such interaction where the client

is authorized to communicate with the server.

Parent Threat Data Leakage Attacks

Solutions and Mitigations 1. Do not store secrets in client code

2. All potentially sensitive data, including code, transmitted to the

client must be encrypted

Parent Mitigation AT, SA, SC, SI, CA, IA, PL

Attack Pattern ID 66

Attack Pattern Name (KOE) SQL Injection (3)

Description This attack exploits target software that constructs SQL statements

based on user input. An attacker crafts input strings so that when the

target software constructs SQL statements based on the input, the

resulting SQL statement performs actions other than those the

application intended.

Parent Threat Injection

Solutions and Mitigations 1. Strong input validation - All user-controllable input must be

validated and filtered for illegal characters as well as SQL content.

Keywords such as UNION, SELECT or INSERT must be filtered

in addition to characters such as a single-quote(') or SQL-

comments (--) based on the context in which they appear.

2. Use of parameterized queries or stored procedures -

Parameterization causes the input to be restricted to certain

domains, such as strings or integers, and any input outside such

domains is considered invalid and the query fails. Note that SQL

Injection is possible even in the presence of stored procedures if

the eventual query is constructed dynamically.

3. Use of custom error pages - Attackers can glean information about

the nature of queries from descriptive error messages. Input

validation must be coupled with customized error pages that

inform about an error without disclosing information about the

database or application.

Parent Mitigation SI, AC, MP

225

Attack Pattern ID 67

Attack Pattern Name (KOE) String Format Overflow in syslog() (2)

Description This attack targets the format string vulnerabilities in the syslog()

function. An attacker would typically inject malicious input in the

format string parameter of the syslog function. This is a common

problem, and many public vulnerabilities and associated exploits have

been posted.

Parent Threat Data Structure Attacks

Solutions and Mitigations 1. The code should be reviewed for misuse of the Syslog function

call. Manual or automated code review can be used. The reviewer

needs to ensure that all format string functions are passed a static

string which cannot be controlled by the user and that the proper

number of arguments are always sent to that function as well. If at

all possible, do not use the %n operator in format strings. The

following code shows a correct usage of Syslog(): ...

syslog(LOG_ERR, "%s", cmdBuf); ... The following code shows a

vulnerable usage of Syslog(): ... syslog(LOG_ERR, cmdBuf); //

the buffer cmdBuff is taking user supplied data. ...

Parent Mitigation SI, AC

Attack Pattern ID 68

Attack Pattern Name (KOE) Subvert Code-signing Facilities (1)

Description Because languages use code signing facilities to vouch for code's

identity and to thus tie code to its assigned privileges within an

environment, subverting this mechanism can be instrumental in an

attacker escalating privilege.

Any means of subverting the way that a virtual machine enforces code

signing classifies for this style of attack. This pattern does not include

circumstances through which a signing key has been stolen.

Parent Threat Exploitation of Privilege/Trust

Solutions and Mitigations 1. A given code signing scheme may be fallible due to improper use

of cryptography

2. avoid reliance on flags or environment variables that are user-

controllable

Parent Mitigation IA

226

Attack Pattern ID 69

Attack Pattern Name (KOE) Target Programs with Elevated Privileges (5)

Description This attack targets programs running with elevated privileges. The

attacker would try to leverage a bug in the running program and get

arbitrary code to execute with elevated privileges. For instance an

attacker would look for programs that write to the system directories or

registry keys (such as HKLM, which stores a number of critical

Windows environment variables).

Parent Threat Exploitation of Privilege/Trust

Solutions and Mitigations 1. Apply the principle of least privilege.

2. Validate all untrusted data

3. Apply the latest patches.

4. Scan your services and disable the ones which are not needed and

are exposed unnecessarily.

5. Avoid revealing information about your system (e.g., version of

the program) to anonymous users.

6. Make sure that your program or service fail safely.

7. If possible use a sandbox model which limits the actions that

programs can take.

8. Check your program for buffer overflow and format String

vulnerabilities which can lead to execution of malicious code.

9. Monitor traffic and resource usage and pay attention if resource

exhaustion occurs.

10. Protect your log file from unauthorized modification and log

forging.

Parent Mitigation AC,SI,RA,PS,SC

Attack Pattern ID 70

Attack Pattern Name (KOE) Try Common(default) Usernames and Passwords (2)

Description An attacker may try certain common (default) usernames and

passwords to gain access into the system and perform unauthorized

actions. An attacker may try an intelligent brute force using known

vendor default credentials as well as a dictionary of common

usernames and passwords.

Parent Threat Probabilistic Techniques

Solutions and Mitigations 1. Delete all default account credentials that may be put in by the

product vendor.

2. Implement a password throttling mechanism.

3. Put together a strong password policy and make sure that all user

created passwords comply with it.

4. Passwords need to be recycled to prevent aging, that is every once

in a while a new password must be chosen.

Parent Mitigation AC,IA

227

Attack Pattern ID 71

Attack Pattern Name (KOE) Using Unicode encoding to Bypass Validation Logic (3)

Description An attacker may provide a Unicode string to a system component that

is not Unicode aware and use that to circumvent the filter or cause the

classifying mechanism to fail to properly understanding the request.

That may allow the attacker to slip malicious data past the content filter

and/or possibly cause the application to route the request incorrectly.

Parent Threat Resource Manipulation

Solutions and Mitigations 1. Ensure that the system is Unicode aware and can properly process

Unicode data. Do not make an assumption that data will be in

ASCII.

2. Ensure that filtering or input validation is applied to canonical data

3. Assume all input is malicious. Create a white list that defines all

valid input to the software system based on the requirements

specifications. Input that does not match against white list should

not be permitted to enter the system.

Parent Mitigation AC, SI, CM

Attack Pattern ID 72

Attack Pattern Name (KOE) URL encoding (8)

Description This attack targets the encoding of the URL. An attacker can take

advantage of the multiple way of encoding an URL and abuse the

interpretation of the URL. An URL may contain special character that

need special syntax handling in order to be interpreted. Special

characters are represented using a percentage character followed by

two digits representing the octet code of the original character (%HEX-

CODE). For instance US-ASCII space character would be represented

with %20. This is often referred as escaped ending or percent-

encoding. Since the server decodes the URL from the requests, it may

restrict the access to some URL paths by validating and filtering out

the URL requests it received. An attacker will try to craft an URL with

a sequence of special characters which once interpreted by the server

will be equivalent to a forbidden URL. It can be difficult to protect

against this attack since the URL can contain other format of encoding

such as UTF-8 encoding, Unicode-encoding, etc. The attacker could

also subvert the meaning of the URL string request by encoding the

data being sent to the server through a GET request. For instance an

attacker may subvert the meaning of parameters used in a SQL request

and sent through the URL string (See Example section).

Parent Threat Resource Manipulation

Solutions and Mitigations 1. Refer to the RFCS to safely decode URL

2. Regular expression can be used to match safe URL patterns. May

discard valid patterns if too restrictive.

3. Tools available to scan HTTP requests to the server

4. Security checks should occur after data is decoded and validated

for format. Bad chars result in validation failure.

5. Assume all input is malicious. Create a white list of acceptable

input. Test it yourself.

6. Be aware of alternative encoding such as IP encoding

7. In web-forms, avoid using “Get” and use “Post” when possible

Parent Mitigation AC, CM, SA, SI, SC, CA, PL

228

Attack Pattern ID 73

Attack Pattern Name (KOE) User-controlled Filename (4)

Description An attack of this type involves an attacker inserting malicious

characters (such as a XSS redirection) into a filename, directly or

indirectly that is then used by the target software to generate HTML

text or other potentially executable content. Many websites rely on

user-generated content and dynamically build resources like files,

filenames, and URL links directly from user supplied data. In this

attack pattern, the attacker uploads code that can execute in the client

browser and/or redirect the client browser to a site that the attacker

owns. All XSS attack payload variants can be used to pass and exploit

these vulnerabilities.

Parent Threat Resource Manipulation

Solutions and Mitigations 1. Use browser technologies that do not allow client side script

2. Ensure all content delivered to client is sanitized

3. Validate input for all remote content

4. Validate output for all remote content

5. Disable scripts in browser

6. Scan dynamically generated content

7. Disable scripts in browser

Parent Mitigation AC, CM, MP, SI

Attack Pattern ID 74

Attack Pattern Name (KOE) Manipulating User State (6)

Description An attacker modifies state information maintained by the target

software in user-accessible locations. If successful, the target software

will use this tainted state information and execute in an unintended

manner.

State management is an important function within an application. User

state maintained by the application can include usernames, payment

information, browsing history as well as application-specific contents

such as items in a shopping cart.

Manipulating user state can be employed by an attacker to elevate

privilege, conduct fraudulent transactions or otherwise modify the flow

of the application to derive certain benefits.

Parent Threat Time and State Attacks

Solutions and Mitigations 1. Do not rely solely on user-controllable locations, such as cookies

or URL parameters, to maintain user state

2. Do not store sensitive information, such as usernames or

authentication and authorization information, in user-controllable

locations.

3. At all times sensitive information that is part of the user state must

be appropriately protected to ensure confidentiality and integrity at

each request

Parent Mitigation CM, CP, IA, MP, SA, SC

229

Attack Pattern ID 75

Attack Pattern Name (KOE) Manipulating Writeable Configuration Files (8)

Description An attacker modifies the contents of configuration files that

influence/control the operation of the target software. This attack

exploits the ever-growing number, size and complexity of

configuration files and the often lax access controls on these files.

This attack exploits a program's trust in configuration files that may

have weaker permissions. System configuration in distributed systems

such as J2EE servers have many administration points. For example,

permissions may be set on the administrative GUI, the configuration

file for the server as a whole, configuration files for specific domains

and applications, special jar and other class files used to load resources

at runtime, and even policy specific in .war and .ear files. A mistake in

permissions setting in either the file acl or the content is an opening an

attacker can use to elevate privilege.

Parent Threat Exploitation of Privelage/Trust

Solutions and Mitigations 1. Design: Enforce principle of least privilege

2. Design: Backup copies of all configuration files

3. Implementation: Integrity monitoring for configuration files

4. Implementation: Enforce audit logging on code and configuration

promotion procedures.

5. Implementation: Load configuration from separate process and

memory space, for example a separate physical device like a CD

Parent Mitigation AC, AU, CA, CM, CP, IR, SC, SI

Attack Pattern ID 76

Attack Pattern Name (KOE) Manipulating Input to File System Calls(4)

Description An attacker manipulates inputs to the target software which the target

software passes to file system calls in the OS. The goal is to gain

access to, and perhaps modify, areas of the file system that the target

software did not intend to be accessible.

Parent Threat Resource Manipulation

Solutions and Mitigations 1. Design: Enforce principle of least privilege.

2. Design: Ensure all input is validated, and does not contain file

system commands

3. Design: Run server interfaces with a non-root account and/or

utilize chroot jails or other configuration techniques to constrain

privileges even if attacker gains some limited access to commands.

4. Design: For interactive user applications, consider if direct file

system interface is necessary, instead consider having the

application proxy communication.

5. Implementation: Perform testing such as pentesting and

vulnerability scanning to identify directories, programs, and

interfaces that grant direct access to executables.

Parent Mitigation AC, SI, CM, RA

230

Attack Pattern ID 77

Attack Pattern Name (KOE) Manipulating User-Controlled Variables (4)

Description This attack targets user controlled variables (DEBUG=1, PHP Globals,

and So Forth). An attacker can override environment variables

leveraging user-supplied, untrusted query variables directly used on the

application server without any data sanitization. In extreme cases, the

attacker can change variables controlling the business logic of the

application. For instance, in languages like PHP, a number of poorly

set default configurations may allow the user to override variables.

Parent Threat Resource Manipulation

Solutions and Mitigations 1. Do not allow override of global variables and do Not Trust Global

Variables. If the register_globals option is enabled, PHP will

create global variables for each GET, POST, and cookie variable

included in the HTTP request. This means that a malicious user

may be able to set variables unexpectedly. For instance make sure

that the server setting for PHP does not expose global variables.

2. A software system should be reluctant to trust variables that have

been initialized outside of its trust boundary. Ensure adequate

checking is performed when relying on input from outside a trust

boundary.

3. Separate the presentation layer and the business logic layer.

Variables at the business logic layer should not be exposed at the

presentation layer. This is to prevent computation of business logic

from user controlled input data.

4. Use encapsulation when declaring your variables. This is to lower

the exposure of your variables.

5. Assume all input is malicious. Create a white list that defines all

valid input to the software system based on the requirements

specifications. Input that does not match against the white list

should be rejected by the program.

Parent Mitigation CM, SI, SC, AC

231

Attack Pattern ID 78

Attack Pattern Name (KOE) Using Escaped Slashes in Alternate Encoding (5)

Description This attack targets the use of the backslash in alternate encoding. An

attacker can provide a backslash as a leading character and causes a

parser to believe that the next character is special. This is called an

escape. By using that trick, the attacker tries to exploit alternate ways

to encode the same character which leads to filter problems and opens

avenues to attack.

Parent Threat Resource Manipulation

Solutions and Mitigations 1. Verify that the user-supplied data does not use backslash character

to escape malicious characters.

2. Assume all input is malicious. Create a white list that defines all

valid input to the software system based on the requirements

specifications. Input that does not match against the white list

should not be permitted to enter into the system.

3. Be aware of the threat of alternative method of data encoding.

4. Regular expressions can be used to filter out backslash. Make sure

you decode before filtering and validating the untrusted input data.

5. In the case of path traversals, use the principle of least privilege

when determining access rights to file systems. Do not allow users

to access directories/files that they should not access.

6. Any security checks should occur after the data has been decoded

and validated as correct data format. Do not repeat decoding

process, if bad character are left after decoding process, treat the

data as suspicious, and fail the validation process.

7. Avoid making decisions based on names of resources (e.g. files) if

those resources can have alternate names.

Parent Mitigation SI, MA, AC, CM, SC

232

Attack Pattern ID 79

Attack Pattern Name (KOE) Using Slashes in Alternate Encoding (3)

Description This attack targets the encoding of the Slash characters. An attacker

would try to exploit common filtering problems related to the use of

the slashes characters to gain access to resources on the target host.

Directory-driven systems, such as file systems and databases, typically

use the slash character to indicate traversal between directories or other

container components. For murky historical reasons, PCs (and, as a

result, Microsoft OSs) choose to use a backslash, whereas the UNIX

world typically makes use of the forward slash. The schizophrenic

result is that many MS-based systems are required to understand both

forms of the slash. This gives the attacker many opportunities to

discover and abuse a number of common filtering problems. The goal

of this pattern is to discover server software that only applies filters to

one version, but not the other.

Parent Threat Resource Manipulation

Solutions and Mitigations 1. Any security checks should occur after the data has been decoded

and validated as correct data format. Do not repeat decoding

process, if bad character are left after decoding process, treat the

data as suspicious, and fail the validation process. Refer to the

RFCs to safelly decode URL.

2. When client input is required from web-based forms, avoid using

the “GET” method to submit data, as the method causes the form

data to be appended to the URL and is easily manipulated. Instead,

use the “POST method whenever possible.

3. There are tools to scan HTTP requests to the server for valid URL

such as URLScan from Microsoft

(http://www.microsoft.com/technet/security/tools/urlscan.mspx)

4. Be aware of the threat of alternative method of data encoding and

obfuscation technique such as IP address endoding. (See related

guideline section)

5. Test your path decoding process against malicious input.

6. In the case of path traversals, use the principle of least privilege

when determining access rights to file systems. Do not allow users

to access directories/files that they should not access.

7. Assume all input is malicious. Create a white list that defines all

valid input to the application based on the requirements

specifications. Input that does not match against the white list

should not be permitted to enter into the system.

Parent Mitigation SI, SC, AC

233

Attack Pattern ID 80

Attack Pattern Name (KOE) Using UTF-8 Encoding to Bypass Validation Logic (1)

Description This attack is a specific variation on leveraging alternate encodings to

bypass validation logic. This attack leverages the possibility to encode

potentially harmful input in UTF-8 and submit it to applications not

expecting or effective at validating this encoding standard making

input filtering difficult. UTF-8 (8-bit UCS/Unicode Transformation

Format) is a variable-length character encoding for Unicode. Legal

UTF-8 characters are one to four bytes long. However, early version of

the UTF-8 specification got some entries wrong (in some cases it

permitted overlong characters). UTF-8 encoders are supposed to use

the ``shortest possible'' encoding, but naive decoders may accept

encodings that are longer than necessary. According to the RFC 3629,

a particularly subtle form of this attack can be carried out against a

parser which performs security-critical validity checks against

the UTF-8 encoded form of its input, but interprets certain illegal octet

sequences as characters.

Parent Threat Resource Manipulation

Solutions and Mitigations 1. The Unicode Consortium recognized multiple representations to

be a problem and has revised the Unicode Standard to make

multiple representations of the same code point with UTF-8

illegal.

2. For security reasons, a UTF-8 decoder must not accept UTF-8

sequences that are longer than necessary to encode a character. If

you use a parser to decode the UTF-8 encoding, make sure that

parser filter the invalid UTF-8 characters (invalid forms or

overlong forms).

3. Look for overlong UTF-8 sequences starting with malicious

pattern. You can also use a UTF-8 decoder stress test to test your

UTF-8 parser (See Markus Kuhn's UTF-8 and Unicode FAQ in

reference section)

4. Assume all input is malicious. Create a white list that defines all

valid input to the software system based on the requirements

specifications. Input that does not match against the white list

should not be permitted to enter into the system. Test your

decoding process against malicious input.

Parent Mitigation SI

234

Attack Pattern ID 81

Attack Pattern Name (KOE) Web Logs Tampering (3)

Description Protection services in security are vulnerable so they are backstopped

by detection in the so-called protect-detect-respond model. A key

element in detection is log files, to identify a threat impact, for audit

purposes, or simply responding to a crash. Since most requests to web

servers are logged (at least header request response data) the attacker

literally has the ability to generate log data in every request

Web Logs Tampering attacks involve an attacker injecting, deleting or

otherwise tampering with the contents of web logs.

Additionally, writing malicious data to log files may target jobs, filters,

reports, and other agents that process the logs in an asynchronous

attack pattern.

Parent Threat Resource Location Attacks

Solutions and Mitigations 1. Design: Use input validation before writing to web log

2. Design: Validate all log data before it is output

Parent Mitigation AC, AU, SI

Attack Pattern ID 82

Attack Pattern Name (KOE) Violating Implicit Assumptions Regarding XML Content (aka XMl

Denial of Service (XDoS)) (5)

Description XML Denial of Service (XDoS) can be applied to any technology that

utilizes XML data. This is, of course, most distributed systems

technology including Java, .Net, databases, and so on. XDoS is most

closely associated with web services, SOAP, and Rest, because remote

service requesters can post malicious XML payloads to the service

provider designed to exhaust the service provider's memory, CPU,

and/or disk space.

Parent Threat Resource Depletion

Solutions and Mitigations 1. Design: Utilize a Security Pipeline Interface (SPI) to mediate

communications between service requester and service provider

The SPI should be designed to throttle up and down and handle a

variety of payloads.

2. Design: Utilize clustered and fail over techniques, leverage

network transports to provide availability such as HTTP load

balancers

3. Implementation: Check size of XML message before parsing

Parent Mitigation SC, IR, PE, RA, SC

235

Attack Pattern ID 83

Attack Pattern Name (KOE) XPath Injection (2)

Description An attacker can craft special user-controllable input consisting of

XPath expressions to inject the XML database and bypass

authentication or glean information that he normally would not be able

to. XPath Injection enables an attacker to talk directly to the XML

database, thus bypassing the application completely. XPath Injection

results form the failure of an application to properly sanitize input used

as part of dynamic XPath expressions used to query an XML database.

Parent Threat Injection (Injecting Control Plane content through the Data Plane)

Solutions and Mitigations 1. Strong input validation - All user-controllable input must be

validated and filtered for illegal characters as well as content that

can be interpreted in the context of an XPath expression.

Characters such as a single-quote(') or operators such as or (|), and

(&) and such should be filtered if the application does not expect

them in the context in which they appear. If such content cannot be

filtered, it must at least be properly escaped to avoid them being

interpreted as part of XPath expressions.

2. Use of parameterized XPath queries - Parameterization causes the

input to be restricted to certain domains, such as strings or

integers, and any input outside such domains is considered invalid

and the query fails.

3. Use of custom error pages - Attackers can glean information about

the nature of queries from descriptive error messages. Input

validation must be coupled with customized error pages that

inform about an error without disclosing information about the

database or application.

Parent Mitigation SC, SI

Attack Pattern ID 84

Attack Pattern Name (KOE) XQuery Injection (3)

Description This attack utilizes XQuery to probe and attack server systems; in a

similar manner that SQL Injection allows an attacker to exploit SQL

calls to RDBMS, XQuery Injection uses improperly validated data that

is passed to XQuery commands to traverse and execute commands that

the XQuery routines have access to. XQuery injection can be used to

enumerate elements on the victim's environment, inject commands to

the local host, or execute queries to remote files and data sources.

Parent Threat Injection

Solutions and Mitigations 1. Design: Perform input white list validation on all XML input

2. Implementation: Run xml parsing and query infrastructure with

minimal privileges so that an attacker is limited in their ability to

probe other system resources from xql.

Parent Mitigation SI, SA, AC

236

Attack Pattern ID 85

Attack Pattern Name (KOE) Client Network Footprinting (using AJAX/XSS) (4)

Description This attack utilizes the frequent client-server roundtrips in Ajax

conversation to scan a system. While Ajax does not open up new

vulnerabilities per se, it does optimize them from an attacker point of

view. In many XSS attacks the attacker must get a "hole in one" and

successfully exploit the vulnerability on the victim side the first time,

once the client is redirected the attacker has many chances to engage in

follow on probes, but their is only one first chance. In a widely used

web application this is not a major problem because 1 in a 1,000 is

good enough in a widely used application.

A common first step for an attacker is to footprint the environment to

understand what attacks will work. Since footprinting relies on

enumeration, the conversational pattern of rapid, multiple requests and

responses that are typical in Ajax applications enable an attacker to

look for many vulnerabilities, well known ports, network locations and

so on.

Parent Threat Probabilistic Techniques

Solutions and Mitigations 1. Design: Use browser technologies that do not allow client side

scripting

2. Design: Utilize strict type, character, and encoding enforcement

3. Implementation: Perform input validation for all remote content.

4. Implementation: Perform output validation for all remote content.

5. Implementation: Disable scripting languages such as Javascript in

browser

6. Implementation: Patching software. There are many attack vectors

for XSS on the client side and the server side. Many vulnerabilities

are fixed in service packs for browser, web servers, and plug in

technologies, staying current on patch release that deal with XSS

countermeasures mitigates this.

Parent Mitigation AC, SC, SI, RA

237

Attack Pattern ID 86

Attack Pattern Name (KOE) Embedding Script (XSS) in HTTP Headers (4)

Description An attack of this type exploits web applications that generate web

content, such as links in a HTML page, based on unvalidated or

improperly validated data submitted by other actors. XSS in HTTP

Headers attacks target the HTTP headers which are hidden from most

users and may not be validated by web applications. As with all XSS

attacks, there are a number of possible targets:

1. Launch attack on web browser clients and client machine

2. Launch attacks on client machines environment, such as LAN or

Intranet

3. Launch attack on web server, including remote web servers

Web 2.0 technologies rely heavily on mashups and other plug in

technologies like multi media players which are effectively composed

of content generated by other systems and are vulnerable due to the

fact that an attacker may use the HTTP header information that these

technologies consume and display as an attack launch pad.

Beyond Web 2.0, increasingly system administration software uses

web front ends, from firewall administration to application servers, to

blogging software, many tools are administered through web browsers.

This gives the administrator the ability to administer in a highly

distributed environment, but this comes at the cost of exposing the

command and control software for the system to web attacks.

Additionally, because the rich functionality required these

administration applications, many rely on scripting languages. So an

attacker can insert HTTP links into logs, audit functionality, error logs,

and message queues, then, for example, a Javascript-enabled web

browser with administrator rights can be redirected to execute a wide

variety of attacks, including those listed here.

Parent Threat Injection

Solutions and Mitigations 1. Design: Use browser technologies that do not allow client side

scripting.

2. Design: Utilize strict type, character, and encoding enforcement

3. Design: Server side developers should not proxy content via XHR

or other means, if a http proxy for remote content is setup on the

server side, the client's browser has no way of discerning where

the data is originating from.

4. Implementation: Ensure all content that is delivered to client is

sanitized against an acceptable content specification.

5. Implementation: Perform input validation for all remote content.

6. Implementation: Perform output validation for all remote content.

7. Implementation: Disable scripting languages such as Javascript in

browser

8. Implementation: Session tokens for specific host

9. Implementation: Patching software. There are many attack vectors

for XSS on the client side and the server side. Many vulnerabilities

are fixed in service packs for browser, web servers, and plug in

technologies, staying current on patch release that deal with XSS

countermeasures mitigates this.

Parent Mitigation AC, SC, SI, RA

238

Attack Pattern ID 87

Attack Pattern Name (KOE) Forceful Browsing (3)

Description An attacker employs forceful browsing to access portions of a website

that are otherwise unreachable through direct URL entry.

Parent Threat Abuse of Functionality

Solutions and Mitigations 1. Authenticate request to every resource. In addition, every page or

resource must ensure that the request it is handling has been made

in an authorized context.

2. Forceful browsing can also be made difficult to a large extent by

not hard-coding names of application pages or resources. This

way, the attacker cannot figure out, from the application alone, the

resources available from the present context.

Parent Mitigation AC, IA, SC

Attack Pattern ID 88

Attack Pattern Name (KOE) OS Command Injection (3)

Description An attacker can leverage OS command injection in an application to

elevate privileges, execute arbitrary commands and compromise the

underlying operating system.

Parent Threat Injection (Injecting Control Plane content through the Data Plane)

Solutions and Mitigations 1. Use language APIs rather than relying on passing data to the

operating system shell or command line. Doing so ensures that the

available protection mechanisms in the language are intact and

applicable.

2. Filter all incoming data to escape or remove characters or strings

that can be potentially misinterpreted as operating system or shell

commands

3. All application processes should be run with the minimal

privileges required. Also, processes must shed privileges as soon

as they no longer require them.

Parent Mitigation SI, AC, CM

Attack Pattern ID 89

Attack Pattern Name (KOE) Pharming (8)

Description Pharming attacks occur when victims provide sensitive information to

websites that do not possess a valid certificate from well-known

certificate authorities.

Parent Threat Spoofing

Solutions and Mitigations 1. All sensitive information must be handled over a secure

connection.

2. Known vulnerabilities in DNS or router software or in operating

systems must be patched as soon as a fix has been released and

tested.

3. End users must ensure that they provide sensitive information only

to websites that they trust, over a secure connection with a valid

certificate issued by a well-known certificate authority.

Parent Mitigation AC, CA, CM, CP, IA, RA,SI, SC

239

Attack Pattern ID 90

Attack Pattern Name (KOE) Reflection Attack in Authentication Protocol (4)

Description A single sign-on solution for a network uses a fixed preshared key with

its clients to initiate the signon process in order to avoid eavesdropping

on the initial exchanges.

Parent Threat Exploitation of Privilege or Trust

Solutions and Mitigations 1. The server must initiate the handshake by issuing the challenge.

This ensures that the client has to respond before the exchange can

move any further.

2. The use of HMAC to hash the response from the server can also be

used to thwart reflection. The server responds by returning its own

challenge as well as hashing the client's challenge, its own

challenge and the preshared secret. Requiring the client to respond

with the HMAC of the two challenges ensures that only the

possessor of a valid preshared secret can successfully hash in the

two values.

3. Introducing a random nonce with each new connection ensures

that the attacker can not employ two connections to attack the

authentication protocol

Parent Mitigation AC, IA, SC, SI

Attack Pattern ID 91

Attack Pattern Name (KOE) XSS in IMG Tags (1)

Description Image tags are an often overlooked, but convenient, means for a Cross

Site Scripting attack. The attacker can inject script contents into an

image (IMG) tag in order to steal information from a victim's browser

and execute malicious scripts.

Parent Threat Injection

Solutions and Mitigations 1. In addition to the traditional input fields, all other user controllable

inputs, such as image tags within messages or the likes, must also

be subjected to input validation. Such validation should ensure that

content that can be potentially interpreted as script by the browser

is appropriately filtered.

2. All output displayed to clients must be properly escaped. Escaping

ensures that the browser interprets special scripting characters

literally and not as script to be executed

Parent Mitigation SI

240

Attack Pattern ID 92

Attack Pattern Name (KOE) Forced Integer Overflow (4)

Description This attack forces an integer variable to go out of range. The integer

variable is often used as an offset such as size of memory allocation or

similarly. The attacker would typically control the value of such

variable and try to get it out of range. For instance the integer in

question is incremented past the maximum possible value, it may wrap

to become a very small, or negative number, therefore providing a very

incorrect value which can lead to unexpected behavior. At worst the

attacker can execute arbitrary code.

Parent Threat Data Structure Attacks

Solutions and Mitigations 1. Use a language or compiler that performs automatic bounds

checking.

2. Carefully review the service's implementation before making it

available to user. For instance you can use manual or automated

code review to uncover vulnerabilities such as integer overflow.

3. Use an abstraction library to abstract away risky APIs. Not a

complete solution.

4. Always do bound checking before consuming user input data.

Parent Mitigation CA, RA, SC, SI

Attack Pattern ID 93

Attack Pattern Name (KOE) Log Injection-Tampering-Forging(5)

Description This attack targets the log files of the target host. The attacker injects,

manipulates or forges malicious log entries in the log file, allowing him

to mislead a log audit, cover traces of attack, or perform other

malicious actions. The target host is not properly controlling log

access. As a result tainted data is resulting in the log files leading to a

failure in accoutability, non-repudiation and incident forensics

capability.

Parent Threat Audit Log Manipulation

Solutions and Mitigations 1. Carefully control access to physical log files.

2. Do not allow tainted data to be written in the log file without prior

input validation. Whitelisting may be used to properly validate the

data.

3. Use synchronization to control the flow of execution.

4. Use static analysis tools to identify log forging vulnerabilities.

5. Avoid viewing logs with tools that may interpret control characters

in the file, such as command-line shells.

Parent Mitigation AC, IA, SC, AU, RA

241

Attack Pattern ID 94

Attack Pattern Name (KOE) Man in the Middle (3)

Description This type of attack targets the communication between two

components (typically client and server). The attacker places himself in

the communication channel between the two components. Whenever

one component attempts to communicate with the other (data flow,

authentication challenges, etc.), the data first goes to the attacker, who

has the opportunity to observe or alter it, and it is then passed on to the

other component as if it was never intercepted. This interposition is

transparent leaving the two compromised components unaware of the

potential corruption or leakeage of their communications. The potential

for Man-in-the-Middle attacks yields an implicit lack of trust in

communication or identify between two components.

Parent Threat Spoofing

Solutions and Mitigations 1. Get your Public Key signed by a Certificate Authority

2. Encrypt your communication using cryptography (SSL,...)

3. Use Strong mutual authentication to always fully authenticate both

ends of any communications channel.

4. Exchange public keys using a secure channel

Parent Mitigation AC, IA, SC

Attack Pattern ID 95

Attack Pattern Name (KOE) WSDL Scanning (3)

Description This attack targets the WSDL interface made available by a web

service. The attacker may scan the WSDL interface to reveal sensitive

information about invocation patterns, underlying technology

implementations and associated vulnerabilities. This type of probing is

carried out to perform more serious attacks (e.g. parameter tampering,

malicious content injection, command injection, etc.). WSDL files

provide detailed information about the services ports and bindings

available to consumers. For instance, the attacker can submit special

characters or malicious content to the Web service and can cause a

denial of service condition or illegal access to database records. In

addition, the attacker may try to guess other private methods by using

the information provided in the WSDL files.

Parent Threat Abuse of Functionality

Solutions and Mitigations 1. It is important to protect WSDL file or provide limited access to it.

2. Review the functions exposed by the WSDL interface (specially if

you have used a tool to generate it). Make sure that none of them

is vulnerable to injection.

3. Ensure the WSDL does not expose functions and APIs that were

not intended to be exposed.

4. Pay attention to the function naming convention (within the

WSDL interface). Easy to guess function name may be an entry

point for attack.

5. Validate the received messages against the WSDL Schema.

Incomplete solution

Parent Mitigation AC, SI, AU

242

Attack Pattern ID 96

Attack Pattern Name (KOE) Block Access to Libraries (5)

Description An application typically makes calls to functions that are a part of

libraries external to the application. These libraries may be part of the

operating system or they may be third party libraries. It is possible that

the application does not handle situations properly where access to

these libraries has been blocked. Depending on the error handling

within the application, blocked access to libraries may leave the system

in an insecure state that could be leveraged by an attacker.

Parent Threat Resource Manipulation

Solutions and Mitigations 1. Ensure that application handles situations where access to APIs in

external libraries is not available securely. If the application

cannot continue its execution safely it should fail in a consistent

and secure fashion.

Parent Mitigation CM, SA, SC, SI, RA

Attack Pattern ID 97

Attack Pattern Name (KOE) Cryptanalysis (2)

Description Cryptanalysis is a process of finding weaknesses in cryptographic

algorithms and using these weaknesses to decipher the ciphertext

without knowing the secret key (instance deduction). Sometimes the

weakness is not in the cryptographic algorithm itself, but rather in how

it is applied that makes cryptanalysis successful. An attacker may have

other goals as well, such as:

1. Total Break - Finding the secret key

2. Gobal Deduction - Finding a functionally equivalent algorithm for

encryption and decryption that does not require knowledge of the

secret key.

 3. Information Deduction - Gaining some information about

plaintexts or ciphertexts that was not previously known

 4. Distinguishing Algorithm - The attacker has the ability to

distinguish the output of the encryption (ciphertext) from a random

permutation of bits

The goal of the attacker performing cryptanalysis will depend on the

specific needs of the attacker in a given attack context. In most cases,

if cryptanalysis is successful at all, an attacker will not be able to go

past being able to deduce some information about the plaintext (goal

3). However, that may be sufficient for an attacker, depending on the

context.

Parent Threat Probabilistic Techniques

Solutions and Mitigations 1. Use proven cryptographic algorithms with recommended key

sizes.

2. Ensure that the algorithms are used properly. That means: 1. Not

rolling out your own crypto; Use proven algorithms and

implementations. 2. Choosing initialization vectors with

sufficiently random numbers 3. Generating key material using

good sources of randomness and avoiding known weak keys 4.

Using proven protocols and their implementations. 5. Picking the

most appropriate cryptographic algorithm for your usage context

and data

Parent Mitigation IA, SC

243

Attack Pattern ID 98

Attack Pattern Name (KOE) Phishing (4)

Description Phishing is a social engineering technique where an attacker

masquerades as a legitimate entity with which the victim might do

business in order to prompt the user to reveal some confidential

information (very frequently authentication credentials) that can later

be used by an attacker. Phishing is essentially a form of information

gathering or "fishing" for information.

Parent Threat Spoofing

Solutions and Mitigations 1. Do not follow any links that you receive within your e-mails and

certainly do not input any login credentials on the page that they

take you too. Instead, call your Bank, Paypal, Ebay, etc., and

inquire about the problem. A safe practice would also be to type

the URL of your bank in the browser directly and only then log in.

Also, never reply to any e-mails that ask you to provide sensitive

information of any kind.

Parent Mitigation AT, SA, SI, PL

Attack Pattern ID 99

Attack Pattern Name (KOE) XML Parser Attack (3)

Description Applications often need to transform data in and out of the XML

format by using an XML parser. It may be possible for an attacker to

inject data that may have an adverse effect on the XML parser when it

is being processed. These adverse effects may include the parser

crashing, consuming too much of a resource, executing too slowly,

executing code supplied by an attacker, allowing usage of unintenteded

system functionality, etc. An attacker's goal is to leverage parser

failure to his or her advantage. In some cases it may be possible to

jump from the data plane to the control plane via bad data being passed

to an XML parser [1].

Parent Threat Resource Depletion

Solutions and Mitigations 1. Carefully validate and sanitize all user-controllable data prior to

passing it to the XML parser routine. Ensure that the resultant data

is safe to pass to the XML parser.

2. Perform validation on canonical data.

3. Pick a robust implementation of an XML parser.

4. Validate XML against a valid schema or DTD prior to parsing.

Parent Mitigation IR, SA, SI

244

Attack Pattern ID 100

Attack Pattern Name (KOE) Overflow Buffers (2)

Description Buffer Overflow attacks target improper or missing bounds checking

on buffer operations, typically triggered by input injected by an

attacker. As a consequence, an attacker is able to write past the

boundaries of allocated buffer regions in memory, causing a program

crash or potentially redirection of execution as per the attacker's

choice.

Parent Threat Data Structure Attacks

Solutions and Mitigations 1. Use a language or compiler that performs automatic bounds

checking.

2. Use secure functions not vulnerable to buffer overflow.

3. If you have to use dangerous functions, make sure that you do

boundary checking.

4. Compiler-based canary mechanisms such as StackGuard,

ProPolice and the Microsoft Visual Studio /GS flag. Unless this

provides automatic bounds checking, it is not a complete solution.

5. Use OS-level preventative functionality. Not a complete solution.

6. Utilize static source code analysis tools to identify potential buffer

overflow weaknesses in the software.

Parent Mitigation SC,SI

Attack Pattern ID 101

Attack Pattern Name (KOE) (SSI) Server Side Include Injection (4)

Description Consider a website hosted on a server that permits Server Side Includes

(SSI), such as Apache with the "Options Includes" directive enabled.

Whenever an error occurs, the HTTP Headers along with the entire

request are logged, which can then be displayed on a page that allows

review of such errors. A malicious user can inject SSI directives in the

HTTP Headers of a request designed to create an error.

When these logs are eventually reviewed, the server parses the SSI

directives and executes them.

Parent Threat Injection (Injecting Control Plane content through the Data Plane)

Solutions and Mitigations 1. Set the OPTIONS IncludesNOEXEX in the global access.conf file

or local .htaccess (apache) file to deny SSI execution in directories

that do not need them

2. All user controllable input must be appropriately sanitized before

use in the application. This includes omitting, or encoding, certain

characters or strings that have the potential of being interpreted as

part of an SSI directive

3. Server Side Includes must be enabled only if there is a strong

business reason to do so. Every Additional component enabled on

the web server increases the attack surface as well as

administrative overhead

Parent Mitigation SI, CM, RA, SA

245

Graphical Attack Trees

Parent Threat: Exploitation of Privilege/Trust

Parent Mitigation: AC, IA

Attack Pattern Name: Accessing Functionality Not Properly Constrained by

ACLs (2)

Description:

In applications, particularly web applications, access to functionality is

mitigated by the authorization framework, whose job it is to map ACLs to

elements of the application's functionality; particularly URL's for web apps. In

the case that the application deployer failed to specify an ACL for a particular

element, an attacker may be able to access it with impunity. An attacker with

the ability to access functionality not properly constrained by ACLs can obtain

sensitive information and possibly compromise the entire application. Such an

attacker can access resources that must be available only to users at a higher

privilege level, can access management sections of the application or can run

queries for data that he is otherwise not supposed to.

Solutions and Mitigations:

In a J2EE setting, deployers can associate a role that is impossible for the

authenticator to grant users, such as "NoAccess", with all Servlets to which

access is guarded by a limited number of servlets visible to, and accessible by,

the user.. Having done so, any direct access to those protected Servlets will be

prohibited by the web container. In a more general setting, the deployer must

mark every resource besides the ones supposed to be exposed to the user as

accessible by a role impossible for the user to assume. The default security

setting must be to deny access and then grant access only to those resources

intended by business logic

Attack Pattern ID: 1

246

Parent Threat: Abuse of Functionality

Parent Mitigation: IA, PL

Attack Pattern Name: Inducing Account Lockout (2)

Description:

An attacker leverages the security functionality of the system aimed at

thwarting potential attacks to launch a denial of service attack against a

legitimate system user. Many systems, for instance, implement a

password throttling mechanism that locks an account after a certain

number of incorrect log in attempts. An attacker can leverage this

throttling mechanism to lock a legitimate user out of their own

account. The weakness that is being leveraged by an attacker is the very

security feature that has been put in place to counteract attacks.

Solutions and Mitigations:

Implement intelligent password throttling mechanisms such as those

which take IP address into account, in addition to the login name.

When implementing security features, consider how they can be

misused and made to turn on themselves.

Attack Pattern ID: 2

247

Parent Threat: Resource Manipulation

Parent Mitigation: AC, CM, SL

Attack Pattern Name: Using Leading 'Ghost' Character Sequences to Bypass

Input Filters (3)

Description:

An attacker intentionally introduces leading characters that enable getting the

input past the filters.

Solutions and Mitigations:

Perform white list rather than black list input validation.

Canonicalize all data prior to validation

Take an iterative approach to input validation (defense in depth).

Attack Pattern ID: 3

248

Parent Mitigation: Resource Manipulation

Parent Mitigation: AC SC SI

Attack Pattern Name: Using Alternative IP Address Encodings (3)

Description:

This attack relies on the attacker using unexpected formats for representing IP

addresses. Networked applications may expect network location information in

a specific format, such as fully qualified domains names, URL, IP address, or

IP Address ranges. The issue that the attacker can exploit is that these design

assumptions may not be validated against a variety of different possible

encodings and network address location formats. Applications that use naming

for creating policy namespaces for managing access control may be susceptible

to queryin directly by IP addresses, which is ultimately a more generally

authoritative way of communicating on a network.

Solutions and Mitigations:

Design: Default deny access control policies

Design: Input validation routines should check and enforce both input data

types and content against a positive specification. In regards to IP addresses,

this should include the authorized manner for the application to represent IP

addresses and not accept user specified IP addresses and IP address formats

(such as ranges)

Implementation: Perform input validation for all remote content.

Attack Pattern ID: 4

249

Parent Threat: Injection

Parent Mitigation: AC, MA

Attack Pattern Name: Analog In-band Switching Signals (aka Blue Boxing) (2)

Description

This attack against older telephone switches and trunks has been around for

decades. The signal is sent by the attacker to impersonate a supervisor signal.

This has the effect of rerouting or usurping command of the line and call.

While the US infrastructure proper may not contain widespread vulnerabilities

to this type of attack, many companies are connected globally through call

centers and business process outsourcing. These international systems may be

operated in countries which have not upgraded telco infrastructure and so are

vulnerable to Blue boxing.

Blue boxing is a result of failure on the part of the system to enforce strong

authentication for administrative functions. While the infrastructure is different

than standard current applications like web applications, there are historical

lessons to be learned to upgrade the access control for administrative functions.

Solutions and Mitigations

Implementation: Upgrade phone lines. Note this may be prohibitively

expensive

Use strong access control such as two factor access control for administrative

access to the switch

Attack Pattern ID: 5

250

Parent Threat: Injection

Parent Mitigation: AT, PL

Attack Pattern Name: Argument Injection (2)

Description

An attack of this type exploits a programs' vulnerabilities that allows an

attacker's commands to be directly or indirectly applied as arguments, for

example as shell commands. This may allow an attacker access to files,

network resources, media, and in short anything accessible through the shell.

The argument injection attack uses the exposed service or method as a launch

pad to invoke other programs. If the service does not validate or filter the input

data then the client program is granted access to execute commands using the

server's privileges. The OS commands can be appended to standard input for

shell programs, HTTP Requests, and XML messages. The ability to invoke

commands is not necessarily sufficient for the attacker to collect the output of

the attack. This may or may not be an issue depending on the attacker goal.

Solutions and Mitigations

Design: Do not program input values directly on command shell, instead treat

user input as guilty until proven innocent. Build a function that takes user input

and converts it to applications specific types and values, stripping or filtering

out all unauthorized commands and characters in the process.

Design: Limit program privileges, so if metacharcters or other methods

circumvent program input validation routines and shell access is attained then

it is not running under a privileged account. chroot jails create a sandbox for

the application to execute in, making it more difficult for an attacker to elevate

privilege even in the case that a compromise has occurred.

Implementation: Implement an audit log that is written to a separate host, in the

event of a compromise the audit log may be able to provide evidence and

details of the compromise.

Attack Pattern ID: 6

251

Parent Threat: Injection

Parent Mitigation: SI, CM

Attack Pattern Name: Blind SQL Injection (2)

Description:

Blind SQL Injection results from an insufficient mitigation for SQL Injection.

Although suppressing database error messages are considered best practice, the

suppression alone is not sufficient to prevent SQL Injection. Blind SQL

Injection is a form of SQL Injection that overcomes the lack of error messages.

Without the error messages that facilitate SQL Injection, the attacker

constructs input strings that probe the target through simple Boolean SQL

expressions. The attacker can determine if the syntax and structure of the

injection was successful based on whether the query was executed or not.

Applied iteratively, the attacker determines how and where the target is

vulnerable to SQL Injection.

Solutions and Mitigations:

Security by Obscurity is not a solution to preventing SQL Injection. Rather

than suppress error messages and exceptions, the application must handle them

gracefully, returning either a custom error page or redirecting the user to a

default page, without revealing any information about the database or the

application internals.

Strong input validation - All user-controllable input must be validated and

filtered for illegal characters as well as SQL content. Keywords such as

UNION, SELECT or INSERT must be filtered in addition to characters such

as a single-quote(') or SQL-comments (--) based on the context in which they

appear.

Attack Pattern ID: 7

252

Parent Threat: Injection

Parent Mitigation: AT, SC

Attack Pattern Name: Buffer Overflow in an API Call (2)

Description

This attack targets libraries or shared code modules which are vulnerable to

buffer overflow attacks. An attacker who has access to an API may try to

embed malicious code in the API function call and exploit a buffer overflow

vulnerability in the function's implementation. All clients that make use of the

code library thus become vulnerable by association. This has a very broad

effect on security across a system, usually affecting more than one software

process.

Solutions and Mitigations

Use a language or compiler that performs automatic bounds checking.

Use secure functions not vulnerable to buffer overflow.

If you have to use dangerous functions, make sure that you do boundary

checking.

Compiler-based canary mechanisms such as StackGuard, ProPolice and the

Microsoft Visual Studio /GS flag. Unless this provides automatic bounds

checking, it is not a complete solution.

Use OS-level preventative functionality. Not a complete solution.

Attack Pattern ID: 8

253

Parent Threat: Data Structure Attacks

Parent Mitigation: RA, SI, CM, SA, AC

Attack Pattern Name: Buffer Overflow in Local Command-Line Utilities (5)

Description:

This attack targets command-line utilities available in a number of shells. An

attacker can leverage a vulnerability found in a command-line utility to

escalate privilege to root.

Solutions and Mitigations:

Carefully review the service's implementation before making it available to

user. For instance you can use manual or automated code review to uncover

vulnerabilities such as buffer overflow.

Use a language or compiler that performs automatic bounds checking.

Use an abstraction library to abstract away risky APIs. Not a complete

solution.

Compiler-based canary mechanisms such as StackGuard, ProPolice and the

Microsoft Visual Studio /GS flag. Unless this provides automatic bounds

checking, it is not a complete solution.

Operational: Use OS-level preventative functionality. Not a complete solution.

Apply the latest patches to your user exposed services. This may not be a

complete solution, specially against zero day attack.

Do not unnecessarily expose services.

Attack Pattern ID: 9

254

Parent Threat: Injection

Parent Mitigation: SI, AC, CM, RA

Attack Pattern Name: Buffer Overflow via Environment Variables (4)

Description:

This attack pattern involves causing a buffer overflow through manipulation of

environment variables. Once the attacker finds that they can modify an

environment variable, they may try to overflow associated buffers. This attack

leverages implicit trust often placed in environment variables.

Solutions and Mitigations

Do not expose environment variable to the user.

Do not use untrusted data in your environment variables.

Use a language or compiler that performs automatic bounds checking

You can use Sharefuzz to determine if you are exposing an environment

variable vulnerable to buffer overflow

Attack Pattern ID: 10

255

Parent Threat: Resource Manipulation

Parent Mitigation: CM, IA

Attack Pattern Name: Cause Web Server Misclassification

Description:

An attack of this type exploits a Web server's decision to take action based on

filename or file extension. Because different file types are handled by different

server processes, misclassification may force the Web server to take

unexpected action, or expected actions in an unexpected sequence. This may

cause the server to exhaust resources, supply debug or system data to the

attacker, or bind an attacker to a remote process.

Solutions and Mitigations:

Implementation: Server routines should be determined by content not

determined by filename or file extension.

Attack Pattern ID:11 (2)

256

Parent Threat: Abuse of Functionality

Parent Mitigation: IA, SC

Attack Pattern Name: Choosing a Message/Channel Identifier on a Public/

Multicast Channel (2)

Description:

Attackers aware that more data is being fed into a multicast or public

information distribution means can 'select' information bound only for another

client, even if the distribution means itself forces users to authenticate in order

to connect initally.

Doing so allows the attacker to gain access to possibly privileged information,

possibly perpetrate other attacks through the distribution means by

impersonation.

If the channel/message being manipulated is an input rather than output

mechanism for the system, (such as a command bus), this style of attack could

change its identifier from a less privileged to more so privileged channel or

command.

Solutions and Mitigations

Associate some ACL (in the form of a token) with an authenticated

user which they provide middleware. The middleware uses this token as part of

its channel/message selection for that client, or part of a discerning

authorization decision for privileged channels/messages. The purpose is to

architect the system in a way that associates proper authentication/

authorization with each channel/message.

Rearchitect system input/output channels as appropriate to distribute

self-protecting data. That is, encrypt (or otherwise protect) channels/messages

so that only authorized readers can see them.

Attack Pattern ID: 12

257

Parent Threat: Resource Manipulation

Parent Mitigation: AC, SM, SI

Attack Pattern Name: Subverting Environment Variable Values (3)

Description

The attacker directly or indirectly modifies environment variables used by or

controlling the target software. The attacker‟s goal is to cause the target

software to deviate from its expected operation in a manner that benefits the

attacker.

Solutions and Mitigations

Protect environment variables against unauthorized read and write access.

Protect the configuration files which contain environment variables against

illegitimate read and write access.

Assume all input is malicious. Create a white list.

Apply the least privilege principles.

Attack Pattern ID: 13

258

Parent Threat: Data Structure Attack

Parent Mitigation: AC, CM, IA SA, SI, AU, CA, MA, RA, AT

Attack Pattern Name: Client-side Induction-induced Buffer Overflow (10)

Description

This type of attack exploits a buffer overflow vulnerability in targeted client

software through injection of malicious content from a custom-built hostile

service.

Solutions and Mitigations

The client software should not install untrusted code from a non authenticated

server.

The client software should have the latest patches and should be audited for

vulnerabilities before being used to communicate with potentially hostile

servers.

Perform input validation for length of buffer inputs.

Use a language or compiler that performs automatic bounds checking.

Use an abstraction library to abstract away risky APIs. Not a complete

solution.

Compiler-based canary mechanisms such as StackGuard, ProPolice and the

Microsoft Visual Studio /GS flag. Unless this provides

Attack Pattern ID: 14

259

Parent Threat: Injection

Parent Mitigation: AC, CM, SA, RA

Attack Pattern Name: Command Delimiters (4)

Description

An attack of this type exploits a programs' vulnerabilities that allows an

attacker's commands to be concatenated onto a legitimate command with the

intent of targeting other resources such as the file system or database. The

system that uses a filter or a blacklist input validation, as opposed to whitelist

validation is vulnerable to an attacker who predicts delimiters (or combinations

of delimiters) not present in the filter or blacklist. As with other injection

attacks, the attacker uses the command delimiter payload as an entry point to

tunnel through the application and activate additional attacks through SQL

queries, shell commands, network scanning, and so on.

Solutions and Mitigations

Design: Perform whitelist validation against a positive specification for

command length, type, and parameters.

Design: Limit program privileges, so if commands circumvent program input

validation or filter routines then commands do not running under a privileged

account

Implementation: Perform input validation for all remote content.

Implementation: Use type conversions such as JDBC prepared statements.

Attack Pattern ID: 15

260

Parent Threat: Probabilistic Techniques

Parent Mitigation: AC, AT, AU, CA, CM, IA, MP, PL, PS, SI

Attack Pattern Name Dictionary-based Password Attack (10)

Description

An attacker tries each of the words in a dictionary as passwords to gain access

to the system via some user's account. If the password chosen by the user was

a word within the dictionary, this attack will be successful (in the absence of

other mitigations). This is a specific instance of the password brute forcing

attack pattern.

Solutions and Mitigations

Create a strong password policy and ensure that your system enforces this

policy.

Implement an intelligent password throttling mechanism. Care must be taken

to assure that these mechanisms do not excessively enable account lockout

attacks such as CAPEC-02.

Attack Pattern ID: 16

261

Parent Threat: Exploitation of Privilege/Trust

Parent Mitigation: AC, AU,IA

Attack Pattern Name: Accessing, Modifying or Executing Executable Files (3)

Description

An attack of this type exploits a system's configuration that allows an attacker

to either directly access an executable file, for example through shell access; or

in a possible worst case allows an attacker to upload a file and then execute it.

Web servers, ftp servers, and message oriented middleware systems which

have many integration points are particularly vulnerable, because both the

programmers and the administrators must be in synch regarding the interfaces

and the correct privileges for each interface.

Solutions and Mitigations

Design: Enforce principle of least privilege

Design: Run server interfaces with a non-root account and/or utilize chroot

jails or other configuration techniques to constrain privileges even if attacker

gains some limited access to commands.

Implementation: Perform testing such as pentesting and vulnerability scanning

to identify directories, programs, and interfaces that grant direct access to

executables.

Attack Pattern ID: 17

262

Parent Threat: Injection

Parent Mitigation: AC, SI, SC, IA, MP

Attack Pattern Name Embedding Scripts in Nonscript Elements (5)

Description

This attack is a form of Cross-Site Scripting (XSS) where malicious scripts are

embedded in elements that are not expected to host scripts such as image tags

(), comments in XML documents (< !-CDATA->), etc. These tags may

not be subject to the same input validation, output validation, and other content

filtering and checking routines, so this can create an opportunity for an attacker

to tunnel through the application's elements and launch a XSS attack through

other elements.

Solutions and Mitigations

Design: Use browser technologies that do not allow client side scripting.

Implementation: Ensure all content that is delivered to client is sanitized

against an acceptable content specification.

Implementation: Perform input validation for all remote content.

Implementation: Perform output validation for all remote content.

Implementation: Disable scripting languages such as Javascript in browser

Implementation: Session tokens for specific host

Implementation: Service provider should not use the XMLHttpRequest method

to create a local proxy for content from other sites, because the client will not

be able to discern what content comes from which host.

Attack Pattern ID: 18

263

Parent Threat: Injection

Parent Mitigation: PL, SC, AC, RA, AC, SI

Attack Pattern Name: Embedding Scripts within Scripts (6)

Description

An attack of this type exploits a programs' vulnerabilities that are brought on

by allowing remote hosts to execute scripts. The attacker leverages this

capability to execute scripts to execute his/her own script by embedding it

within other scripts that the target software is likely to execute. The attacker

must have the ability to inject script into script that is likely to be executed. If

this is done, then the attacker can potentially launch a variety of probes and

attacks against the web server's local environment, in many cases the so-called

DMZ, back end resources the web server can communicate with, and other

hosts.

Solutions and Mitigations

Design: Use browser technologies that do not allow client side scripting.

Design: Utilize strict type, character, and encoding enforcement

Design: Server side developers should not proxy content via XHR or other

means, if a http proxy for remote content is setup on the server side, the client's

browser has no way of discerning where the data is originating from.

Implementation: Ensure all content that is delivered to client is sanitized

against an acceptable content specification.

Implementation: Perform input validation for all remote content.

Implementation: Perform output validation for all remote content.

Implementation: Disable scripting languages such as Javascript in browser

Implementation: Session tokens for specific host

Implementation: Patching software. There are many attack vectors for XSS on

the client side and the server side. Many vulnerabilities are fixed in service

packs for browser, web servers, and plug in technologies, staying current on

patch release that deal with XSS countermeasures mitigates this.

Implementation: Privileges are constrained, if a script is loaded, ensure system

runs in chroot jail or other limited authority mode

Attack Pattern ID 19

264

Parent Threat: Probalistic Techniques

Parent Mitigations: AC, IA, PS, SC

Attack Pattern Name: Encryption Brute Forcing(4)

Description

An attacker, armed with the cipher text and the encryption algorithm used,

performs an exhaustive (brute force) search on the key space to determine the

key that decrypts the cipher text to obtain the plaintext.

Solutions and Mitigations:

In theory a brute force attack performing an exhausitve keyspace search will

always succeed, so the goal is to have computational security. Moore's law

needs to be taken into account that suggests that computing resources double

every eighteen months.

Attack Pattern ID: 20

265

Parent Threat: Exploitation of Authentication

Parent Mitigations: AC, IA, SC

Attack Pattern Name: Exploitation of Session ID‟s and Resource ID‟s and

other trusted credentials (3)

Description:

Attacks on session IDs and resource IDs take advantage of the fact that some

software accepts user input without verifying its authenticity.

Solutions and Mitigations

Design: utilize strong federated identity such as SAML to encrypt and sign

identity tokens in transit.

Implementation: Use industry standards session key generation mechanisms

that utilize high amount of entropy to generate the session key. Many standard

web and application servers will perform this task on your behalf.

Attack Pattern ID: 21

266

Parent Threat: Exploitation of Privilege/Trust

Parent Mitigation: AC, IA, SC

Attack Pattern Name: Exploiting Trust in Client {aka client invisible} (3)

Description

An attack of this type exploits a programs' vulnerabilities in client/server

communication channel authentication and data integrity.

Solutions and Mitigations

Design: Ensure that client process and/or message is authenticated so that

anonymous communications and/or messages are not accepted by the system.

Attack Pattern ID: 22

267

 Parent Threat: Injection

AC, CA, CM, CP, SI, SC, IR

Attack Pattern Name: File System Function Injection, Content Based (7)

Description

An attack of this type exploits the host's trust in executing remote content

including binary files. The files are poisoned with a malicious payload

(targeting the file systems accessible by the target software) by the attacker and

may be passed through standard channels such as via email, and standard web

content like PDF and multimedia files. The attacker exploits known

vulnerabilities or handling routines in the target processes.

Solutions and Mitigations

Enforce principle of least privilege

Validate all input for content including files. Execute programs with

constrained privileges, so parent process does not open up further

vulnerabilities.

Proxy communication to host, so that communications are terminated at the

proxy, sanitizing the requests before forwarding to server host.

Virus scanning on host

Attack Pattern ID: 23

268

Parent Threat: Data Structure Attacks

Parent Mitigation: IR, SI, CM

Attack Pattern Name: Filter Failure Through Buffer Overflow (3)

Description

In this attack, the idea is to cause an active filter to fail by causing an oversized

transaction. An attacker may try to feed overly long input strings to the

program in an attempt to overwhelm the filter (by causing a buffer overflow)

and hoping that the filter does not fail securely (i.e. lets the user input into the

system unfiltered).

Solutions and MItigations

Make sure that ANY failure occurring in the filtering or input validation

routine is properly handled and that offending input is NOT allowed to go

through. Basically make sure that the vault is closed when failure occurs.

Pre-design: Use a language or compiler that performs automatic bounds

checking.

Pre-design through Build: Compiler-based canary mechanisms such as

StackGuard, ProPolice and the Microsoft Visual Studio /GS flag. Unless this

provides automatic bounds checking, it is not a complete solution.

Operational: Use OS-level preventative functionality. Not a complete solution.

Design: Use an abstraction library to abstract away risky APIs. Not a complete

solution.

Attack Pattern ID: 24

269

Parent Threat: Time and State Attacks

Parent Mitigation: SC, SI

Attack Pattern Name: Forced Deadlock (2)

Description

Attackers aware that more data is being fed into a multicast or public

information distribution means can 'select' information bound only for another

client, even if the distribution means itself forces users to authenticate in order

to connect initally.

Doing so allows the attacker to gain access to possibly privileged information,

possibly perpetrate other attacks through the distribution means by

impersonation.

If the channel/message being manipulated is an input rather than output

mechanism for the system, (such as a command bus), this style of attack could

change its identifier from a less privileged to more so privileged channel or

command.

Solutions and Mitigations

Use known algorithm to avoid deadlock condition (for instance non-blocking

synchronization algorithms).

For competing actions use well known libraries which implement

synchronization

Attack Pattern ID: 25

270

Parent Threat: Time and State Attacks

Parent Mitigation: AC,MP,SA,SI,CM

Attack Pattern Name: Leveraging Race Conditions (5)

Description

This attack targets a race condition occurring when multiple processes access

and manipulate the same resource concurrently and the outcome of the

execution depends on the particular order in which the access takes place. The

attacker can leverage a race condition by "running the race", modifying the

resource and modifying the normal execution flow. For instance a race

condition can occur while accessing a file, the attacker can trick the system by

replacing the original file with his version and cause the system to read the

malicious file.

Solutions and Mitigations

Use safe libraries to access resources such as files.

Be aware that improper use of access function calls such as chown(),

tempfile(), chmod(), etc. can cause a race condition.

Use synchronization to control the flow of execution.

Use static analysis tools to find race conditions.

Pay attention to concurrency problems related to the access of resources.

Attack Pattern ID: 26

271

Parent Threat: Time and State Attack

Parent Mitigation: AC, MP, SI

Attack Pattern Name: Leveraging Race Conditions via Symbolic Links (4)

Description

This attack leverages the use of symbolic links (Symlinks) in order to write to

sensitive files. An attacker can create a Symlink link to a target file not

otherwise accessible.

Solutions and Mitigations

1. Use safe libraries when creating temporary files. For instance the standard

library function mkstemp can be used to safely create temporary files. For shell

scripts, the system utility mktemp does the same thing.

2.Access to the directories should be restricted as to prevent attackers from

manipulating the files. Denying access to a file can prevent an attacker from

replacing that file with a link to a sensitive file.

3.Follow the principle of least privilege when assigning access rights to files.

4.Ensure good compartmentalization in the system to provide protected areas

that can be trusted.

Attack Pattern ID: 27

272

Parent Threat: Probabilistic Techniques

Parent Mitigation: AC, SI, SA, RA

Attack Pattern Name: Fuzzing (4)

Description

Fuzzing is a software testing method that feeds randomly constructed input to

the system and looks for an indication that a failure in response to that input

has occured. Fuzzing treats the system as a blackbox and is totally free from

any preconceptions or assumptions about the system.

Solutions and Mitigations

1. Test to ensure that the software behaves as per specification and that there

are no unintended side effects. Ensure that no assumptions about the validity of

data are made.

2. Use fuzz testing during the software QA process to uncover any surprises,

uncover any assumptions or unexpected behavior.

Attack Pattern ID: 28

273

Parent Threat: Time and State Attacks

Parent Mitigation: AC, AU, CM, MP, RA, SA, SC, SI

Attack Pattern Name: Leveraging Time-of-Check and Time-of-Use

(TOCTOU) Race Conditions (8)

Description

This attack targets a race condition occurring between the time of check (state)

for a resource and the time of use of a resource. The typical example is the file

access. The attacker can leverage a file access race condition by "running the

race", meaning that he would modify the resource between the first time the

target program accesses the file and the time the target program uses the file.

During that period of time, the attacker could do something such as replace the

file and cause an escalation of privilege.

Solutions and Mitigations

Use safe libraries to access resources such as files.

Be aware that improper use of access function calls such as chown(),

tempfile(), chmod(), etc. can cause a race condition.

Use synchronization to control the flow of execution.

Use static analysis tools to find race conditions.

Pay attention to concurrency problems related to the access of resources.

Attack Pattern ID: 29

274

Parent Threat: Exploitation of Privilege/Trust

Parent Mitigation: CM, AC, SA

Attack Pattern Name: Hijacking a Privileged Thread of Execution (3)

Description

Attackers can sometimes hijack a privileged thread from the underlying system

through synchronous (calling a privileged function that returns incorrectly) or

asynchronous (callbacks, signal handlers, and similar) means.

Solutions and Mitigations

1. Application Architects must be careful to design callback, signal, and

similar asynchronous constructs such that they shed excess privilege prior to

handing control to user-written (thus untrusted) code.

2. Application Architects must be careful to design privileged code blocks such

that upon return (successful, failed, or unpredicted) that privilege is shed prior

to leaving the block/scope.

Attack Pattern ID: 30

275

Parent Threat: Data Structure Attacks

Parent Mitigation: SI, SC, CA

Attack Pattern Name: Accessing / Intercepting / Modifying HTTP Cookies (3)

Description

This attack relies on the use of HTTP Cookies to store credentials, state

information and other critical data on client systems. The first form of this

attack involves accessing HTTP Cookies to mine for potentially sensitive data

contained therein. The second form of this attack involves intercepting this

data as it is transmitted from client to server. The third form is when the

cookie‟s content is modified by the attacker before it is sent back to the server.

Solutions and Mitigations

Use input validation for cookies

Generate and validate MAC for cookies

Use SSL/TLS to protect cookie in transit

Ensure the web server implements all relevant security patches, many

exploitable buffer overflows are fixed in patches issued for the software.

Attack Pattern ID: 31

276

Parent Threat: Injection

Parent Mitigation: SI, AC, CM, AU

Attack Pattern Name: Embedding Scripts in HTTP Query Strings (4)

Description:

A variant of cross-site scripting called "reflected" cross-site scripting, the

HTTP Query Strings attack consists of passing a malicious script inside an

otherwise valid HTTP request query string. This is of significant concern for

sites that rely on dynamic, user-generated content such as bulletin boards,

news sites, blogs, and web enabled administration GUIs. The malicious script

may steal session data, browse history, probe files, or otherwise execute

attacks on the client side. Once the attacker has prepared the malicious HTTP

query it is sent to a victim user (perhaps by email, IM, or posted on an online

forum), who clicks on a normal looking link that contains a poison query

string. This technique can be made more effective through the use of services

like http://tinyurl.com/, which makes very small URLs that will redirect to

very large, complex ones. The victim will not know what he is really clicking

on.

Solutions and Mitigations

Design: Use browser technologies that do not allow client side scripting.

Design: Utilize strict type, character, and encoding enforcement

Design: Server side developers should not proxy content via XHR or other

means, if a http proxy for remote content is setup on the server side, the client's

browser has no way of discerning where the data is originating from.

Implementation: Ensure all content that is delivered to client is sanitized

against an acceptable content specification.

Implementation: Perform input validation for all remote content, including

remote and user-generated content

Implementation: Perform output validation for all remote content.

Implementation: Disable scripting languages such as Javascript in browser

Implementation: Session tokens for specific host

Implementation: Patching software. There are many attack vectors for XSS on

the client side and the server side. Many vulnerabilities are fixed in service

packs for browser, web servers, and plug in technologies

Implementation: Privileges are constrained, if a script is loaded, ensure system

runs in chroot jail or other limited authority mode

Attack Pattern ID: 32

277

Parent Threat: Resource Manipulation

Parent Mitigation: SA, SI, SC

Attack Pattern Name: HTTP Request Smuggling (3)

Description

HTTP Request Smuggling results from the discrepancies in parsing HTTP

requests between HTTP entities such as web caching proxies or application

firewalls. Entities such as web servers, web caching proxies, application

firewalls or simple proxies often parse HTTP requests in slightly different

ways. Under specific situations where there are two or more such entities in the

path of the HTTP request, a specially crafted request is seen by two attacked

entities as two different sets of requests. This allows certain requests to be

smuggled through to a second entity without the first one realizing it.

Solutions and Mitigations

HTTP Request Smuggling is usually targeted at web servers. Therefore, in

such cases, careful analysis of the entities must occur during system design

prior to deployment. If there are known differences in the way the entities

parse HTTP requests, the choice of entities needs consideration.

Employing an application firewall can help. However, there are instances of

the firewalls being susceptible to HTTP Request Smuggling as well.

Attack Pattern ID: 33

278

Parent Threat: Resource Manipulation

Parent Mitigation: SI, SC

Attack Pattern Name: HTTP Response Splitting (2)

Description

This attack uses a maliciously-crafted HTTP request in order to cause a

vulnerable web server to respond with an HTTP response stream that will be

interpreted by the client as two separate responses instead of one. This is

possible when user-controlled input is used unvalidated as part of the response

headers. The target software, the client, will interpret the injected header as

being a response to a second request, thereby causing the maliciously-crafted

contents be displayed and possibly cached.

Solutions and Mitigations

To avoid HTTP Response Splitting, the application must not rely on user-

controllable input to form part of its output response stream. Specifically,

response splitting occurs due to injection of CR-LF sequences and additional

headers. All data arriving from the user and being used as part of HTTP

response headers must be subjected to strict validation that performs simple

character-based as well as semantic filtering to strip it of malicious character

sequences and headers.

Attack Pattern ID: 34

279

Parent Threat: Resource Manipulation

Parent Mitigation: AC, CA, CP, CM

Attack Pattern Name: Leverage Executable Code in Nonexecutable Files (4)

Description

An attack of this type exploits a system's trust in configuration and resource

files, when the executable loads the resource (such as an image file or

configuration file) the attacker has modified the file to either execute malicious

code directly or manipulate the target process (e.g. application server) to

execute based on the malicious configuration parameters. Since systems are

increasingly interrelated mashing up resources from local and remote sources

the possibility of this attack occurring is high.

Solutions and Mitigations

Design: Enforce principle of least privilege

Design: Run server interfaces with a non-root account and/or utilize chroot

jails or other configuration techniques to constrain privileges even if attacker

gains some limited access to commands.

Implementation: Perform testing such as pentesting and vulnerability scanning

to identify directories, programs, and interfaces that grant direct access to

executables.

Implementation: Implement host integrity monitoring to detect any unwanted

altering of configuration files.

Implementation: Ensure that files that are not required to execute, such as

configuration files, are not over-privileged, i.e. not allowed to execute.

Attack Pattern ID 35

280

Parent Threat: Abuse of Functionality

Parent Mitigation: AC, CA, CM, IA, SC

Attack Pattern Name: Using Unpublished Web Service APIs (5)

Description

An attacker searches for and invokes Web Services APIs that the target system

designers did not intend to be publicly available. If these APIs fail to

authenticate requests the attacker may be able to invoke services and/or gain

privileges they are not authorized for.

Solutions and Mitigations

Authenticating both services and their discovery, and protecting that

authentication mechanism simply fixes the bulk of this problem. Protecting the

authentication involves the standard means, including: 1) protecting the

channel over which authentication occurs, 2) preventing the theft, forgery, or

prediction of authentication credentials or the resultant tokens, or 3) subversion

of password reset and the like.

Attack Pattern ID 36

281

Parent Threat: Exploitation of Privilege/Trust

Parent Mitigation: AC, IA, SC, SI

Attack Pattern Name: Lifting Data Embedded in Client Distributions (4)

Description

An attacker can resort to stealing data embedded in client distributions or client

code in order to gain certain information. This information can reveal

confidential contents, such as account numbers, or can be used as an

intermediate step in a larger attack (such as by stealing keys/credentials).

Solutions and Mitigations

Never Use Unvalidated Input as Part of a Directive to any Internal Component

Treat the Entire Inherited Process Context as Unvalidated Input

Use Well-Known Cryptography Appropriately and Correctly

Attack Pattern ID 37

282

Parent Threat: Spoofing

Parent Mitigation: AC, AU, CA, CM, MP, RA, SC, SI

Attack Pattern Name: Leveraging/Manipulating Configuration File Search

Paths (8)

Description

This attack loads a malicious resource into a program's standard path used to

bootstrap and/or provide contextual information for a program like a path

variable or classpath. J2EE applications and other component based

applications that are built from mutliple binaries can have very long list of

dependencies to execute. If one of these libraries and/or references is

controllable by the attacker then application controls can be circumvented by

the attacker.

A standard UNIX path looks similar to this

/bin:/sbin:/usr/bin:/usr/local/bin:/usr/sbin

If the attacker modifies the path variable to point to a locale that includes

malicious resources then the user unwittingly can execute commands on the

attacker's behalf:

/evildir/bin:/sbin:/usr/bin:/usr/local/bin:/usr/sbin

This is a form of usurping control of the program and the attack can be done on

the classpath, database resources, or any other resources built from compound

parts. At runtime detection and blocking of this attack is nearly impossible,

because the configuration allows execution.

Solutions and Mitigations

Enforce principle of least privilege

Ensure that the program's compound parts, including all system dependencies,

classpath, path, and so on, are secured to the same or higher level assurance as

the program

Host integrity monitoring

Attack Pattern ID: 38

283

Parent Threat: Probabilistic Techniques

Parent Mitigation: AU, IA, SI, CM, SA, SC

Attack Pattern Name: Manipulating Opaque Client-based Data Tokens (6)

Description

In circumstances where an application holds important data client-side in

tokens (cookies, URLs, data files, and so forth) that data can be manipulated. If

client

or server-side application components reinterpret that data as authentication

tokens or data (such as store item pricing or wallet information) then even

opaquely manipulating

that data may bear fruit for an Attacker. In this pattern an attacker undermines

the assumption that client side tokens have been adequately protected from

tampering through use of encryption or obfuscation.

Solutions and Mitigations

One solution to this problem is to protect encrypted data with a CRC of some

sort. If knowing who last manipulated the data is important, then using a

cryptographic "message authentication code" (or hMAC) is prescribed.

However, this guidance is not a panecea. In particular, any value created by

(and therefore encrypted by) the client, which itself is a "malicous" value, all

the protective cryptography in the world can't make the value 'correct' again.

Put simply, if the client has control over the whole process of generating and

encoding the value--then simply protecting its integrity doesn't help.

Make sure to protect client side authentication tokens for confidentiality

(encryption) and integrity (signed hash)

Make sure that all session tokens use a good source of randomness

Perform validation on the server side to make sure that client side data tokens

are consistent with what is expected.

Attack Pattern ID: 39

284

Parent Threat: Injection

Parent Mitigation: IA AC

Attack Pattern Name: Manipulating Writeable Terminal Devices (2)

Description

This attack exploits terminal devices that allow themselves to be written to by

other users. The attacker sends command strings to the target terminal device

hoping that the target user will hit enter and thereby execute the malicious

command with their privileges. The attacker can send the results (such as

copying /etc/passwd) to a known directory and collect once the attack has

succeeded

Solutions and Mitigations

 Design: Ensure that terminals are only writeable by named owner user and/or

administrator

Design: Enforce principle of least privilege

Attack Pattern ID: 40

285

Parent Threat: Injection

Parent Mitigation: AU, IA, SC, SI

Attack Pattern Name: Using Meta-characters in E-mail Headers to Inject

Malicious Payloads (4)

Description

This type of attack involves an attacker leveraging meta-characters in email

headers to inject improper behavior into email programs.

Email software has become increasingly sophisticated and feature-rich. In

addition, email applications are ubiquitous and connected directly to the Web

making them ideal targets to launch and propagate attacks. As the user demand

for new functionality in email applications grows, they become more like

browsers with complex rendering and plug in routines. As more email

functionality is included and abstracted from the user, this creates

opportunities for attackers. Virtually all email applications do not list email

header information by default, however the email header contains valuable

attacker vectors for the attacker to exploit particularly if the behavior of the

email client application is known. Meta-characters are hidden from the user,

but can containt scripts, enumerations, probes, and other attacks against the

user's system.

Solutions and Mitigations

Design: Perform validation on email header data

Implementation: Implement email filtering solutions on mail server or on

MTA, relay server.

Implementation: Mail servers that perform strict validation may catch these

attacks, because metacharacters are not allowed in many header variables such

as dns names

Attack Pattern ID: 41

286

Parent Threat: Data Structure Attacks

Parent Mitigation: SI, RA, CM, AT

Attack Pattern Name: MIME Conversion (4)

Description

An attacker exploits a weakness in the MIME conversion routine to cause a

buffer overflow and gain control over the mail server machine. The MIME

system is designed to allow various different information formats to be

interpreted and sent via e-mail. Attack points exist when data are converted to

MIME compatible format and back.

Solutions and Mitigations

Stay up to date with third party vendor patches

Disable the 7 to 8 bit conversion. This can be done by removing the F=9 flag

from all Mailer specifications in the sendmail.cf file.

Use the sendmail restricted shell program (smrsh)

Use mail.local

Attack Pattern ID: 42

287

Parent Threat: Resource Manipulation

Parent Mitigation: SI

Attack Pattern Name: Exploiting Multiple Input Interpretation Layers (1)

Description

An attacker supplies the target software with input data that contains sequences

of special characters designed to bypass input validation logic. This exploit

relies on the target making multiples passes over the input data and processing

a “layer” of special characters with each pass. In this manner, the attacker can

disguise input that would otherwise be rejected as invalid by concealing it with

layers of special/escape characters that are stripped off by subsequent

processing steps.

Solutions and Mitigations

An iterative approach to input validation may be required to ensure that no

dangerous characters are present. It may be necessary to implement redundant

checking across different input validation layers. Ensure that invalid data is

rejected as soon as possible and do not continue to work with it.

Make sure to perform input validation on canonicalized data (i.e. data that is

data in its most standard form). This will help avoid tricky encodings getting

past the filters.

Assume all input is malicious. Create a white list that defines all valid input to

the software system based on the requirements specifications. Input that does

not match against the white list should not be permitted to enter into the

system.

Attack Pattern ID: 43

288

Parent Threat: Data Structure Attacks

Parent Mitigation: CA, MA, AC, RA, SC, SI

Attack Pattern Name: Overflow Binary Resource File (6)

Description

An attack of this type exploits a buffer overflow vulnerability in the handling

of binary resources. Binary resources may includes music files like MP3,

image files like JPEG files, and any other binary file. These attacks may pass

unnoticed to the client machine through normal usage of files, such as a

browser loading a seemingly innocent JPEG file. This can allow the attacker

access to the execution stack and execute arbitrary code in the target process.

This attack pattern is a variant of standard buffer overflow attacks using an

unexpected vector (binary files) to wrap its attack and open up a new attack

vector. The attacker is required to either directly serve the binary content to the

victim, or place it in a locale like a MP3 sharing application, for the victim to

download. The attacker then is notified upon the download or otherwise

locates the vulnerability opened up by the buffer overflow.

Solutions and Mitigations

Perform appropriate bounds checking on all buffers.

Design: Enforce principle of least privilege

Design: Static code analysis

Implementation: Execute program in less trusted process space environment,

do not allow lower integrity processes to write to higher integrity processes

Implementation: Keep software patched to ensure that known vulnerabilities

are not available for attackers to target on host.

Attack Pattern ID: 44

289

Parent Threat: Data Structure Attacks

Parent Mitigations: AC, AU, CA, CM, MP, SI, SC

Attack Pattern Name: Buffer Overflow via Symbolic Links (7)

Description

This type of attack leverages the use of symbolic links to cause buffer

overflows. An attacker can try to create or manipulate a symbolic link file such

that its contents result in out of bounds data. When the target software

processes the symbolic link file, it could potentially overflow internal buffers

with insufficient bounds checking.

Solutions and Mitigations

Enforce principle of least privilege

Protect files, secure location (of files), encryption

Data sanitization

Abstraction, obfuscation, library checking

Attack Patten ID: 45

290

Parent Threat: Data Structure Attacks

Parent Mitigation: SC,AC,SI,RA

Attack Pattern Name: Overflow Variables and Tags (4)

Description

This type of attack leverages the use of tags or variables from a formatted

configuration data to cause buffer overflow. The attacker crafts a malicious

HTML page or configuration file that includes oversized strings, thus causing

an overflow.

Solutions and Mitigations

Use a language or compiler that performs automatic bounds checking.

Use an abstraction library to abstract away risky APIs. Not a complete

solution.

Compiler-based canary mechanisms such as StackGuard, ProPolice and the

Microsoft Visual Studio /GS flag. Unless this provides automatic bounds

checking, it is not a complete solution.

Use OS-level preventative functionality. Not a complete solution.

Do not trust input data from user. Validate all user input.

Attack Pattern ID: 46

291

Parent Threat: Data Structure Attacks

Parent Mitigation: CP, CM, CA, PL, SC

Attack Pattern Name: Buffer Overflow via Parameter Expansion (5)

Description

In this attack, the target software is given input that the attacker knows will be

modified and expanded in size during processing. This attack relies on the

target software failing to anticipate that the expanded data may exceed some

internal limit, thereby creating a buffer overflow.

Solutions and Mitigations

Ensure that when parameter expansion happens in the code that the

assumptions used to determine the resulting size of the parameter are accurate

and that the new size of the parameter is visible to the whole system

Attack Pattern ID: 47

292

Parent Threat: Abuse of Functionality

Parent Mitigation: SI, CM, SA, SC

Attack Pattern Name: Passing Local Filenames to Functions That Expect a

URL (4)

Description

This attack relies on client side code to access local files and resources instead

of URLs. When the client browser is expecting a URL string, but instead

receives a request for a local file, that execution is likely to occur in the

browser process space with the browser's authority to local files. The attacker

can send the results of this request to the local files out to a site that they

control. This attack may be used to steal sensitive authentication data (either

local or remote), or to gain system profile information to launch further

attacks.

Solutions and Mitigations

Implementation: Ensure all content that is delivered to client is sanitized

against an acceptable content specification.

Implementation: Ensure all configuration files and resource are either removed

or protected when promoting code into production.

Design: Use browser technologies that do not allow client side scripting.

Implementation: Perform input validation for all remote content.

Implementation: Perform output validation for all remote content.

Implementation: Disable scripting languages such as Javascript in browser

Attack Pattern ID: 48

293

Parent Threat: Probabilistic Techniques

Parent Mitigation: IA, AC, CM, SC

Attack Pattern Name: Password Brute Forcing (4)

Description

In this attack, the attacker tries every possible value for a password until they

succeed. A brute force attack, if feasible computationally, will always be

successful because it will essentially go through all possible passwords given

the alphabet used (lower case letters, upper case letters, numbers, symbols,

etc.) and the maximum length of the password.

A system will be particularly vulnerable to this type of an attack if it does not

have a proper enforcement mechanism in place to ensure that passwords

selected by users are strong passwords that comply with an adequate password

policy.

In practice a pure brute force attack on passwords is rarely used, unless the

password is suspected to be weak. Other password cracking methods exist that

are far more effective (e.g. dictionary attacks, rainbow tables, etc.).

Solutions and Mitigations

Implement a password throttling mechanism. This mechanism should take into

account both the IP address and the log in name of the user.

Put together a strong password policy and make sure that all user created

passwords comply with it. Alternatively automatically generate strong

passwords for users.

Passwords need to be recycled to prevent aging, that is every once in a while a

new password must be chosen.

Attack Pattern ID: 49

294

Parent Threat: Probabilistic Techniques

Parent Mitigation: IA, SA

Attack Pattern Name Dictionary-based Password Attack (10)

Description

An attacker may take advantage of the application feature to help users recover

their forgotten passwords in order to gain access into the system with the same

privileges as the original user. Generally password recovery schemes tend to

be weak and insecure. Most of them use only one security question . For

instance, mother's maiden name tends to be a fairly popular

one. Unfortunately in many cases this information is not very hard to find,

especially if the attacker knows the legitimate user.

These generic security questions are also re-used across many applications,

thus making them even more insecure. An attacker could for instance overhear

a coworker talking to a bank representative at the work place and supplying

their mother's maiden name for verification purposes. An attacker can then try

to log in into one of the victim's accounts, click on "forgot password" and there

is a good chance that the security question there will be to provide mother's

maiden name.

A weak password recovery scheme totally undermines the effectiveness of a

strong password scheme.

Solutions and Mitigations

Use multiple security questions (e.g. have three and make the user answer two

of them correctly). Let the user select their own security questions or provide

them with choices of questions that are not generic.

E-mail the temporary password to the registered e-mail address of the user

rather than letting the user reset the password online.

Ensure that your password recovery functionality is not vulnerable to an

injection style attack.

Attack Pattern ID: 50

295

Parent Threat: Resource Manipulation

Parent Mitigations: AC, AU, CA, CM, MP, SI, SC

Attack Pattern Name: Buffer Overflow via Symbolic Links (7)

Description:

SOA and Web Services often use a registry to perform look up, get schema

information, and metadata about services. A poisoned registry can redirect

(think phishing for servers) the service requester to a malicious service

provider, provide incorrect information in schema or metadata (to effect a

denial of service), and delete information about service provider interfaces.

WS-Addressing is used to virtualize services, provide return addresses and

other routing information, however, unless the WS-Addressing headers are

protected they are vulnerable to rewriting. The attacker that can rewrite WS-

addressing information gains the ability to route service requesters to any

service providers, and the ability to route service provider response to any

service.

Content in a registry is deployed by the service provider. The registry in an

SOA or Web Services system can be accessed by the service requester via

UDDI or other protocol. The basic flow for the attacker consists of either

altering the data at rest in the registry or uploading malicious content by

spoofing a service provider. The service requester is then redirected to send its

requests and/or responses to services the attacker controls.

Solutions and Mitigations:

Enforce principle of least privilege

Harden registry server and file access permissions

Implement communications to and from the registry using secure protocols

Attack Pattern ID: 51

296

Parent Threat: Resource Manipulation

Parent Mitigation: SI

Attack Pattern Name: Embedding NULL Bytes (1)

Description

An attacker embeds one or more null bytes in input to the target software. This

attack relies on the usage of a null-valued byte as a string terminator in many

environments. The goal is for certain components of the target software to stop

processing the input when it encounters the null byte(s).

Solutions and Mitigations

Properly handle the NULL characters supplied as part of user input prior to

doing anything with the data.

Attack Pattern ID: 52

297

Parent Threat: Resource Manipulation

Parent Mitigation: SI, AC, CM

Attack Pattern Name: Postfix, Null Terminate, and Backslash (3)

Description:

If a string is passed through a filter of some kind, then a terminal NULL may

not be valid. Using alternate representation of NULL allows an attacker to

embed the NULL midstring while postfixing the proper data so that the filter is

avoided. One example is a filter that looks for a trailing slash character. If a

string insertion is possible, but the slash must exist, an alternate encoding of

NULL in midstring may be used.

Solutions and Mitigations:

Properly handle Null characters. Make sure canonicalization is properly

applied. Do not pass Null characters to the underlying APIs.

Assume all input is malicious. Create a white list that defines all valid input to

the software system based on the requirements specifications. Input that does

not match against the white list should not be permitted to enter into the

system.

Attack Pattern ID: 53

298

Parent Threat: Data Leakage Attacks

Parent Mitigation: SC, SI

Attack Pattern Name: Probing an Application Through Targeting its Error

Reporting (2)

Description

An attacker, aware of an application's location (and possibly authorized to use

the application) can probe the application's structure and evaluate its

robustness by probing its error conditions (not unlike one would during a 'fuzz'

test, but more purposefully here) in order to support attacks such as blind SQL

injection, or for the more general task of mapping the application to mount

another subsequent attack.

Solutions and Mitigations

Application designers can construct a 'code book' for error messages. When

using a code book, application error messages aren't generated in string or

stack trace form, but are cataloged and replaced with a unique (often integer-

based) value 'coding' for the error. Such a technique will require helpdesk and

hosting personnel to use a 'code book' or similar mapping to decode

application errors/logs in order to respond to them normally.

Application designers can wrap application functionality (preferably through

the underlying framework) in an output encoding scheme that obscures or

cleanses error messages to prevent such attacks. Such a technique is often used

in conjunction with the above 'code book' suggestion.

Attack Pattern ID: 54

299

Parent Threat: Probabilistic Techniques

Parent Mitigation: SI, SC, IA

Attack Pattern Name: Rainbow Table Password Cracking (3)

Description

An attacker gets access to the database table where hashes of passwords are

stored. He then uses a rainbow table of precomputed hash chains to attempt to

look up the original password. Once the original password corresponding to

the hash is obtained, the attacker uses the original password to gain access to

the system.

A password rainbow table stores hash chains for various passwords. A

password chain is computed, starting from the original password, P, via a a

reduce(compression) function R and a hash function H. A recurrence relation

exists where Xi+1 = R(H(Xi)), X0 = P. Then the hash chain of length n for

the original password P can be formed: X1, X2, X3, ... , Xn-2, Xn-1, Xn,

H(Xn). P and H(Xn) are then stored together in the rainbow table.

Constructing the rainbow tables takes a very long time and is computationally

expensive. A separate table needs to be constrcuted for the various hash

algorithms (e.g. SHA1, MD5, etc.). However, once a rainbow table is

computed, it can be very effective in cracking the passwords that have been

hashed without the use of salt.

Solutions and Mitigations

Use salt when computing password hashes. That is, concatenate the salt

(random bits) with the original password prior to hashing it.

Attack Pattern ID: 55

300

Parent Threat: Exploitation of Privilege/Trust

Parent Mitigation: AC, IA

Attack Pattern Name: Removing/short-circuiting 'guard logic' (2)

Description

Attackers can, in some cases, get around logic put in place to 'guard' sensitive

functionality or data.

The attack may involve gaining access to and calling protected functionality

(or accessing protected data) directly, may involve subverting some aspect of

the guard's implementation, or outright removal of the guard, if possible.

Solutions and Mitigations

Use Authentication Mechanisms, Where Appropriate, Correctly

Use Authorization Mechanisms Correctly

Attack Pattern ID 56

301

Parent Threat: Spoofing

SA, SI, AC

Attack Pattern Name: Utilizing REST's Trust in the System Resource to

Register Man in the Middle (3)

Description

This attack utlizes a Rest(REpresentational State Transfer)-style applications'

trust in the system resources and environment to place man in the middle once

SSL is terminated. Rest applications premise is that they leverage existing

infrastructure to deliver web services functionality.

Solutions and Mitigations

Implementation: Implement message level security such as HMAC in the

HTTP communication

Design: Utilize defense in depth, do not rely on a single security mechanism

like SSL

Design: Enforce principle of least privilege

Attack Pattern ID: 57

302

Parent Threat: Exploitation of Privilege/Trust

Parent Mitigation: AC, CM, SI

Attack Pattern Name: Restful Privilege Elevation (3)

Description

Rest uses standard HTTP (Get, Put, Delete) style permissions methods, but

these are not necessarily correlated generally with back end programs. Strict

interpretation of HTTP get methods means that these HTTP Get services

should not be used to delete information on the server, but there is no access

control mechanism to back up this logic. This means that unless the services

are properly ACL'd and the application's service implementation are following

these guidelines then an HTTP request can easily execute a delete or update on

the server side.

The attacker identifies a HTTP Get URL such as http://victimsite/updateOrder,

which calls out to a program to update orders on a database or other resource.

The URL is not idempotent so the request can be submitted multiple times by

the attacker, additionally, the attacker may be able to exploit the URL

published as a Get method that actually performs updates (instead of merely

retrieving data). This may result in malicious or inadvertant altering of data on

the server.

Solutions and Mitigations

Design: Enforce principle of least privilege

Implementation: Ensure that HTTP Get methods only retrieve state and do not

alter state on the server side

Implementation: Ensure that HTTP methods have proper ACLs based on what

the funcitonality they expose

Attack Pattern ID 58

303

Parent Threat: Exploitation of Authentication

Parent Mitigation: AC, SI, SC

Attack Pattern Name: Session Credential Falsification through Prediction (3)

Description

This attack targets predictable session ID in order to gain privileges. The

attacker can predict the session ID used during a transaction to perform

spoofing and session hijacking.

Solutions and Mitigations

Use a strong source of randomness to generate a session ID.

Use adequate length session IDs.

Do not use information available to the user in order to generate session ID

(e.g., time)…

Encrypt the session ID if you expose it to the user. For instance session ID can

be stored in a cookie in encrypted format.

Attack Pattern ID: 59

304

Parent Threat: Exploitation of Authentication

Parent Mitigation: AC, SI, PS, SC, IA, SA

Attack Pattern Name: Reusing Session ID‟s (6)

Description

This attack targets the reuse of valid session ID to spoof the target system in

order to gain privileges. The attacker tries to reuse a stolen session ID used

previously during a transaction to perform spoofing and session hijacking.

Another name for this type of attack is Session Replay.

Solutions and Mitigations

Always invalidate a session ID after the user logout.

Setup a session time out for the session IDs.

Protect the communication between the client and server. For instance it is best

practice to use SSL to mitigate man in the middle attack.

Do not code send session ID with GET method, otherwise the session ID will

be copied to the URL. In general avoid writing session IDs in the URLs. URLs

can get logged in log files, which are vulnerable to an attacker.

Encrypt the session data associated with the session ID.

Use multifactor authentication.

Attack Pattern ID: 60

305

Parent Threat: Exploitation of Authentication

Parent Mitigation: AC, IA, SC

Attack Pattern Name: Session Fixation (3)

Description

The attacker induces a client to establish a session with the target software

using a session identifier provided by the attacker. Once the user successfully

authenticates to the target software, the attacker uses the (now privileged)

session identifier in their own transactions

Solutions and Mitigations

Use a strict session management mechanism that only accepts locally

generated session identifiers of their own choice.

Regenerate and destroy session identifiers when there is a change in the level

of privilege:

Use session identifiers that are difficult to guess or brute-force:

Attack Pattern ID: 61

306

Parent Threat: Exploitation of Authentication

AC, CA, CM, IA, SC, SI

Attack Pattern Name: Cross Site Request Forgery (aka Session Riding) (6)

Description

An attacker crafts malicious web links and distributes them (via web pages,

email, etc.), typically in a targeted manner, hoping to induce users to click on

the link and execute the malicious action against some third-party application.

If successful, the action embedded in the malicious link will be processed and

accepted by the targeted application with the users‟ privilege level.

 This type of attack leverages the persistence and implicit trust placed in

user session cookies by many web applications today. In such an architecture,

once the user authenticates to an application and a session cookie is created on

the user's system, all following transactions for that session are authenticated

using that cookie including potential actions initiated by an attacker and simply

"riding" the existing session cookie.

Solutions and Mitigations

Use cryptographic tokens to associate a request with a specific action. The

token can be regenerated at every request so that if a request with an invalid

token is encountered, it can be reliably discarded. The token is considered

invalid if it arrived with a request other than the action it was supposed to be

associated with.

Although less reliable, the use of the optional HTTP Referer header can also be

used to determine whether an incoming request was actually one that the user

is authorized for, in the current context.

Additionally, the user can also be prompted to confirm an action every time an

action concerning potentially sensitive data is invoked. This way, even if the

attacker manages to get the user to click on a malicious link and request the

desired action, the user has a chance to recover by denying confirmation. This

solution is also implicitly tied to using a second factor of authentication before

performing such actions.

In general, every request must be checked for the appropriate authentication

token as well as authorization in the current session context.

Attack Pattern ID: 62

307

Parent Threat: Injection

Parent Mitigation: CM, SI, SC, MP, AC

Attack Pattern Name: Simple Script Injection (5)

Description

An attacker embeds malicious scripts in content that will be served to web

browsers. The goal of the attack is for the target software, the client-side

browser, to execute the script with the users‟ privilege level.

Solutions and Mitigations

Design: Use browser technologies that do not allow client side scripting.

Design: Utilize strict type, character, and encoding enforcement

Design: Server side developers should not proxy content via XHR or other

means, if a http proxy for remote content is setup on the server side, the client's

browser has no way of discerning where the data is originating from.

Implementation: Ensure all content that is delivered to client is sanitized

against an acceptable content specification.

Implementation: Perform input validation for all remote content.

Implementation: Perform output validation for all remote content.

Implementation: Session tokens for specific host

Implementation: Patching software. There are many attack vectors for XSS on

the client side and the server side. Many vulnerabilities are fixed in service

packs for browser, web servers, and plug in technologies, staying current on

patch release that deal with XSS countermeasures mitigates this.

Attack Pattern ID: 63

308

Parent Threat: Resource Manipulation

Parent Mitigation: SI, AC, CM

Attack Pattern Name: Using Slashes and URL Encoding Combined to Bypass

Validation Logic (3)

Description:

This attack targets the encoding of the URL combined with the encoding of the

slash characters. An attacker can take advantage of the multiple way of

encoding an URL and abuse the interpretation of the URL. An URL may

contain special character that need special syntax handling in order to be

interpreted. Special characters are represented using a percentage character

followed by two digits representing the octet code of the original character

(%HEX-CODE).

Solutions and Mitigations

Assume all input is malicious. Create a white list that defines all valid input to

the software system based on the requirements specifications.

When client input is required from web-based forms, avoid using the “GET”

method to submit data

Any security checks should occur after the data has been decoded and

validated as correct data format

Attack Pattern ID: 64

309

Parent Threat: Data Leakage Attacks

Parent Mitigations: AT, SA, SC, SI, CA, IA, PL

Attack Pattern Name: Passively Sniff and Capture Application Code

Bound for Authorized Client (7)

Descriptions

Attackers can capture application code bound for the client and can use it, as-is

or through reverse-engineering, to glean sensitive information or exploit the

trust relationship between the client and server.

Such code may belong to a dynamic update to the client, a patch being applied

to a client component or any such interaction where the client is authorized to

communicate with the server.

Solutions and Mitigations

Do not store secrets in client code

All potentially sensitive data, including code, transmitted to the client must be

encrypted

Attack Pattern ID: 65

310

Parent Threat: Injection

Parent Mitigation: SI, AC, MP

Attack Pattern Name: SQL Injection (3)

Description

This attack exploits target software that constructs SQL statements based on

user input. An attacker crafts input strings so that when the target software

constructs SQL statements based on the input, the resulting SQL statement

performs actions other than those the application intended.

Solutions and Mitigations

Strong input validation - All user-controllable input must be validated and

filtered for illegal characters as well as SQL content. Keywords such as

UNION, SELECT or INSERT must be filtered in addition to characters such

as a single-quote(') or SQL-comments (--) based on the context in which they

appear.

Use of parameterized queries or stored procedures - Parameterization causes

the input to be restricted to certain domains, such as strings or integers, and

any input outside such domains is considered invalid and the query fails. Note

that SQL Injection is possible even in the presence of stored procedures if the

eventual query is constructed dynamically.

Use of custom error pages - Attackers can glean information about the nature

of queries from descriptive error messages. Input validation must be coupled

with customized error pages that inform about an error without disclosing

information about the database or application.

Attack Pattern ID: 66

311

Parent Threat: Data Structure Attacks

Parent Mitigation: SI, AC

Attack Pattern Name: String Format Overflow in syslog() (2)

Description

This attack targets the format string vulnerabilities in the syslog() function. An

attacker would typically inject malicious input in the format string parameter

of the syslog function. This is a common problem, and many public

vulnerabilities and associated exploits have been posted.

Solutions and Mitigations

The code should be reviewed for misuse of the Syslog function call. Manual or

automated code review can be used. The reviewer needs to ensure that all

format string functions are passed a static string which cannot be controlled by

the user and that the proper number of arguments are always sent to that

function as well. If at all possible, do not use the %n operator in format strings.

The following code shows a correct usage of Syslog(): ... syslog(LOG_ERR,

"%s", cmdBuf); ... The following code shows a vulnerable usage of Syslog():

... syslog(LOG_ERR, cmdBuf); // the buffer cmdBuff is taking user supplied

data. ...

Attack Pattern ID: 67

312

Parent Threat: Exploitation of Privilege/Trust

Parent Mitigation: IA

Attack Pattern Name: Subvert Code-signing Facilities (1)

Description

Because languages use code signing facilities to vouch for code's identity and

to thus tie code to its assigned privileges within an environment, subverting

this mechanism can be instrumental in an attacker escalating privilege.

Any means of subverting the way that a virtual machine enforces code signing

classifies for this style of attack. This pattern does not include circumstances

through which a signing key has been stolen.

Solutions and Mitigations

 A given code signing scheme may be fallible due to improper use of

cryptography

Avoid reliance on flags or environment variables that are user-controllable

Attack Pattern ID: 68

313

Parent Threat: Exploitation of Privilege/Trust

Parent Mitigation: AC,SI,RA,PS,SC

Attack Pattern Name: Target Programs With Elevated Privileges (5)

Description

This attack targets programs running with elevated privileges. The attacker

would try to leverage a bug in the running program and get arbitrary code to

execute with elevated privileges. For instance an attacker would look for

programs that write to the system directories or registry keys (such as HKLM,

which stores a number of critical Windows environment variables).

Solutions and Mitigations

Apply the principle of least privilege.

Validate all untrusted data.

Apply the latest patches.

Scan your services and disable the ones which are not needed and are exposed

unnecessarily.

Avoid revealing information about your system (e.g., version of the program)

to anonymous users.

Make sure that your program or service fail safely.

Attack Pattern ID: 69

314

Parent Threat: Probabilistic Techniques

Parent Mitigation: AC,IA

Attack Pattern Name: Try Common (Default) Usernames and Passwords (2)

Description

An attacker may try certain common (default) usernames and passwords to

gain access into the system and perform unauthorized actions. An attacker may

try an intelligent brute force using known vendor default credentials as well as

a dictionary of common usernames and passwords.

Solutions and Mitigations

Delete all default account credentials that may be put in by the product vendor.

Implement a password throttling mechanism.

Put together a strong password policy and make sure that all user created

passwords comply with it.

Passwords need to be recycled to prevent aging, that is every once in a while a

new password must be chosen.

Attack Pattern ID: 70

315

Parent Threat: Resource Manipulation

Parent Mitigation: AC, SI, CM

Attack Pattern Name: Using Unicode to Bypass Validation Logic (3)

Description

An attacker may provide a Unicode string to a system component that is not

Unicode aware and use that to circumvent the filter or cause the classifying

mechanism to fail to properly understanding the request. That may allow the

attacker to slip malicious data past the content filter and/or possibly cause the

application to route the request incorrectly.

Solutions and Mitigations

Ensure that the system is Unicode aware and can properly process Unicode

data. Do not make an assumption that data will be in ASCII.

Ensure that filtering or input validation is applied to canonical data

Assume all input is malicious. Create a white list that defines all valid input to

the software system based on the requirements specifications. Input that does

not match against white list should not be permitted to enter the system.

Attack Pattern ID: 71

316

Parent Threat: Resource Manipulation

Parent Mitigation: AC, CM, SA, SI, SC, CA, PL

Attack Pattern Name: URL encoding (8)

Description

This attack targets the encoding of the URL. An attacker can take advantage of

the multiple way of encoding an URL and abuse the interpretation of the URL.

An URL may contain special character that need special syntax handling in

order to be interpreted. Special characters are represented using a percentage

character followed by two digits representing the octet code of the original

character (%HEX-CODE). For instance US-ASCII space character would be

represented with %20. This is often referred as escaped ending or percent-

encoding. Since the server decodes the URL from the requests, it may restrict

the access to some URL paths by validating and filtering out the URL requests

it received. An attacker will try to craft an URL with a sequence of special

characters which once interpreted by the server will be equivalent to a

forbidden URL. It can be difficult to protect against this attack since the URL

can contain other format of encoding such as UTF-8 encoding, Unicode-

encoding, etc. The attacker could also subvert the meaning of the URL string

request by encoding the data being sent to the server through a GET request.

For instance an attacker may subvert the meaning of parameters used in a SQL

request and sent through the URL string (See Example section).

Solutions and Mitigations

Refer to the RFCS to safely decode URL

Regular expression can be used to match safe URL patterns. May discard valid

patterns if too restrictive.

Tools available to scan HTTP requests to the server

Security checks should occur after data is decoded and validated for format.

Bad chars result in validation failure.

Assume all input is malicious. Create a white list of acceptable input. Test it

yourself.

Be aware of alternative encoding such as IP encoding

In web-forms, avoid using “Get” and use “Post” when possible

Attack Pattern ID: 72

317

Parent Threat: Resource Manipulation

Parent Mitigation: AC, CM, MP, SI

Attack Pattern Name: User-controlled filename (4)

Description

An attack of this type involves an attacker inserting malicious characters (such

as a XSS redirection) into a filename, directly or indirectly that is then used by

the target software to generate HTML text or other potentially executable

content. Many websites rely on user-generated content and dynamically build

resources like files, filenames, and URL links directly from user supplied data.

In this attack pattern, the attacker uploads code that can execute in the client

browser and/or redirect the client browser to a site that the attacker owns. All

XSS attack payload variants can be used to pass and exploit these

vulnerabilities.

Solutions and Mitigations

Use browser technologies that do not allow client side script

Ensure all content delivered to client is sanitized

Validate input for all remote content

Validate output for all remote content

Disable scripts in browser

Scan dynamically generated content

Attack Pattern ID: 73

318

Parent Threat: Time and State Attacks

Parent Mitigation: CM, CP, IA, MP, SA, SC

Attack Pattern Name: Manipulating User State (6)

Description

An attacker modifies state information maintained by the target software in

user-accessible locations. If successful, the target software will use this tainted

state information and execute in an unintended manner.

State management is an important function within an application. User state

maintained by the application can include usernames, payment information,

browsing history as well as application-specific contents such as items in a

shopping cart.

Manipulating user state can be employed by an attacker to elevate privilege,

conduct fraudulent transactions or otherwise modify the flow of the application

to derive certain benefits.

Solutions and Mitigations

Do not rely solely on user-controllable locations, such as cookies or URL

parameters, to maintain user state

Do not store sensitive information, such as usernames or authentication and

authorization information, in user-controllable locations.

At all times sensitive information that is part of the user state must be

appropriately protected to ensure confidentiality and integrity at each request

Attack Pattern ID: 74

319

Parent Threat: Exploitation of Privilege/Trust

AC, CM, CP, CA, SI, AU

Attack Pattern Name: Manipulating Writeable Configuration Files (6)

Description

An attacker modifies the contents of configuration files that influence/control

the operation of the target software.

Solutions and Mitigations

Enforce principle of least privilege

Backup copies of all configuration files

Integrity monitoring for configuration files

Enforce audit logging on code and configuration promotion procedures.

Load configuration from separate process and memory space, for example a

separate physical device like a CD

Attack Pattern ID: 75

320

Parent Threat: Resource Manipulation

Parent Mitigation: AC, SI, CM, RA

Attack Pattern Name: Manipulating Input to File System Calls(4)

Description

An attacker manipulates inputs to the target software which the target software

passes to file system calls in the OS. The goal is to gain access to, and perhaps

modify, areas of the file system that the target software did not intend to be

accessible.

Solutions and Mitigations

Design: Enforce principle of least privilege.

Design: Ensure all input is validated, and does not contain file system

commands

Design: Run server interfaces with a non-root account and/or utilize chroot

jails or other configuration techniques to constrain privileges even if attacker

gains some limited access to commands.

Design: For interactive user applications, consider if direct file system

interface is necessary, instead consider having the application proxy

communication.

Implementation: Perform testing such as pentesting and vulnerability scanning

to identify directories, programs, and interfaces that grant direct access to

executables.

Attack Pattern ID: 76

321

Parent Threat: Resource Manipulation

Parent Threat: CM, SI, SC, AC

Attack Pattern Name: Manipulating User-Controlled Variables (4)

Descriptions

This attack targets user controlled variables (DEBUG=1, PHP Globals, and So

Forth). An attacker can override environment variables leveraging user-

supplied, untrusted query variables directly used on the application server

without any data sanitization. In extreme cases, the attacker can change

variables controlling the business logic of the application. For instance, in

languages like PHP, a number of poorly set default configurations may allow

the user to override variables.

Solutions and Mitigations
Do not allow override of global variables and do Not Trust Global Variables.
A software system should be reluctant to trust variables that have been
initialized outside of its trust boundary. Ensure adequate checking is performed
when relying on input from outside a trust boundary.
Separate the presentation layer and the business logic layer.
Use encapsulation when declaring your variables.
Assume all input is malicious. Create a white list that defines all valid input to
the software system based on the requirements specifications

Attack Pattern ID: 77

322

Parent Threat: Resource Manipulation

Parent Mitigation: SI, MA, AC, CM, SC

Attack Pattern Name: Using Escaped Slashes in Alternate Encoding (5)

Description

This attack targets the use of the backslash in alternate encoding. An attacker

can provide a backslash as a leading character and causes a parser to believe

that the next character is special. This is called an escape. By using that trick,

the attacker tries to exploit alternate ways to encode the same character which

leads to filter problems and opens avenues to attack.

Solutions and Mitigations

Verify that the user-supplied data does not use backslash character to escape

malicious characters.

Assume all input is malicious. Create a white list that defines all valid input to

the software system based on the requirements specifications. Input that does

not match against the white list should not be permitted to enter into the

system.

Be aware of the threat of alternative method of data encoding.

Regular expressions can be used to filter out backslash. Make sure you decode

before filtering and validating the untrusted input data.

In the case of path traversals, use the principle of least privilege when

determining access rights to file systems. Do not allow users to access

directories/files that they should not access.

Any security checks should occur after the data has been decoded and

validated as correct data format. Do not repeat decoding process, if bad

character are left after decoding process, treat the data as suspicious, and fail

the validation process.

Avoid making decisions based on names of resources (e.g. files) if those

resources can have alternate names.

Attack Pattern ID: 78

323

Parent Threat: Resource Manipulation

Parent Mitigation: SI, SC, AC

Attack Pattern Name: Using Slashes in Alternate Encoding (3)

Description

This attack targets the encoding of the Slash characters. An attacker would try

to exploit common filtering problems related to the use of the slashes

characters to gain access to resources on the target host. Directory-driven

systems, such as file systems and databases, typically use the slash character to

indicate traversal between directories or other container components. For

murky historical reasons, PCs (and, as a result, Microsoft OSs) choose to use a

backslash, whereas the UNIX world typically makes use of the forward slash.

The schizophrenic result is that many MS-based systems are required to

understand both forms of the slash. This gives the attacker many opportunities

to discover and abuse a number of common filtering problems. The goal of this

pattern is to discover server software that only applies filters to one version,

but not the other.

Solutions and Mitigations

Any security checks should occur after the data has been decoded and

validated as correct data format. When client input is required from web-based

forms, avoid using the “GET” method to submit data, as the method causes the

form data to be appended to the URL and is easily manipulated. Instead, use

the “POST method whenever possible. There are tools to scan HTTP requests

to the server for valid URL such as URLScan from Microsoft (http://

www.microsoft.com/technet/security/tools/urlscan.mspx) Be aware of the

threat of alternative method of data encoding and obfuscation technique such

as IP address endoding. (Do not allow users to access directories/files that they

should not access.Assume all input is malicious. Create a white list that defines

all valid input to the application based on the requirements specifications.

Input that does not match against the white list should not be permitted to enter

into the system.

Attack Pattern ID: 79

324

Parent Threat: Resource Manipulation

Parent Mitigation: SI

Attack Pattern Name: Using UTF-8 Encoding to Bypass Validation Logic (1)

Description

This attack is a specific variation on leveraging alternate encodings to bypass

validation logic. This attack leverages the possibility to encode potentially

harmful input in UTF-8 and submit it to applications not expecting or effective

at validating this encoding standard making input filtering difficult. UTF-8 (8-

bit UCS/Unicode Transformation Format) is a variable-length character

encoding for Unicode. Legal UTF-8 characters are one to four bytes long.

However, early version of the UTF-8 specification got some entries wrong (in

some cases it permitted overlong characters). UTF-8 encoders are supposed to

use the ``shortest possible'' encoding, but naive decoders may accept encodings

that are longer than necessary. According to the RFC 3629, a particularly

subtle form of this attack can be carried out against a parser which performs

security-critical validity checks against the UTF-8 encoded form of its input,

but interprets certain illegal octet sequences as characters.

Solutions and Mitigations

The Unicode Consortium recognized multiple representations to be a problem

and has revised the Unicode Standard to make multiple representations of the

same code point with UTF-8 illegal. The UTF-8 Corrigendum lists the newly

restricted UTF-8 range (See references). The exact response required from an

UTF-8 decoder on invalid input is not uniformly defined by the standards. In

general, there are several ways a UTF-8 decoder might behave in the event of

an invalid byte sequence:

Attack Pattern ID: 80

325

Parent Threat: Resource Manipulation

Parent Mitigation: AC, AU, SI

Attack Pattern Name: Web Logs Tampering (3)

Discription

Protection services in security are vulnerable so they are backstopped by

detection in the so-called protect-detect-respond model. A key element in

detection is log files, to identify a threat impact, for audit purposes, or simply

responding to a crash. While penetrating a system requires a set of skills, more

advanced attackers will cover their tracks by manipulating log files to either

erase entries or input false entries to throw the system administrators off their

trail. Since most requests to web servers are logged (at least header request

response data) the attacker literally has the ability to generate log data in every

request. Of course this is not the same as always being able to delete otherwise

tamper with log data.

Web Logs Tampering attacks involve an attacker injecting, deleting or

otherwise tampering with the contents of web logs.

Additionally, writing malicious data to log files may target jobs, filters,

reports, and other agents that process the logs in an asynchronous attack

pattern.

Solutions and Mitigations

Design: Use input validation before writing to web log

Design: Validate all log data before it is output

Attack Pattern ID: 81

326

Parent Threat: Resource Depletion

Parent Mitigation: AC, SI, CM, CA, SC, CP

Attack Pattern Name: XML Denial of Service (XDoS) (6)

Description:

XML Denial of Service (XDoS) can be applied to any technology that utilizes

XML data. This is, of course, most distributed systems technology including

Java, .Net, databases, and so on. XDoS is most closely associated with web

services, SOAP, and Rest, because remote service requesters can post

malicious XML payloads to the service provider designed to exhaust the

service provider's memory, CPU, and/or disk space. The main weakness in

XDoS is that the service provider generally must inspect, parse, and validate

the XML messages to determine routing, workflow, security considerations,

and so on. It is exactly these inspection, parsing, and validation routines that

XDoS targets. There are three primary attack vectors that XDoS can navigate

Target CPU through recursion: attacker creates a recursive payload and sends

to service provider

Target memory through jumbo payloads: service provider uses DOM to parse

XML. DOM creates in memory representation of XML document, but when

document is very large (for example, north of 1 Gb) service provider host may

exhaust memory trying to build memory objects.

XML Ping of death: attack service provider with numerous small files that clog

the system.

Solutions and Mitigations

Design: Utilize a Security Pipeline Interface (SPI) to mediate communications

between service requester and service provider The SPI should be designed to

throttle up and down and handle a variety of payloads.

Design: Utilize clustered and fail over techniques, leverage network transports

to provide availability such as HTTP load balancers

Implementation: Check size of XML message before parsing

Attack Pattern ID: 82

327

Parent Threat: Injection

Parent Mitigation: SC, SI

Attack Pattern Name: XPath Injection (2)

Description

An attacker can craft special user-controllable input consisting of XPath

expressions to inject the XML database and bypass authentication or glean

information that he normally would not be able to. XPath Injection enables an

attacker to talk directly to the XML database, thus bypassing the application

completely. XPath Injection results form the failure of an application to

properly sanitize input used as part of dynamic XPath expressions used to

query an XML database. In order to successfully inject XML and retrieve

information from a database, an attacker:

Solutions and Mitigations

Strong input validation - All user-controllable input must be validated and

filtered for illegal characters as well as content that can be interpreted in the

context of an XPath expression. Characters such as a single-quote(') or

operators such as or (|), and (&) and such should be filtered if the application

does not expect them in the context in which they appear. If such content

cannot be filtered, it must at least be properly escaped to avoid them being

interpreted as part of XPath expressions.

Use of parameterized XPath queries - Parameterization causes the input to be

restricted to certain domains, such as strings or integers, and any input outside

such domains is considered invalid and the query fails.

Use of custom error pages - Attackers can glean information about the nature

of queries from descriptive error messages. Input validation must be coupled

with customized error pages that inform about an error without disclosing

information about the database or application.

Attack Pattern ID: 83

328

Parent Threat: Injection

Parent Mitigation: SI, SA, AC

Attack Pattern Name: XQuery Injection (3)

Description

This attack utilizes XQuery to probe and attack server systems; in a similar

manner that SQL Injection allows an attacker to exploit SQL calls to RDBMS,

XQuery Injection uses improperly validated data that is passed to XQuery

commands to traverse and execute commands that the XQuery routines have

access to. XQuery injection can be used to enumerate elements on the victim's

environment, inject commands to the local host, or execute queries to remote

files and data sources.

Solutions and Mitigations

Design: Perform input white list validation on all XML input

Implementation: Run xml parsing and query infrastructure with minimal

privileges so that an attacker is limited in their ability to probe other system

resources from xql.

Attack Pattern ID: 84

329

Parent Mitigation: Probabilistic Techniques

Parent Mitigation: AC, SC, SI, RA

Attack Pattern Name: Client Network Footprinting (using Ajax/XSS) (4)

Description

This attack utilizes the frequent client-server roundtrips in Ajax conversation

to scan a system. While Ajax does not open up new vulnerabilities per se, it

does optimize them from an attacker point of view. In many XSS attacks the

attacker must get a "hole in one" and successfully exploit the vulnerability on

the victim side the first time, once the client is redirected the attacker has many

chances to engage in follow on probes, but their is only one first chance. In a

widely used web application this is not a major problem because 1 in a 1,000 is

good enough in a widely used application.

A common first step for an attacker is to footprint the environment to

understand what attacks will work. Since footprinting relies on enumeration,

the conversational pattern of rapid, multiple requests and responses that are

typical in Ajax applications enable an attacker to look for many vulnerabilities,

well known ports, network locations and so on.

Solutions and Mitigations

Design: Use browser technologies that do not allow client side scripting

Design: Utilize strict type, character, and encoding enforcement

Implementation: Perform input validation for all remote content.

Implementation: Perform output validation for all remote content.

Implementation: Disable scripting languages such as Javascript in browser

Implementation: Patching software. There are many attack vectors for XSS on

the client side and the server side. Many vulnerabilities are fixed in service

packs for browser, web servers, and plug in technologies, staying current on

patch release that deal with XSS countermeasures mitigates this.

Attack Pattern ID: 85

330

Parent Threat: Injection

Parent Mitigation: AC, SC, SI, RA

Attack Pattern Name: Embedding Script (XSS) in HTTP headers (4)

Description

An attack of this type exploits web applications that generate web content,

such as links in a HTML page, based on unvalidated or improperly validated

data submitted by other actors. XSS in HTTP Headers attacks target the HTTP

headers which are hidden from most users and may not be validated by web

applications. As with all XSS attacks, there are a number of possible targets:

1. Launch attack on web browser clients and client machine

2. Launch attacks on client machines environment, such as LAN or Intranet

3. Launch attack on web server, including remote web servers

Solutions and Mitigations

Design: Use browser technologies that do not allow client side scripting.

Design: Utilize strict type, character, and encoding enforcement

Design: Server side developers should not proxy content via XHR or other

means, if a http proxy for remote content is setup on the server side, the client's

browser has no way of discerning where the data is originating from.

Implementation: Ensure all content that is delivered to client is sanitized

against an acceptable content specification.

Implementation: Perform input validation for all remote content.

Implementation: Perform output validation for all remote content.

Implementation: Disable scripting languages such as Javascript in browser

Implementation: Session tokens for specific host

Implementation: Patching software. There are many attack vectors for XSS on

the client side and the server side. Many vulnerabilities are fixed in service

packs for browser, web servers, and plug in technologies, staying current on

patch release that deal with XSS countermeasures mitigates this.

Attack Pattern ID: 86

331

Parent Threat: Abuse of Functionality

Parent Mitigation: AC, IA, SC

Attack Pattern Name: Forceful Browsing (3)

Description

An attacker employs forceful browsing to access portions of a website that are

otherwise unreachable through direct URL entry.

Solutions and Mitigations

Authenticate request to every resource. In addition, every page or resource

must ensure that the request it is handling has been made in an authorized

context.

Forceful browsing can also be made difficult to a large extent by not hard-

coding names of application pages or resources. This way, the attacker cannot

figure out, from the application alone, the resources available from the present

context.

Attack Pattern ID: 87

332

Parent Threat: Injection

Parent Mitigation: SI, AC, CM

Attack Pattern Name: OS Command Injection (3)

Description

An attacker can leverage OS command injection in an application to elevate

privileges, execute arbitrary commands and compromise the underlying

operating system.

Solutions and Mitigations

Use language APIs rather than relying on passing data to the operating system

shell or command line. Doing so ensures that the available protection

mechanisms in the language are intact and applicable.

Filter all incoming data to escape or remove characters or strings that can be

potentially misinterpreted as operating system or shell commands

All application processes should be run with the minimal privileges required.

Also, processes must shed privileges as soon as they no longer require them.

Attack Pattern ID: 88

333

Parent Threat: Spoofing and Resource Manipulation

Parent Mitigation: AC, CA, IA, SC, CM, CP, RA, SI

Attack Pattern Name: Pharming (8)

Description

Pharming attacks occur when victims provide sensitive information to websites

that do not possess a valid certificate from well-known certificate authorities.

Solutions and Mitigations

All sensitive information must be handled over a secure connection. Known

vulnerabilities in DNS or router software or in operating systems must be

patched as soon as a fix has been released and tested. End users must ensure

that they provide sensitive information only to websites that they trust, over a

secure connection with a valid certificate issued by a well-known certificate

authority.

Attack Pattern ID: 89

334

Parent Threat: Exploitation of Privilege or Trust

Parent Mitigation: IA, SI, AC, SC

Attack Pattern Name: Reflection Attack in Authentication Protocol (4)

Description

A single sign-on solution for a network uses a fixed preshared key with its

clients to initiate the signon process in order to avoid eavesdropping on the

initial exchanges.

Solutions and Mitigations

The server must initiate the handshake by issuing the challenge. This ensures

that the client has to respond before the exchange can move any further

The use of HMAC to hash the response from the server can also be used to

thwart reflection. The server responds by returning its own challenge as well as

hashing the client's challenge, its own challenge and the preshared secret.

Requiring the client to respond with the HMAC of the two challenges ensures

that only the possessor of a valid preshared secret can successfully hash in the

two values.

Introducing a random nonce with each new connection ensures that the

attacker can not employ two connections to attack the authentication protocol.

Attack Pattern ID: 90

335

Parent Threat: Injection

Parent Mitigation: SI

Attack Pattern Name: XSS in IMG Tags (1)

Description

Image tags are an often overlooked, but convenient, means for a Cross Site

Scripting attack. The attacker can inject script contents into an image (IMG)

tag in order to steal information from a victim's browser and execute malicious

scripts.

Solutions and Mitigations

In addition to the traditional input fields, all other user controllable inputs, such

as image tags within messages or the likes, must also be subjected to input

validation. Such validation should ensure that content that can be potentially

interpreted as script by the browser is appropriately filtered.All output

displayed to clients must be properly escaped. Escaping ensures that the

browser interprets special scripting characters literally and not as script to be

executed.

Attack Pattern ID: 91

336

Parent Threat: Data Structure Attacks

Parent Mitigation: CA, RA, SC, SI

Attack Pattern Name: Forced Integer Overflow (4)

Description

This attack forces an integer variable to go out of range. The integer variable is

often used as an offset such as size of memory allocation or similarly. The

attacker would typically control the value of such variable and try to get it out

of range. For instance the integer in question is incremented past the maximum

possible value, it may wrap to become a very small, or negative number,

therefore providing a very incorrect value which can lead to unexpected

behavior. At worst the attacker can execute arbitrary code.

Solutions and Mitigations:

Use a language or compiler that performs automatic bounds checking.

Carefully review the service's implementation before making it available to

user. For instance you can use manual or automated code review to uncover

vulnerabilities such as integer overflow.

Use an abstraction library to abstract away risky APIs. Not a complete

solution.

Always do bound checking before consuming user input data.

Attack Pattern ID: 92

337

Parent Threat: Resource Manipulation

Parent Mitigation: AC, IA, SC, AU, RA

Attack Pattern Name: Log Injection-Tampering-Forging (5)

Description

This attack targets the log files of the target host. The attacker injects,

manipulates or forges malicious log entries in the log file, allowing him to

mislead a log audit, cover traces of attack, or perform other malicious actions.

The target host is not properly controlling log access. As a result tainted data is

resulting in the log files leading to a failure in accoutability, non-repudiation

and incident forensics capability.

Solutions and Mitigations

Carefully control access to physical log files.

Do not allow tainted data to be written in the log file without prior input

validation. Whitelisting may be used to properly validate the data.

Use synchronization to control the flow of execution.

Use static analysis tools to identify log forging vulnerabilities.

Avoid viewing logs with tools that may interpret control characters in the file,

such as command-line shells.

Attack Pattern ID: 93

338

Parent Threat: Spoofing

Parent Mitigation: AC, IA, SC

Attack Pattern Name: Man in the Middle (3)

Description

This type of attack targets the communication between two components

(typically client and server). The attacker places himself in the communication

channel between the two components. Whenever one component attempts to

communicate with the other (data flow, authentication challenges, etc.), the

data first goes to the attacker, who has the opportunity to observe or alter it,

and it is then passed on to the other component as if it was never intercepted.

This interposition is transparent leaving the two compromised components

unaware of the potential corruption or leakeage of their communications. The

potential for Man-in-the-Middle attacks yields an implicit lack of trust in

communication or identify between two components.

Solutions and Mitigations

Get your Public Key signed by a Certificate Authority

Encrypt your communication using cryptography (SSL,...)

Use Strong mutual authentication to always fully authenticate both ends of any

communications channel.

Exchange public keys using a secure channel

Attack Pattern ID: 94

339

Parent Threat: Abuse of Functionality

Parent Mitigation: SI

Attack Pattern Name: WSDL Scanning (1)

Description:

This attack targets the WSDL interface made available by a web service. The

attacker may scan the WSDL interface to reveal sensitive information about

invocation patterns, underlying technology implementations and associated

vulnerabilities. This type of probing is carried out to perform more serious

attacks (e.g. parameter tampering, malicious content injection, command

injection, etc.). WSDL files provide detailed information about the services

ports and bindings available to consumers. For instance, the attacker can

submit special characters or malicious content to the Web service and can

cause a denial of service condition or illegal access to database records. In

addition, the attacker may try to guess other private methods by using the

information provided in the WSDL files.

Solutions and Mitigations

It is important to protect WSDL file or provide limited access to it.Review the

functions exposed by the WSDL interface (specially if you have used a tool to

generate it). Make sure that none of them is vulnerable to injection.

Ensure the WSDL does not expose functions and APIs that were not intended

to be exposed.

Pay attention to the function naming convention (within the WSDL interface).

Easy to guess function name may be an entry point for attack.

Validate the received messages against the WSDL Schema. Incomplete

solution

Attack Pattern ID: 95

340

Parent Threat: Resource Manipulation

CM, SA, SC, SI, RA

Attack Pattern Name: Block Access to Libraries (5)

Description

An application typically makes calls to functions that are a part of libraries

external to the application. These libraries may be part of the operating system

or they may be third party libraries. It is possible that the application does not

handle situations properly where access to these libraries has been

blocked. Depending on the error handling within the application, blocked

access to libraries may leave the system in an insecure state that could be

leveraged by an attacker.

Solutions and Mitigations

Ensure that application handles situations where access to APIs in external

libraries is not available securely. If the application cannot continue its

execution safely it should fail in a consistent and secure fashion.

Attack Pattern ID: 96

341

Parent Threat: Probabilistic Techniques

Parent Mitigation: CM, SA, SC, SI, RA

Attack Pattern Name: Cryptanalysis (2)

Description

Cryptanalysis is a process of finding weaknesses in cryptographic algorithms

and using these weaknesses to decipher the ciphertext without knowing the

secret key (instance deduction). Sometimes the weakness is not in the

cryptographic algorithm itself, but rather in how it is applied that makes

cryptanalysis successful. An attacker may have other goals as well, such as:

1. Total Break - Finding the secret key

2. Gobal Deduction - Finding a functionally equivalent algorithm for

encryption and decryption that does not require knowledge of the secret key.

 3. Information Deduction - Gaining some information about plaintexts or

ciphertexts that was not previously known

 4. Distinguishing Algorithm - The attacker has the ability to distinguish the

output of the encryption (ciphertext) from a random permutation of bits

The goal of the attacker performing cryptanalysis will depend on the specific

needs of the attacker in a given attack context. In most cases, if cryptanalysis

is successful at all, an attacker will not be able to go past being able to deduce

some information about the plaintext (goal 3). However, that may be sufficient

for an attacker, depending on the context.

Solutions and Mitigations

Ensure that application handles situations where access to APIs in external

libraries is not available securely. If the application cannot continue its

execution safely it should fail in a consistent and secure fashion.

Attack Pattern ID: 97

342

Parent Threat: Spoofing

Parent Mitigation: AT, SA, SI, PL

Attack Pattern Name: Phishing

Description

Phishing is a social engineering technique where an attacker masquerades as a

legitimate entity with which the victim might do business in order to prompt

the user to reveal some confidential information (very frequently

authentication credentials) that can later be used by an attacker. Phishing is

essentially a form of information gathering or "fishing" for information.

Solutions and Mitigations

Do not follow any links that you receive within your e-mails and certainly do

not input any login credentials on the page that they take you too. Instead, call

your Bank, Paypal, Ebay, etc., and inquire about the problem. A safe practice

would also be to type the URL of your bank in the browser directly and only

then log in. Also, never reply to any e-mails that ask you to provide sensitive

information of any kind.

Attack Pattern ID: 98

343

Parent Threat: Resource Depletion

Parent Mitigation: IR, SA, SI

Attack Pattern Name: XML Parser Attack (3)

Description

Applications often need to transform data in and out of the XML format by

using an XML parser. It may be possible for an attacker to inject data that may

have an adverse effect on the XML parser when it is being processed. These

adverse effects may include the parser crashing, consuming too much of a

resource, executing too slowly, executing code supplied by an attacker,

allowing usage of unintenteded system functionality, etc. An attacker's goal is

to leverage parser failure to his or her advantage. In some cases it may be

possible to jump from the data plane to the control plane via bad data being

passed to an XML parser [1].

Solutions and Mitigation

Carefully validate and sanitize all user-controllable data prior to passing it to

the XML parser routine. Ensure that the resultant data is safe to pass to the

XML parser.

Perform validation on canonical data.

Pick a robust implementation of an XML parser.

Validate XML against a valid schema or DTD prior to parsing

Attack Pattern ID: 99

344

Parent Threat: Data Structure Attacks

Parent Mitigation: SI,SC

Attack Pattern Name: Overflow Buffers (2)

Description

Buffer Overflow attacks target improper or missing bounds checking on buffer

operations, typically triggered by input injected by an attacker. As a

consequence, an attacker is able to write past the boundaries of allocated buffer

regions in memory, causing a program crash or potentially redirection of

execution as per the attacker's choice.

Solutions and Mitigations

Use a language or compiler that performs automatic bounds checking.

Use secure functions not vulnerable to buffer overflow.

If you have to use dangerous functions, make sure that you do boundary

checking.

Compiler-based canary mechanisms such as StackGuard, ProPolice and the

Microsoft Visual Studio /GS flag. Unless this provides automatic bounds

checking, it is not a complete solution.

Use OS-level preventative functionality. Not a complete solution.

Utilize static source code analysis tools to identify potential buffer overflow

weaknesses in the software.

Attack Pattern ID: 100

345

Parent Threat: Injection

Parent Mitigation: CM, SI, SC, AC

Attack Pattern Name: Server Side Includes (4)

Description

An attacker can use Server Side Include (SSI) Injection to send code to a web

application that then gets executed by the web server. Doing so enables the

attacker to achieve similar results to Cross Site Scripting, viz., arbitrary code

execution and information disclosure, albeit on a more limited scale, since the

SSI directives are nowhere near as powerful as a full-fledged scripting

language. Nonetheless, the attacker can conveniently gain access to sensitive

files, such as password files, and execute shell commands.

Solutions and Mitigations

Set the OPTIONS IncludesNOEXEC in the global access.conf file or local

.htaccess (Apache) file to deny SSI execution in directories that do not need

them

All user controllable input must be appropriately sanitized before use in the

application. This includes omitting, or encoding, certain characters or strings

that have the potential of being interpreted as part of an SSI directive

Server Side Includes must be enabled only if there is a strong business reason

to do so. Every additional component enabled on the web server increases the

attack surface as well as administrative overhead

Attack Pattern ID: 101

346

PMP Summary Table

PM PMP

AC 81.220

AT 9.19

AU 14.28

CA 20.30

CM 43.130

CP 8.17

IA 31.72

MA 9.13

PE 2.2

PL 7.11

RA 21.42

SA 20.67

SC 55.160

SI 74.235

	Dakota State University
	Beadle Scholar
	Spring 3-1-2009

	A Hierarchical Approach for Useable and Consistent CAPEC-based Attack Patterns
	Patrick H. Engebretson
	Recommended Citation

	MISUSE CASE-BASED ARCHITECTURE ANALYSIS OF SECURE SOFTWARE

