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Abstract 

The software development community has seen the proliferation of a new style of building 

applications based on small and specialized autonomous units of computation logic called 

microservices. Microservices collaborate by sending light-weight messages to automate a business 

task. These microservices are independently deployable with arbitrary schedules, allowing 

enterprises to quickly create new sets of business capabilities in response to changing business 

requirements. It is expected that the use of microservices will become the default style of building 

software applications by the year 2023, with the microservices’ market projected to reach thirty-

two billion United States of American dollars.  

 

The adoption of microservices presents new security challenges due to the way the units of 

computation logic are designed, deployed and maintained. The decomposition of an application 

into small independent units increases the attack surface, and makes it a challenge to secure and 

control network traffic for each unit. These new security challenges cannot be addressed by 

traditional security strategies. Software engineers developing microservices are facing growing 

pressure to build secure microservices to ensure the security of business information assets and 

guarantee business continuity. 

 

The research conducted in this thesis proposes a software development framework that software 

engineers can use to build secure microservices. The framework defines artefacts, development 

and maintenance activities together with methods and techniques that software engineers can use 

to ensure that microservices are developed from the ground up to be secure. The goal of the 

framework is to ensure that microservices are designed and built to be able to detect, react, respond 

and recover from attacks during day-to-day operations. To prove the capability of the framework, 

a microservices-based application is developed using the proposed software development 

framework as part of an experiment to determine its effectiveness. These results, together with a 

comparative and quality review of the framework indicate that the software development 

framework can be effectively used to develop secure microservices.   
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Chapter 1 

 

Introduction 

 
1.0  Introduction 

Enterprises need timely access to information to be able to retain business agility and boost productivity 

(Da Xu, 2014). The key to unlocking the value of existing technologies is often the ability to integrate 

existing applications and to assemble various technology components quickly to create new sets of 

business capabilities (Porter & Heppelmann, 2015). Over the years, enterprises have adopted an 

architectural style called service-oriented architecture (SOA), that aims to create an integrated 

information technology infrastructure that is scalable, and can quickly respond to changing needs (Natis 

& Schulte, 2003). Despite the popularity of SOA, implementing SOA in a fast-paced business 

environment with many new competitors frequently joining the market has proved to be a challenge. 

SOA-based applications are complicated to maintain and enhance in response to new business changes, 

and can become bottlenecks to business innovation. A new architecture called the microservices 

architecture, that is used to realize SOA, has emerged to enable organizations to make the development 

or enhancement of applications faster and easier to manage (Pahl & Jamshidi, 2016). 

 

The microservices architectural style is based on small and specialized autonomous units of computation 

logic called microservices, that are independently deployed using arbitrary schedules (Newman, 2015, 

Lewis & Fowler, 2014). Microservices communicate using point-to-point exchanges of message by 

means of lightweight mechanisms over the hypertext transfer protocol (HTTP) or by listening to events 

within their operating environment (Dragoni et al., 2017). Research indicates that the microservices 

architecture is to become the default software architecture by the year 2023 (LightStep, 2018). The 

microservices architecture’s market is projected to reach thirty-two billion United States of American 

dollars by the year 2023 (Infoholic Research LLP, 2017). 
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Although the microservices architecture constitutes an essential trend in software design with significant 

implications in the manner in which software is constructed, surveys such as the one conducted by 

Dragoni et al.  (2017) highlight a general lack of comprehensive research into microservices security. On 

the other hand, it is estimated that the total cost of cybercrime damages will be six trillion United States 

of American dollars annually by the year 2021 (Morgan, 2018).  In this regard, software engineers face 

a growing pressure to build secure applications. The challenge, however, is that a limited number of 

software engineers is trained in secure software development (Zhu et al., 2013). Feng et al. (2016) 

observes that the security of software often receives attention when security weakness or breaches are 

reported. Consequently, it is not uncommon that the same security issues re-occur over and over again 

(Veracode, 2017).  

 

The aim of this research is to address the challenge of building secure microservices in agile software 

development environments with quick turnaround times. The focus is placed on the identification of 

security activities that can be integrated with the phases of software development frameworks and 

methodologies such as the Agile methodology. The aim is to develop a generic framework that can be 

applied to a variety of software development methodologies.   

 

1.1  Description of the problem area 

To date, no formal approach exists to secure microservices, therefore practitioners are left to guidance 

found in blogs, online articles, and software development conferences, where such discussions are often 

limited in scope and detail (Yarygina, 2018). Furthermore, research on microservices security such as by 

Sun, Nanda, and Jaeger (2015), Fetzer (2016), Otterstad and Yarygina (2017), Yarygina and Bagge 

(2018) is mostly piecemeal approaches focusing on certain parts of the microservices architecture and do 

not take a comprehensive view to microservices security. Although it is vital to address the security of 

individual components of a microservices-based application, new security challenges are likely to emerge 

when various parts of the application interconnect (Fernandez-Buglioni, 2013).  To address the security 

challenge, a holistic risk analysis of the microservices architectural style is required together with a 

systematic approach to building microservices in a way in which security is an integral part of the entire 

microservices lifecycle (Fernandez-Buglioni, 2013). Microservices need to address security throughout 

the whole lifecycle to prevent or minimize the impact of attacks identified in a risk analysis (Feng et al., 

2016).  Building microservices with security in mind in this manner avoids expensive re-engineering 
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efforts that may be required after source code is written or a security breach has occurred (De Alwisa et 

al., 2018).  

 

1.2  Motivation 

The microservices architecture is experiencing a market proliferation at a time when there is an increase 

in cybercrime. Secure software development approaches have been proposed to ensure that software is 

developed with fewer security weaknesses such as the Microsoft SDL (Howard & Lipner, 2006), 

TouchPoint (McGraw, 2006) and OWASP’s Comprehensive, Lightweight Application Security Process 

(CLASP) (OWASP, 2006), among many others. However, these approaches are not designed for new 

trends in software development that many enterprises are investing in to ensure rapid software releases 

to retain business agility and boost productivity. On the one hand, software engineers are under immense 

pressure to create production-ready software applications quickly, yet on the other hand, there is no 

systematic guidance to assist software engineers, who often are not trained in software security, to 

develop secure software. Consequently, every year the top ten common security weaknesses are 

strikingly similar to those reported in the previous years. Software engineers can thus benefit from a 

light-weight software development methodology, with easy-to-use reusable security artefacts, that 

provide guidance on how to develop secure microservices from the start of the development process.  

 

1.3  Problem statement 

Even though the microservices architecture makes the building of complex applications easier, the 

management of microservices security has become more challenging. The management of the security 

of traditional SOA-based monolithic applications can be performed using a centralised security 

component that ensures that security services such as authentication, and authorisation are of high 

assurance. Due to the distributed nature of microservices, such a centralised security component could 

impact efficiency and limit the purpose of the architecture. The absence of assurance provided by 

centralised security, coupled with the lack of formal approaches to secure microservices, creates a need 

to augment software development frameworks with relevant security activities to assist software 

engineers when creating microservices-based applications. 
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1.4  Research objective  

In order to address the research problem, the primary objective of this research is to propose a 

microservices software development methodology that can assist software engineers to quickly build 

secure microservices so that these microservices can detect, resist, react and recover from security 

attacks.  

 

The objective of this research is met by addressing the following research questions (RQ): 

 

RQ1 - What are the security challenges associated with the microservices architectural style?   

This question is addressed by first understanding the emergence of the microservices architectural style 

and how it differs from traditional SOA implementations. The microservices architectural style is a 

relatively new area of research (Di Francesco, Malavolta & Lago, 2017). In that regard, there is a need 

to first understand the concepts and components of both the SOA model and the microservices 

architectural style. This understanding is vital to determine if protection measures used to secure 

traditional SOA implementations in the past are sufficient in microservices implementations. 

Furthermore, a risk assessment can assist to fully understand the security challenges of the microservices 

architectural style. Once a risk assessment is conducted, it becomes vital to analyze weaknesses of the 

microservices architectural style from the perspective of a potential attacker to reason better about 

appropriate countermeasures. To this end, the following secondary questions are defined: 

a) How does the microservices architectural style differ from common SOA implementations?  

b) What are the security risks of microservices? 

c) What methods can an attacker use to exploit weaknesses in the microservices architecture? 

 
RQ2 - How can software engineers build microservices in a systematic way so that security is an 

integral part of the entire microservices lifecycle? 

The objective of this question is to ensure that software engineers do not use a reactive approach to secure 

microservices. The question is addressed by first understanding the design flaws that software engineers 

should avoid when using the microservices architectural style. This understanding is vital because a 

component of the system with many design flaws tend to correlate with a high number of security 

weaknesses (Feng et al., 2016, Mirakhorli, 2014). Once the potential design flaws are identified, 

appropriate design guidelines can be identified to assist software engineers to avoid subtle architecture-

level security weaknesses. Also, in a fast-paced development environment, software engineers should be 
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able to count on security-focused tools and techniques to guide the quick development of secure 

microservices. In this process, microservices maintenance activities should not deteriorate any current 

protection measures. To address this research question in more detail, the following secondary questions 

are defined: 

a) What are the design flaws associated with the microservices architectural style? 

b) What guidelines can software engineers use to design and implement secure microservices and 

how can these guidelines be presented in a manner that is useful and convenient for software 

engineers especial those not trained in software security? 

c) How can security-focused tools, techniques, and practices be integrated in the development 

lifecycle so that they become part of the software engineer's daily software development tasks? 

 

RQ3 - How can protection measures be correctly implemented and preserved to ensure that 

microservices are safe at all times?  

This research question directly follows from question RQ2 stated above. While it is essential to identify 

security weaknesses and their countermeasures, there is also the risk that guidelines and protection 

measures may not be followed, or may be implemented incorrectly. An incorrect implementation may 

result in the introduction of new weaknesses (IEEE Center for Secure Design, 2015).  Strategies should 

be in place to detect the avoidance of guidelines and incorrect implementation of protection measures, 

as not many software engineers are trained in security (Zhu et al. (2013) and are under pressure to deliver 

working software.  

 

1.5 Research contributions 

This thesis provides a holistic security perspective of the microservices architectural style. The study 

identifies the security challenges of the microservices architectural style and designs a catalogue of 

microservices security threats, security weaknesses, and their mitigations. Furthermore, the study designs 

a dictionary of coding guidelines to mitigate common microservices security weakness and common 

attacks on microservices. The catalogue and dictionary are provided as reusable artefacts in a manner 

that is easy to use for software engineers who are not trained in security. Software engineers can use the 

catalogue and dictionary to gain background knowledge that is required to conduct risk assessments, or 

as security training manuals when performing brainstorming sessions during threat modelling exercises. 
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Furthermore, the catalogue and guidelines can be used as a reference by software engineers in their day-

to-day microservices development tasks.  

 

In addition, a software development framework is further proposed to build secure microservices from 

the ground up based on the identification of security-focused activities that are required in a 

microservices development lifecycle. The framework is specified in a manner that makes it agnostic to 

both culture and technology characteristics in a software development team to allow software engineers 

to apply software security controls within their unique organizational circumstances.  

 

To date, two publication has been published from this research. 

Nkomo, P. T. and Coetzee, M. (2016) Engineering Secure Adaptable Web Services Compositions, In 

Proceedings of the 2016 International Conference on Information Resources Management, CONF-IRM 

2016, May 18-20 Cape Town, South Africa, ISBN: 978-0-473-35594-4  

Nkomo, P.T and Coetzee, M (2019) Software Development Activities for Secure Microservices, In 

Proceedings of the 19th International Conference on Computational Science and its Applications, ICCSA 

2019, July 1-4 St Petersburg, Russia, Lecture Notes in Computer Science (LNCS) 11623 

 

1.6 Research methodology 

The research in this thesis commences with the formulation of a problem statement and research 

questions to justify the purpose of the research. The ultimate aim is to develop a systematic light-weight 

software development methodology that software engineers can use to develop secure microservices. 

The main contribution is a conceptual framework called SAFEMicroservices, that takes the form of a 

secure software development framework. In order to achieve this, the research is conducted using 

deductive reasoning and empirical research methods, and is qualitative in nature. The formulated research 

questions are addressed throughout the research strategy and through the development of a systematic 

light-weight software development methodology. The systematic light-weight software development 

methodology makes use of techniques and knowledge identified in the literature review (Ramesh et al., 

2004).  

 

To address the research objectives, the research questions that are posed are investigated further over the 

course of this thesis to gain an understanding of the problem domain and to provide a sound motivation 
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for the solution proposed for the research problem. In order to achieve this, a scientific and well-defined 

research methodology must be followed to ensure the soundness of the results found during the course 

of this work. The research makes use of a strategy discussed in Olivier (2009). The strategy discussed in 

Olivier (2009) consists of a detailed investigation of the literature, followed by an in-depth analysis and 

review. The findings of the review are used to motivate the proposed framework. Finally, the framework 

is evaluated. Each of these methods are now described in more detail.  

 

Literature review:  

This research conducts a literature review of service-oriented architecture, microservices, web services 

security, and security threats and risks, tools and techniques that can be used in the development of secure 

software. This ensures that a solid understanding is gained of all concepts that contribute to every facet 

of the problem and provide the basis for a complete solution. The current state-of-the-art is determined 

through the review of the literature, and also, the limitations of existing methods, techniques, and 

approaches used in the past to address the problem statement are ascertained. The literature review is 

conducted in Chapters 2 to 6 to determine the current state of the microservices security to gain insight 

into existing methods, techniques, and approaches which have been previously proposed to address the 

problem statement. From the literature review a formal foundation for the proposed solution is defined 

by the sets of security requirements, microservices specific threats and security activities that are derived.  

 

Framework:  

The formal foundation for the proposed framework is found by the literature review. A basis is provided 

to create a software development framework that guides software engineers to identify relevant risks and 

threats and to apply protection measures comprehensively. The security framework aims to define a 

systematic way of doing things in the microservices architecture environment, following secure software 

engineering principles to incorporate system security features during development. The 

SAFEMicroservices framework presents an innovative technique that supports current standards, 

policies and procedures, best practices and supporting tools. The framework is proposed by the researcher 

in Chapter 7 to address the problem statement.  
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Evaluation:  

The evaluation of the framework is performed according to a formal and rigorous approach. Due to the 

nature of the software development framework, it would be very difficult to determine its real value as 

perceived by industry. A real-world evaluation would be complex and costly to implement. Such a 

framework can only prove its real value after being used for many years in industry. In order to 

comprehensively evaluate the conceptual framework, two types of evaluation are performed. Firstly, an 

implementation of an example application is presented and reviewed. This proof-of-concept 

implementation is used to determine if the proposed software development methodology can adequately 

be used to develop secure microservices. The evaluation criteria are identified in the review and analysis 

of literature. Secondly, a comparative evaluation of the framework is done with regards to the 

functionality that it provides, to determine if it does make a contribution. Finally, the framework quality 

is reviewed by using a well-established quality model, where quality is determined by a number of 

evaluation criteria.  

 

Finally, the researcher presents a critical evaluation to determine if the framework meets the requirements 

initially identified for this research. Additional arguments are made as to the relevance of the solution 

and if software engineers will adopt the proposed solution. 

 
1.7  Thesis outline 

This thesis consists of four parts namely Part I, Part II, Part III, and Part IV. Each part consists of several 

chapters. Figure 1.1 below depicts the layout of the thesis. Part I provides the required background and 

review of the literature and is essential to the formulation of the proposed systematic light-weight 

software development methodology. Essential concepts are presented in this part of the thesis and provide 

the building blocks of the proposed software development methodology. Part I consist of Chapter 1, 

Chapter 2, Chapter 3 and Chapter 4. The current chapter, Chapter 1, presents the research topic and 

introduces the problem that the thesis attempts to address.  

 

Chapter 2 defines SOA and review the SOA model. This chapter aims to understand SOA as the 

foundation on which the microservices architecture is constructed. The technologies that enable SOA are 

discussed, and the chapter also describes how units of computation logic called services are combined to 

automate enterprise business tasks. Lastly, the challenges of SOA are identified.  
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Chapter 3 presents the state-of-the-art in microservices and the microservices architectural style.  The 

principles and concepts behind the architecture are explained. Lastly, the general security challenges of 

the microservices architecture are presented. 

 

Chapter 4 provides a background to understanding the security of both traditional SOA implementation 

and the microservices architecture implementation. General security concepts are defined in this chapter. 

Also, the chapter discuss how security is implemented in SOA and microservices. 

  

Part II of the thesis discusses the security risk assessment of microservices. An analysis of the risks 

associated with microservices culminates in the identification of activities that should be part of the 

development lifecycle of microservices. Part II of this thesis consists of Chapter 5 and Chapter 6. 

 

Chapter 5 discusses a preliminary security risk assessment of microservices. The chapter aims to identify 

weaknesses in microservices and harm that may arise from misuse of microservices by a malicious user. 

The chapter concludes by identifying security-focused activities that can assist in developing secure 

microservices. 

 

Chapter 6 identifies and reviews available security-focused tools and techniques that can be used to 

perform security-focused activities identified in Chapter 5. This chapter aims to understand how software 

engineers can adopt tools and techniques as part of their daily development activities.  

 

Part III of the thesis proposes a software development framework that can be used to develop secure 

microservices. The methodology is demonstrated by developing an example application. The framework 

is then evaluated. Part III consists of Chapter 7 and Chapter 8. 

 

Chapter 7 discusses the proposed systematic light-weight software development framework that can be 

used to develop secure microservices. The various reusable artefacts of the methodology are introduced. 

 

Chapter 8 demonstrates the applicability of the framework proposed in Chapter 7 in practice. An 

example application is used to demonstrate the feasibility of using the proposed framework.  
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Part IV of the thesis evaluates the proposed methodology and provide concluding remarks. Part IV 

consist of Chapter 9 and Chapter 10. 

 

Chapter 9 evaluates the proposed light-weight methodology using evaluation criteria identified in the 

review of literature.  

 

Chapter 10 presents the conclusions of the thesis. Research contribution and future research directions 

are discussed. 

 

Appendix presents a list of all the artefacts produced in this thesis.  
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Figure 1.1. Thesis layout 

  



 

12 

Chapter 2 

 

 Service-Oriented Architecture  

 

 

2.0 Introduction 

Enterprise information systems can be composed of a variety of legacy, custom and third-party 

applications (Markus & Tanis, 2000). As an enterprise grows, the need for timely access to information 

becomes imperative to be able to retain business agility and boost productivity (Da Xu, 2014). Enterprises 

need to harness different types of technologies to fend off business disruption, compete against new 

market entrants, create new revenue streams, and meet customer demands. The key to unlocking the 

value of existing technologies is often the ability to integrate existing applications and to assemble 

various technology components quickly to create new sets of business capabilities (Porter & 

Heppelmann, 2015). To this end, it becomes vital for an enterprise to adopt an architecture that leads to 

highly flexible and maintainable systems that can continuously adapt to new business requirements 

(Krafzig, Banke & Slama, 2005). Over the past number of years, the need to integrate enterprise 

applications has led to the emergence of many integration patterns. The natural progression of the various 

integration efforts has culminated into an architectural style called Service-Oriented Architecture (SOA), 

that aims to create an integrated information technology infrastructure that is scalable, and can quickly 

respond to changing needs (Natis & Schulte, 2003).   

 

This chapter aims to review the SOA model, understand its enabling technologies and to identify its 

challenges. The understanding gained in the review is vital towards answering research question RQ1. 

First, various integration patterns adopted before SOA are briefly reviewed as background. Then, 

Service-Oriented Architecture (SOA) is discussed by giving an overview of various enterprise integration 

patterns adopted in the past before the adoption of SOA in Section 2.1. Section 2.2 introduces and discuss 

SOA concepts and enabling technologies. Section 2.3 discusses how essential components called 

services, the main building blocks of SOA, are classified. Section 2.4 describes how services are 

combined to automate enterprise business tasks. Section 2.5 discusses the challenges of implementing 

SOA. A summary and conclusion then follow. 
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2.1       Enterprise integration 

In the past, the need to integrate enterprise applications has led to the emergence of many integration 

patterns. The earliest integration pattern was the sharing of data, where applications produced files to be 

directly consumed by other applications (Ray, 2010). File sharing challenges identified were: a standard 

file format was required for all applications; the output of one application rarely produced what another 

application needed thus requiring additional processing; and file transfers lacked timeliness (Hohpe & 

Woolf, 2004). To compensate for file sharing challenges, the sharing of information via enterprise 

databases later became a more familiar pattern (Hohpe & Woolf, 2004, Vernadat, 2007). However, 

effective sharing of enterprise databases required standardization and governance across systems, which 

was challenging when systems were owned by different teams or organizations (Hohpe & Woolf, 2004). 

To address the need for real-time data sharing, remote procedure calls (RPC) was adopted that enabled 

one computer to call a procedure on another computer while abstracting the socket layer (Olsson & Keen, 

2004). Unfortunately, remote procedure calls did not offer code reuse as the logic for network 

communication was embedded in the client and server applications. Furthermore, the client in an RPC 

model of communication was required to wait for a server to respond before proceeding (Ni & Yuan, 

1996).  

 

Asynchronous messaging, typically enabled by Message-Oriented Middleware (MOM) technology 

evolved to address the limitations of RPC for integration (Menasce, 2005). In asynchronous messaging, 

applications communicate by sending and receiving messages from a buffer called a queue, and no 

dedicated communication link is established between applications. Later, the emergence and ubiquity of 

the Internet and the World-Wide Web provided web-based technologies that could be used as basic 

building blocks for enterprise integration (Linthicum, 2003, Newcomer & Lomow, 2005). By leveraging 

MOM functionality and web technologies and protocols, a design paradigm that can combine reusable, 

coarse-grained components was adopted called Service-Oriented Architecture (SOA) (Natis & Schulte, 

2003).   

 

The next section defines Service-Oriented Architecture by giving a definition and describing the concepts 

service-orientation and Service-Oriented Architecture. 
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2.2  Service-Oriented Architecture 

Service-Oriented Architecture (SOA) can better be understood by first describing service-orientation as 

underlying concept. Service-orientation is a design approach that aims to create individually constructed 

units of logic in a way that allow the units of logic to be collectively and repeatedly utilized to realize a 

specific business goal (Erl, 2008). These units of logic are called services (Erl, 2008). A service-oriented 

environment is based on a vendor-neutral architectural model, allowing an enterprise technology 

landscape to evolve in line with business requirements without being limited to the characteristics of a 

proprietary platform (Erl et al., 2014). To achieve service-orientation, the units of logic should have the 

following characteristics:   

 Be assembled and reconfigured effectively in response to changing business requirements (Dhara, 

Dharmala & Sharma, 2015). 

 Support a standardized contract for communications that hides underlying technology disparities, 

allowing each unit of logic to be individually governed and evolved (Erl, Merson & Stoffers, 

2017). 

 Exist within a business-centered functional context, to allow units of logic to mirror and evolve 

with business requirements. Each unit of logic is delivered and viewed as an asset that is expected 

to be reused in different business contexts (Erl, Merson & Stoffers, 2017). 

 

The concept of service-orientation is the foundation of the service-oriented architecture. SOA represents 

an architectural style that aims to create an integrated information technology infrastructure that is 

scalable, reliable, and responsive to the changing business requirements of an enterprise (Shirley et al., 

2012). SOA positions units of logic called services as the primary means through which an integrated 

information technology infrastructure can be realized (Erl, 2005) and defines how various systems within 

the entire enterprise interact (Wolff, 2016). Implementations of SOA are traditionally a combination of 

technologies, products, application programming interfaces and supporting infrastructure (MacLennan 

& Van Belle, 2014) ensuring that a deployed SOA tends to vary from one enterprise to another. As an 

architectural model, SOA encompasses the following (Erl, 2005): 

 Service architecture - the architecture of a single unit of logic or service.   

 Service composition architecture - the architecture of many aggregated units of logic working 

together to perform a business function.       
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The next two sections discuss service architecture and service composition architecture respectively. 

  

2.3  Service architecture 

A service is a unit of logic deployed as a physically independent software program with specific design 

characteristics that supports a business goal (Erl, Merson & Stoffers, 2017). Each service is designed 

within a specific business-related functional context and is comprised of a set of capabilities related to 

the functional context. A service is, therefore, a container of a set of related functions called service 

capabilities (Erl, 2008) that are accessed using standardized interfaces.  Figure 2.1 below depicts a Driver 

Service from an on-demand taxi application such as the one provided by Uber (Cramer & Krueger, 2016). 

The service exposes capabilities to retrieve a list of available drivers, add new driver and remove a driver 

from the system. 

 
 
 
 
 
 
 
 
 

Figure 2.1. Driver service with multiple capabilities  
 

The most widely used services in SOA are based on eXtensible Markup Language (XML) and JavaScript 

Object Notation (JSON). XML is a self-descriptive markup language designed to store and transport 

information (Moller & Schwartzbach, 2006).  JSON is a lightweight, text-based, language-independent 

data interchange format (Crockford 2006). Services that are based on XML and JSON are referred to as 

web services (Dhara, Dharmala & Sharma, 2015, Pautasso, 2014). Web services have become an 

essential means to implement SOA (Ochieng et al., 2011). To this end, the next section discusses web 

services in more details. 

 

2.3.1.  Web services 

A web service is a software system identified by a Uniform Resource Identifier (URI), that has public 

interfaces and bindings defined and described using XML or JSON (Dhara, Dharmala & Sharma, 2015). 

A URI is a string character that identifies a resource. Interaction with a web service is performed in a 

manner prescribed by the web service definition. The web service definition is given using XML or JSON 
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messages, and messages are conveyed over the HyperText Transfer Protocol (HTTP) (Fielding, 1999). 

Public interfaces are standardized communication interfaces which act as service contracts that form an 

interaction agreement between a web service and its consumers. The service contract is a fundamental 

part of the service architecture as the contract definition gives the web service a public identity and 

expresses the web service's functional context (Erl, 2008). 

 

In the context of SOA, it is important to note that merely using web services does not necessarily translate 

to a SOA implementation, and not all SOA implementations are based on web services. However, the 

relationship between SOA and web services is essential and is mutually influential (Ochieng et al., 2011, 

Candido et al., 2013). When web services are used to implement SOA, the implementation represents a 

web services-based implementation of SOA. In a web-services-based SOA implementation, the web 

services architecture becomes vital.  

 

There are two popular architectural styles currently in use in web services architecture, namely the Simple 

Object Access Protocol (SOAP) and Representational State Transfer (REST). The two web service 

architectural styles are discussed next.  

 

a)  SOAP 

SOAP is a lightweight protocol that exchanges structured information in a distributed environment using 

XML technology (Box et al., 2004). The SOAP specification defines the standard message format used 

by most web services implementations. SOAP originally stood for "Simple Object Access Protocol” but 

is now considered a standalone term. The SOAP message is contained in an envelope (Box et al., 2004). 

Inside the envelope is an optional header element and body element. The header is used to hold extra 

meta-information about the message or any security information. The body of the SOAP message 

contains the payload that carries incoming or outgoing information. Figure 2.2 below shows the basic 

structure of a SOAP message which includes the envelope, header, and body. 
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<env:Envelope xmlns:env="http://www.w3.org/2003/05/soap-envelope"> 
       <env:Header> 
    ... 
       </env:Header> 
       <env:Body> 
    ... 
       </env:Body> 
</env:Envelope> 
 

Figure 2.2. Basic SOAP Message 

 

In a SOAP-based web services architecture, a Web Services Description Language (WSDL) document 

provides an XML grammar to describe web services (Chinnici et al., 2007). A WSDL document 

describes a web service as a set of uniform resource indicators (URI) that consume XML request 

messages and provide XML response messages. The WSDL document describes the physical address, 

the network protocol and message format used by the web service. Figure 2.3 below shows the structure 

of a WSDL document. The interfaces element represents the web service interface that may contain 

multiple operations. The service element represents one or more uniform resource indicators (URI) 

through which the web service can be accessed. Messages represent collections of input or output 

parameters and can contain multiple parts that represent either incoming or outgoing information.  The 

binding element associates protocol and message format information to the functions of a web service.  

 

<definitions> 
    <interface name=""> 
    ... 
    </interface> 
    <message name=""> 
     ... 
    </message> 
    <service> 
    ... 
    </service> 
    <binding name=" "> 
    ... 
    </binding> 
</definitions> 

Figure 2.3. Structure of a WSDL document 

 

The web service architecture defines a central directory to host the WSDLs so that the web services can 

be discovered. The Universal Description, Discovery Integration (UDDI) (Liu et al., 2005) provide such 

mechanisms (World Wide Web Consortium, 2003). UDDI allows web services to advertise themselves. 
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UDDI is the broker component of web services architecture that allows service providers and requestors 

to locate each other. UDDI is usually implemented as a distributed database with interconnected servers. 

Figure 2.4 below adapted from Erl (2004) depicts the relationship between SOAP, WSDL, and UDDI.  

 

 

Figure 2.4. The relationship between SOAP, WSDL, and UDDI 

 

In Figure 2.4, the provider of a web service describes the web service using a WSDL document and 

optionally publishes it to a UDDI repository. A web service consumer queries the repository to locate a 

web service and is sent the WSDL document of the service. The WSDL document can also be retrieved 

from the service provider out of band using, e.g. an email message. The WSDL document describes the 

format of requests and responses that the web service provider expects and provides respectively. All 

messages sent between the service provider, service consumer and repository are sent using SOAP.  

 

Next, the REST architectural style used in the web services architecture is discussed. 

 

b)  Representation State Transfer (REST) 

REST is a software architectural style that supports the transmission of data using the Hypertext Transfer 

Protocol (HTTP) (Fielding, 2000). A REST web service is represented as a resource and exposed with a 

uniform resource identifier (URI). REST defines how the state of resources are addressed and transferred 

over HTTP by a wide range of clients written in different languages. Figure 2.5 shows an example of a 

request to access a resource using the RESTful style.  
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GET --header ‘Accept:application/json’     

             ‘https://localhost:8084/service/user/5678/details’ 

Figure 2.5. REST request 

 

REST defines four basic architectural design principles (Fielding, 2000) as follows:  

 HTTP methods are used explicitly.  For example, in Figure 2.5, the resource is retrieved using 

the HTTP GET method. The GET method is used to request the representation of a specified 

resource following the protocol defined in the request for comment RFC 2616 (Fielding et al., 

2009). 

 A uniform resource identifier (URI) with a structure similar to directories is exposed. The URI 

should be a self-documenting interface which can be intuitively understood without requiring 

any explanation or reference. In Figure 2.5 the URI is /service/user/5678/details’, which defines 

the document type resource. 

 Data transfer should use XML, JavaScript Object Notation (JSON), or both. JSON is a 

lightweight data-interchange format that is self-describing and easy to understand. JSON is built 

using two structures namely a collection of name-value pairs and an ordered list of values. JSON 

is text only and can quickly be sent to and from a server to be understood by any programming 

language. Figure 2.6 shows an example of a JSON response received when a request in Figure 

2.5 above is processed.  

 A REST web service should be stateless (Christensen, 2009). A service consumer includes all 

the data that is needed for the request to be fulfilled in the HTTP headers and body of a request, 

so that no information is stored on the server to generate a response.  
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{ 

 "name":"John", 

 "surname":"Smith", 

 "userid":"5678", 

 "roles":[ 

 { 

  "id":1 

  "name":"agent" 

  } 

 ] 

} 

Figure 2.6. Example of JSON response 

 

REST has emerged in the last few years as the predominant web service design model due to its adoption 

and use. Its simple style has made it a better choice for software engineers than SOAP web services (De 

Giorgio, 2010).  

 

In any SOA-based initiative it is vital to understand different types of services, and how the web service 

types are effectively communicated to stakeholders in an organization. The next section discusses the 

primary classification of services in SOA. 

 

2.3.2  Service taxonomy in SOA 

Services in SOA are classified according to the role the service plays in the overall architecture. This 

formal classification is called a service taxonomy (Richards, 2015). There are four basic types of services 

namely business services, enterprise services, application services, and infrastructure services (Bean 

2009, Marks & Bell, 2008), as shown in Figure 2.7. The types of services are defined below. 

 Business services are abstract high-level coarse-grained services that define the core business 

operation. Business services provide no implementation or protocol details (Richards, 2015). 

They are represented using WSDL or Business Process Execution Language (BPEL). Business 

services are required for the successful completion of business processes.  

 Enterprise services implement the functionality of business services and are concrete coarse-

grained services. A middleware component is used as a bridge that provides an abstraction 

between the business services and corresponding enterprise services.  Example of an enterprise 
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service can be a service to retrieve customer details. The service encapsulates functionality that 

can be shared by many applications within the enterprise. Consequently, the use of enterprise 

services in SOA is based on the concept of sharing (Richards, 2015). Although sharing reduces 

duplication, there is often a considerable penalty in the form of tight coupling. This increases the 

overall risk of making changes to enterprise services since these services are globally available 

to the organization. Changes to enterprise services require regression to test all possible uses of 

enterprise services within the organization, to ensure that the change does not affect existing 

functionality. 

 Application services are usually specific to the context of a given application and are therefore 

fine-grained. The functionality provided by this type of a service is not found at an enterprise 

level but specific to an application within an enterprise. For example, a service to calculate de-

merit points for drivers enlisted in the on-demand taxi application is an example of an application 

service since it will be specific to an application and not the whole enterprise. 

 Infrastructure services are shared services that do not represent business functionality but are 

used to provide additional functionality such as logging, auditing, monitoring, and security. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.7. SOA services taxonomy 
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The classification of services results in a service ownership model that spans multiple administrative 

boundaries (Brown et al., 2014). Service ownership is vital to understand because it affects how teams 

should be coordinated to implement a SOA-based application successfully. The next section discusses 

the ownership of services in SOA.  

2.3.3.  Service ownership model 

Services in SOA are owned and maintained by different service providers, spanning different 

administrative boundaries (Brown et al., 2014). An owner of a service can be defined as a group within 

the organization that has the responsibility of developing and maintaining the service. Business services 

are usual owned by business users, and enterprise services are owned by shared services teams such as 

systems architects. Application services are usually owned by the application development teams, and 

the infrastructures services are owned either by application development teams or a team responsible for 

infrastructure (Richards, 2015). Integration architects typically own the middleware components.  Figure 

2.8 shows the ownership model of services in SOA. 

 

Figure 2.8. SOA Services Ownership model  

 

In any SOA implementation, the service ownership model requires coordination among multiple groups 

to create or maintain applications. Any enhancement of the SOA-based application requires business 

users to be consulted about the abstract business services, shared services teams to be consulted about 

the enterprise services created to implement the business services. Furthermore, application development 

teams should be coordinated so that enterprise services can invoke lower-level functionality, and 

infrastructure teams should be coordinated to ensure nonfunctional requirements are met through the 

infrastructure services. Furthermore, input is required from the middleware teams or integration 

architects managing the messaging middleware. The effort required to develop, test, deploy, and maintain 

services should, therefore, be considered when migrating to SOA-based implementations. 
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An important design principle in service-orientation is to ensure that services are designed so that they 

can be effectively assembled and reconfigured to meet business requirements. The principle is important 

because the automation of many business tasks require a collaboration of services. When services work 

together to perform a business function, a service composition is formed (Hoffmann & Weber, 2014), 

discussed next.  

 

2.4  Service composition architecture 

Service-orientation requires that services are designed to be flexible logical units that can participate in 

aggregated structures. Aggregating of services in SOA enable complex business tasks to be automated. 

Even though service compositions are comprised of services, it is the service capabilities that are 

individually invoked and executed to carry out the function of the service composition (Erl, 2008). To 

qualify as a service composition, at least two participating services and a service composition initiator 

need to be present, otherwise the service interaction becomes a point-to-point exchange (Sheng et al., 

2014). In SOA, service compositions are created through service orchestration, discussed next.  

 

2.4.1 Orchestration of services 

The service responsible for composing other services assumes the role of a composition controller, and 

composed services become composition members (Erl, 2008). Creating composition with a composition 

controller and composition members is called orchestration (Sheng et al. 2014). The composition 

controller coordinates asynchronous interactions between composition members and support 

sophisticated and complex service composition logic that can result in long-running runtime activities. 

When there is no composition controller, services interact using point-to-point exchanges within a 

choreography (Sheng et al., 2014). Figure 2.9 shows an example of an orchestration of services to 

automate a business task to get loan quotations. The loan request service assumes the role of composition 

controller and coordinates interactions with the credit scoring service, calculate interest rate service, and 

amount eligible service. Service orchestration is fundamental to the successful implementation of SOA. 

 

Services compositions need to manage many types of scenarios that may arise at runtime. Therefore, the 

design of services as candidates for orchestration requires that services are well prepared to participate 

in complex service compositions (Alferez & Pelechano, 2013). Features such as security, transaction 
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management, reliable messaging and message routing should form part of the specification of a typical 

service composition architecture (Erl, 2008). In general, many service compositions are dedicated to the 

execution and maintenance of complex business processes (Josuttis, 2007). A business process can be 

defined as a set of activities that once completed, accomplish a goal such as deliver a service or product 

to a consumer (Bhattacharya et al., 2009). 

 

 
 
 
 
 
 
 

 
 
 
 
 
 

Figure 2.9. Orchestration of services 
 

The next section briefly discusses how services are orchestrated to perform different activities that make 

up a business process. 

 

2.4.2  Service orchestration and business processes 

A graphical representation of a business process is created using Business Process Management Notation 

(BPMN) (White & Bock, 2011). BPMN is a standard for business process modeling and provides a 

graphical notation for specifying business processes using flowchart technique. The graphical business 

processes created using BPMN are then transformed to be executed using various business process 

modeling tools such as Business Process Execution Language (BPEL) (Pant & Juric, 2008). 

Conceptually, BPEL is an XML language for describing business flows and sequences. A business 

process, as seen by BPEL, is a collection of coordinated service invocations and related activities that 

produce a result, either within a single organization or across several (Parsley, 2005). BPEL is, therefore, 

an example of an orchestration language used to create service composition. BPEL provides many 

constructs to support common tasks. Examples include: 

 <invoke> used to invoke web services 
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 <receive> used to wait for the request sent to a web service 

 <assign> used to manipulate data variables in a process 

 <sequence> used to define a set of activities in a process invoked in an ordered sequence 

 <flow> used to define a set of activities that will be invoked in parallel 

 <while> for defining loops, etc. 

 <partnerLinks> for defining web services that are invoked by the process 

 

The next section discusses an example to illustrate the various SOA concepts discussed above. The 

example uses BPEL to create a service composition utilizing the BPEL constructs discussed above. 

 

2.5.  Motivating example 

Consider an imaginary on-demand taxi application such as Uber (Rogers, 2015) that is implemented as 

an SOA-based application as shown in Figure 2.10. The application is referred to as the PickMeUp 

application.  

 

Registered passengers request taxi rides using mobiles phone or desktop computers. As soon as the 

request is made, a notification about location and passenger details is sent to the nearest driver. The driver 

either accepts or rejects a request for a ride. In case the ride is rejected, a notification is sent to drivers in 

the area. If the driver accepts the ride, driver details are sent to the customer along with the estimated 

arrival time. The passenger can track the drivers and drivers can track the exact location of the passenger 

to reach their exact location. The payment procedure between the passenger and the driver is either cash 

or credit card. 
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Figure 2.10. BPMN for the PickMeUp application process  

 

In a typical SOA implementation, the business analyst uses the Business Process Management Notation 

(BPMN) to visualize the PickMeUp business process graphically. The BPMN process diagram is used 

by the software developer to create an executable process using BPEL.  BPEL is used to orchestrate web 

services into an SOA services composition. The composition initiator is a service called TaxiService. The 

TaxiService orchestrates various business services such as the LocationService for retrieving the location 

of the passenger requesting the service, the DriverService to get the information about the driver who is 

dispatched to the passenger, the PaymentsService to bill the client and the VehicleService to manage 

registered vehicles. The TaxiService is executed in a BPEL engine such as ActiveBPEL. ActiveBPEL is 

a commercial-grade open source implementation engine for BPEL (Qian et al., 2007). To external clients 

of the PickMeUp application, the TaxiService is exactly like any other web service and is described using 

a WSDL and consumed using SOAP messages. 

 

Figure 2.11 show an example of a BPEL service composition for TaxiService. The TaxiService 

orchestrates the VehicleService, LocationService and DriverService. The orchestrated services are shown 

as part of the <partnerLinks> elements.   
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<?xml version="1.0"?> 
<process name="TaxiService" ..> 
   <variables> 
 -- 
   </variables> 
   <flow> 
-- 
   </flow> 
   <partnerLinks>  
      <partnerLink name="registeredVehicleService"  
        partnerLinkType="vhs:vehicleLT"  
        myRole="registeredVehicle"  
        partnerRole="VehicleService"/>  
      <partnerLink name="mapService"  
        partnerLinkType="loc:locationLT"  
        partnerRole="LocationService"/>  
      <partnerLink name="registeredDrivers"  
        partnerLinkType="driv:driverLT"  
        myRole="registeredDriver"  
        partnerRole="DriverService"/>  
--- 
      </partnerLinks>  
</process> 
 

Figure 2.11. BPEL process for PickMeUp application 

 

The orchestrated business services employ an Enterprise Service Bus (ESB) as an integration hub that 

mediates the invocation of web service to complete a business transaction. The ESB provides additional 

capabilities such as augmenting request information when necessary, modifying the format of data from 

one type to another, and transforming a request from one protocol to another. Various enterprise services 

are defined to provide functionality for business services. Security and logging services are provided as 

infrastructure services. Figure 2.12 shows the SOA application depicting the various concepts discussed 

above.  
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Figure 2.12. PickMeUp SOA application  

 

In the next section, the challenges of developing an SOA-based application is described. 

 

2.6  Implementation challenges of SOA 

Implementing SOA in an enterprise has many challenges. To start with, there has been a lack of 

consensus on how to implement SOA correctly (Newman, 2015). The existing narrative on SOA 

implementations has often been provided by technology vendors whose aim is to sell their technology 

products (Lee, Shim & Kim, 2010). Furthermore, there is a lack of guidance on how to define the 

granularity of services in SOA, and how to ensure that services are not tightly coupled. Software 

engineers are expected to design and implement services and service compositions that meet the qualities 

that SOA stakeholders expect, although there is no blueprint to guide them on how to partition a complex 

application into a set of collaborating services. Moreover, there is often a misconception that legacy 

systems can easily be integrated into SOA without taking into consideration technical constraints of the 

legacy components, such as immature technology, that may require significant rework (Lewis et al., 

2007). This often poses a risk to the adoption of SOA.  

 

Successful deployments of SOA-based applications require extensive coordination among various 

stakeholders as identified in the SOA service ownership model (Bell, 2008). Multiple reviews and 
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approvals are vital among the various groups who own business services, enterprise services and 

infrastructure services (Richards, 2015). Furthermore, changes to some enterprise services may have a 

substantial ripple effect with regards to regression testing (Bhuyan, Prakash & Mohapatra, 2012). 

Typically, many SOA-based applications require a history of an extensive suite of regression tests 

(Bartolini et al., 2011). This increases the time required for testing and the personnel required to complete 

testing. 

 

SOA services compositions can become complicated. When this complexity arises, it is not always 

intuitive to know in an orchestration which part of the application to modify when new business 

requirements arise. As a result, software engineers tend to be hesitant to make enhancements because of 

the fear of causing damage to existing SOA-based applications due to unknown dependencies (Richards, 

2015). Consequently, the rate of enhancement and delivery of new business capabilities is reduced. 

Furthermore, when a service composition becomes complex, new software engineers on the team require 

much time to become familiar with the software source code and other infrastructure components. This 

may increase the software project delivery timeline. 

 

The implementation challenges of SOA have been the major pitfall towards the adoption of the 

architecture. Many enterprises compete in a fast-paced business environment with a lot of new 

competitors frequently joining the market, and can, therefore, not afford slow software releases.  

 

2.7  Conclusion 

Enterprises are often expected to harness different types of technologies to create new revenue streams 

and meet customer demands. The solution to harnessing technologies is usually to integrate existing 

applications and to assemble various technology components quickly to create new sets of business 

capabilities. SOA became an architecture that promised highly flexible and maintainable systems that 

can continuously adapt to new business requirements. The basic building blocks of SOA is web-based 

technologies and protocols. Using services as its foundation, SOA enables an integrated information 

technology infrastructure that is scalable, reliable, and can quickly respond to changing needs of an 

organization.  
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Despite the popularity of SOA, implementing SOA in a fast-paced business environment with many new 

competitors frequently joining the market has proved to be a challenge. SOA-based applications are 

complicated to maintain and enhance in response to new business changes and can become bottlenecks 

to business innovation. The stiff competition enterprises are exposed to requires investment in fast-paced 

software development environments with quick software release cycles to stay ahead of competitors. The 

elaborate service ownership model of SOA does not readily support fast-paced software development 

teams due to the requirement for extensive coordination to make software changes or enhancements. 

 

The need to harness enterprise technologies to meet customer demands quickly require an approach that 

makes development or enhancement of applications faster and easier to manage.  The challenges of 

incorporating new requirements in complex SOA applications have led enterprises to consider adopting 

an architecture which allows for fast and flexible development and provisioning of business processes. 

A new architecture called the microservices architecture can realize SOA and has emerged to enable 

organizations to make development or enhancement of applications faster and easier to manage. To 

differentiate microservices architecture from the SOA discussed in this chapter, the implementation of 

SOA discussed in this chapter will be referred to as the traditional SOA implementation. In the next 

chapter, microservices architecture is discussed.  
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Chapter 3 

 

 Microservices Architecture 

 
3.0  Introduction 

Nowadays, enterprises operate in a fast-paced business environment where competition is fierce. To be 

able to maintain their competitive advantage, enterprises invest in fast-paced software development 

technologies that support speedy software releases (Lesser & Ban, 2016). The state of software 

development and software operations report of 2017 found that companies that excel have forty-six times 

more frequent software deployments than others (Forsgren et al., 2017). These companies have four 

hundred and forty times faster lead time from the moment software source code is committed to a 

software repository to when the source code is deployed in a production environment (Forsgren et al., 

2017). It is thus vital to enterprises to employ strategies to quickly create production-ready software 

applications.   

 

In the quest to compete in a fast-paced business environment, the complexity of maintaining and 

enhancing traditional SOA applications, has presented significant challenges to many enterprises 

(Zimmermann, 2015). These challenges have led to the emergence of a new architectural style to 

implementing SOA called the microservices architecture (Dragoni et al., 2017, Zimmermann, 2017). The 

microservices architecture uses a collection of small, loosely coupled software components called 

microservices that collaborate to automate business functionality, and can be developed within fast 

software release cycles (Nadareishvili et al., 2016). The microservices architecture promises to provide 

agility by allowing each microservice to be quickly built, modified, tested and deployed in isolation. The 

adoption of microservices is thus in line with the emergence of trends that aim to frequently and 

consistently deliver high-quality working software with minimum project overhead (Bossert, 2016). The 

success of companies such as Amazon (Bernstein, 2015), Netflix (Ravichandran, Taylor & Waterhouse, 

2016), SoundCloud (Baresi, 2017), Facebook (Feitelson, Frachtenberg & Beck, 2013), Google (Kim, 

2014) and several others can be attributed to the adoption of the microservices architecture.  
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This chapter presents the state-of-the-art in microservices and microservices architecture. An 

understanding of the microservices architecture is essential to answer research question RQ1 formulated 

Chapter 1. First, in Section 3.1 the chapter briefly discusses the various trends in continuous software 

delivery that have contributed to the adoption of microservices architecture as they are a precursor of a 

microservices architecture. Section 3.2 introduces and discuss microservices and microservices 

architecture, including principles and concepts of the architecture. Section 3.3 discuss the collaboration 

of microservice to automate a business task. Section 3.4 discuss how the location of a microservice 

instance is identified by other collaborating microservices at runtime. Next, in Section 3.5, the 

deployment strategies of microservices are discussed. In Section 3.6 an example of collaborating 

microservices is introduced to demonstrate the concepts of a microservices architecture. The 

classification of microservices in the microservices architecture is then discussed in Section 3.7. The 

security challenges of microservices and a conclusion then follow in section 3.8 and 3.9 respectively.  

 

3.1 Trends in continuous software delivery  

The concepts of agile methodology, continuous integration, continuous delivery, and continuous 

deployment have significantly changed the way in which online business is enabled (Bossert, 2016). An 

understanding of these concepts is essential to understanding microservices architecture.  

 

Agile software development is a methodology based on iterative development, where requirements and 

software evolve as self-organizing cross-functional teams collaborate (Schmidt, 2016). The benefit of 

agile development is that early feedback is provided on the status of functionality being developed.   

 

Continuous integration is a practice of frequently integrating new software changes into an existing code 

repository in a manner that ensures that each commit of software source code into the repository results 

in the compilation and testing of software. Any arising errors can be noticed and corrected immediately 

(Hilton et al., 2016).  

 

Closely related to continuous integration is the concept of continuous delivery. Continuous delivery is 

an extension of continuous integration that makes sure that new software changes are reliably released 

quickly and sustainably at any time (Loukides, 2012). Continuous delivery requires automating testing 
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and an automated release process that ensure that software changes are deployed any time. Continuous 

deployment refers to the frequent release of software into a production environment. 

 

Over the past few years, a new trend called DevOps has emerged that aims to unify agile software 

development, continuous integration, continuous delivery, continuous deployment with software 

operations (Bass, Weber & Zhu, 2015). DevOps aims to shorten software development cycles, increase 

the frequency of deployments and create more dependable software releases that are closely aligned with 

business objectives (Fowler, 2013). The goals of DevOps are achieved using automation at all steps of 

software development from integration, testing, releasing software to production and also the 

management of servers (Davis & Daniels, 2015). Figure 3.1 below shows the relationships between these 

concepts. 

 

Figure 3.1. The relationship between software development methods  

 

A common set of DevOps and continuous delivery ideologies at companies such as Amazon (Bernstein, 

2015), Netflix (Ravichandran, Taylor & Waterhouse, 2016), SoundCloud (Baresi, 2017), Facebook 

(Feitelson, Frachtenberg & Beck, 2013), Google (Kim, 2014) and several others has led to the adoption 

of a new architectural style called a microservices architecture. Microservices architecture is seen as a 

natural fit to enable continuous delivery and has become a prelude of a new form of concrete 

implementation of SOA (Kravchuk et al., 2017).  

 

The next section describes microservices and microservices architecture. 
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3.2  Microservices architecture 

Microservice architectures aim to overcome the shortcomings of traditional SOA architectures, also 

called monolithic architectures, where all of the application’s logic and data are managed in one 

deployable unit. To be able make a distinction between these architectures, this section defines and 

discusses a microservice and the microservices architecture respectively. To illustrate concepts, the 

PickMeUp example is extended for this purpose. Next, a microservice is defined.   

 

3.2.1 A microservice  

A microservice is defined as a self-contained, autonomous, lightweight unit of logic running in its own 

process (Nadareishvili et al., 2016). Microservices communicate using lightweight mechanisms over 

hypertext transfer protocol (Dragoni et al., 2017), using the RESTful architectural style as a means of 

communication. A microservice provides a narrowly-focused standardized application programming 

interfaces to its consumers. Microservices have the following characteristics: 

 Microservices is a modularization concept (Krivic et al., 2017) where a large application is 

decomposed into small microservices that communicate using standardized interfaces.  

 Each microservice should be designed so that it fulfills only one task and performs the assigned 

task well (Daya et al., 2016). 

 Microservices can be implemented in different technology (Dragoni et al., 2016).  There is no 

restriction on the technology or programming language at hand, as long as the microservice 

presents a standardized interface for communication. The technology suitable to the work at hand 

is adopted. 

 Microservices are deployed independently of other microservices (Thönes, 2015). Each 

microservices is a self-contained process that can run on its own. Changes to one microservices 

can be taken into production, independent of changes made to other microservices. This makes it 

easy to roll-back features that fail after new deployments are made. The automated deployment 

of a microservice should preferably be applied (Thönes, 2015, Zimmermann, 2016). 

 Microservices should easily be replaced by other microservices offering the same communication 

interface (Le et al., 2015) to reduce the overall risks of incorrect decisions made at development 

time. 
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 Microservices should be designed so that that they can work together to perform a task. 

 

The adoption of microservices brings many benefits such as: 

 Agility – due to shortened build, test, and deployment cycles (Lawton, 2015, Killalea, 2016). Each 

microservice can incorporate the flexibility needed to employ microservice's specific needs for 

replication, persistence, monitoring, and security. 

 Reliability – due to the fact that a fault with one microservice only affects that microservice and 

its consumers, unlike a single-tier application were a failure affects the entire application 

(Balalaie, Heydarnoori & Jamshidi, 2015). 

 Availability – due to minimal downtime required when deploying a new version of a microservice 

(Jose & Shettar, 2017). Only the microservice being deployed is impacted, and the entire 

application that uses microservices does not require a full restart of the whole application. 

 Modifiability – due to the flexibility to adopt or consume new frameworks, libraries, data sources, 

and other resources. Microservices tend to be easier to work with and to understand (Le et al., 

2015). 

 Management – due to the use of agile methodology, where the development effort is divided 

across teams that are smaller and work more independently (Newman, 2015, Zúñiga-Prieto et al., 

2016). 

 

3.2.2 Microservice architecture 

The microservices architectural style is an approach that structures an application as a set of loosely 

coupled collaborating microservices. There are no set of rules when choosing between various 

frameworks or protocols to use in a microservices architecture. However, the protocol should be 

lightweight, keeping in mind that the microservices architecture relies heavily on messaging between 

collaborating microservices. Using this architecture style, an enterprise can structure development teams 

as a collection of small autonomous teams, usually at most nine members, who focus on one or more 

microservices (Lalsing, Kishnah & Pudaruth, 2012).  

 

Figure 3.2 shows the relationship between microservices architecture, continuous delivery, and small, 

agile autonomous development teams. 
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Figure 3.2. Microservices architecture, continuous delivery, and autonomous teams  

 

Next, the PickMeUp example is extended to illustrate the various principles and concepts behind the 

microservices architecture.  

 

3.2.3 PickMeUp microservices example 

The PickMeUp SOA application is now decomposed into a set of smaller, collaborating microservices 

to illustrate the principles and practice of microservices architecture. The benefits of microservices 

architecture increase when the functional scope of each microservice is carefully considered (Dragoni et 

al. 2017). The recommendation is that a microservice should correspond to an organization’s business 

capabilities (Newman 2015, Balalaie, Heydarnoori & Jamshidi 2015, Dragoni et al. 2017). A business 

capability is defined as an activity that a business does, to generate value (Sandkuhl & Söderström 2016). 

For example, in the PickMeUp SOA application business model discussed before, the management of 

passenger information is identified as an example of a business capability. The following are useful 

guidelines that define the functional scope of microservices:  

 The Single Responsibility Principle (SRP) establishes the responsibility of microservice to be 

limited only to a single part of the business functionality of the application (Rahman & Gao 

2015, Killalea 2016). For example, in the PickMeUp application, a microservice to maintain 

driver details should only focus on that use case. When the SRP is applied, the microservice will 

change when its business functionality changes. SRP ensure that the functionality of each 
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microservice is isolated from another microservice and changes on one microservice does not 

require other microservices to change. 

 The Common Closure Principle (CCP) states that software components that change for the same 

reason should be grouped in the same package (Albattah & Melton 2014). Any business 

functionality that is likely to change for the same purpose or is tightly coupled should be in the 

same microservice. This can ensure that any change in business requirements impacts only a 

single microservice.  

 

The microservices architecture decomposes an application into collaborating microservices. In the 

PickMeUp application, the first step is to identify business capabilities. Then, the functional context of 

each microservices is determined using SRP and CCP. Figure 3.3 below shows an example of how the 

operational context of microservices is defined from the business capabilities. Three capabilities namely 

Passenger Management, Driver Management, and Trip Management are used as an illustration.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.3. Mapping business capabilities to microservices 

 

Once the functional scope is identified, the technology that is suitable for each microservices at hand is 

chosen as they each can be developed using a different technology stack. The essential requirement for 

the microservices architecture is that independent microservices collaborate to automate a business 
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functionality. When microservices work together to fulfill a business task, a microservices composition 

is created. The next section discusses how a microservices composition is formed. 

 

 3.3  Microservices compositions 

In a microservice architecture, choreography is preferred when creating a microservices composition, 

unlike traditional SOA, were orchestration is used. In choreography, there is no central microservice 

called a composition controller that controls communication with other microservices (Butzin, 

Golatowski & Timmermann, 2016). Microservices in choreography communicate using point-to-point 

exchanges or by listening to events on their environment (Sheng et al., 2014). The inter-communication 

mechanisms can either be synchronous or asynchronous, discussed next. 

 

3.3.1 Synchronous communication 

Synchronous communication is a point-to-point style of communication were microservices 

communicate directly with each other in a blocking way. For each request that is sent, the calling 

microservice waits for a response. The entire message routing logic resides on each microservices.  

 

Figure 3.4 shows synchronous point-to-point communication between the Trip Management 

Microservice and the Driver Management Microservice. The Trip Management Microservice invokes 

the Driver Management Microservice by sending a request using the REST architectural style and waits 

until a response is received from the later.  

 

Figure 3.4. Synchronous microservices communication  
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The synchronous model of communication works well for relatively simple microservices compositions. 

As the number of microservices increases in the microservices composition, synchronous communication 

becomes overwhelmingly complex. The disadvantages of this model of communication is: 

 When microservices synchronously invoke one another, there is the possibility that one 

microservice may be unavailable or exhibit high latency (Newman, 2015). The failure of one 

microservice can potentially cascade to other microservices throughout the microservices 

composition. 

 Non-functional requirements such as monitoring have to be implemented at each microservice 

within the composition to mitigate against failures resulting from a single microservice (He & 

Yang, 2017). 

 Many microservices typically run in a virtualized environment where the number of 

microservices instances, and their locations change dynamically. Consequently, mechanisms are 

required to enable each microservice to make requests to other dynamically changing sets of 

ephemeral microservices instances (Rotter et al., 2017). 

 Microservices may use a diverse set of protocols, some of which might not be web-friendly 

(Richardson, 2016). This may require each microservices to be equipped with the logic to 

transform messages. 

 

The challenges of implementing a synchronous model of communication in a microservices composition 

make asynchronous communication a more suitable approach. Asynchronous communication is 

discussed next. 

 

3.3.2 Asynchronous communication 

In asynchronous communication, several channels are used to exchange messages.  Microservices are 

connected to a message bus and subscribe to channels of interest (Dragoni et al., 2017). Any number of 

microservices can send messages to a channel. Similarly, any number of microservices can receive 

messages from a channel. There are two kinds of message channels, namely point-to-point and publish-

subscribe.  

 A point-to-point channel delivers a message to exactly one microservice that is reading from the 

channel.  
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 A publish-subscribe channel delivers each message to all microservices that subscribe to the 

channel. Microservices use publish-subscribe channels for the one-to-many interaction styles 

were each request is processed by multiple service instances.  

 

Figure 3.5 shows an asynchronous model of communication using the microservices from the on-demand 

taxi application example. The Trip Management Microservice publishes a message to a channel that is 

of interest to both the Passenger Management Microservice and the Driver Management Microservice.  

 

Here, the asynchronous model of communication has the following advantages: 

 Easy to add new microservices to the microservices composition as a new microservice is added 

by connecting the microservice to the message bus and ensuring that other microservice emit the 

events required by the new microservice (Newman, 2015).  

 Microservices are decoupled from each other in the microservices composition making them 

independent of each other (Richter et al., 2017).  

 

 
 

 

 

 

 

 

 

 

 

Figure 3.5. Asynchronous communication between microservices 
 

As microservices expose a fine-grained application programming interface (API), it can be a challenge 

when there is a mismatch between the needs of various external clients. For example, the desktop browser 

client typically can consume an API that provides more elaborate details than mobile clients.  
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Next, the use of an application programming interface gateway to address different needs of 

microservices clients is discussed.  

 

3.3.3 Application programming interface gateway 

The API gateway is an essential component of the microservices architecture. The API gateway acts as 

a lightweight entry point for a diverse set of external clients (Montesi & Weber, 2016). Zuul (Netflix, 

2013) from Netflix is an example of an implementation of the API gateway pattern (Macero, 2017). 

Figure 3.6 shows an example of an API gateway that exposes the functionality of the Trip Management 

Microservice and the Payments Microservice as light-weight API to mobile clients.  

 

The API gateway provides the following benefits. 

 It gives the ability to provide a different application programming interface that is suitable to the 

needs to each client (Montesi & Weber, 2016). 

 The gateway can be used to provides lightweight message routing and transformation according 

to the requirements of each microservice (Alpers et al., 2015). 

 The gateway provides a central place to apply non-functional requirements such as security and 

monitoring (Balalaie et al., 2015). 

 The gateway makes microservices to become more lightweight as all the non-functional 

requirements are implemented at the gateway (Montesi & Weber, 2016). 

 
 
 
 
 
 
 

 
 
 
 
 
 
 

Figure 3.6. Microservices API gateway 
 

The gateway provides the following benefits. 
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 It gives the ability to provide a different application programming interface that is suitable to the 

needs to each client (Montesi & Weber, 2016). 

 The gateway can be used to provides lightweight message routing and transformation according 

to the requirements of each microservice (Alpers et al., 2015). 

 The gateway provides a central place to apply non-functional capabilities such as security and 

monitoring (Balalaie et al., 2015). 

 The gateway makes microservices to become even more lightweight as all the non-functional 

requirements are implemented at the gateway (Montesi & Weber, 2016). 

 

In the microservices architecture, microservices discovery is an essential aspect of the microservices 

architecture (Balalaie, Heydarnoori & Jamshidi, 2015). Discovering microservices becomes essential due 

to the deployment of microservices in virtualized environments. When microservices are deployed in 

virtualized environments, strategies to locate microservices are essential because the network location of 

microservices are assigned dynamically (Rotter et al., 2017). The next section discusses how 

microservices instances are discovered in the architecture. 

 

3.4 Microservices discovery 

Microservices discovery utilizes a microservices registry (Montesi & Weber, 2016). A microservices 

registry is a database of microservices, their instances, and their locations. Microservices cases are 

registered with the microservices registry when the microservice starts up and de-registered when the 

microservice shuts down. An example of a microservices registry is Eureka developed by Netflix 

(Netflix, 2012). The following approaches are used to locate an instance of a microservice: 

 Client-side discovery. In this approach, clients of a microservices directly query the microservices 

registry to find the locations of a microservice instance (Montesi & Weber, 2016). The limitation 

of this approach is that it couples the microservice client to the microservice registry. Figure 3.7 

shows an example of client-side discovery. At runtime, the Trip Management Microservice 

queries the registry for the location of the Driver Management Microservice. 
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Figure 3.7. Microservices client discovery  

 

 Server-side discovery. When making a request to a microservice, the client makes a request via a 

router or a load balancer located at a known static location (Montesi & Weber, 2016). The router 

or load balancer then queries a service registry, which might be built into the router. Once the 

router or load balancer discovers the location of the microservice instance from the registry, it 

then forwards the request to microservices instances. AWS Elastic Load Balancer (Guide, 2010) 

is an example of a server-side discovery router. Figure 3.8 shows microservices using server-side 

discovery. The Trip Management Microservice forwards a request to the router, that is 

responsible for locating and delivering the request to microservices instances. 

 
 

 

 

 

 

 

 

 

 

 

Figure 3.8. Server-side microservices discovery 
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3.5 Microservices deployment strategies 

Various deployment strategies can be used to deploy microservices. These are: 

 Deploying multiple microservices instances per host (Dragoni et al., 2015). The host may be a 

physical or virtual machine. Each microservice instance is deployed as a process on the host or 

multiple service instances are deployed in the same virtual machine (Newman, 2015). The 

limitation of this approach is the risk of conflicting resource requirements for each microservices 

deployed on the same host. It may also be difficult to isolate each microservice instance or to 

monitor and limit the resources consumed by a single microservice instance.  

 Deploying each microservice instance on its own host (Johansson, 2017). The benefits of this 

approach are that microservices instances are isolated from one another. There is no possibility 

of conflicting resource requirements for microservices. Monitoring, managing, and redeploying 

of a microservice instance is simplified. The drawbacks are that there is potentially less efficient 

resource utilization compared to running multiple microservices per host. 

 Deploying one microservice instance per container (Jaramillo, Nguyen & Smart, 2016). A 

container image is a filesystem image consisting of the microservice and libraries required to run 

the microservice (Merkel, 2014). The microservice is packaged as a container image and 

deployed as a container. The benefit of this approach is that it is straightforward to scale a 

microservice by changing the number of container instances. Docker containers (Merkel, 2014) 

are becoming a common container technology for packaging and deploying services (Anderson, 

2015). Each microservice is packaged as a Docker image. Containers are extremely fast to build 

and start (Merkel, 2014).  

 Serverless deployment (McGrath & Brenner, 2017). This uses a deployment infrastructure 

provided by public cloud providers. Code for a microservice is packaged and uploaded into the 

deployment infrastructure provided by the cloud providers. The providers hide the concept of 

servers, physical or virtual hosts, or containers. Examples include AWS Lambda (Sbarski & 

Kroonenburg, 2017), Google Cloud Functions (Wagner & Sood, 2016), Azure Functions (Baldini 

et al., 2017). The infrastructure runs the microservices, and the infrastructure providers charge 

based on resources consumed. The serverless deployment infrastructure automatically scales 

microservices to handle the load. The benefits of using serverless deployment are that it 

eliminates time to spend low-level managing infrastructure by the development team. The 

drawback is that the deployment environment typically may have far more constraints on 
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supported languages, for example, Amazon Web Services AWS Lambda (McGrath & Brenner, 

2017). This approach is also not suitable for long-running stateful applications (Baresi, Mendonça 

& Garriga, 2017).  

 

The next section summaries the various concepts of the microservices architecture discussed above using 

the PickMeUp example. 

 

3.6 Microservices composition example 

The various architectural components of the microservices composition for the PickMeUp application 

are shown in Figure 3.9 namely the API gateway, a service registry, and message broker. The deployment 

strategy adopted for the application is to deploy components of the application on separate Docker 

containers that run on a single host. 

 

Figure 3.9 above shows a set of collaboration microservices that form a microservices composition. 

Access to the composition is done via the API gateway. The gateway locates the instance of a trip 

management microservices using the service registry. The trip management microservices communicate 

either directly by calling other microservices’ REST interface or by sending a message to the message 

broker. Each microservice is deployed in its Docker container.  
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Figure 3.9. PickMeUp microservices composition  

 

Another important aspect of the microservice architecture is the classification or taxonomy of 

microservices, discussed next.  

 

3.7 Microservices architecture taxonomy 

The microservices architecture has a limited microservice taxonomy. Microservices are classified into 

functional microservices and infrastructure microservices (Richards, 2015).   

 Functional microservices support business requirements. They are accessed using an application 

programming interface (API) which acts as a microservice facade. The API serves as an 

abstracting layer so that changes can be made to the service without affecting the consumer.  

 Infrastructure microservices supports non-functional tasks such as auditing, logging, and 

monitoring. They are generally not accessible externally. 
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Figure 3.10 below shows the taxonomy of microservices. A functional microservices is accessible to the 

external client through an application programming interface. The functional microservice delegates all 

its non-functional tasks to the infrastructure microservice. 

 
 
 
 
 
 

 
 
 
 
 

Figure 3.10 Microservices service taxonomy 
 

The limited microservice taxonomy makes microservices ownership less complicated. An application 

development team may own the functional microservices and the infrastructure microservices. This 

allows development teams to be broken down into smaller independent teams whose work is integrated 

as it is delivered. There is less coordination among teams to provide a microservice. This fosters complete 

ownership by self-contained teams making development, testing, and maintenance less complicated. 

Figure 3.11 depicts microservices ownership model in the microservices architecture.  

 

 

 

 

 

 

 

 

 

Figure 3.11. The microservices service ownership model 

 

3.8 Microservices architecture security challenges  

Despite the undeniable success of microservices architecture, the biggest challenge is security. The 

adoption of microservices architecture as part of DevOps practices introduces complications when 
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implementing security controls. As development teams continue to deliver software in short and agile 

sprints cycles, usually one to two weeks in length, often little attention is given to the security of the 

application.  

 

The preferred models of deploying microservices provide an attacker with increased options to attack 

microservices compositions. In most instances, the myriad of distributed microservices are often 

designed to trust each other completely. A compromise of a single microservice could bring down the 

entire application.  

 

Furthermore, many of the most popular tools used for ensuring continuous integration, continuous 

delivery and continuous deployment and DevOps are often new to the market or are open-sourced. The 

relative immaturity leads to concerns about the degree to which secure development standards are being 

adhered to. Most of the security challenges arise from the way microservices are deployed.  

 

3.9 Conclusion  

The past few years have seen the emergence of agile methodology, continuous integration, continuous 

delivery, and continuous deployment and DevOps whose aim is to shorten software development cycles 

and increase the frequency of software deployment. The objective of these methodologies is to quickly 

build potentially shippable software increments and bringing changes to production as soon as possible. 

A common set of DevOps ideologies at various companies has to lead to the adoption of a new 

architectural style called microservice architecture that decomposes applications into small units of logic 

called microservices.  

 

Microservices communicate synchronously or asynchronously to fulfill a business task using lightweight 

protocols. Collaborating microservices create a microservices composition. Adoption of the 

microservices architecture has been one of the DevOps success stories. This chapter has presented the 

various aspects that captures the fundamental understanding of microservices architecture. The benefits 

of adopting this architectural style have also been introduced.  
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Providing secure and reliable microservices-based applications is increasingly needed to ensure 

successful adopting of microservices architecture. The next chapter discusses the fundamental concepts 

of web services security which provides the basic building blocks to understanding SOA and 

microservices security. The chapter also shows how the current security practices in SOA falls short 

when applied to the new microservices architecture.  
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Chapter 4 

 

 Security of Web Services 
 

4.0 Introduction 

The development of secure microservices applications is not a problem that has been solved. To date, 

little research focuses on microservice security. However, the core security principles that apply to 

SOAP-based, and RESTful web services hold for microservices as well. There is a large body of work 

on security protocols and security best practices for web services that can be used when building 

microservices applications.  

 

SOA security is a topic that has been extensively discussed in literature (Buecker et al., 2008, Kanneganti 

& Chodavarapu, 2008, Shashwat, Kumar & Chanana, 2017). When distributed SOA applications were 

developed, secure silo-based application logic had to be made available to external partners, leading to a 

major change in how services need to be protected. SOA security comprises of general security standards 

as well as web services security standards that are generally XML-based. Security requirements of web 

services are specified in a security policy document, and referenced within the WSDL. WS-Security 

(Nadalin et al., 2006) specifies the way integrity and confidentiality can be enforced, and security tokens 

used for authentication. Middleware is used to enforce distributed security via components such as 

interceptors (Shah & Patel, 2008). 

 

In contrast, the RESTful style of web services does not provide any formal guidance on how security 

mechanisms should be applied and leaves their implementation to the discretion of software engineers. 

Such services mainly rely on ad-hoc security mechanisms or transport layer security. With microservices, 

security becomes more of a challenge because no middleware component is available to manage security-

based functionality. Instead, each microservice is required to manage security on its own, or in other 

cases, the API gateway is given the responsibility of managing the security of the application. 
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In order to provide a foundation for this research, this chapter provides a background to the security of 

both traditional SOA implementations and microservices architecture implementations. Section 4.1 

defines security concepts. Section 4.2 identifies general information security services that are required to 

meet the security requirements of both the traditional SOA-based and microservices-based systems. 

Section 4.3 discusses web services security vulnerabilities and section 4.4 then introduce the web services 

security model. Section 4.5 discusses the implementation of the web service security model in SOAP-

based web services. Section 4.6 discusses the implementation of the web service security model for 

RESTful web services. Section 4.7 then identify the new security challenges of microservices. A 

conclusion then follows in section 4.8.  

 

4.1 Information security concepts 

The information security of both traditional SOA and microservices architecture implementations can be 

defined as the degree to which malicious harm to assets of the application is prevented, reduced, and 

adequately responded to. The objective of information security is to protect valuable or sensitive 

information while making the information readily available to the users of the application (Kissel, 2013). 

Figure 4.1 below adapted from Firesmith (2004) shows the relationships between various information 

security concepts defined above. 
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Figure 4.1 Security concepts relationships 

  

The vital information security concepts are: 

 Asset - anything that has value to an organization’s operations and continuity (Kissel 2013, Priya 

& Arya, 2016) such as services, servers and information.  

 Attack - an unauthorized attempt to cause harm to assets (Kissel, 2013).  

 Attacker- an agent that initiate an attack to cause harm to assets, by disrupting normal operations 

or stealing information, using attack methods, tools, and techniques (Priya & Arya, 2016). 

 Vulnerability - a weakness in the system's requirements, system's design, system's 

implementation or operation that an attacker can exploit to achieve a malicious motive (Kissel, 

2013). A dictionary of all publicly known information security vulnerabilities or exposures are 

documented by the Common Vulnerability Exposure (CVE) project (Mitre 2017). 



 

53 

 Attack surface - the sum of vulnerabilities in a given system that is accessible to an attacker 

(Giarratano, Guise & Bodin, 2017). 

 Threat - any circumstance or event that creates a possible danger that might be exploited by an 

attacker to breach the security of a system (Bertino et al., 2009, Kissel, 2013). A threat exists 

typically when an entry point into the system provides access to an asset (Priya & Arya, 2016).  

 Security goal - a desirable ability of a system to resist a specific category of threats (Cherdantseva 

& Hilton, 2013).  

 Security policy - an aggregation of directives, regulations, rules, and practices that prescribes how 

assets are protected, and how information is distributed in a secure manner (Ross, McEvilley & 

Oren, 2016). A security policy represents a set of security constraints that must be enforced to 

assure secure access to assets. 

 Security mechanism - a method, tool, or procedure for enforcing a security policy. It is a 

countermeasure that helps reduces one or more security vulnerabilities (Ross, McEvilley & Oren 

2016).  

 Security requirement - the functional, assurance, and strength characteristics of a protection 

mechanism (Kissel, 2013). It is a quality of service requirement that specifies a required level of 

security using system-specific criteria (Penzenstadler et al., 2014).  

 

Both traditional SOA-based applications and those based on the microservices architecture need to be 

able to handle traditional security demands of protecting information and ensuring that access is only 

granted to entities that are permitted. ISO 27002 (ISO, 2013) defines five categories of information 

security services to meet the global and pervasive security requirements of any given information system 

including service-oriented applications. At the time of writing ISO 27002 was undergoing revision to 

cater for more security services. The next section identifies the information security services that are 

required to ensure secure applications. 

 

4.2  Information security services  

Both traditional SOA-based and microservices-based applications need to be able to resist security 

threats. ISO 27002 defines security services that can provide protection to achieve this goal. The five 

information security services identified by ISO 27002 are: 
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 Authentication – the information security service that ensures that an entity is identified before 

access to a resource is granted (ISO, 1989). In web services, authentication requires that web 

service must provide proof that its claimed identity is true (Erl, 2008). In general, an entity can 

prove identity by presenting what they know with a username and password, or what they have 

for example an authentication token, or what they are with a biometric. 

 Access control -   the information security service that controls what type of access an entity is 

granted to a resource.  The decision to grant access may depend on criteria such as the action the 

entity wants to perform, the resource on which the action is being requested, and the groups the 

requester belongs to. 

 Data confidentiality – the information security service that is concerned with protecting the 

privacy of the contents of a message. A message is considered to have remained confidential if 

in its message path no service or agent that is not authorized to do so viewed its contents. 

Confidentiality can be enforced by defining appropriate access levels for information (ISO, 

1989). 

 Data integrity - the information security service that ensures that information in transit is not 

tampered with, or any tampering of information is be detected (ISO, 1989). In the context of web 

services, integrity ensures that the state of the message contents remains intact from the time of 

transmission to the point of delivery (Erl, 2008). 

 Non-repudiation (non-deniability) – the information security service that ensures that the entity 

cannot deny creating or modifying the resource after the fact (ISO, 1989). 

 

Figure 4.2 below shows how information security services are positioned to protect the assets of an 

application (Yamany, Capretz & Allison, 2010). The information security services may be implemented 

as components to ensure that access to assets is only granted to entities that are permitted.  
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Figure 4.2. Information security services and SOA assets  

 

The challenge of using web services is that they have known security vulnerabilities that an attacker can 

exploit to compromise an application. The next section briefly identifies the common security threats 

associated with web services. 

 

The following are common threats that can occur for SOAP-based and REST-based web services that 

make use of XML messages: 

 Buffer overflows occur when an attacker crafts an XML message in such a way that the XML 

message references its elements recursively. This causes a memory overflow when the XML is 

parsed and may trigger error messages which reveal information about the web service. The 

server parsing an XML file may repetitively use more resources to parse the file, and this can 

result in denial of service (DOS) (Chan, Chua & Lee, 2016). 

 XML injections occur when a server does not validate data correctly. A malicious web service 

message may be used to create XML data which inserts a parameter into an SQL query and send 

to the server which then executes the message using the rights of the web service. Another attack 

is to poison the schema, a file that an XML parser uses to understand the XML's grammar and 

structure. This allows the XML parser to process malicious web service messages (Chung et al., 

2014).  

 Session hijacking involves gaining unauthorized control of a legal user's valid session state and 
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use it to gain that particular user's privileges in the application. This is done by intercepting or 

sniffing web services messages (Chung et al., 2014). 

 

There are numerous more threats that can compromise the confidentiality, integrity, or availability of 

SOAP-based and REST-based web services (Vorobiev & Han, 2006, Popa, 2015). Ensuring that web 

services provide authentication, access control, integrity, confidentiality, and non-repudiation is critical 

for an enterprise and its customers. The next section discusses a generic security web service model that 

can be used to support information security services, discussed in section 4.2 above. 

 

4.3  Generic web service security model 

The web service security model, shown in Figure 4.3, supports, integrates and unifies several popular 

security models, mechanisms, and technologies, and enables a variety of systems to interoperate securely 

(Della-Libera et al., 2002). The generic model can apply to both SOAP and REST web services and may 

thus also apply to microservices-based applications. The web service security model is generic and can 

be used to support more specific security models. The aim of the security model for web service security 

is to ensure that: 

 A web service, both SOAP and REST, can require that an incoming message provides 

information that expresses its origin and ownership. The expression of such information is 

referred to as making a claim. A claim is a statement about a subject that is used for example to 

assert the subject’s identity or the subject’s authorized role (Bigdoli, 2006). Claims can be a name, 

security key, permission or a capability. If a message arrives without having the required claims, 

the web service may ignore or reject the message. A set of claims and related information is called 

a policy (Della-Libera et al., 2002). 

 A requester, which can be an end user or another web service can send messages with proof of 

the required claims by associating security tokens with the messages. Thus, web services 

messages both demand a specific action and prove that their sender has the claim to demand the 

action. 

 Another web services can be contacted to provide the required claims. The other web services 

referred to as security token services, may, in turn, require a set of claims (Della-Libera et al., 

2002). The security token services are used to broker trust between different trust domains by 

issuing security tokens. 
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Figure 4.3 Web service security model  

 

The goal of service-orientation requires that SOA be realized in a manner independent of technology and 

using open standards. The security architecture of web services should thus implement the web service 

security model in a manner that promotes the goal of service-orientation.  

 

The next section discusses a concrete realization of the web services security model in the SOAP-based 

web services. Both SOAP and REST expose data over HTTP requests and responses, but make use of 

very different formats and semantics. As REST has different security considerations, REST security is 

discussed in the following section.     

 

4.4  SOAP web services security 

The SOAP messaging model utilizes a large combination of networks devices and applications that may 

be globally distributed. Web services that use SOAP messages interact by exchanging messages which 

may go through various intermediaries before reaching the intended destination. SOAP intermediaries 

are applications that can process parts of a SOAP message and forward the message as it travels from its 

origination point to its final destination point. Figure 4.4 shows the SOAP communication model using 

intermediaries. An approach called transport-layer security establishes a secure channel for data 

exchange, but is not sufficient to ensure end-to-end security in a SOAP messaging model. Intermediaries 

within the SOAP message path have access to messages and can, therefore, access the content of the 

message even when the message is not intended for them. Mechanisms are required to ensure that 
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different parts of messages used by web services are only revealed to intended parties in the message 

path.  

 

Figure 4.4 SOAP message intermediaries  

 

Considering the nature of the SOAP messaging model and the requirement to design web services as 

candidates for orchestration that demands that web services are well prepared to participate in complex 

service compositions, the following are necessary to ensure security:  

 Different parts of messages used in web services communication with information such as credit 

card details are protected, so that these selected parts of the message are only revealed to intended 

parties in the message path. This requirement is referred to as message-level security (Kearney, 

2005, Ahmed & Bhargava, 2015, Medhi et al., 2016). 

 Security rules and security enforcement mechanisms are not to be hard-coded in each web 

service to ensure that the web service is well prepared to participate in complex service 

compositions. Security requirements should instead be declared separately of the web service 

(Chetty & Coetzee, 2010). This approach is referred to as policy-driven security (Pearson & 

Sander, 2010, Chhetri et al., 2012).  

 Components responsible for enforcing information security services on behalf of web services 

are required, since web services may not know the context in which they will be invoked at 

runtime. This approach is referred to as security as a service (Dawoud et al., 2010, Hussain & 

Abdulsalam, 2011). 

 

The next section briefly discusses how message-level security and policy-driven security are 

implemented in the SOAP message model.  
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4.4.1  Message-level security in SOAP 

Message-level security in SOAP ensures that different parts of the message have different levels of 

protection to ensure that only the intended party has access to sensitive information. An extension called 

WS-Security provides a means to extend SOAP message headers to address security concerns for 

authentication, authorization, non-repudiation, and confidentiality (Atkinson et al., 2002). WS-Security 

is a message-level standard that is used to secure SOAP messages using: 

 XML digital signature to provide applications with authentication, data integrity and non-

repudiation abilities (Rosenberg & Remy, 2004). 

 XML encryption to ensure confidentiality of SOAP message (Rosenberg & Remy, 2004). 

 Security tokens such as username tokens and X.509 certificates (Hawanna et al., 2016) to ensure 

authentication and propagation of credential between web services. WS-Security provides a 

means to specify and associate security tokens in SOAP messages (Rosenberg & Remy, 2004). 

In line with the web service security model, security tokens for use in WS-Security may be 

provided by other web services. 

 

Figure 4.5 shows an example of a SOAP header message that contains an encrypted username and 

password using the WS-Security syntax. The example is used to enable authentication. The username 

and password are examples of security tokens and are contained in the UsernameToken element. The 

UsernameToken is an example of a WS-security token that carries a security claim. The token is 

encrypted to enable confidentiality. 

 

<soapenv:Header> 
   <wsse:Security ...> 
       
      <wsse:UsernameToken wsu:Id="1"> 
  <wsse:Username> 
     <xenc:EncryptedData>...</xenc:EncryptedData> 
  </wsse:Username> 
   
      <wsse:Password> 
     <xenc:EncryptedData>...</xenc:EncryptedData> 
  </wsse:Password> 
      </wsse:UsernameToken> 
      
    </wsse:Security> 
 </soapenv:Header> 
 

Figure 4.5. Encrypted SOAP header message 
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WS-Security allows the requester to add security information that applies to that particular message to a 

SOAP message header. WS-Security is enforced through SOAP message interceptors which process the 

SOAP request message before the web service is invoked (Taher et al., 2011, Lin et al., 2013). Typically, 

a web service has a security interceptor component developed according to the web service description 

language (WSDL) document. The interceptor acts as a security filter for incoming and outgoing SOAP 

messages. Interceptors exist for both the invoking web services and the web services being invoked. On 

the invoking web services side, the client, the client security interceptor is responsible for adding tokens 

on SOAP headers, signing and encrypting the SOAP message. On the side of the web services being 

invoked, the interceptor is responsible for verifying the message signature and checking that the message 

has not been tampered with in transit. When sending responses, the web service interceptor adds WS-

Security headers on the response message to ensure integrity and confidentiality of the response message. 

Figure 4.6 show an interceptor between a web service and a client. 

 

 

Figure 4.6. Interceptors 

 

Securing web service compositions is complex as various services with different security requirements 

needs to be invoked together to get a response. Web services participating in a composition may require 

mechanisms to propagate authentication and authorization across composed services (Erl, 2008). Since 

each web service in a composition is autonomous and independent from the other, mechanisms may be 

required to persist the security context after authentication with the composition controller is successful.  

 

4.4.2 Policy-driven security in SOAP web services  

SOA web services should not support security as software engineers of a web service may not know the 

context in which the web service is to be used (Rudra & Vyas, 2015, Memeti et al., 2015). Service-

orientation requires that a web service be developed in such a way that it can participate in many 
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composition scenarios. As a result, security requirements and mechanisms should not be hard-coded in 

web services. Instead, security requirements of each web service need to be declared separately in a 

security policy document.  A good design of a security policy is a significant requirement to successfully 

guarantee secure access to resources of an SOA-based application (El Hassani et al., 2015).  The 

advantage of using a security policy in SOA is that:  

 It separates security logic from business logic, leaving the former to security specialists.  

 It becomes easier to ensure consistency of security enforcement across various services 

compositions where a web service participates. 

 It enhances interoperability as security policies of web services that are a candidate for 

composition can be assessed at design time and decisions can be made on how to make their 

security implementations compatible. 

 

A good design of a security policy requires an understanding of the following terms: 

 Subject. A subject is an entity requesting access to a web service. A subject possesses one or 

more attributes. In the context of an SOA-based application, a subject can represent a system 

end user, another web service in a web service composition or a user role. A subject may also 

represent an aggregated set of users, a composition of web services and a list of roles (Brodecki 

et al., 2011). 

 Resource. A resource is data, a web service or any component of the SOA system.  

 Action. Action defines the type of access requested on a resource.  

 Obligation. An obligation is a directive on what must be carried out before or after access is 

granted. 

 Target. Target is a set of simplified condition that must be met.  

 Object. An object is an SOA system resource for which access is managed. 

 

An essential standard in SOA with regard to describing security policies of SOAP web services is the 

WS-SecurityPolicy specification (Della-Libera et al., 2002). WS-SecurityPolicy is a widely accepted 

security standard that allows web services to advertise their policies using XML.  The standard provides 

means to describe a set of rules used to define security objectives to be satisfied when web services 

interact. This standard is part of the existing WS-Policy framework proposed for policy descriptions 

(Bajaj et al., 2004). WS-SecurityPolicy expresses security capability of web services using policy 
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assertions. For example, Figure 4.7 below shows an assertion that stipulates that a request to a web service 

should be encrypted. 

 

<wsp:Policy xmlns:wsp="..." xmlns:sp="...">  

    .... 

    <sp:EncryptedParts> 

        <sp:Body/> 

    </sp:EncryptedParts> 

    ..... 

</wsp:Policy> 

Figure 4.7. Example Security policy 

 

Security policies defined using WS-policy are associated with a web service by attaching it to a web 

service using WS-PolicyAttachment (Box et al., 2004) or by embedding it on the WSDL file.  The policy 

is made accessible through the UDDI registry (Bhatti et al., 2007). Association of the WS-Policy can be 

done at design time or at deployment time. At runtime, the security policy of a web service is enforced 

using a component called a policy interceptor (Lins et al., 2016, Gallino et al., 2011). When a request is 

made to a web service, the SOAP request message is intercepted by one or more policy interceptors 

defined on the invoking web services side (Jansen et al., 2015). The interceptors execute security policies 

that are attached to the invoking web services or client. Required security headers are added to the request 

message to ensure that the request message complies with the security policy of the web service or client 

sending the request.  At the invoked web service, the request message is intercepted by the policy 

interceptors before it reaches the target web service.  Security policies are executed, and if successful, 

the request message is passed to the web services. After the web services executes, a response is 

generated, which is intercepted by the policy interceptors, and security policies are applied before the 

response is sent to the requesting web service. 

 

4.4.3 Messaging bus and security of SOAP web services 

The practice of using interceptors to handle security functionality on behalf of web services assist to 

reduce the processing burden on the web service (Dawoud et al., 2010). Traditionally, many SOA 

applications have been built around a mediator called the enterprise service bus (ESB) as a component 

in the security model (Opincaru & Gheorghe, 2015). As part of the ESB security, mediations ensure that 
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the appropriate message protection services are applied to all incoming web service invocation. This 

removes the need for each web service to independently manage and evaluate trust relationships with 

every possible web service invocation. Figure 4.8 below shows the ESB providing security as a service 

to a web services composition. 

 

Figure 4.8. ESB and security of web services 

 

The next section discusses a concrete realization of the web services security model in the REST 

messaging model. 

 

4.5  REST web services security 

REST web services lack a specific security model, unlike SOAP-based services which rely on the WS-

Security standard (Kakavand et al., 2016). Most REST web services rely on transport-layer security and 

custom message protection mechanisms (Iacono & Nguyen, 2015). Transport-layer security offers secure 

point-to-point communication channels. Web services that use the REST model of communication work 

with Hyper Text Transfer Protocol (HTTP) Uniform Resource Locator (URL) paths and should be 
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protected in the same manner in which websites are secured. The starting point to ensuring REST web 

services is implementing the below best practices (Oftedal & Stock, 2014): 

 Input validation. Validating all inputs on the server protects REST web services from injection 

attacks. Validation should ensure that only well-formed input is passed to a web service.  

 No sensitive data in the URL.  Usernames, password or token should not be part of the URL 

because URL can easily be accessed. Sensitive values should be exchanged using the POST 

method.  

 Restrict method execution. Use of methods like POST and DELETE methods should be 

restricted. For example, the GET method should not be allowed to delete data. 

 

In addition to the above best practices, REST web services generally use security tokens for security. 

The use of a security token in the REST messaging model as a realization of the web services security 

model is discussed next.  

 

4.5.1  Security tokens 

REST web services can use JSON Web Tokens (JWT) (Jones, Bradley & Sakimura, 2015) as the format 

for security tokens for authentication and ensuring message integrity. A JWT is a JSON data structure 

that contains a set of claims that can be used for access control decisions (Jones, Bradley & Sakimura, 

2015). JWTs are protected for integrity using a signature or a message authenticated code. The claims in 

a JWT are encoded as a JSON object used as the payload of a JSON Web Signature (JWS) structure or 

as the plaintext of a JSON Web Encryption (JWE) structure, enabling the claims to be digitally signed 

(Jones & Hildebrand, 2015). The Figure 4.9 below shows an example of the JWT payload that contains 

identification information, but in general, the payload can contain any information of security interest. 

Figure 4.9 shows an example JWT payload. 

 

{  
    "name": "test user",  
    "email": "john@johndoe.com",  
    "admin": true 
} 

 

Figure 4.9. Example payload of JWT 
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JWT is used mostly for authentication and is sent as part of the HTTP headers. Figure 4.10 below shows 

the use of a JWT token acquired from an authentication server. The authentication service is an example 

of a security token service. Once the user is logged in, each subsequent API request includes the JWT. 

The JWT allows the user to access web services, and resources that are permitted with that token. 

 

 

 

 

 

 

 

 

 

 

 

  

Figure 4.10. Authentication using JWT 

 

Clients of a REST web service can also use predefined keys called application programming interface 

keys (API keys) to authenticate and access web services (Farrell, 2009). An API key is a piece of code 

assigned to a specific program, developer, or user that is used whenever that entity makes a call to an 

API. The key is typically a long string of generated characters which follow a set of generation rules 

specified by the authority that creates them. The key can be sent as part of a parameter to a URL, as part 

of the HTTP header or as a cookie. Figure 4.11 shows an API key sent as part of the header on the request 

for a trip. 

 

GET /requestTrip HTTP/1.1  

   X-API-Key: abcdef12345 

 Figure 4.11. API key authentication 
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API keys and JWT does not solve the problem of confidentiality. Therefore, a custom mechanism needs 

to be used to ensure data confidentiality and non-repudiation in a REST messaging model.  

 

The adoption of the microservices architecture introduces new security challenges that cannot be 

addressed by the web services security model. Adoption of microservices requires a new way of thinking 

about security. The next section identifies the new security challenges. 

 

4.6  Security challenges of the microservices architecture 

Although microservices are a way of implementing web services, the approaches that have been used to 

secure traditional SOA implementations in the past are not sufficient in microservices implementations. 

Microservices are changing the assumptions about how SOA-based applications are created and 

consequently how SOA applications should be secured. The adoption of microservices architecture 

presents the following new security challenges. 

 

4.6.1 Increased attack surface  

When microservices are considered from a networking perspective, the instance of a microservice is a 

unique network endpoint with an open network port exposing an application programming interface 

(Thönes, 2015, Esposito, Castiglione & Choo, 2016).  When a new instance of microservice is created, 

a new application programming interface is exposed. An attack on the microservices-based application 

can be made directly on each microservice (Dragoni et al., 2016). This gives the attacker an increased 

attack surface due to the spread of microservices instances exposed across the network. Security of 

microservices consequentially become a distributed security challenge.  

 

4.6.2 Indefinable security perimeters 

 Many microservices are deployed in containers (Merkel, 2014, Stubbs et al., 2015, Amaral et al., 2015). 

The challenge of deploying microservices on containers is that containers can be set up quickly from 

anywhere within the network without any consideration for the traditional notion of demilitarised security 

perimeters (Combe et al., 2016, Herger et al., 2017). Containers allow port mapping functionality to 

masquerade standard microservices application programming interface ports to dynamically allocated 

ones (Marmol et al., 2015). The use of dynamic addressing and scaling of microservices makes it a 
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challenge to statically configure internet protocol addresses or steer network traffic to traditional 

perimeter security appliances.  

 
4.6.3 Security monitoring is complex 

Containers present a security monitoring challenge.  Containers on a host machine can use network 

address translation (NAT) which makes them invisible to the outside world (Anderson 2015). Network 

address translation is the process where a network device, usually a firewall, assigns a public address to 

a computer inside a private network. Network traffic from containers using NAT is challenging to 

identify. When containers use NAT, a definition of security policies becomes complicated because it 

becomes difficult to know which microservices is running in each container. Containers may also bundle 

applications with a lot of software libraries and files that software engineers may not be aware of 

(Pittenger, 2016). This may increase the security risk due to vulnerabilities that may be hidden inside the 

software libraries (Moradi et al., 2017). 

 

4.6.4  Authentication is centralised 

Microservices deployed in containers interact remotely, mostly over HTTP. The challenge of this 

approach is how users of microservices are authenticated and how user credentials are passed between 

microservices in a symmetric manner (Esposito et al., 2016). Another challenge when ensuring inter-

microservices communication between a large number of microservices is that when microservices use 

transport layer security, certificate revocation becomes a harder problem (Yarygina, 2017). The 

microservices that initiate the handshake may get a list of revoked certificates from the corresponding 

certificate authority which can grow bigger. 

 

4.6.5  Threat modeling and risk assessment is localised 

The emphasis on team autonomy makes it challenging to ensure that threat modeling, and risk assessment 

is done before new versions of microservices are released (Ur, Ashfaque & Williams, 2016). Continuous 

delivery can mean that new vulnerabilities are delivered with every new microservices deployment 

(Wilde et al., 2016).  

 

The five challenges above provide an answer to research question RQ2 formulated in Chapter 1. 

Considering the challenges listed above, the adoption of microservices, therefore, require new ways of 

ensuring security. 
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4.7  Conclusion 

Building traditional SOA-based and microservices-based applications that are secure is a complex 

exercise. Security plays an essential part in the decision to adopt SOA, also when adopting microservices 

architecture as a concrete implementation of SOA. Since traditional mechanisms of securing SOA-based 

applications are not sufficient within a microservices architecture, new mechanisms are required to 

ensure secure microservices-based SOA implementations. Still, the problem of how to provide web 

service-based systems that are secure by default is an unsolved research challenge. 

 

The security challenges of microservices discussed above demand that security should be an integral part 

of the architecture. Securing microservices requires that security requirements be incorporated from the 

beginning and security be made part of the microservices build, test, and delivery chain. The challenge 

of an increased attack surface and complex networking resulting from the communication model of 

microservices requires a new security strategy to mitigate this new threat. The rapid approach to 

designing and deploying microservices requires a new security design and testing approach to ensure that 

no new vulnerabilities are introduced with each deployment. Monitoring mechanisms are required to 

monitor the communication paths and containers. When changes that may affect the security of the 

microservices-based application are detected at runtime, changes to microservices security configuration 

is required to stay up to date with a change that may occur on the underlying deployment environment. 

 

To this end, the next chapter discusses a preliminary risk analysis of the microservices architecture to 

provide an understanding of security threats, the potential attacker's profile, the most likely attack vectors 

and the assets most likely to be targeted by an attacker. This knowledge is useful to ensure that 

microservices-based applications are designed to avoid vulnerabilities and to withstand any attack. 
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PART II 
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Chapter 5 

 

Software Development Activities for  

Secure Microservices  

 
5.0 Introduction 

Organizations face countless challenges in the business world as they need to be able to counter disruptive 

competitors, adapt to new trends, be highly flexible, and provide engaging customer experiences. The 

adoption of Agile methodology and continuous delivery practices, by employing microservices 

architectures is therefore essential (Bossert 2016). However, the decomposition of an application into a 

set of distributed and collaborating microservices, using microservices architecture principles, increases 

an application’s attack surface.  

 

Furthermore, the continuous delivery practices increase the rate of releasing new software changes, 

leaving little time to identify and understand potential or actual adversary loopholes that can be 

introduced into a microservices composition through each new deployment. On the contrary, malicious 

attackers have unlimited time and resources to devise ways to attack microservices compositions. It, 

therefore, becomes vital to carry out a preliminary security risk analysis at design-time of the entire 

microservices composition.  

 

A preliminary risk analysis provides an understanding of security threats from a hypothetical attacker’s 

point of view. Identified security threats equip software engineers of microservices compositions with 

knowledge of assets most likely to be targeted, the most likely attack vectors, and the potential attacker's 

profile. The knowledge is useful to ensure that microservices compositions are designed to avoid 

vulnerabilities and to withstand any attack, and in the event of an attack to ensure that adverse 

consequences of an attack are minimized.   
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In this regard, this chapter aims to identify security threats that could arise as a result of flaws in the 

design of microservices compositions and harm that may arise from misuse of a microservices 

composition by malicious users. The preliminary risk analysis leads to a list of security requirements to 

be met by this research to be able to develop secure microservices compositions. The contribution of this 

review is a list of development activities for secure microservices.  

 

This chapter is organized as follows; Section 5.1 introduce secure development frameworks. Section 5.2 

introduces threat modeling to identify, enumerate and prioritize security threats. Section 5.3 discusses 

threat modeling of a microservices composition. Section 5.4 uses the outcomes of threat modeling to 

elicit security requirements of a microservices composition. Section 5.5 Suggests protection mechanisms 

and techniques that can be used to satisfy the security requirements obtained from Section 5.4. A list of 

software development activities to ensure the implementation of secure microservices compositions is 

then derived. A conclusion then follows in section 5.6. 

 

5.1 Secure software development frameworks  

To date, the construction of secure software is directed by a number of guidelines, best practices and 

undocumented expert knowledge such as blogs and discussions. There exist a number of best practices 

for areas such as threat modeling, risk management, or secure coding (De Win et al., 2009) and various 

new approaches to support the development of secure software in agile environments. To be able to 

support the development of secure applications, it is very important that these aspects are combined into 

an integrated and more comprehensive construction method. Traditionally, sequential software 

development approaches integrate security engineering activities commonly defined in a sequence, 

where security verification and validation gates are created for each of the development stages of 

analysis, design, coding, and testing.  

 

Frameworks that are used to develop secure software depend on a risk assessment being conducted to 

identify weaknesses in the software (Shostack, 2008). The identified weaknesses are used to elicit 

security requirements of the system and also to guide the creation of secure designs. Furthermore, 

software engineers identify protection measures from the identified risks and incorporate these measures 
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in the system during the development. Testing of the system is used to ensure that the risk is mitigate 

using identified protection measures. 

 

The next section discusses threat modeling to assess the security risk of microservices for this research. 

 

5.2 Security threat modeling  

Various security weakness or vulnerabilities possibly exist on microservices and their runtime 

infrastructure that an attacker can exploit to breach the security of microservices-based applications. To 

be able to understand the security of microservices compositions, the composition needs to be analysed 

from the perspective of a potential attacker. The process of identifying and documenting security threats 

is called threat modeling (Shostack 2008).  Threat modeling provides a good foundation to identify 

security requirements (Myagmar, Lee & Yurcik, 2005). This type of view can be gained by first 

identifying, enumerating and prioritizing security threats of a microservices composition.  

 

Threat modeling identifies entry points into a system and the associated threats that each entry point 

exposes. They are three main approaches to threat modeling namely (Shostack 2008): 

 Architecture-centric threat modeling - The architecture-centric threat modeling approach also 

called system-centric, or design-centric approach focuses on the design of a system. The approach 

attempts to step through the components of the system identifying the potential types of attacks 

against each component (Martins et al., 2015).  

 Asset-centric threat modeling - The asset-centric threat modeling approach starts by identifying 

and quantifying the value of vital assets in a system and the motivation of the attacker (Rauter, 

Kajtazovic & Kreiner, 2016).  

 Attack-centric threat modeling - Attack-centric threat modeling starts by identifying the goals of 

an attacker and the possible techniques that the attacker might use to achieve malicious goals 

(Tuma et al., 2017).  

 

The next section uses threat modeling to identify security threats in microservices compositions where 

microservices compositions are realized by a set of collaborating microservices. 
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5.3 Microservices composition threat modeling 

Architecture-centric threat modeling is used next to identify security threats in a microservices 

composition. The architecture-centric threat modeling approach is more suitable in this context as it 

provides a means to step through the components of a microservices composition to identify potential 

types of attacks against each component. The PickMeUp microservices composition discussed in 

previous chapters is used as an example of a microservices composition. The architecture-centric threat 

modeling steps from the Microsoft threat modeling process is followed, as shown in Figure 5.1 as per 

microservices compositions (Priya & Arya, 2016).   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.1. Microservices threat modeling steps 

 

Next, the first step of threat modeling, shown in Figure 5.1, is performed where the security objectives 

of a microservices composition are identified.   
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5.3.1 Microservices composition security objectives 

A microservices composition is a set of collaborating microservices. Each microservice is an open system 

similar to any web service, and therefore needs to address security services as prescribed by ISO 7498-2 

namely:   

 Authentication  

 Access control 

 Data confidentiality 

 Data integrity  

 Non-repudiation 

 

In addition to identifying security objectives, an essential step in the architecture-centric threat modeling 

approach is to determine the components of the application as a foundation towards the elicitation of 

potential types of attacks. In this regard, the next section provides an overview of the architecture of a 

microservices composition and list the essential components. 

 

5.3.2 Microservices composition overview 

The second step of threat modeling as shown in Figure 5.1 uses the PickMeUp application shown in 

Figure 5.2 to illustrate essential components that any microservices architecture application generally 

would consist of as follows: 

 The API gateway - a lightweight entry point into an application. 

 A set of microservices - components that automate business functionality. 

 Service registry - a database of instances and locations of all active microservices in a 

microservices composition.  

 Message broker - used by microservices in composition to publish and receive messages. 

 Containers or virtual machine - provide the runtime environment to microservices. 

 

To find threats in microservices, sources of threats and specific components of the application that may 

be affected should be known. The next section performs the third step of the architecture-centric threat 

modeling to identify parts of PickMeUp that are potential sources of threats.   
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5.3.3. Decomposition of a microservices composition 

The various architectural components of the PickMeUp application are shown in Figure 5.2 below. Steps 

1 to 13 shows the flow of information from when a request for a trip is received from a passenger using 

a mobile device until the final response is sent. For the sake of brevity, information flow for payment is 

not shown. The deployment strategy adopted for the application is to deploy components of the 

application on separate Docker containers. The containers run on a single host. 

 

When Figure 5.2 is viewed from the attacker’s perspective, the following architectural components 

provide potential entry points to maliciously access and compromise the PickMeUp microservices 

composition: 

 The API gateway and the microservices API - the attacker may use the gateway and microservices 

API to perform various types of injection attacks. 

 The service registry - the attacker may control the service registry to compromise the 

microservices composition or to shut the microservices composition down by ensuring that 

collaborating microservices cannot locate one another. 

 Message broker - the attacker may gain access to messages exchanged by microservices or to 

bring the message broker down so that the composition ceases to function. 

 Container or virtual machine - the attacker may gain control of the runtime environment where 

the application is running and control or shut down the microservices composition. 

 

The four entry points listed above in general form the attack surface of any microservices composition. 

Considering the technical design and implementation choices made during the development of the API 

gateway, service registry, message broker, containers or virtual machines the following security threats 

are now derived by the researcher from the four entry points listed above: 

 Insecure application programming interfaces 

 Unauthorized access 

 Insecure microservice discovery  

 Insecure runtime infrastructure 

 Insecure message broker 
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Figure 5.2. PickMeUp Microservices composition  

 

The next section discusses each security threat in more detail. Attention is given to the methods that an 

attacker can exploit to compromise the microservices composition. First, a security threat classification 

model is presented as a foundation towards understanding each threat. 

 

5.3.4 Security threats classification 

Conceptually, threat modeling is performed by applying a methodology (Shostack 2014). In this regard, 

each security threat identified above is reviewed using a threat categorization model developed by 

Microsoft called STRIDE (Shostack 2014, Scandariato, Wuyts & Joosen, 2015). Even though there are 

many threat modeling tools available, the researcher chose STRIDE as it offers a very systematic 

approach to analyse threats against each of the microservices architectural components. STRIDE 

provides a clear understanding of how an identified vulnerability can impact the whole system and 
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supports a comprehensive review of security services such as authentication, authorization, 

confidentiality, integrity, nonrepudiation, and availability. STRIDE is an acronym that stands for: 

 Spoofing - an attempt by an attacker to gain access to an application using false identity 

(Shostack, 2014).  

 Tampering - the unauthorized modification of information or data (Shostack, 2014).  

 Repudiation - the ability of an attacker to deny an action that has been performed (Scandariato, 

Wuyts & Joosen, 2015).  

 Information disclosure - when private data is revealed to an unintended user (Scandariato, Wuyts 

& Joosen, 2015).  

 Denial of service - the process of making an application unavailable to legitimate users 

(Shostack, 2014).  

 Elevation of privilege - occurs when a user with limited or no privileges assumes the identity of 

a privileged user to access an application (Shostack, 2014).  

 

STRIDE allows characterizing of identified threats and provides a method to reason about each security 

threat, and to determine potential exploits that can be used by an attacker. The five security threats 

identified by the researcher in the previous step are now discussed in detail using the STRIDE model. 

This section considers the attack methods associated with each security threat and the vulnerabilities that 

make the attack possible. 

 

a) Insecure application programming interfaces 

A weak set of APIs exposes microservices to a variety of security attacks that may result in tampering 

with data, information disclosure, denial of service and elevation of privileges (Cloud Security Alliance, 

2017). Table 5.1 below list the attack methods and weaknesses on the composition that can make the 

attack possible. 
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Table 5.1. STRIDE analysis of insecure application programming interfaces 

Security threats 
(STRIDE) 

 Attack methods  Exploitable weaknesses or known   
 Vulnerabilities 

Tampering with 
data 

 Intercept and modify messages sent to a 
microservices API when communication 
channels used is not secured.  

 Exploit vulnerability in mechanisms 
used for transport-layer security.  

 Perform all forms of injection attacks on 
the API.   

 Insecure communication channel 
 Lack of mechanisms to protect against 

injections of all forms on the APIs 
 Weak access control schemes on the 

microservices API 
 Vulnerability CVE-2014-3566 (Sheffer, Holz 

& Saint-Andre, 2015) that allows an attacker to 
obtain clear text when Secure Socket Layer 
(SSL) v3.0 is used.  
 

Information 
disclosure 
 

 Perform all forms of injection attacks on 
the microservices API.   

 Exploit weak access control schemes 
used to protects APIs  

 Lack of mechanisms to protect against injections 
of all forms on the APIs 

 Weak access control schemes on the API. For 
example, the United States of America Internal 
Revenue Service (IRS) exposed over three 
hundred thousand (300 000) customer records 
using a vulnerable web API (Borazjani, 2017). 

 Vulnerability CVE-2017-9805 (NIST, 2017) in 
the REST plugin of a web application 
framework called Struts.  The vulnerability 
resulted in the Equifax data breach were an 
attacker gained access to consumer credit 
reports of about one hundred and forty-three 
(143) million United States citizens (Gressin, 
2017, O’Brien, 2017).  
 

Denial of Service  Craft a request to API gateway that fans 
out into multiple computationally 
expensive requests to microservices 
behind the gateway so that 
microservices slow down and impact all 
legitimate users (Behrens & Heffner, 
2017). 

 Failure to prioritize authenticated traffic over 
unauthenticated traffic 

 Lack of reasonable microservices requests 
time-outs 

 Lack of fallback options when microservices 
does not respond on time 

 Lack of fault isolation mechanisms.       
 

Elevation of 
privileges. 

 Exploit a parser of messages used on the 
API that allow deserialization of hostile 
or tampered objects by changing the 
serialized object to gain administrative 
privileges. 

 Insecure message deserialization 

 

In addition to the threat of insecure application programming interfaces, microservices are exposed to 

the threat of unauthorized access, discussed next.  
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b) Unauthorized access 

When there is no proper scalable identity access management system, a microservices composition is 

vulnerable to unauthorized access (Cloud Security Alliance, 2017). Unauthorized access can lead to 

tampering with data and information disclosure. Table 5.2 below list the attack methods and weaknesses 

on the microservices composition that can make the attacks possible. 

 

Table 5.2. STRIDE analysis of the threat of insecure APIs 

Security threats 
(STRIDE) 

 Attack methods  Exploitable weaknesses or known   
 vulnerabilities 

Tampering with data  Use harvested login credentials to 
gain access and tamper with data. 

 Gain administrative access to a 
microservices runtime environment 
that use single-factor authentication 
mechanism and destroy data.   

 Insecure management consoles. For example, 
an online hosting and code publishing provider 
called Code Space went out of business when 
an attacker gained access to the company's 
Amazon Web Service's (AWS) control panel 
account and destroyed customer's data (Cloud 
Security Alliance, 2017). The Amazon Web 
Service environment is a popular platform for 
running microservices. 

 Lack of scalable identity access management 
 Lack of multi-factor authentication 

 

Information disclosure 
 

 Use methods such as phishing and 
fraud to gain access to credentials 
that are often re-used.  

 Cryptographic keys and passwords embedded 
in software source code that is in public facing 
software repositories. For example, an attacker 
accessed a software repository used by Uber 
software engineers and used the login 
credentials to access Uber customer data 
(Newcomer, 2017, Giles, 2017). 

 Lack of scalable identity access management 
 Lack of multi-factor authentication 

 

The use of services registries in a microservice may pose a threat of insecure microservice discovery, 

discussed next using the STRIDE categorization model. 

 
c) Insecure microservices discovery 

When microservices use discovery mechanisms that are not secure spoofing, information disclosure and 

denial of service may occur. Table 5.3 below list the attack methods and weaknesses on the microservices 

composition that can make the attack possible. 
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Table 5.3. STRIDE analysis of the threat of insecure microservices discovery 

Security threats 
(STRIDE) 

 Attack methods  Exploitable weaknesses or known   
 Vulnerabilities 

Spoofing  Intercept microservices registration 
requests sent to a service registry to gain 
access to private information about a 
microservice. 

 Insecure communication channels 
 Insecure certificate distribution 

 

Information 
disclosure 
 

 Gain access to microservices identity 
during microservices lookup queries.  

 Insecure communication channels between 
a microservice and the service registry. 

Denial of service 
attack 

 Flooding registration messages to the 
service registry to force the service 
registry to consume and exhaust its 
resources and ultimately become slow or 
stop functioning.  

  De-register a microservice from the 
registry by sending a bogus de-registration 
message to the service registry. 

 Messages for registration or de-registration 
sent without integrity protections 

 Lack of message verification 

 

 In addition to insecure microservice discovery, the runtime infrastructure where microservices are 

deployed may pose a security threat, discussed next using the STRIDE categorization model. 

 

d) Insecure runtime infrastructure 

Containers and virtual machine, where microservices are deployed, may be compromised by the presence 

of errors or malware on the infrastructure that an attacker can exploit to infiltrate microservices 

compositions. Vulnerabilities in the microservices runtime infrastructure may result in spoofing, 

information disclosure, denial of service, and elevation of privileges (Cloud Security Alliance, 2017). 

Table 5.4 below list the attack methods and weaknesses on the composition that can make the attack 

possible. 
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Table 5.4. STRIDE analysis of insecure runtime infrastructure 

Security threats 
(STRIDE) 

 Attack methods  Exploitable weaknesses or known   
 vulnerabilities 

Spoofing  Sniff secrets like cryptographic keys, 
certificates, and passwords.   

 Gains control of a container and receive, 
redirect and manipulate information 
being delivered to containers, an attack 
called Address Resolution Protocol 
(ARP) spoofing (Scott et al., 2017).  

 Inject a malicious payload into network 
connections.  
 

 An insecure configuration of containers 
and virtual machines and using default 
container settings that allow open 
communication such as in Docker 
containers (Scott et al., 2017).  

 Improper user access rights 
 Insecure communication channels 

Information 
disclosure 
 

 Inject malicious code into the containers 
to gain access to sensitive information.  
 

 Vulnerability CVE-2014-6271 (Shetty, 
Choo, & Kaufman, 2017) also known as 
shellshock that allows one to inject 
malicious code into the command line 
interface connects users to Unix-based 
systems.  

 Host operating system vulnerabilities 
 Runtime software vulnerabilities 

 

Denial of service 
attack 

 Create malicious image payload which 
may require an inordinate amount of 
time, disk space and memory to 
decompress in such a way that 
decompressing images result in denial 
of service.  

 Lack of content verification on containers. 
 Vulnerability CVE-2017-14992 (Redhat, 

2017) which allows a remote attacker to 
cause a denial of service by using a crafted 
docker image payload on Docker-CE and 
all earlier Docker versions. 

Elevation of 
privileges. 

 Escape from the confines a 
compromised virtual machine and 
obtain elevated access to the host 
machine, the host's local network and 
adjacent systems. Elevate access 
privileges and cause damage to 
microservices running on the host.  
 

 Vulnerability CVE-2015-3456 (Brook & 
Brooks, 2015) also called Virtualized 
Environment Neglected Operations 
Manipulation (VENOM) allows an 
attacker to escape from the confines a 
compromised virtual machine and 
potentially obtain elevated access to the 
host machine, host's local network, and 
adjacent systems.  

 

An attacker can also leverage the decoupled nature of publish-subscribe message brokers used in 

microservices compositions, discussed next. 
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e) Insecure Message Broker 

When the message broker is not correctly secured spoofing, tampering with data, information disclosure 

and denial of service may occur. Table 5.5 below list the attack methods and weaknesses on the 

composition that can make the attacks possible. 

 

Table 5.5. STRIDE analysis of the threat of insecure message broker 

 Security threats 
(STRIDE) 

 Attack methods  Exploitable weaknesses or known   
 vulnerabilities 

 Spoofing  Intercept and modify messages sent to the 
API when communication channels used is 
not secured.  

 Exploit vulnerability in mechanisms used 
for transport-layer security.  

 CVE-2014-3566 (Sheffer, Holz & Saint-
Andre, 2015) that allows an attacker to 
obtain clear text data against any 
application that uses Secure Socket 
Layer (SSL) v3.0.  

 Tampering With data  Modify stored messages or messages in 
transit in the publish-subscribe model of 
communication.  

 Tamper with data by maliciously changing 
messages exchanged by microservices.  

 Exploit message parsers that perform 
insecure message deserialization by 
sending crafted messages to perform 
remote code execution or to create 
recursive objects graphs.  

 Unsafe deserialization. Message broker 
relies on message parsers to function. A 
parser in a message broker calls Spring 
AMQP (Gutierrez, 2017) was found 
with vulnerability CVE-2017-8045 
(Pivotal, 2017) that allows unsafe 
deserialization of message. Unsafe 
deserialization is listed among the top 
ten most critical web application 
security risks by OWASP in 2017 
(OWASP, 2017). 

 Information 
disclosure 
 

 Read sensitive messages in transit between 
publisher-broker-subscriber or at rest when 
the channel of communication used by 
microservices is not secured 

 Vulnerability CVE-2017-9805 (NIST, 
2017) found in the REST plugin of a 
web application framework called 
Struts.  The vulnerability resulted in The 
Equifax data breach were an attacker 
gained access to consumer credit reports 
of about one hundred and forty-three 
(143) million United States citizens 
(Gressin, 2017, O’Brien, 2017).  

 Denial of Service  Set up a disguised microservices that 
publish many large messages to the broker 
to exhaust the resources of the message 
broker.  

 Exploit mishandled exceptions that arise in 
a message being queue again after it has 
been dequeued. This may potentially 
exhaust the resources of the message 
buffer that stores the message in a manner 
that no new messages are accepted.  

 Open message publishing 
 Open message subscription 

 

Table 5.6 gives a high-level summary of a list of flaws associated with each security threat identified 

above. The software weaknesses are extracted from Tables 5.1 – Table 5.5. 
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Table 5.6. Summary of microservices vulnerabilities 

Security threats Security vulnerabilities 

Insecure application programming interfaces  Lack of mechanisms to protect against injections of all 
forms of APIs 

 Weak access control schemes 
 Insecure message deserialization 
 Insecure communication channel 

Unauthorized access 

 

 Lack of scalable identity access management 
 Lack of multi-factor authentication 

Insecure microservice discovery   Insecure communication channels 
 Insecure registration and certificate distribution 
 Registration messages sent without integrity protections 
 Lack of registration message verification 

Insecure runtime infrastructure  Improper user access rights 
 Host operating system vulnerabilities 
 Runtime software vulnerabilities 
 Insecure container or virtual machine configuration 
 Poisoned container images  

Insecure message broker  Open message publishing 
 Open message subscription 
 Insecure message deserialization 

 

In the next section, the five security threats and security flaws in Table 5.6 are used in a systematic 

manner to elicit a set of general security requirements common to most implementations of microservice 

compositions. First, a definition of security requirements is provided. 

 

5.4 Microservices compositions security requirements  

Security requirements for a microservices composition describe more concretely the conditions and 

capabilities that must be met or be possessed by the microservice composition to assure the security of 

assets. The Open Security Alliance (Open Security Alliance, 2003) distinguishes four different types of 

security requirements: 

 Secure functional requirements - describe the security services that should be integrated into each 

functional requirements of the system (Jain & Ingle, 2011). They specify what should not happen 

on the system during execution. The requirements are elicited from identifying abuses to the 

system referred to as misuse cases (Open Security Alliance, 2003). 

 Functional security requirements- describe the functional behaviors that enforce the security of 

the system under inspection (Jain & Ingle, 2011). 
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 Non-functional security requirements- security related architectural requirements, such as 

robustness and scalability. They are typically derived from architectural principles and best 

practices or standards (Jain & Ingle, 2011). Non-functional security requirements are considered 

out of scope in this chapter. 

 Secure development requirements - describe the activities required during system development 

which assure that the outcome is not subject to security flaws (Open Security Alliance, 2003).   

 

Security requirements of interest for this research are secure functional requirements, functional security 

requirements and secure development requirements. As shown in Figure 5.3 this chapter elicits the 

security requirements of a microservices composition from the following: 

 Security needs of the user of a microservices composition 

 Microservices composition security threats 

 Best practice and standards 

 Regulations and laws 

 

Figure 5.3. Elicitation of security requirements of a microservices composition  

 

Using the five security threats and security flaws listed in Table 5.6 above, Table 5.7 below derives and 

documents security requirements for a secure microservices composition. Satisfying the security 

requirements should lead to more secure microservices compositions. The approach adopted in this 

section to elicit security requirements is to consider such requirements as constraints that limit the manner 

in which the microservices composition is developed, and how each component of the composition (the 

microservices, the message broker, the service registry, the API gateway, and the runtime infrastructure) 

should function to ensure overall security. The security requirements are expressed as positive statements 
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to help verify their satisfaction (Haley et al., 2008).  Also, Table 5.7 suggests a list of protection measures 

that can be used to satisfy the security requirements. 

 

Table 5.7. Microservices composition security requirements and protection measures 

Security threats Security requirements  Suggested protection measures 

Insecure application 
programming interfaces 

 Only authenticated users should access 
the API 

 Keys, tokens, and password should be 
rotated periodically 

 The API should validate all requests.  
 The communication channel between 

microservices should be secure  

 Use keys or security tokens or passwords 
to protect API 

 Perform input validations on the 
microservices API 

 The API should white-list permitted 
HTTP methods 

 Ensure secure management of keys, 
password, and tokens 

 Use transport-layer security 
 Monitor the microservices API at all 

times 
 

Unauthorized access 
 

 Access to microservices should be denied 
by default 

 The microservices composition should 
use multi-factor authentication at all 
entry points 

 Any credentials used in the microservices 
composition should be rotated 
periodically 

 Use keys, security tokens, and password 
to protect API 

 Use transport-layer security 
 Automate management of keys, 

password, and tokens 
 

 

Insecure microservice 
discovery  

 The service registry should authenticate 
all requests for registration 

 Communication between microservices 
and service registry should use a secure 
channel 

 Messages for registration and de-
registration should be protected for 
integrity  

 Ensure the host on which the service 
registry run is securely configured 

 The service registry should use 
certificates and certificates should be 
distributed securely 

 Use transport- layer security 
 Monitor the service registry at all times 

Insecure runtime 
infrastructure 

 Containers and virtual machines should 
only use verified operating systems 
platforms or container-specific operating 
systems 

 The outbound network traffic sent by 
container should be monitored and 
controlled 

 The configuration of containers and 
virtual machines should comply with the 
configuration standards 

 

 Create secure configurations of 
infrastructure 

 Validate the configurations of 
infrastructure 

 Scan container images before 
deployment 

 Group containers by relative sensitivity 
and only run containers of a single 
sensitivity level on a single host 

 Monitor infrastructure at all times 
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Security threats  Security requirements   Suggested protection measures 

Insecure message broker  The message broker should authenticate 
all requests 

 A secure channel should be used for 
communications 

 The client should protect the message it 
sends for integrity. 

 A redundancy mechanism should be 
configured to guarantee the delivery of 
the messages 

 User transport-layer security 
 Use authentication plugins or write a 

custom filter to authenticate a message 
 Set up read and write permissions on the 

message broker 
 Monitor the service registry at all times 

 

The list of security requirements and the protection measures in Table 5.7 above points to the need to 

integrate security in different phases of the software development lifecycle such as requirements 

gathering, design, implementation, and testing (ben Othmane et al., 2014). To achieve this, various 

security-focused activities are required during the different development phases of microservices to 

assure that the microservice composition is not subject to security vulnerabilities. The Open Security 

Alliance refer to such security-focused activities as secure development activities (Open Security 

Alliance, 2003). In this regard, the next section uses Table 5.7 to identify the essential security-focused 

activities that should be incorporated into the development process of microservices and microservices 

compositions.  

 

5.5  Software development activities for secure microservices compositions 

Using the security requirements and suggested protection measures in Table 5.7, this section derives a 

list of software development activities that can be used to ensure that microservices are adequately 

protected. Table 5.8 below gives a list of security-focused activities to address each of the five security 

threats. 

 

Table 5.8. Secure microservices composition development activities 

Security threats  Security-focused activities 

Insecure application programming interfaces  Document security requirements for the microservices API at 
design time 

 Adopt secure programming best practices for input 
validations on the API and white-listing permitted HTTP 
methods 

 Validate the implementation of the API during the 
continuous delivery phase for adherence to secure coding 
standards and security requirements 

 Monitor the API continuously at runtime 
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Security threats  Security-focused activities 

Unauthorized access 
 

 Document microservice API access requirements 
 Validate the API for adherence to access requirements during 

the continuous delivery phase 

Insecure microservice discovery   Document of security requirements for microservice 
discovery at design time 

 Validate security requirements for service discovery during 
continuous delivery phase 

 Monitor the service registry at all times 

Insecure runtime infrastructure  Documentation of security requirements for runtime 
infrastructure 

 Create a secure configuration of runtime infrastructure 
 Test the infrastructure for adherence to security requirements 
 Monitor the infrastructure at all times 

Insecure message broker  Document of security requirements for message broker 
 Validate the message broker for message broker adherence to 

security requirements 
 Monitor the message broker at all times 

   

The security-focused activities in Table 5.8 above can generally be summaries into the following six 

secure development requirements, prefixed with SDA:  

1. Document security requirements of microservices compositions (SDA-1) – security of 

microservices compositions requires a flexible way to manage security requirements and 

protection measures. Documentation is vital to provide a security strategy to secure various assets 

of the microservices (Terala & Cole, 2015).  

2. Adopt secure programming best practices (SDA-2) - some of the protection measures suggested 

in Table 5.7 to protect the API are documented guidelines to mitigate known assaults on many 

web applications. A vital activity is to ensure that engineers adopt these guidelines to ensure that 

microservices are designed and implemented to avoid vulnerabilities. Examples of such 

documented instructions include validating inputs, ensuring that the application executes with the 

least set of privileges required for the job and sanitizing any data sent to other application to avoid 

injection attacks. 

3. Validate security requirements and secure programming best practices (SDA-3) – validating the 

implementation of a microservices composition against a set of security requirements and security 

coding standards at various stages of the microservices’ build, test and deployment is vital to 

ensure end-to-end security (Ciuffoletti, 2015, Callanan & Spillane, 2016).  
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4. Secure configuration of runtime infrastructure (SDA-4) - a vital security activity is to ensure that 

containers and the virtual machine are securely configured in an automated manner. Such 

configuration eliminates human errors that may result in misconfiguration.  

5. Continuously monitor the behavior of components of the microservices composition (SDA-5) - 

ensuring continuous security of microservices composition requires engineers to have a view of 

the behavior of the various components at runtime. Given the potential for harm that can arise 

from persistent attacks by hostile entities at runtime, there is a need to monitor microservices and 

their runtime environments (Haselböck & Weinreich, 2017, Peinl, 2016). Monitoring allows 

identification, detection, and even ability to foresee critical events and situations that occur during 

runtime (Gander et al., 2013, Asim et al., 2014). 

6. Securely respond to attacks using adaptation mechanisms (SDA-6)- microservices compositions 

are distributed systems implemented using a collection of components that independently evolve 

and react to their environments and other external factors. The distributed nature of component 

creates many potential points of failures. A microservices composition should be built to 

withstand failures of individual components. Mechanisms that ensure that the application 

responds adequately to changes at runtime to maintain an appropriate security posture are referred 

to as secure adaptation mechanisms (Gabbrielli et al., 2016, Florio et al., 2016, Hassan & 

Bahsoon, 2016). 

 

The six activities listed above can be view as the development activities for secure microservices 

compositions. Next, a conclusion is provided. 

 

5.6 Conclusion 

Nowadays, the impact of security breaches on an enterprise can be overwhelming. Microservices 

compositions, like any web applications should therefore be developed with security in mind. Building 

secure microservices compositions is, however, a complicated exercise. This chapter has laid the 

foundation towards understanding the microservices architecture's security threats using an attacker's 

point of view and identified security requirements common to most implementation of the microservice 

architecture. Suitable protection measures have also been identified. Even when security requirements 

and protection measures are identified early during the development process, there is still the challenge 

of validating if the implementation of various components of the architecture is safe. Furthermore, there 
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is a need to ensure that the runtime environment does not provide attackers with the means to control or 

compromise the microservices composition. To this end, this chapter identified security-focused 

activities that ensure that the suitable protection measures are implemented. 

 

Although building a secure microservices composition is a complex exercise, the identification of 

security-focused activities in this chapter can go a long way towards achieving the security goals of a 

microservices composition. The security-focused activities include documenting security requirements 

at design time to provide a security strategy to secure various assets of the microservices composition. 

Furthermore, this chapter also noted the importance of encouraging microservices software engineers to 

adopt documented security guidelines to eliminate known security vulnerabilities in microservices 

compositions. Also, ensuring comprehensive security testing is another vital activity required to identify 

and eliminate security flaws before microservices compositions are deployed to a production 

environment. The chapter has also identified the importance of creating a secure runtime infrastructure 

for microservices compositions. In addition, mechanisms should be in place to ensure that software 

engineers have insight into the behavior of microservices at all times to be able to identify attacks. If a 

microservice composition is attacked, the composition should be equipped with the ability to respond 

and maintain its security posture. 

 

In this regard, this chapter provided a necessary preliminary security risk analysis of the entire 

composition by applying a threat modeling technique to identify security threats in a microservices 

composition. Then, the various security flaws often associated with each threat were identified and used 

to derive various security requirements common to most microservices compositions. Furthermore, the 

suggested protection measures were used to derive a set of important security-focused activities that 

should be incorporated into the development process of a microservices composition. The activities 

constitute the secure development activities of a microservices composition. 

 

The next chapter reviews the literature on the six identified security-focused activities that form the 

secure development activities of a microservices composition. The aim of the review is to identify various 

tools, techniques, and methods that can be used to support software engineers in incorporating the six 

secure development activities to become part of their daily software development task. 
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Chapter 6 

 

Secure Microservices Development 

 
 

6. 0 Introduction 

The threat modeling exercise in Chapter 5 identified six software development activities to consider so 

that the security goals of a microservices composition can be achieved. The challenge in a microservices 

development environment is that microservices are typically developed using the Agile methodology, 

where the general perception is that the incorporation of security in the development process would be 

against agile values (Oyetoyan et al., 2016). Consequently, many Agile teams tend to release software 

without performing full-scale security testing, and later address any security vulnerabilities by deploying 

new releases (Heinrich et al., 2017). The general perception of security within Agile teams has had a 

significant impact on the development of software in general. The general reluctance is reflected in the 

State of Software Security report of 2017 were the top ten common security vulnerabilities in 2017 were 

strikingly similar to that of 2016 (Veracode, 2017). Finding ways to seamlessly incorporate the six 

software development activities in a manner that does not impact the Agile values and benefits will thus 

be beneficial to the microservices development community.  

 

This chapter aims to understand how to effectively incorporate the six secure development activities 

using existing tools, techniques, and methods so that the security of microservices compositions can be 

improved. The organization of this chapter is as follows. First Section 6.1 introduces the approach that 

is used to identify and review the relevant literature. Section 6.2 identifies essential concepts that assist 

in documenting security activities of microservices compositions effectively. Section 6.3 obtains secure 

programming practices that can ensure that microservices are designed and developed in a manner that 

makes them inherently safe. Section 6.4 identifies and reviews available tools that can be used to 

determine security flaws during the development process of a microservices-based application. Section 
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6.5 identifies tools that can be used to create safe runtime environments for microservices to prevent the 

environment from being a source of security risks to the application. Next, Section 6.6 identifies and 

reviews mechanisms that can give continuous insight into the behavior and health status of microservices 

to detect attacks at runtime. Section 6.7 identifies mechanisms that can be used to enable microservices 

to react to malicious attacks at runtime securely. A summary and conclusion follow in Section 6.8 and 

6.9 respectively. 

 

6. 1 Review of software development activities for secure microservices   

The microservices architecture can be considered a relatively new area of research (Di Francesco, 

Malavolta & Lago, 2017). In this regard, this chapter adopts a systematic mapping research approach 

(Petersen et al., 2008) that is commonly used for research areas that are not yet mature (Kitchenham & 

Charters, 2007). The process used in this chapter is first to formulate guiding research questions on each 

software development activity for secure microservices compositions identified in Chapter 5. Each 

question is used as criteria to identify relevant literature from publications. An analysis is performed for 

each activity to identify potential areas that still require research attention. 

 

Most security challenges experienced in a microservices architecture are those generally familiar to all 

SOA implementations (Dragoni et al., 2016). Any new microservices security problem that is not found 

in general SOA implementations can be due to network complexity arising from the arrangement of 

components within the microservices architecture. The review in this chapter, therefore, considers not 

only literature specific to microservices but also literature relevant to SOA in general. Journals, 

conference publications, and various industry articles are reviewed.  

 

The structure of the discussion to follow is according to the identified secure software development 

activities for secure microservices compositions namely: 

 Document security requirements of microservices compositions 

 Adopt secure programming best practices 

 Validate security requirements and secure coding standards  

 Secure configuration of runtime infrastructure 

 Continuously monitor components of the microservices composition 

 Securely respond to attacks using adaptation mechanisms 
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Next, the documentation of the security requirements of microservices compositions is reviewed. 

 

6.2 Document security requirements of microservices compositions 

A secure microservices composition can be created by implementing the security services dictated by 

ISO 7498-2 namely authentication, access control, data confidentiality, data integrity, and non-

repudiation. A comprehensive specification of protections mechanisms can support effective 

authentication, access control, data confidentiality, data integrity, and non-repudiation in a microservices 

composition (El Hassani et al., 2015). A security policy is used to specify protection mechanisms in order 

to manage security (ISO, 1989).  Consequently, an understanding of different types of security policies 

applicable to microservices becomes essential to specify comprehensive protection measures effectively. 

To this end, Table 6.1 formulates questions to ensure effective management of the security concerns of 

a microservices composition. A prefix REVQ denotes each question to differentiate from the research 

questions formulated in Chapter 1.  

 

Table 6.1. Guiding questions on microservices security policies 

Research questions Motivation 

REVQ1. How does the microservices architecture 
affect the design of security policies for a 
microservices composition? 
 

To identify the attributes of a good microservices 
security policy design.  

REVQ2. What types of security policies are required 
to document protection measures for a microservices 
composition comprehensively? 
 

To gain a comprehensive understanding of the different 
security policy types required in a microservices 
composition. 

 

To be able to answer REVQ1 from Table 6.1, the next section identifies characteristic of the 

microservices architecture that affects the design of security policies.  

 

6.2.1 Microservices architecture and security policies 

In Chapter 3, microservices, the API gateway, the services registry, the message broker and containers 

were identified as critical assets of the microservices architecture. These assets are collectively referred 

to as components of the microservices composition. A security policy needs to consider that components 

of a microservices composition are loosely coupled and distributed, where each component may have 

unique security needs. The following two essential attributes should be taken into account:  
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 Support for distributed and loosely coupled microservices interactions (Brodecki, Szychowiak & 

Sasak, 2012, Suzic et al., 2016, Azarmi & Bhargava, 2017). In the composition, some components 

need to delegate access control decisions to other components because not every component can 

directly ask the end-user for authentication details (Nacer et al., 2017). In PickMeUp, the Driver 

Management Microservice relies on the Trip Management Microservice and the Passenger 

Management Service to ensure that the passenger requesting a trip is a valid requestor of 

information. The security policy defined in such a scenario should determine protection 

mechanisms to enable a trust relationship between collaborating microservices. Furthermore, 

since collaboration between microservices is predominantly defined over Hyper Text Transfer 

Protocol (HTTP), the security policy should also define protection mechanisms to support strong 

transport-layer security required for secure communication between distributed components of 

the microservices architecture. 

 Support for hierarchical security policy domains (Dell'Amico et al., 2013). Microservices 

compositions require a high-level security policy to define protection mechanisms for the entire 

composition, and also security policies specific to each component of the composition. Each 

component of the composition represents a domain where component-specific security policies 

can be enforced. To this end, the implementation of the architecture represents a hierarchy of 

domains where policies are defined and enforced. The hierarchy ensures that certain sensitive 

information remains confined to one component such as a particular microservice and some 

information is securely shared between collaborating components. The hierarchical structure thus 

requires security policy language support. 

 

To be able to answer REVQ2 from Table 6.1, the next section identifies the various types of security 

policies relevant in a microservices composition.   

 

6.2.2 Categories of security policies 

 In Chapter 5, the threat modeling of PickMeUp suggested protection mechanisms to mitigate threats 

using the STRIDE threat classification model. From the threat analysis, the following list of policies may 

be able to document the suggested protection mechanisms sufficiently:  
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1. Data protection policy (Satoh & Tokuda, 2015). Threats related to spoofing, data tampering, and 

information disclosure require a data protection policy to protect the data in a composition. The 

policy should define an encryption schema to protect data in transit and storage.   

2. Access control policy (Andrews, Steinau & Reichert, 2017). An access control policy is required 

to define permissions assigned to subjects that access components of the microservices 

composition. Subjects in the context of a microservices composition include end-users, and also 

components of the composition that require access to other components to function. Access 

control aims to limit the damage when a component of the composition is compromised by 

defining permissions required by each component and resources accessed by each component.  

3. Microservice technology-specific policy (Yu et al., 2018). Microservices are built using software 

libraries that may contain security vulnerabilities. In the 2017 State of Software Security report, 

eighty-eight percent (88%) of applications written in Java, a popular technology for creating 

microservices, had at least one component-based vulnerability (Veracode, 2017). Therefore, 

microservices should have a technology-specific security policy focusing on mitigating 

weaknesses in libraries. For example, for microservices developed using Java technology, a 

technology-specific security policy should focus among others on mitigating the effects of the 

OWASP Java top ten vulnerabilities (OWASP, 2013).  

4. Network security policy (Yu et al., 2018).  The network security policy is vital to control access 

to components of the microservice composition effectively. For example, In the PickMeUp, the 

Trip Management Microservice does not need direct access to passenger and driver information. 

As a result, the network security policy should deny connection attempts from the Trip 

Management Microservice to a passenger database. In the event of Trip Management 

Microservice being compromised, the attacker will not have direct access to critical data. The 

network policy can also be used to specify how logical addresses are allocated, distributed, and 

managed for containers or virtual machines 

5. Microservices composition security policies (Satoh & Tokuda, 2015). The security policy of the 

entire microservices composition can be viewed as a combination of a policy to protect messages 

exchanges between components of the microservices composition and an access control policy 

defining how components are accessed. The composition security policy should describe how 

exchanged messages are protected to ensure integrity and confidentiality. The policy should also 

restrict access to specific capabilities provided by microservices. For example, in PickMeUp the 
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security policy may ensure that Passenger Notification Microservices is only allowed to call 

actions on the Passenger Management Microservice to query details of a specific passenger but 

may not update records on the database.   

6. Virtual Machine and container security policies. The impact of security vulnerabilities in virtual 

machine or containers cannot be ignored. Over thirty percent (30%) of official images in docker 

hub, for example, contain high priority vulnerabilities (Yu et al., 2018). A security policy is 

therefore required to mitigate against security vulnerabilities that may exist in the runtime 

environments. The virtual machine or container security policy should define mechanisms to 

prevent container breaches and in the event of breaches limit damages that can occur. For 

example, the policy may determine mechanisms that block components of the microservices 

composition from reading unsafe directories and ensure that each component is granted least 

privileges to perform a function. 

 

6.2.3 Challenges of a microservices composition security policy 

Specifying a security policy for a microservices composition is a complex exercise. To begin with, there 

are no policy languages and a standard to specify a security policy for RESTful web services (Yu et al., 

2018). Moreover, when the microservices composition security policy is created by combining the 

security policies of each component, software engineers are forced to study multiple security policy 

representations without tool support to identify possible security policy inconsistencies. The task is 

further made complex because there is no precise definition of what a security policy inconsistency is in 

such compositions (Satoh & Tokuda, 2011, Yu et al., 2018). Furthermore, a microservices composition 

may compose other microservices compositions recursively resulting in security policies being applied 

recursively. In such scenarios, a software engineer has to check the security policy hierarchy to confirm 

that appropriate security is applied end-to-end, and this can be a daunting task. 

 

6.2.4 General observation and discussion 

The unavailability of established policy specification languages to represent security policies for 

RESTful web services requires that a high-level language be used to manage microservices security 

concerns. The absence of a common policy specification language means that there is no standardized 

way to communication security requirements across different teams developing microservices. This 

presents a security challenge when microservices from different teams collaborate to automate a business 
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function. engineers of microservices should, therefore, ensure that the APIs of all microservices treat all 

input values as untrusted data that require strict validation. Despite the non-availability of a common 

security policy specification language for RESTful services, existing security policy models such as 

access control models can still be applied by each component of the microservices composition.  

 

In addition to managing functional security requirements of microservices, the security of microservices 

can be enhanced by using a collection of procedures or suggestions for best practices within an 

organization. Secure programming best practices are part of procedures suggested in Chapter 5 that assist 

in developing secure microservices compositions. The next section identifies appropriate programmable 

practices and investigates how to use these practices to create safe microservices.  

 

6.3 Adopt secure programming best practices 

Microservices compositions, like any traditional web application, are not immune to known security 

attacks such as SQL injections and Cross Site Scripting (XSS) (Ahmadvand & Ibrahim 2016). Each year, 

most of the top ten web application vulnerabilities published by OWASP, (OWASP, 2017) are 

vulnerabilities with documented guidelines on how to prevent attacks. Furthermore, in the 2017 State of 

the Software Security report (Veracode, 2017), thirty percent of the web applications surveyed still had 

SQL injection vulnerabilities. The recurring attacks are a result of software engineers not adhering to 

documented security guidelines (Aljawarneh, Alawneh & Jaradat, 2017). Designing and developing 

secure microservices compositions should, therefore, prioritize safe programming practices (Zhu et al., 

2014). This section aims to understand how secure programming practices can assist develop safe 

microservices. The questions in Table 6.2 below provide a guideline to the review. 

 

Table 6.2. Guiding questions on secure programming practices 

Research questions Motivation 

REVQ3. Which secure programming best practices can assist 
engineers to avoid known security flaws when developing 
microservices?  

The aim is to elicit a list of secure programming practices 
that can help eliminate security flaws in microservices 
compositions. 

REVQ4. How can software engineers adopt secure 
programming practices without affecting the rate of 
microservices releases? 

The aim is to identify ways to enforce secure programming 
practices without impacting Agile values. 
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The next section first identifies a taxonomy to assist in eliciting relevant secure programming best 

practices, and then use the taxonomy to identify relevant secure programming best practices. 

 

6.3.1 Taxonomy of secure programming practices 

The Microsoft Secure Development Lifecycle defines four security principles namely secure-by-design, 

secure-by-default, secure-by-deployment, and secure-by-communication, that provide a basis to reason 

about secure software development in general (Howard & Lipner, 2006). This section uses the four 

security principles as a taxonomy to assist in eliciting secure programming practices. First, the principles 

are defined below in the context of a microservices composition. 

 Secure-by-design - the architecture of a composition should contain a security discussion 

detailing how security risks are mitigated, and how the attack surface is minimized. The premise 

of secure-by-design is that it is often difficult for a microservices composition that is designed in 

an insecure manner to be made secure after implementation and deployment. Secure-by-design 

implies that components of a microservices composition are designed to be inherently secure.  

 Secure-by-default - all components of a microservices composition should be provided with a 

default configuration that is secure. Any insecure runtime configuration should be a result of a 

deliberate effort by the user. For example, in PickMeUp, enabling default password aging and 

password complexity for end users and ensuring that each microservice is deployed with a least 

set of privileges goes a long way towards ensuring secure-by-default. 

 Secure-by-deployment - the deployment pipeline for microservices is safe. For example, the 

PickMeUp deployment pipeline which may constitute the source code version control system, 

the tools for continuous integration, and mechanisms used to deploy the final artefacts on 

containers should all be safe.  

 Secure-by-communication - software engineers should respond promptly to reported security 

vulnerabilities. The expectation is that software engineers are aware of newly reported 

vulnerabilities and engineers can identify the potential impact any new vulnerabilities may have 

on the microservices composition.  

 

The next section attempts to address REVQ3 from Table 6.2 by using the four security principles 

discussed above to identify secure programming best practices relevant to a microservices composition.  
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(a) Secure programming practices for secure-by-design 

A security flaw in the design of a microservices composition may result in a security breach (Arce et al., 

2014, Williams & Woodward, 2015). In this regard, security requirements should be incorporated into 

the initial architectural design of microservices compositions (Kadam & Joshi, 2015, Athanasopoulos et 

al., 2015). Furthermore, the following guidelines are vital for safe microservices designs:  

 Keep microservices design simple. Complex designs increase the likelihood that errors are 

made in implementation, configuration and use of microservices. Furthermore, an elaborate 

design makes it hard to enforce security policies (Sahu & Tomar, 2017).  

 Ensure input validation on the microservices API. Microservices should ensure that all input 

data from untrusted data sources is validated. Validating input data eliminates a majority of 

injection vulnerabilities (Almorsy, Grundy & Müller, 2016, Sahu & Tomar, 2017). 

 Give attention to source code compiler warnings. Microservices source code should be 

compiled using the highest source code compiler warning level. Any compiler warnings 

should be eliminated by modifying the code (White, 2015).  

 Sanitize data sent to other microservices. Sanitization is cleaning or filtering input data. In 

microservices, this involves checking for invalid UTF-8 encoding, removing line breaks, tabs 

and extra white space and stripping octets in the input. The output of each microservice should 

be secured by stripping out unwanted data. Sanitizing data helps secure data before rendering 

to end user and prevents cross-site scripting attacks. 

 
(b) Secure programming practices for secure-by-default 
Ideally, microservices compositions should be inherently safe on deployment (Stanek, 2017). 

Microservices compositions can be developed in a manner that makes them inherently safe when 

engineers adopt the following practices:  

 Adhering to the principle of least privilege. Components of a microservices composition should 

execute with the least set of permission required to perform a function (Sittig & Singh, 2016, 

Neumann, 2018). For example, a microservice should not have access to directories, databases 

tables, and any other resources that are not required to perform its function. Any elevation in 

permissions or privileges when needed should be authorized and held for a minimum period.  

 Practicing defense-in-depth. Security risks in a microservices composition can be managed by 

using multiple defense strategies. When one layer of defense becomes inadequate, another layer 

of protection can be relied upon to prevent an attack (Williams & McCauley, 2016, Gkioulos & 
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Wolthusen, 2017). For example, a composition should rely on transport-layer security to secure 

a connection between microservices as the first line of defense and microservices should use 

access tokens to authenticate each other as the second line of defense in a REST communication 

model. 

 Denying access by default. Denying access by default means that by default, access to 

components of the microservices composition should be rejected, and a protection scheme should 

define conditions when access is permitted (Bertolino et al., 2014, Ulltveit-Moe & Oleshchuk, 

2015).  

 

(c)  Secure programming practices for secure-by-deployment 

The deployment process of microservices can provide a path that an attacker can exploit to make harmful 

changes and deploy such changes into production environments or even perform a denial of service 

attack. Secure-by-deployment requires the continuous delivery toolchain, the build, and test environment 

to be secured so that changes are safely made in a repeatable and traceable manner. The following best 

practices can go a long way towards ensuring secure deployments: 

 Guaranteeing safe deployment pipelines. The deployment pipeline of microservices is made up 

of the source code version control system, the continuous integration tool for compiling source 

code, scripts of transferring the final artefacts to the production server, and mechanisms for 

provisioning Docker containers on the production server. Secure by deployment requires that 

each step in the deployment process be safe to prevent breaches (Gruhn, Hannebauer & John, 

2013, Bass et al., 2015). The deployment pipeline should also provide trusted components that 

mediate access to sensitive configuration information required during deployments.  

 

(d) Secure by communication in microservices 

Secure-by-communication requires that development teams respond promptly to reports of security 

vulnerabilities and communicate information about security updates. To this end, engineers need to keep 

abreast with new security vulnerabilities and have access to the latest security information. Software 

engineers should, therefore, continuously acquire new information on most recent security exploits. 

 

Although secure programming practices discussed above can adequately ensure safe microservices, the 

theoretical knowledge of secure programming practices is not enough. The challenge as outlined in a 
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study by Veracode (2011) is a reluctance by software engineers to adopt secure programming practices. 

A survey by Oyetoyan et al. (2016) noted that secure programming was practiced by less than fifty 

percent (50%) of engineers and forty percent (40%) of architects. There is, therefore, a need to find ways 

to encourage the adoption of secure programming practices. To this end, the next section attempts to 

address REVQ4 from Table 6.2 by identifying ways to promote the adoption of secure programming 

practices.  

 

6.3.2 Enforcing secure programming practices 

Zhu et al. (2013) attribute the reluctance to adopt secure programming practices to the fact that only a 

small fraction of engineers is well-trained in secure software development. Efforts to encourage the 

adoption of secure programming practices should therefore not underestimate the fact that many 

engineers may not be trained in security. To this end, suitable methods to integrate and enforce secure 

programming practices are those that seamlessly incorporate the practices into the day-to-day software 

development activities of engineers in such a way that engineers view security as part of the expected 

behavior of the microservices composition. Table 6.3 below consider each programming practice and 

suggest methods to incorporate the programming practice into the microservices development process 

seamlessly. 

 

Table 6.3. Methods to enforce secure programming practices 

Security principles Secure programming practices Methods to enforce the practices 

1. Secure-by-design Keep the microservices design simple 
 

 Document safe coding standards and ensure 
reviews of designs and source code 

 On developer's integrated development 
environment (IDE) and continuous 
integration tools use an analysis tool to 
detect any cyclomatic complexity of the 
microservices source code 

Ensure input validation on the 
microservices API 

 Create security unit tests for input validations 
as part of the existing unit testing framework. 
The test suite should consider the use and 
misuse cases to microservices API 
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 Security principles Secure programming practices  Methods to enforce the practices 

1. Secure-by-design 
(continued) 

Give attention to compiler warnings  Install compiler warning plugins on 
continuous integration tool and ensure those 
compiler warnings are set to the highest 
level 

Sanitize data sent to other 
microservices 

 Create security unit tests that ensure that 
microservices responses do not contain 
invalid data and also assert that errors and 
exceptions are caught in a manner that makes 
microservices secure 

2. Secure-by-default Adhering to the principle of least 
privilege 

 Ensure non-essentials operating system 
services are disabled 

 Automate the creation of Docker containers 
or virtual machines and their security 
configurations and ensure security 
configurations are comprehensively 
validated 

 Microservices should always use HTTPS 
 For Unix-based systems disable root login 

Practicing defense in depth  Perform penetration testing 

Denying access by default  Write security unit tests that assert that 
microservices have no access to resources 
they should not be permitted to access 

 Ensure all microservices administration 
interfaces are protected 

3. Secure by deployment Ensuring secure deployment pipelines  Document secure deployment guidelines 
 Ensure secure access to microservices source 

code and continuous delivery toolchain and 
ensure binaries and other build artefacts are 
signed to prevent tampering 

 Ensure that keys, secrets, and credentials are 
not stored in source code or plain text but in 
a secure secret management system 

 Monitor the continuous integration and 
continuous delivery servers 

4.Secure-by-  
  communication 

  Ensure that the development team has access 
to the latest security news and reports 

 
 
6.3.3  General observation and discussion 

The suggested methods to enforce secure programming practices in Table 6.3 provide a practice-oriented 

effort to incorporate secure programming practices in the development of secure microservices 

compositions. The suggested methods require a bold initiative in teams that use Agile methods and 

continuous delivery practices because the methods at the beginning are likely to have a negative impact 
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on the frequency of software releases, and require engineers to change their perception about security. 

The following is vital to ensure seamless and effective adoption of secure programming practices: 

 Translate secure programming practices into security requirements of a microservices 

composition so that software developer view security as part of the expected behavior of the 

composition. In this way, engineers will prioritize the security of microservices compositions. 

 Use the continuous integration and continuous delivery toolchain to automate the identification 

of violations of secure programming practices and security requirements. The toolchain can be 

relied upon to provide early security testing feedback to engineers so that the security flaws are 

addressed before microservices are deployed to any environment.  

 

Although using secure programming practices is vital in the development of microservices as discussed 

above, the benefits of secure programming practices can only be realized when security testing is treated 

as an essential step in the microservices development process. The next section discusses how security 

testing can be incorporated into the development process as an essential security-focused activity for 

secure microservices. 

 

6.4  Validate security requirements and secure programming best practices 

In the context microservices, security testing can broadly be defined as testing requirements of 

microservices that concern to data confidentiality, data integrity, authentication, authorization, non-

repudiation and also validating the ability of the microservices runtime environment to withstand attacks 

(Paul, 2016). Security testing generally validates the correct implementation of specified security 

requirements and identifies unintended vulnerabilities, by mostly using penetration testing attempts or 

simulated attacks (Tian-yang, Yin-Sheng & You-yuan, 2010). In a fast-paced development environment 

such as microservices, it makes sense to automate the validation of security requirements and secure 

programming best practices. To this end, this section first identifies suitable criteria to evaluate if 

available security-focused tools can be used for automated testing of microservices. The identified 

criteria are used to review the feasibility of automating available tools for validating security 

requirements and secure programming best practices. Questions in Table 6.4 are used to guide the review.  

  



 

103 

Table 6.4. Formulated research questions on automated security testing 

Research questions Motivation 
REVQ5. What attributes should a security-oriented testing tool 
possess to seamlessly integrate into a fast-paced microservices 
development environment?   

The aim is to identify criteria to use to evaluate available 
tool and determine the feasibility of automating the tools 
in the microservices development process so that 
security is given early attention in microservices.  
 

REVQ6. Can existing security testing tools be used to automate 
security testing in microservices?   

The aim is to identify tools that are candidates for 
security testing automation so that less human effort is 
used on security testing. 
 

 

The next section attempts to answer question REVQ5 from Table 6.4 by identifying the attributes 

required of security testing tools.  

 

6.4.1  Required attributes of security testing tools  

The effective use of a tool for automated security testing in microservices depends on how seamlessly 

the tools integrate into the microservices development process.  In fast-paced development environments 

such as microservices, a tool with the following attributes is likely to seamlessly integrate into the 

development process without negatively impacting software engineers’ productivity: 

 Ease to integrate (Kaur, 2017).  Similar to any tool used to analyze source code, security testing 

tools should be easy to integrate into an IDE or a continuous integration tool. Ease of integration 

increases the chances of the tool being adopted without impacting a software developer’s 

productivity.  

 Easy to use (Le Ru, 2015).  An ideal testing tool should not require engineers to have advanced 

security knowledge to use. As indicated by Zhu et al., (2013), many software engineers are 

generally not trained in security.  

 Natural results interpretation (de Andrade Gomes et al., 2017).  engineers should effortlessly be 

able to understand reported security flaws, and if possible, the tool should provide details on how 

the engineers can fix the security flaws. 

 Extensive language support and portability. The microservices architecture is technology 

agnostic. The tool should, therefore, not limit engineers to a particular programming language or 

development platforms. 

 Extensibility. The tool should allow engineers to add new capability when new security 

vulnerabilities are reported. 
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Various security testing tools are readily available (Kuusela, 2017). The challenge in a microservices 

development process is to identify which tools to integrate to validate security requirements. The next 

section uses the five attributes discussed above to review readily available tools and identify their 

suitability for automation and answer REVQ6 in Table 6.4. 

 

6.4.2  Review of security testing tools 

The integration of security testing tools in software development processes is an opportunity which many 

software engineers has not fully exploited (Peischl, Felderer & Beer, 2016). There is a general ignorance 

of security testing in many development teams and a significant dependency on external vendors to 

perform penetration testing (Cruzes et al., 2017). Consequently, in many software development teams, 

little attention is paid to security testing (Shuaibu et al., 2015).  In order to address the security testing 

challenge, this section reviews readily available tools to identify which tools are suitable for automated 

security testing in microservices. First, the types of security testing are defined: 

 Static security testing – checks the source code, design documents to find errors, code flaws, and 

potentially malicious code when the code is not being executed.  

 Dynamic security testing - validates the runtime behavior of the application for security 

mechanisms when source code is being executed.  

 

Table 6.5 reviews the popular, readily available, and non-proprietary tools namely GauntIt (Kuusela, 

2017), SonarQube (Campbell & Papapetrou, 2013), and FindSecurityBugs (Kuusela, 2017), for their 

suitability in microservices using the attributes discussed in section 6.4.1 above. A comprehensive list of 

both commercial and non-commercial tools is reviewed by Kuusela (2017). 
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Table 6.5. Review of security testing tools 

 SonarQube Gauntlt FindSecurityBug 

Description SonarQube is an open source tool 
for inspection of code quality 
(Campbell & Papapetrou, 2013) 

Gauntlt is a security testing 
framework that incorporates 
other security testing tool 
(Kuusela, 2017) 

FindSecurityBugs is an open 
source security testing tool 
(Kuusela, 2017) 

Testing 
approach 

Both static and dynamic 
functional testing (SonarQube, 
2018). 

Dynamic testing functional 
testing (Gauntlt, 2017) 

Static testing functional testing 

Ease to 
integrate 

Easy set up with simplified 
integration using dedicated 
plugins for IDEs and continuous 
integration tool  

Gauntlt is easy to integrate with 
continuous delivery tools and 
other testing tools. Installing 
attack tools and maintaining 
them may take time 

Easy integration into with 
continuous delivery tools and 
plugins exist for many IDEs 
 
 

Easy to use Easy to use on IDE or using a 
browser interface. A software 
engineer can specify their quality 
gates 
 

Security-attack scenarios are 
described in a straightforward 
human-readable language 
called Cucumber (Gauntlt, 
2017).  

FindSecurityBugs is simple to use, 
and there are plugins to integrate 
into an IDE.  
 
 

Results 

presentation 

Results displayed on a user 
interface with notes on detected 
issues 

Gauntlt require custom parser 
to automate results to desired 
granularity 

Results exportable into a format 
understood by continuous delivery 
tools 

Portability Provides support for more than 20 
programming languages like Java, 
C++, and C#, etc (SonarQube, 
2018) 

Gauntlt requires Ruby to be 
installed (Storms, 2015)  
 

FindSecurityBugs support only for 
Java web applications 

Extensibility An extension guide is provided to 
assign engineers to write their 
plugins (SonarQube, 2018) 
 

New attack scenarios can be 
written using a language called 
cucumber (Storms, 2015) 

FindSecurityBugs can be extended 
by writing new detectors 

 

6.4.3  General Observations and Discussion 

Table 6.5 above indicates that tools such as SonarQube, GauntIt, and FindSecurityBugs can easily be 

integrated into software engineer’s IDEs and continuous integration tools, and are easy to use and 

extensible. The tools are all suitable for automating security testing in microservices development 

environments. Among the reviewed tools, SonarQube is more suited because it supports many languages 
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and frameworks, provides both static and dynamic testing, and is easy to use and can also be integrated 

to other tools like FindSecurityBugs. 

 

The successful use of security testing tools as discussed above, however, requires upfront effort to ensure 

that a baseline of ready-to-use security tests cases is provided. The security test cases should preferably 

be written in a manner that is understandable by all stakeholders to ensure broader collaboration. 

Software development teams should, therefore, consider incorporating a development methodology that 

supports communication between the business customers, engineers, and the testers, by using acceptance 

tests cases commonly used in behavioral-driven development (Solis & Wang, 2011). Furthermore, the 

use of security testing tools should be informed by the results of a thorough threat modeling process as 

discussed in Chapter 5.  The threat modeling techniques and the available tools discussed above provide 

a platform for providing innovative techniques to promote comprehensive security testing (Peischl, 

Felderer & Beer, 2016).  

 

In addition to security testing discussed in the section above, the threat modeling exercise conducted in 

Chapter 5 identified securing the runtime environment as one of the methods that can reduce the attack 

surface of microservices compositions. The next section reviews mechanisms to ensure secure runtime 

environments of microservices.  

 

6.5  Secure configuration of runtime infrastructure 

Most types of attacks on microservices, whether executed through the network channel or on the 

composition, ultimately target the runtime environments where data is stored, and the microservices run. 

Any runtime environment that allows default user accounts, run unnecessary operating system services, 

and unpatched software libraries provide an attacker with pathways to gain control of microservices 

(Terala & Cole, 2015). The runtime should, therefore, be provisioned in a manner that ensures the safety 

of microservices. The first step towards ensuring a secure runtime environment is to formalize a secure 

configuration baseline of both hardware and software components, and then later validate the 

configuration when microservices are deployed (Hochstein & Moser, 2017).  

 

Currently, various tools are used in industry to configure the runtime environments albeit not for security 

(Robinson & Northcut, 2016).  It makes sense to extend the use of available tools so that the provisioning 
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of the runtime infrastructure also integrates with security aspects. This section aims to understand if it is 

possible to create a re-usable template-based security configuration that automatically scales and support 

rapid deployment of secure microservices using available tools. Questions in Table 6.6 below are used 

to guide the evaluation. 

 
Table 6.6. Formulated research questions on secure configurations 

Research questions Motivation 

REVQ7. What capabilities makes a tool suitable for 
creating secure runtime environments as part of the 
microservices development process? 

To identify criteria that can be used to identify tools that 
can be effectively used to create secure microservices 
runtime environments.  

REVQ8. Can the widely used configuration 
management tools be easily used to create secure 
microservices runtime environment? 

To understand how to leverage the available tools to 
create secure microservices runtime environments. 

 

A vital step towards evaluating the feasibility of using the available tools for automating the creation of 

secure runtime infrastructure for microservices is first to identify an evaluation criterion suitable for 

microservices. The next section identifies the criteria and addresses REVQ7 in Table 6.6. 

 

6.5.1 Capabilities for secure configurations 

The following capabilities are vital to ensure the effective creation of secure runtime environments for 

microservices: 

 Support for different security requirements (Tang et al., 2015).  The microservices composition 

is a distributed system composed of components that may have different security needs. As a 

result, each component should have its security configuration that defines the security concerns 

of the component (Torberntsson & Rydin, 2014, Wettinger et al., 2014).  

 Allow authoring and version control of security configuration files (Morris, 2016, Ikeshita et al., 

2017). In a fast-paced microservices development environment, it is essential to ensure that 

security configurations files are treated like software source code so that any changes on the 

configuration files are tracked and go through the formal change control process before 

deployment. 

 Support for validation of configurations (Huang et al., 2015, Baset et al., 2017). Any changes to 

configurations should be tested first to ensure configurations are not a source of vulnerabilities.  
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 Easy management of dependencies between configuration files (Tang et al., 2015). Dependency 

between security configuration files may become unavoidable. These dependencies should 

preferably be expressed the same way as software source code dependencies for easier 

maintenance.   

 Low learning curve (Fernández et al., 2016). Security configuration files should be written in 

languages that are close to natural language to make it easy for the software engineers with less 

security knowledge to be able to maintain (Fernández et al., 2016). 

 

The next section evaluates the feasibility of leveraging the widely used tools to create re-usable template-

based security configurations. Characteristics identified above are used in the evaluation. The section 

aims to address question REVQ8 from Table 6.6. 

 

6.5.2 Review of tools for secure configurations 

The tools that are common in the industry for configuration management are Chef (Taylor & Vargo 

2014), Puppet (Loope, 2011), Ansible (Hall, 2015), and SaltStack (Myers, 2016). Table 6.7 below 

provides a review of each tools using the capabilities discussed above.  

 

Table 6.7. Review of configuration management tools 

 Chef Ansible SaltStack Puppet 

Description Chef is an open 
source 
configuration 
management tool. 
Chef uses a pure-
Ruby domain-
specific language 
(DSL) for 
describing the state 
of system 
resources, packages 
to be installed, 
services that should 
be running (Taylor 
& Vargo, 20141) 
 

Ansible is a tool for 
automating software 
provisioning and 
configuration 
management. 
Configuration files are 
written in YAML  
format. The YAML file 
represents a task also 
known as a play and 
stored in playbooks 
(Hall, 2015). 

SaltStack is an open 
source configuration 
management tool. It is 
written in Python and is 
designed to be highly 
modular and easily 
extensible (Myers, 
2016). 

Puppet is also an open 
configuration 
management tool. The 
tool follows the concept 
of agent- master 
relationship (Loope, 
2011). State of system 
resources is described 
using a declarative 
language or a Ruby DSL 
and stored in files called 
Puppet manifests. 
Compiled manifests 
reapplied on a target 
system.  
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 Chef Ansible SaltStack Puppet 

Platform 
Support 

Chef is supported 
on Linux, Mac OS, 
and Microsoft  
Windows 
platforms. Chef 
integrates into 
cloud-based 
platforms such as 
Amazon EC2 and 
Microsoft Azure 
(Marschall, 2015). 

Ansible is supported on 
Linux. Mac Os, Solaris. 
On Microsoft Windows 
platforms Ansible 
requires a Linux control 
machine (Hall, 2015).  
 

SaltStack is supported 
on Linux, Mac Os, 
Microsoft  Windows 
platforms (Hall, 2016). 
It is not open source and 
cannot be customized 
easily.  
 
 

Puppet runs on Linux, 
Mac Os, Microsoft  
Windows platforms 
(Loope, 2011).  
 

Support for 
diverse use 
cases 

Different 
configurations 
called recipes can 
be written using 
Ruby for each use 
case. The recipes 
can be grouped to 
form a cookbook 
for more natural 
management. More 
than 800 recipes are 
freely available 
(Marschall, 2015). 

Different playbooks can 
be used for each use 
case (Hall, 2015). The 
Ansible's architecture is 
based on controlling 
machines and nodes. 
However, more features 
are in a paid version. 

The DSL used by 
SaltStack provide a rich 
set of features for a 
diverse use case (Hall, 
2016).  
 

Different resources can 
be used for each use 
case. Puppet main 
features are in its paid 
enterprise version 
(Loope, 2011). 

Authoring and 
version control 

Recipes can be 
versioned and 
stored in version 
control (Marschall, 
2015). 

Ansible playbooks can 
be stored in version 
control systems (Hall, 
2013). 

Recent versions of 
SaltStack support 
integration to version 
control. 

Puppet configuration 
files can be stored in 
version control systems. 

Validation Chef supports unit 
tests, functional 
tests, and 
integration tests of 
recipes (Marschall, 
2015).  

Ansible support unit 
test, functional tests, 
and integration tests of 
playbooks (Hall, 2013). 

SaltStack provides a unit 
test and integration test 
suite. 

Puppet support unit 
tests, functional tests, 
and integration tests of 
resources (Loope, 2011). 

  



 

110 

 Chef Ansible SaltStack Puppet 

Dependency 
management 

Dependencies 
between recipes can 
be defined on each 
configuration file 
(Marschall, 2015). 
 

A playbook can import 
or reference other 
playbooks (Hall, 2013). 

All of the SaltStack 
execution modules are 
available to each other 
and modules can call 
functions available in 
other execution modules 
(Hall, 2016). 

Puppet maintains a 
graphical representation 
of the list of resources 
and their 
interdependencies 
(Loope, 2011). 
 
 

Easy learning Chef is easy to 
install and set-up. 
However, recipes 
require knowledge 
of Ruby to write or 
understand. Chef 
has an active 
support community. 
(Marschall, 2015). 
The documentation 
although rich 
concerning content 
can become 
difficult to read 
because the user 
has to navigate 
through many links 
on the website. 

Ansible is easy to 
install and set-up. The 
playbooks are 
expressed in YAML 
format that has 
minimum syntax and is 
easy to learn because it 
is close to simple 
English representation. 

SaltStack is difficult to 
set-up for new users as 
the available 
documentation is 
difficult to understand at 
the introductory level 
(Tsumak, 2016). The 
web UI is newer and less 
complete compared to 
other tools. Support for 
non-Linux platform is 
not good. 
 

Puppet provides simple 
installation and initial 
setup. The user interface 
is mature and complete. 
There is a well-
established support 
community. Puppet also 
has a robust reporting 
capability (Loope, 
2011). 
 

 

6.5.3 General observations and discussion 

The review of existing configuration management tools in Table 6.7 above shows that the available tools 

possess the required capabilities to create reusable template-based security configurations. The available 

configuration management tools are primarily similar in functionality, and engineers of microservices 

should be able to use any tool of their choice. In a development team that has no previous experience 

with any tool, choosing an ideal tool may be hard. In order to assist software engineers to select an ideal 

tool, the review identifies the following critical points for each tool: 

 Chef is a software engineer-friendly platform and provides various tools for engineers such as the 

Chef developer toolkit and the Chef knife plugin. Chef offers many different recipes or modules 

for free that engineers can use off-the-shelf. The capability to create different recipes using Ruby 

makes Chef a highly customizable configuration management tool. However, Chef had three 

reported security vulnerabilities of medium severity listed on the common vulnerability exposure 

(CVE) database at the time of writing, and engineers should ensure that an attacker does not 

exploit these. 
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 Puppet is considered a system administrator-oriented tool and may be difficult to use for a 

software engineers with no system administration background. However, previous knowledge of 

system administration is becoming less relevant with each new release as the tool is improved. 

Most of the functionality of Puppet is in the paid-for enterprise version. A development team that 

does not need many features can undoubtedly use the open source version. However, the team 

may need engineers with strong Ruby programming skills to add new capabilities when the need 

arises. Puppet had fifty-one vulnerabilities on CVE at the time of writing. 

 Ansible is relatively new and is therefore not as mature compared to Chef and Puppet. However, 

Ansible is a better choice for new and small development teams that do not want to spend much 

on configuration tools and do not have the time to learn how to use some of the more complicated 

configuration management tools. The drawback of Ansible is that the tool is not easy to customize 

because it is not open source and the graphical user interface has insufficient features. Ansible 

had six security vulnerabilities on CVE at the time of writing.  

 SaltStack’s most significant advantage is scalability and resiliency. SaltStack provides multiple 

levels of masters in a tiered arrangement that both distributes load and increases redundancy. 

SaltStack, however, lacks many features and refinements to make the tool enterprise-ready. The 

tools lack support for strict transport-layer security. The tool also poses a significant learning 

curve for new users. SaltStack had twenty-one security vulnerabilities on CVE at the time of 

writing.  

 

In addition to creating secure runtime environments for microservices discussed above, engineers of 

microservices require a continuous insight into the behavior and health status of each component of the 

microservices composition. The next section identifies mechanisms to ensure that engineers are aware of 

the behavior of the components of a microservices composition at all times.  

 

6.6  Continuously monitor components of the microservices composition 

In order to troubleshoot security related challenges at runtime, engineers of microservices always require 

insight into the behavior of each component of the microservices composition. An attack on a component 

may result in a component responding slowly to requests or becoming unavailable. In a microservices 

composition, distributed tracing of communication between components and access to each component's 

log files are vital to understanding attacks. To this end, it is essential to identify the features of each 
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component at design time that are necessary and sufficient to describe and understand the component's 

runtime security behavior. These features can then be used to determine how any changes in a property 

will affect the overall status and health of the application. Monitoring metrics can then be defined using 

the essential features of the components. In a microservices architecture: 

 Each component of the microservices architecture, for example, the microservices, service 

registry and message broker should have its own set of metrics.  The metrics define the 

availability of each component, determine acceptable responses time of each component, identify 

the origin of each request sent to a component and define how to log errors and exceptions in the 

application. 

 The infrastructure that host the components of a microservices composition should have defined 

metrics. The infrastructure metrics are those that pertain to the status of the infrastructure and the 

servers on which the microservice is running. Monitoring docker containers, virtual machines, 

and networks give an insight into each how each component is using, for example, the CPU, 

memory, and connections to resources like the database. 

 

The following questions in Table 6.8 are formulated to guide the review. 

 

Table 6.8. Formulated research questions on monitoring mechanisms 

Research questions Motivation 

REVQ9. What is required to monitor distributed 

microservices effectively?  

To understand the requirements for microservice 
monitoring 

REVQ10. Can available tools assist gain better visibility 

of microservices and the runtime environment to ensure 

continuous security?  

To gain an understanding of what mechanisms are 

available to monitor microservices. 

 

 

REVQ9 is addressed by eliciting the various characteristics that are required to monitor microservices 

architecture components effectively, described next.  

 

6.6.1  Requirements for security monitoring 

The distributed nature of components in a microservices architecture requires a tool that is: 
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 Customizable (Fatema et al., 2014, Sun, Nanda & Jaeger, 2015). In a microservices architecture, 

different components require different security monitoring metrics. Software engineers of 

microservices-based applications need tools that allow them to customize the tools to gather 

different security metrics for each component.  

 Complete. Continuous security of microservices-based applications such as PickMeUp requires 

that software engineers have visibility to both the runtime infrastructure, the microservices, 

service registry, the API gateway, the message broker and the infrastructure. A suitable tool is 

needed to provide a comprehensive view of the application at runtime.  

 Scalable (Gogouvitis et al., 2012, Aceto et al., 2013). The number of composed microservices in 

the application may increase as new business functionality is automated, and therefore a 

monitoring tool needs to scale as new microservices are added.  

 Portability (Aceto et al., 2013, Fatema et al., 2014). Microservices are portable artefacts 

deployable on different platforms. Therefore, the ability to use a monitoring tool on a different 

platform is indispensable. 

 

The next section identifies existing tools that can assist gain better visibility of microservices at runtime 

to answer REVQ10 in Table 6.8.  

 

6.6.2  Review of existing monitoring tools 

The general observation is that the monitoring tools can broadly be classified as follows: 

 Proprietary tools. Proprietary tools belong to Infrastructure provider or third-party organizations. 

 Free or open-source tools. Free or open-source tools are freely available monitoring tools. 

 

Table 6.9 provides a summary of a few most common monitoring tools (Fatema et al., 2014). The tools 

are CloudWatch, CloudMonix, Dynatrace, Zabbix, Prometheus, and AppDynamincs. The summary 

considers the requirements for monitoring discussed above. Characteristic discussed in Section 6.6.1 are 

used to review the tools. 
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Table 6.9. Review of most common monitoring tools 

 CloudWatch CloudMonix Dynatrace Zabbix Prometheus AppDynamics 
(Microservices 
IQ) 

Description Amazon 
CloudWatch is a 
web service that 
provides real-time 
monitoring of 
resources 
(Amazon, 2017). 

CloudMix is 
an Inbuilt 
monitoring 
service for  
Azure 
resources 
(Microsoft, 
2014) 

Dynatrace 
monitors the 
availability 
and 
performance 
of  
applications 
and the 
impact on 
user 
experience 

Zabbix is an open 
source monitoring 
tool for networks, 
operating systems, 
and applications 
(Vacche, 2015) 
 

Prometheus 
is an open-
source 
monitoring 
and alerting 
tool 

AppDynamics 
is an 
application 
performance 
management 
(APM) tool for 
monitoring and 
management of 
management of 
software 
performance 
(AppDynamics, 
2018). 
 

Licensing Proprietary Proprietary Proprietary Open source Open source Proprietary 

Types of 
monitoring 

Can be used for 
performance 
monitoring, 
Availability 
monitoring. 
Azure log 
analytics monitors 
containers 
(Amazon, 2017). 

Can be used 
for 
performance 
monitoring, 
Availability 
monitoring. 
Azure log 
analytics 
monitors 
containers 
(Microsoft, 
2014), 

Availability 
monitoring, 
Performance 
monitoring, 
Container or 
Virtual 
machine 
monitoring. 

Availability 
monitoring, 
Performance 
monitoring, 
Container or 
Virtual machine 
monitoring 
(Vacche, 2015) 
. 

Availability 
monitoring, 
Performance 
monitoring, 
Container or 
Virtual 
machine 
monitoring. 

Availability 
monitoring, 
Performance 
monitoring, 
Container or 
Virtual 
machine 
monitoring 
(AppDynamics, 
2018). 
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 CloudWatch CloudMonix Dynatrace Zabbix Prometheus AppDynamics 
(Microservices 
IQ) 

Customizability Custom metrics 
can be sent to 
CloudWatch 
using an API 
(Amazon, 2017). 

Supports 
native 
integrations to 
popular third-
party 
platforms like 
AppDynamics, 
Nagios, 
Dynatrace to 
process 
information 
(Microsoft 
,2014). 
 

REST API 
provides 
means to 
integrate 
Dynatrace 
into 
continuous 
deployment 
pipeline. 
 

Zabbix support 
custom metrics 
(Vacche, 2015). 
 
 

Can be 
customized 
by writing 
new 
exporter or 
custom 
collector. 
 

Alert based on 
custom 
validation of 
HTTP 
response. 

Complete Can be used to 
monitor both 
application and 
containers. 
Docker container 
logs can be 
retrieved from 
CloudWatch 
(Amazon, 2017). 

CloudMonix 
can monitor 
the containers 
or virtual 
machines and 
the 
microservices 
(Microsoft, 
2014). 

Can monitor 
microservices 
and Docker 
monitoring 
integrates 
seamlessly, 
with no 
configuration.  

Zabbix can monitor 
application and 
containers. 

Zabbix can 
monitor 
application 
and 
containers. 

AppDynamics 
monitors both 
microservices 
and the runtime 
environment 
(AppDynamics 
2018). 
 

Scalable When application 
auto-scale 
programmatically, 
events sent to 
Amazon 
CloudWatch 
(Amazon, 2017). 

Provides auto-
scaling 
capabilities for 
Azure VM 
(Microsoft, 
2014). 

Auto-
discovers and 
monitors 
containers 
without 
touching 
images. 

Supports auto-
discovery of servers 
and network 
devices. 

Zabbix may 
require new 
installation 
to handle 
the new 
load. 
 

AppDynamics 
automatically 
discovers new 
microservices 
endpoints.  

Portability Amazon 
CloudWatch 
works on both 
Windows and 
Linux platforms 
(Amazon, 2017).  
 

Azure 
supports a 
selection of 
operating 
systems, 
programming 
languages, 
frameworks, 
tools, 
databases, and 
devices. Runs 
Linux and 
Docker 
containers 
(Microsoft, 
2014) 

Supports both 
Linux and 
Windows 
platform.  
 

An agent can be 
installed on UNIX 
and Windows hosts. 
Zabbix also support 
agent-less 
monitoring using 
other protocols like 
TCP (Vacche, 
2015). 

Supports 
both Linux 
and 
Windows 
platform 
 

AppDynamics 
agents are 
available for 
many 
programming 
languages, 
frameworks. 
An agent can 
run Linux and 
Docker 
containers 
(AppDynamics, 
2018). 
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6.6.3 General observation and discussion 

A review of currently available monitoring tools in Table 6.8, both open source and proprietary, shows 

that these tools are adequate to monitor microservices, containers and virtual machines. Most of these 

tools are production-ready. The monitoring tools provide proper logging of all relevant and essential 

information required by engineers to understand the state of the microservice at any time. The tools 

discussed in Table 6.8 provide well-designed dashboards that reflect the health of the microservices, 

organized in a manner that is understandable. The tools provide alerts for critical metrics, which enables 

engineers to mitigate and resolve problems. With useful logging, dashboards, alerting, the microservice's 

availability can be protected, failures and errors detected and reduced. With many tools to choose from, 

the following security decisions should be considered: 

 The limitation of agent-based tools such as AppDynamics, Dynatrace, and Zabbix is that they 

often rely on installing an agent on the container or virtual machine. When the container or virtual 

machine is compromised, the results collected from monitoring may not be trustworthy (Sun, 

Nanda & Jaeger, 2015). Monitoring for security should be built based on the assumption that the 

runtime environment hosting microservices cannot be trusted because it is possible for an attacker 

to gain control over it.  

 Tools used for monitoring should not introduce any vulnerabilities. Monitoring capabilities such 

as user-based access control, secure notification and storage are essential. 

 

In addition to the security considerations above, the following limitations should be considered when 

selecting a tool: 

 Proprietary tools may result in vendor lock-in as they are part of the technology stack of a vendor.  

For example, CloudWatch is a proprietary monitoring tool for Amazon cloud services while 

Azure watch is a is a proprietary tool for monitoring Microsoft cloud services. 

 Proprietary tools require license fees.  

 Open-source tools can be hard to use. The user of the tools should make sure the tools are set up 

to be resilient and scalable.  

 

In addition to monitoring microservices, the final security development requirement is to ensure that 

microservices respond securely to changes in their runtime environment. The next section reviews 

methods that enable microservices to react safely to changes in their environment at runtime. 
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6.7  Securely respond to attacks using adaptation mechanisms 

Microservices-based applications are distributed systems implemented using a collection of components 

that independently evolve and react to their environments and other external factors. The distributed 

nature of components creates many potential points of failures. Failures could be a result of a security 

attack or a component becoming unavailable due to technical reasons. The premise of developing secure 

microservices-based applications is the ability to withstand failures and expected attacks. The 

applications should be built with failure in mind to ensure that the applications can respond securely to 

both internal as well as external changes that can affect the security posture. Reaction to changes should 

not involve manual intervention. The reaction to changes without manual intervention is called self-

adaption. Secure self-adaptation in microservices is the achievement of a safe, stable and desirable 

configuration in the presence of malicious attacks. The below question is used to survey the literature on 

microservices secure self-adaptation. 

 

Table 6.10. Review of most common monitoring tools 

Research question Motivation 

REVQ11. How can microservice be designed to 
withstand a failure in the event of a security attack? 

 

To understand the requirements and available methods to 
achieve secure self-adaptation of microservices. 

 

The next section identifies elements for self-adaptation. 

 

6.7.1  Requirement for secure self-adaptation 

Designing microservices-based application for failure in the event of a security attack require the 

application to possess the following capabilities: 

 Self-protection: The ability of microservices to secure themselves against potential attacks 

(Behringer et al., 2015). 

 Self-configuration: Requires the microservices to securely reconfigure themselves, based on self-

knowledge, discovery, and intent (Behringer et al., 2015). 

 

The following approaches can achieve self-protection and self-configuring of the microservices 

composition: 
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 Ensuring availability of components (Dragoni et al., 2017) -given that a microservice, the service 

registry, the gateway and message broker can be unavailable at runtime as a result of an attack, 

deploying replicas of the component can assist in ensuring availability. When one instance is 

unavailability, the replica can service requests. 

 Self-healing capabilities (Toffeti, 2015) - self-healing is the ability of a component in the 

microservices architecture to restart itself if the component is not in health status. A 

microservices-based application can take advantage of tools like Kubernetes (Brewer, 2015). 

These tools provide functionality to cluster containers. 

 Isolating failures (Fontesi & Weber, 2016) - microservices should be equipped with the ability to 

fail fast or provide a fallback if the microservices is unavailable or the response time is slow. 

Example of implementation is to use the circuit breaker pattern (Fontesi & Weber, 2016). The 

Netflix Hystrix (Fontesi & Weber, 2016) is an example of an implementation that uses the circuit 

breaker pattern.  

 

6.7.2  General observations and discussion 

A review of the literature on self-adapting microservice shows that security is briefly addressed (Sun, 

Nanda & Jaeger, 2015). The technology to enable self-healing of microservices is new and not yet 

mature.  Tools have not yet matured to be used to address the security of microservices. Tools such as 

Kubernetes are still on the Alpha-support level for Windows platforms (Kubernetes, 2018).  The Netflix 

Hystrix library used to isolate failures is only available to microservices built using Java. Only the option 

to ensure component availability using clustering and load balancing is established in the software 

development community. There is reliance on cloud vendor to achieve scalability (Sun, Nanda & Jaeger, 

2015). 

 

The section above has discussed the various security activities that are required to create a secure 

microservices-based application. The next section provides a summary of the findings. 
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6.8  Summary 

The microservices architecture decomposes applications into a myriad of small, distributed and 

conversational microservices that cannot be designed to trust each other entirely. The compromise of one 

component may bring down the entire application. Given this background, this chapter reviewed six 

security activities that are required to ensure that microservices compositions are designed and developed 

for security.  Table 6.11 below summaries the review and identify the research gap. 

 

Table 6.11. Summary of the review of security activities 

Security 
activity 

Research 
questions 

Findings Summary  Potential 
research 

1. Define a 
security policy 
of microservices 
composition 

REVQ1. What is 
a good 
microservices 
security policy 
design? 

1. Support for distributed and loosely 
coupled microservices interactions 
2. Support for hierarchical security 
policy domains  

1. There is currently 
no policy languages 
and a standard to 
specify a security 
policy for RESTful 
web services 
2. engineers need to 
define a 
microservices 
composition 
security policies 
manually 

Creating a 
hierarchical 
security policy 
model for a 
microservices 
composition 

REVQ2. What 
categories of 
security policies 
apply to a 
microservices 
architecture? 

1. Data protection policy 
2. Access control policy 
3. Microservice technology-specific 
policy 
4. Network security policy 
5. Microservice composition security 
policies 
5.Virtual Machine and container policy 

2. Adopting 
secure 
programming 
practices 

REVQ3. Which 
secure 
programming 
practices can 
assist engineers to 
avoid known 
security flaws 
when developing 
microservices?  

1. Keep the microservices design simple 
2. Ensure input validation on the 
microservices API 
3. Give attention to compiler warnings 
4. Sanitize data sent to other 
microservices 
5. Adhering to the principle of least 
privilege 
6. Practicing defense in depth 
7. Denying access by default. 
8. Ensuring secure deployment pipelines 
 

1. Each year, most 
of the top ten web 
application 
vulnerabilities 
published by 
OWASP are known 
vulnerabilities  
2. Software 
engineers and 
architect are 
reluctant to adopt 
secure programming 
practices 
3.A small fraction 
of software 
engineers are well 
trained in secure 
software 
development 
 
 
 

Formulate 
practice-
oriented 
methods to 
integrate safe 
programming 
practices into 
the software 
development 
process of 
microservices 
 

  



 

120 

Security 
activity 

Research 
questions 

Findings Summary  Potential 
research 

2. Adopting 
secure 
programming 
practices 
(continued) 

REVQ4. Can 
secure 
programming 
practices be 
enforced without 
affecting the 
benefits of 
continuous 
delivery and agile 
methods? 

1. Translating secure programming 
practices into secure coding standards or 
were possible microservices security 
requirements 
2. Documenting the security 
requirements into security policies 
3. Using the continuous delivery 
toolchain as a point were violations of 
secure programming practices, and 
security requirements are identified and 
attended to 

  

3.  Security 
testing 

REVQ5. What 
characteristics 
should a security 
testing tool posses 
to effectively 
integrate into a 
continuous 
delivery and agile 
development 
environment?   

1. Ease to integrate 
2. Easy to use 
3. Easy results interpretation 
4. Extensive language support and 
portability 
5. Extensibility  
 

1. There is a 
significant 
dependency on 
external vendors to 
perform penetration 
testing  
2. Little attention is 
paid to perform 
security testing 
across the entire 
life-cycle of the 
development 
process in agile 
teams  

Create a 
framework to 
ensure 
systematic 
integration of 
security testing 
into all phases 
of the software 
development 
life-cycle 

REVQ6. Can 
existing security 
testing tools be 
used to automate 
security testing in 
continuous 
delivery and agile 
practices?   

SonarQube (Campbell & Papapetrou 
2013).Gauntlt (Koc et al. 
2017)FindSecurityBugs (Arteau 2016) 

4. Creating 
secure runtime 
environment 
configurations 

REVQ7. What 
capabilities 
should a platform 
or tool possess for 
secure 
configurations? 

1. Support for diverse security 
configuration use cases 
2. Allow authoring and version control 
of security configurations 
3. Validation of configurations 
4. Easy management dependencies 
between configuration files 
5. Low learning curve 

1. Minimal effort 
has been made to 
use the various 
management tools 
to ensure secure 
configurations 
2. There is a lack of 
documented 
precedent when it 
comes to using 
configuration 
management tools 
for an audit against 
security standards 

Leverage 
existing 
configuration 
management 
tools to create 
programmable, 
automated and 
template-based 
security 
configurations 
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Security 
activity 

Research 
questions 

Findings Summary  Potential 
research 

4. Creating 
secure runtime 
environment 
configurations 
(continued) 

REVQ8. Can the 
widely used 
configuration 
management tools 
be leveraged to 
create secure 
microservices 
runtime 
environment? 

Tools like Chef, puppet, Ansible can be 
used to configure secure runtime 
environment for microservices 
 

  

5. Monitoring 
mechanisms 

REVQ9. What is 
required to 
monitor 
distributed 
microservices 
effectively?  
 

1. Customizability 
2. Complete 
3. scalability 
4. Portability 
 

Both open source 
and proprietary 
tools are adequate to 
monitor 
microservices and 
the containers. Most 
of these tools are 
production-ready  

 

REVQ10. What 
available tools 
can assist gain 
better visibility of 
microservices at 
runtime?  

Example include CloudWatch, 
CloudMonix, Dynatrace, Zabbix, 
Prometheus, AppDynamics 
(Microservices IQ) 
 

6. Secure 
microservices 
adaptation 

REVQ11. How 
can microservices 
be designed to 
withstand a 
failure in the 
event of a security 
attack? 
 
 

1. Ensuring availability of components 
using clustering technologies 
2. Using container orchestration tools for 
secure self-healing 
3. Isolating failures using the circuit 
breaker pattern 

The technology to 
enable self-healing 
is not yet mature 
and lacks cross-
platform support 

 

 

Table 6.11 above shows that although little attention has been paid to develop secure microservices-

based applications, many tools and methods are available that can be used to ensure end-to-end security. 

There is therefore a need to create a framework to ensure systematic integration of various tools, 

techniques and methods into all phases of the software development life-cycle to ensure security. 

 

6.9  Conclusion 

The review in this chapter has shown that the development of a secure microservices composition that 

can continue to function securely under malicious attacks is a complex exercise. Despite the challenge, 

the goal of creating secure microservices compositions can be achieved when a set of secure development 

activities that focus on the security aspects of a composition are integrated early into the development 
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process. First, there is a need to ensure precise documentation of security requirements using various 

types of security policies. The security policy comprehensively captures all the protection measures of 

various components of the compositions. Then, during the design and development of each microservices 

many security vulnerabilities resulting from poorly constructed microservices should be avoided by 

adopting secure programming practices. The integration of safe programming practices should be done 

in a manner that is friendly to software developers with little security expertise, and also in a way that 

does not affect the productivity of software developers. 

 

Microservices compositions applications can also be inherently secure when engineers exploit new 

opportunities that security testing tools bring into the microservices development environment. 

Conducting security testing early in the development process allow security vulnerabilities to be 

identified. Identified security vulnerabilities can then be addressed early in the development process. 

Code-driven, configuration management tools, should also be adapted to provide standardized, secure 

configurations of microservices and their runtime environments using commonly tested templates. 

Microservices compositions can be made more secure by using mechanisms to detect any anomalies at 

runtime which can compromise security. 

 

 The next chapter discusses the development of a framework to ensure microservices that provide end-

to-end security. The framework incorporates practice-oriented methods to integrate safe programming 

practices into the software development process of microservices and ensure systematic integration of 

security testing into all phases of the software development life-cycle. The framework leverages existing 

configuration management tools to create programmable, automated and template-based security 

configurations.  
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PART III  
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Chapter 7 

 

SAFEMicroservices 

A Development Framework for Secure  

Microservices Compositions 

 

7.0  Introduction 

Secure software development approaches have been created in the past to assist software engineers. 

However, many organizations find the cost associated with using existing secure software development 

approaches or methodologies prohibitive (Geer, 2010, Viega, 2011). Secondly, existing secure software 

development approaches are designed for sequential software development methodologies (Baca & 

Carlsson, 2011, Jøsang, Ødegaard & Oftedal, 2015). In this regard, it is difficult for software engineers 

to apply these secure software development approaches in iterative software development methodologies 

such as the Agile methodology. Furthermore, these existing secure software development approaches 

were designed for siloed software development environments were roles of software engineers and 

infrastructure engineers are not tightly coupled (De Win et al., 2009). On the contrary, DevOps, a new 

trend in software development, advocate for a multidisciplinary team working together in a fast-paced 

manner. The existing secure development approaches, therefore, fall short when developing secure 

microservices compositions in fast-paced environments. Accordingly, this chapter proposes a practice-

oriented framework to assist software engineers in fast-paced teams in developing secure microservices 

compositions from the ground up. The framework is called SAFEMicroservices.  

 

The fundamental premise of SAFEMicroservices is that security should inherently be built in a 

microservices composition by using a robust architecture design (Feng et al., 2016, Santos, Tarrit & 

Mirakhorli, 2017). SAFEMicroservices is based on the argument that the architecture of microservices 

should incorporate design decisions that promote security. This argument is based on a concept called 

secure-by-design discussed in Chapter 5. Furthermore, SAFEMicroservices is based on the view that 
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when software engineers adopt appropriate security-focused tools and techniques as part of their daily 

software development tasks, a coordinated security strategy can be created that cultivates a security-

conscious culture among software engineers. A security-conscious culture becomes an essential quality 

that enables software engineers to build secure and resilient microservices compositions (AlHogail, 

2015). SAFEMicroservices is generic in approach to security but flexible enough in its application so 

that it accommodates variations in the implementation using different technologies, software 

development methodologies, and also considers the risk profile of the intended microservices 

composition.  

 

The organization of this chapter follows the following sequence: Section 7.1 introduce the aims of the 

SAFEMicroservices. Section 7.2 discusses SAFEMicroservices in detail. Section 7.3 summaries the 

benefits of the SAFEMicroservices approach. A conclusion then follows in section 7.4 

 

7.1  Aims of the SAFEMicroservices framework 

In addition to addressing the lack of a light-weight secure software development methodology that can 

be used in a fast-paced development team, the SAFEMicroservices framework aims to contribute the 

following to the development of secure microservices. 

 

a) Comprehensive analysis of security threats and vulnerabilities associated with the 

microservices architectural style 

Although studies have been undertaken on microservices security, these have been piecemeal approaches 

(Sun, Nanda & Jaeger, 2015, Yarygina and Bagge, 2018). Such studies are largely not based on design-

level security considerations which requires a deep understanding of the application's architecture to 

uncover design flaws. Design flaws are often one of the underlying causes of the difficulties faced by 

software engineers when implementing software patches in the event of security breaches (Feng et al., 

2016). With this in mind, the foundation of SAFEMicroservices is a comprehensive analysis of the 

security threats and vulnerabilities rooted in the microservices architectural style. 

 

b) Comprehensive set of coding guidelines focused on a secure architecture of microservices 

Although various guidelines are available in the literature to assist software engineers to write secure 

code, such documentation tends to be platform or language-specific or generic. Example of such 
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guidelines includes coding guidelines for the Java platform (Long et al., 2011), the Microsoft .NET 

platform (Howard & LeBlanc, 2003) or very general guidelines such as the one provided by the Open 

Web Application Security Project (OWASP) (OWASP, 2011). Such platform or language-specific 

guidelines do not provide software engineers with sufficient guidance to avoid subtle architecture-level 

security threats and vulnerabilities. In this regard, SAFEMicroservices presents a microservices 

architecture-driven identification and classification of secure coding guidelines to augment existing 

secure coding guideline documentation.  

 

c) Assist software engineers to incorporate security in the microservices development lifecycle 

Although incorporating security requirements in early phases of microservices software development is 

considered the most cost-effective way to develop secure applications (Souag et al., 2016), software 

engineers tend to prioritize functional requirements at the expense of security (Oyetoyan et al., 2016). 

The reason is that it is difficult for software engineers to justify the incorporation of security-activities 

from a customer or end-user perspective during the planning phase (Oyetoyan et al., 2016). 

SAFEMicroservices incorporate mechanisms to represent security requirements in a manner that show 

tangible business impact and promote security awareness in the organization. 

 

The SAFEMicroservices framework intends to achieve its aims by ensuring that the following five 

objectives are met:  

 Software engineers are encouraged to become more focused on identifying and mitigating 

security flaws and weaknesses in the design of microservices compositions as studies have shown 

that many applications are breached due to weaknesses in their design (IEEE Center for Secure 

Design, 2015). 

 Software engineers are offered guidance on how to incorporate security-oriented activities, tools, 

and techniques in their daily software development tasks (Cruzes et al., 2017). 

 Security awareness is promoted among software engineers and other stakeholders in the 

organization in a manner that makes software security to be accommodated in any technology 

migration plan. 

 Software engineers get timely feedback on security vulnerabilities on the microservices source 

code during software coding, as soon as software changes are committed into the version control 

system, and also when software is deployed.  
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 Reusable microservices security artefacts are created early in the software development lifecycle 

to make replication of microservices security successes easier in subsequent microservices-based 

projects.  

 

The next section discusses the SAFEMicroservices framework in detail. 

 

7.2  SAFEMicroservices framework 

To understand how to develop microservices compositions that are inherently safe, Chapter 5 identified 

six general secure development activities that provide the necessary foundation for SAFEMicroservices. 

SAFEMicroservices aims to assist software engineers to integrate the six secure development activities 

into their software development process. To this end, SAFEMicroservices identifies six critical phases 

in the software development process that are common to sequential, incremental and iterative 

methodologies, thereby ensuring that new trends in software development are applied. These six phases 

are the points where the six development activities are integrated into the development process. These 

phases are referred to as security checkpoints in SAFEMicroservices. The SAFEMicroservices 

framework security checkpoints are briefly defined below:   

 Preliminary phase – the preliminary phase is a phase common to most software projects where 

customer requirements and the system’s use cases are documented. The phase is also used to 

create the development infrastructure.  

 Planning phase – planning phase is the period when the software development team identifies 

the scope of what needs to be delivered by defining software requirements.  

 Coding phase – the coding phase is the period when software engineers develop software using 

an integrated development environment (IDE). 

 Code integration phase – the code integration phase is when all software changes written by 

software engineers are combined and built to create a deployable artefact. 

 Pre-production deployment phase – the pre-production deployment phase is when software 

artefacts are deployed to pre-production environments for quality assurance. 

 Operational phase – operational phase is when the software artefact is deployed to a production 

environment and released to end-users.  
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Figure 7.1 below shows where SAFEMicroservices security checkpoints are defined for development 

phases to perform the six secure microservices development activities identified in Chapter 5, that are 

denoted by SDA1 – SDA6 (Secure Development Activity). 

 

Figure 7.1: Secure development activities in SAFEMicroservices  

 

As indicated above, SAFEMicroservices aims to be generic, to be able to support any type of 

developmental methodology such as sequential, incremental and iterative methodologies. In this regard, 

Figure 7.2 shows how the SAFEMicroservices security checkpoints can be used in both an iterative and 

sequential software development methodologies. On the left, the SAFEMicroservices framework is 

applied to a sequential development methodology. On the right, an iterative methodology such as the 

Agile methodology is shown where the preliminary phase is first completed, and then the planning, 

coding, code integration, and pre-deployment.   
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Figure 7.2. security control gates in an iterative and sequential methodology  

 

Next, Figure 7.3 below presents a detailed view of the complete SAFEMicroservices framework. The 

security checkpoints and the vital secondary activities that software engineers should perform to support 

the six secure development activities is given. In addition, Figure 7.3 shows both the input required for 

each secondary activity and the reusable security artefacts produced by the activities.  
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Figure 7.3. SAFEMicroservices 
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The SAFEMicroservices framework consists of six phases that need to be integrated with the phases of 

a relevant software development framework or methodology. There is a total of twenty-one security 

activities that need to be performed, seven security artefacts required as input to the activities, and twelve 

resultant security artefacts as output. It is vital to point out at this stage that Figure 7.3 above is not meant 

to depict SAFEMicroservices as a sequential process using phases but merely to group and show the 

various activities that should be performed at a phase in any software development methodology.  

 

Next, each SAFEMicroservices phase is discussed in detail using Figure 7.3 above.  

 

7.2.1 Preliminary phase 

SAFEMicroservices preliminary phase aims to perform a risk assessment of the microservices 

composition and also pro-actively creates the necessary development infrastructure that software 

engineers can use to write and test microservices. Figure 7.4 give the security-focused activities and 

security artefacts of the SAFEMicroservices preliminary phase, as defined by the preliminary phase 

shown in Figure 7.3.  

 

 

Figure 7.4. SAFEMicroservices preliminary phase activities 

 

The security focused-activities of the preliminary phase shown in Figure 7.4 are secondary activities that 

aim to address the need to document the security requirement of a microservices composition (SDA-1). 

These four secondary activities of the preliminary phase are discussed next. 

  

(a)  A.1 Architecture-centric threat modeling 

An architecture-centric approach is used in SAFEMicroservices to unravel and understand security 

threats and vulnerabilities of the microservices architectural style. The approach assists to identify 
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security weaknesses in individual microservices and those that can occur when the various component 

of a microservices composition interact. Architecture-centric threat modeling performed in Chapter 5 

identified five microservices composition security threats namely: 

1. Insecure application programming interfaces,  

2. Unauthorized access,  

3. Insecure service discovery,  

4. Insecure message broker and  

5. Insecure runtime infrastructure.  

 

The risk assessment performed in Chapter 5 identified vulnerabilities associated with each threat by 

reviewing common vulnerabilities and exposures (CVE), a dictionary of common names for publicly 

known security vulnerabilities. The result is presented as an artefact that is adapted as new vulnerabilities 

are identified.  

 

Produced security artefacts: 

A.1.1 Security threats and associated vulnerabilities.  

 

The next step in SAFEMicroservices is to perform a detail analysis of the security threats and 

vulnerabilities. 

 

(b)  A.2 Threats and vulnerabilities root cause analysis 

The aim of the threat and vulnerabilities root cause analysis in SAFEMicroservices is to first understand 

the design decisions that are the root cause of microservices vulnerabilities. This understanding can assist 

software engineers to identify appropriate architecture-level guidelines that can be used to avoid both 

insecure designs and poor implementation of the microservices architecture. Secondly, the analysis seeks 

to assist software engineers to gain a deeper understanding of attack strategies that a malicious user can 

employ to exploit the weakness. Such knowledge enables engineers to anticipate threats and devise 

protection measures accordingly during the implementation of microservices. The security artefact 

employed are shown next.  
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Required Security artefacts: 

A.1.1 Security threats and associated vulnerabilities 

A.2.1 Common types of vulnerabilities 

 

The artefact that is produced by threat and vulnerabilities root cause analysis is shown next. 

 

Produced Security artefacts: 

A.2.2 Microservices architecture common weaknesses enumeration (MACWE) 

  

The analysis of threats and vulnerabilities uses security arterfact A.1.1, identified in the previous step. 

The analysis augments this list to be more comprehensive by including common types of vulnerabilities 

as denoted by security artefact A.2.1. The list of common types of vulnerabilities is retrieved from a 

community-developed dictionary of software weakness types (CWE) database (Mitre 2018) that provide 

specific and succinct definitions of common weaknesses. In the CWE dictionary, a vulnerability is 

referred to as a software weakness. The CWE database categorises software weakness according to 

architecture concepts. Each weakness is prefixed with CWE and is assigned a number. An architectural 

concept is a classification criterion that groups vulnerabilities according to common design decisions in 

the system architecture (Mitre 2018). Table 7.1 shows a list of architecture concepts from CWE, as 

adapted for the context of microservices.  

  



 

134 

Table 7.1. Architecture concepts 

Architecture concepts adapted from CWE list 

 Validate input – A category of vulnerabilities related to how the microservices composition handles input 
validations 

 Authorize actors – A category of vulnerabilities related to how a microservices composition handles 
authorization  

 Limit exposure – A category of vulnerabilities related to the microservices entry points 
 Limit access – A category of vulnerabilities related to the way microservices limit access to infrastructure 

components 
 Encrypt data -A category of vulnerabilities related to how the microservices composition ensures 

confidentiality 
 Audit – A category of vulnerability related to the way the microservices composition handle logging of 

user activities 
 Authenticate actors – A category of weakness related to how a composition handles authentication 
 Identify actors – A category of weakness related to how the composition identify a user 
 Verify message integrity – A category of vulnerabilities related to the way the microservices ensure data 

integrity 
 

 

The architecture concepts in the CWE taxonomy that apply to the microservices composition security 

threats as identified in the architecture-centric threat modelling is now identified, as shown in Table 7.2. 

This evaluation gives an understanding of common design decisions in the microservices architecture 

and the related security threats. The microservices architectural components are also shown. 

 

Table 7.2. CWE architecture concepts applicable to microservices security threats 

Security threats Applicable architecture concepts Microservices components 

Insecure application 
programming interfaces 

 Validate input  
 Authorize actors  
 Authenticate actors 
 Limit exposure 
 Encrypt data  
 Verify message integrity 
 Audit 

 API gateway  
 All microservices 

Unauthorized access  Authorise actors  All components 

Insecure microservice 
discovery  

 Limit exposure  
 Encrypt data  
 Verify message integrity 
 Validate input 
 Authorize actors 
 Authenticate actors 
 Audit 

 Service registry, Microservices 

Insecure runtime 
infrastructure 

 Limit access 
 Limit exposure 
 Authorise actors 

 Runtime infrastructure 
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Insecure message broker  Limit exposure  
 Encrypt data 
 Limit access 
 Verify message integrity 

 Message broker 

 

Next, the vulnerabilities classified under each CWE architectural concept is retrieved. These 

vulnerabilities are analysed to gain a deeper understanding of the nature of the weakness. Any security 

vulnerabilities classified under the architecture concept but not relevant to the microservices architecture 

are eliminated. The analysis allows the CWE dictionary to be extended into a microservices architecture 

taxonomy of common weakness types. As an example, Table 7.3 below shows the vulnerabilities related 

to the validate input architectural concept. Also indicated are elicited vulnerabilities that are applicable 

to security threats. A tick (√) indicates the vulnerability is applicable, and an x means the vulnerability 

does not apply. A comprehensive table is provided in Appendix A – security artefact A.2.2.  

 

Table 7.3. Microservices architecture common weakness enumeration 

 Services security threats 
Architecture 
category 

Common vulnerabilities Insecure 
API 
 

Unauthorized 
access 

Insecure 
microservices 
discovery 

Insecure 
runtime 
infrastructure 

Insecure 
message 
broker 

Validate  

Input 

Improper input validation 
(CWE-20) 

√ x √ x x 

Improper neutralization of 
request data (CWE-
138,150, 643, 74, 76, 77, 
78, 943, 95, 96, 93) 

√ x √ x √ 

Acceptance of extraneous 
untrusted data with trusted 
data 

√ x √ x √ 

Cross-site request forgery 
(CSRF) (CWE-352) 

√ x x x √ 

Deserialization of 
untrusted data (CWE-502) 

√ x √ x √ 

Failure to sanitize special 
elements in request data 
(CWE-75,) 

√ x √ x x 

Improper filtering of  
request data (CWE-
790,791,792, 795,796,797) 

√ x √ x x 

Argument injection 
mechanisms (CWE-88) 

√ x √ x x 

XML injection (CWE-91) √ x √ x √ 
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The microservices architecture common weaknesses enumeration (MACWE), numbered as A.2.2, is an 

important artefact in SAFEMicroservices. The security artefact aims to assist software engineers to 

understand the architecture design decisions that apply to each microservices security threat and the 

associated software weaknesses. Software engineers can use this artefact as a cheat sheet of software 

weaknesses to avoid when developing a microservices architecture component during the coding phase 

discussed later below. The elicitation of architecture-level secure coding guidelines and classification in 

SAFEMicroservices is now discussed below. 

 

(c)  A.3 Architecture-level secure coding guidelines identification and classification 
The identification of secure coding guidelines makes use of the microservices architecture common 

weaknesses enumeration security artefact produced by the threats and vulnerabilities root cause analysis. 

Each of the weakness in the microservices architecture common weaknesses enumeration is thoroughly 

reviewed to identify design and implementation strategies that software engineers can use to avoid the 

weaknesses. Table 7.4 shows the structure of the table used to present the guidelines.  For example, 

guidelines for Improper input validation (CWE-20) weakness type is shown as an illustration. The 

architecture-level secure coding guidelines identification and classification activity require the following 

security artefact below.  

 

Required Security Artefact: 

A.2.2 Microservices architecture common weaknesses enumeration (MACWE) 

 

The outcome of the architecture-level secure coding guidelines identification and classification activity 

is the following artefact. 

 

Produced Security Artefact: 

A.3.1 Catalog of architecture-level secure coding guidelines 

 

A comprehensive list of architecture-level secure coding guidelines elicited in this activity is provided in 

Appendix A – security artefact A.3.1.  
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Table 7.4. Example of a catalog architecture-level secure coding guidelines 

CWE architecture 
concepts 

 Common vulnerabilities  Introduction 
phase 

Architecture-level secure coding guidelines 

Validate input Improper Input Validation 
(CWE-20) 

Architecture and 
Design, 
Implementation 

 Validate all inputs - validation should 
consider relevant properties such as 
length, input type, and acceptable 
values 

 Use and specify an output encoding 
that is supported by a downstream 
component that consumes its output 

 Decoded and canonicalize inputs to the 
application's current internal 
representation before validated 

 

The catalog of architecture-level secure coding guidelines produced in the preliminary phase is an 

essential reusable artefact in SAFEMicroservices. The artefact is intended to assist software engineers to 

avoid creating vulnerable microservices designs. 

 

(d)  A.4 Creation of development infrastructure  

The creation of development infrastructure is administrative in nature and ensures that the necessary 

microservices development infrastructure required by software engineers is in place before the writing 

of microservices source code commences. Infrastructure requirements are used to guide the creation of 

the infrastructure in order to ensure that the infrastructure meets both the performance, security and 

scalability standards and is also not the weakest link that an attacker can use to compromises the 

microservices artefacts that ultimately get deployed. Figure 7.5 below shows a high-level design of the 

SAFEMicroservices development infrastructure that should be set up.  

 

The infrastructure proposed in Figure 7.5 enables software engineers to acquire (1) microservices source 

code from a secure repository to make the necessary software changes. Once software changes are 

completed, the engineer should be able to submit the changes for review (2) to the code review system. 

The code integration system fetches the changes from the code review system (3), builds the changes, 

and executes security test cases and submit the verification results to the code review system (4). The 

reviewer, another software engineer, retrieves the verification results from the code review system (5), 

and if the feedback of the test execution done by the code integration system is positive, the reviewer can 

proceed with a manual review of the code changes to check for any security issues on the changes that 
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were not identified by the code integration system. If the changes do not violate any security 

requirements, secure coding guideline, and secure design principles, the reviewer approves (6) the 

software changes for integration. The changes are then integrated into the main code base (7), and the 

code integration system fetches the integrated source code (8), builds the code, executes the security test 

cases and if all is successful, the integration system build and validate the artefact (9), and then the 

artefact can be deployed to pre-production environments for quality assurance.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 7.5. SAFEMicroservices development infrastructure high-level design 

 

SAFEMicroservices does not dictate the tools to be used. However, the infrastructure should meet the 

following basic standards: 

 Access to the version control system, code integration system and code review system should be 

secured through well-defined authentication and authorisation mechanisms. The activities of 

software engineers on each of the system should be tracked and auditable.   

 Software engineers should adhere to a source code branching strategy that adheres to best 

practices when using the version control.  Branching, in revision control is the duplication of 
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source code so that modifications can happen in parallel along both branches. The originating 

branch is called the parent branch. Source code should only be merged into the parent branch 

after a rigorous security testing and peer code review and only source code from the parent branch 

should be deployed. 

 

(e)  Summary of preliminary phase deliverables 
The outcomes of the preliminary phase are important re-usable security artefacts that software engineers 

can use in any microservices-based project. The artefacts are summarized below in Table 7.5. 

 

Table 7.5. Summary of SAFEMicroservices preliminary phase deliverables 

SAFEMicroservices activity Activity deliverable 
Architecture-threat modeling A list of security threats and associated vulnerabilities  

 
Threats and vulnerabilities root cause analysis A catalog of microservices architecture common 

weakness classified by threat type, affected security 
properties or architectural concepts 
 

Architecture-level secure coding guidelines 
identification and classification 

A catalog of architecture-level secure coding 
guidelines classified by threat type, affected security 
properties, and architecture concepts 
 

Creation of development infrastructure Secure build pipeline that software engineers can 
confidently use to build microservices and perform 
comprehensive security testing quickly 
 

 

The activities of the preliminary phase ensure that SAFEMicroservices meet the objectives of making 

sure that software engineers focus more on identifying and mitigating security flaws and weaknesses in 

the design of microservices compositions. Besides, the deliverables of the preliminary phase are re-usable 

artefacts that are essential in the development of microservices.  

 

The next section discusses the SAFEMicroservices planning phase. 

 

7.2.2  Planning phase 

The purpose of the SAFEMicroservices planning phase is to construct comprehensive design artefacts 

that describe how microservices security controls are positioned to maintain confidentiality, integrity, 

availability, and non-repudiation at all times. The description of security controls concerning the security 

properties of the microservices composition form the security architecture of the microservices 
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composition. Figure 7.6 below shows the two main security-focused activities of the SAFEMicroservices 

planning phase.  

 

 

Figure 7.6. SAFEMicroservices planning phase activities 

 

The two security activities are aimed at ensuring that software engineers effectively document the 

security requirements of microservices composition (SDA-1). These activities are discussed below. 

  

(a)  2.1 Microservices abuse or misuse cases identification 

The SAFEMicroservices approach is based on the argument that to secure microservices compositions 

effectively, software engineers should think like attackers to gain a sense of how an attacker can misuse 

or abuse the microservices composition. Given the traditional shroud of secrecy surrounding software 

exploits, SAFEMicroservices takes into consideration that many software engineers are often ill-

equipped in software exploitation (Barnum & Sethi 2007). With this in mind, SAFEMicroservices 

identifies common attack patterns applicable to microservices from the catalog provided by the common 

types of attack patterns CAPEC (Mitre 2018). An attack pattern describes how an observed attack type 

is executed (Chrysikos & McGuire 2018).  Each attack pattern in the CAPEC catalog is prefixed with 

CAPEC and a number.   

 

The approach adopted by SAFEMicroservices is first to query the CAPEC database using the 

mechanisms of attack search criteria to first identify all the categories of common type of attack patterns. 

Figure 7.7 below shows the categories of attack patterns under the mechanisms of attack criteria in 

CAPEC. 
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Fig 7.7. Common attack patterns categories in the CAPEC taxonomy 

 

The next step identifies all the attack patterns relevant to each microservices security threat. Table 7.6 

gives a non-exhaustive example of a list of attack patterns that are relevant to the insecure application 

programming interface security threat. Associating the CAPEC attack patterns to microservices 

composition security threat is a manual exercise that requires knowledge gained from analyzing 

vulnerabilities discussed above.  

 

Fig 7.6 Association of security threats to CAPEC mechanisms of attacks 

Security threat Applicable CAPEC mechanisms of attack 

Insecure application programming 
interfaces 

 CAPEC-152: Inject unexpected items 
 CAPEC-210: Abuse existing functionality 
 CAPEC-255-Manipulate data structures 
 CAPEC-223: Employ probabilistic techniques 

 

Next, each attack pattern is studied to identify how an attack is executed. An abuse or misuse case is then 

formulated using the attacker’s strategy. Table 7.7 gives examples of abuse or misuse cases created from 

the CAPEC- 152: Inject unexpected items attack patterns. Also, protection measures are identified to 

mitigate the attack.  

 



 

142 

Table 7.7. Microservices abuse or misuse case and protection measures 

Microservices security 
threats 
 

CWE 
architectural 
concepts 

CAPEC 
mechanisms of 
attack 

Abuse or misuse cases Protection measures (Including tools and 
techniques) 

Insecure application 
programming interfaces 

Validate input CAPEC: 152: Inject 
unexpected items  

 As an attacker, I can manipulate request 
parameters to compromise the operation of 
microservices  

 As an attacker, I can supply values as parameters 
to the API that a microservices implementation 
uses to determine which class to instantiate and I 
can then create control flow paths through the 
microservices that were not intended 

 As an attacker, I can manipulate resource 
identifiers passed on as parameters to 
microservices API so that I gain control and 
perform an action on the resource 

 As an attacker, I may either alter the path or 
add/overwrite unexpected parameters in the 
“query string" on the HTTP query string when 
calling the microservice REST API 

 As an attacker, I may supply multiple HTTP 
parameters with the same name to cause a 
microservices to interpret values in unanticipated 
ways 

 As an attacker, I can exploit a microservices 
composition component by injecting additional, 
malicious content during its processing of 
serialized objects 

 Ensure all input content that is delivered to by a 
microservices is sanitized against an acceptable 
content specification 

 Use the validate input secure coding guidelines 
provided in A.3.1 

 Use an input validation framework such as 
OWASP ESAPI Validation API 

 Use static analysis tools such as FindBugs on 
IDE and continuous integrations toolchains to 
detect input-validation 

 Perform fuzz testing 
 Validate object before deserialization process 
 Limit which class types can be deserialized 
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SAFEMicroservices also identify tools and techniques as part of the protection measures that software 

engineers can use to prevent the attacks. Table 7.7 below indicates abuse cases derived for the 

insecure application programming interface security threat and the relevant protection measures. The 

SAFEMicroservices approach thus enhances the generic CAPEC dictionary into a microservices 

architecture common attack pattern enumeration and classification (MACAPEC). MACAPEC is a 

vital re-usable security artefact, security artefact B.1.4, in SAFEMicroservices that enable software 

engineers to identify attack patterns associated with each security threat, understand the manner in 

which the attack is executed and how to protect the microservices composition from attacks. This 

understanding is essential to software engineers when creating comprehensive security test cases in 

the coding phase. Security artefacts used by this security activity are listed below. 

 

Required Security Artefacts: 

A.1.1 Security threats and associated vulnerabilities  

B.1.1 Common types of attack patterns  

B.1.2 Security requirements 

B.1.3 Common design flaws 

B.1.4 Microservices abuse cases & protection measures  

 

The last step is to ensure that identified protection measures comprehensively cover all the known 

common design flaws. A gap analysis is performed using the top ten known and common mistakes 

that software engineers make when designing software as provided for example, by the IEEE (2015). 

The list of common design mistakes is reviewed to see if each flaw has been addressed by the 

protection measures identified above. Protection measures are identified for any flaws not addressed 

using the CAPEC catalog. Table 7.8 is an example of the outcome of the gap analysis.  

 

Table 7.8. Gap analysis of protection measures for common design flaws 

 Common design flaws  Protection measures 

 Earn or give, but never assume trust 
 

 Use protection measures defined for CAPEC: 152- Inject 
unexpected items  

 Use an authentication mechanism that cannot be 
bypassed or tampered with 
 

 Use multi-factor authentication 
 Use time-tested authentication mechanisms 
 Authentication system designs should automatically provide 

a mechanism requiring re-authentication after a period of 
inactivity or before critical operations  

 Authorize after you authenticate  Use defense in depth strategies 

 Strictly separate data and control instructions, and 
never process control instructions received from 
untrusted sources 

 Use protection measures defined for CAPEC: 152- Inject 
unexpected items  
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The next step after identifying the microservices abuse cases and protection measures is to create a 

security architecture of a microservices composition, discussed next. 

 

(b)  2.2 Creation of a security architecture 

A security architecture is an abstraction of a design that identifies and describes where and how 

security controls are used (Maikel & Asim 2018). In SAFEMicroservices the aim of creating a 

security architecture is to enable software engineers to quickly design and create secure microservices 

composition using reusable building blocks. SAFEMicroservices assumes the existence of security 

policies within an organisation that provide high-level information security goals within an 

organisation the security.  

 

The security architecture in SAFEMicroservices is based on the balance and holistic mix of the 

following elements: 

 

Required Security Artefacts: 

A.3.1 Catalog of architectural-level secure coding guidelines  

B.2.1 Security policies and standards 

B.2.2 Secure design principles 

B.2.3 Monitoring and adaptation mechanisms 

 

Indirectly, the architecture-centric threat modeling performed in the preliminary phase and the 

security awareness derived from an analysis of security threats and vulnerabilities and the 

identification of abuse cases influences this step. These security artefacts are described next.  

 

Secure design principles 

A principle can be defined as a qualitative statement of intent that should be met by the architecture 

(Maikel & Asim 2018). Secure design principles are vital in SAFEMicroservices because they 

establish the basis for a set of design rules for microservices and also influence the implementation 

of security controls. In SAFEMicroservices these principles are elicited mostly from analysing and 

grouping of CWE vulnerabilities according to a common theme. Table 7.9 below shows the secure 

design principles for microservices elicited from CWE vulnerabilities that share the common theme. 

A complete list of secure design principles is provided in Appendix B, security artefact B.2.2. Table 

7.9 can be used as a cheat sheet of design principles to apply and the relevant vulnerabilities that 

software engineers should avoid. 
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Table 7.9. SAFEMicroservices secure design principles 

CWE vulnerabilities Security designs 
principles 

Principle description 

CWE-272: Least privilege violation 
CWE-250: Execution with unnecessary 
privileges 

The principle of least 
privilege 

All components in a microservice 
composition should be assigned minimum 
necessary rights when accessing any 
resource, and the rights should be in effect for 
the shortest duration necessary.  

CWE-636: Not failing securely The principle of failing 
securely 

In the event of a component in a 
microservices composition failing, it should 
do so securely 

CWE-656: Reliance on security through 
obscurity 

The principle of defense 
in depth 
 

The components should use layering of 
security defenses to reduce the chance of a 
successful attack 

CWE-637: Unnecessary complexity in the 
protection mechanism 

The principle of 
economy of mechanism 

 The components should ensure that multiple 
conditions are met before granting access 
permission 

CWE-269: Improper privilege management 
CWE-268: Privilege chaining  

The principle of 
separation of privilege 

The design of each component should be kept 
simple 

 

Next, the creation of security standards is discussed. 

 

Microservices security standards 

Standards are directives that establish mandatory mechanisms that software engineers must comply 

with. Security standards in SAFEMicroservices ensures that software engineers to develop 

microservices that can resist, detect, react and recover from any attack. The security standards are 

formulated to avoid: 

 known security threats and vulnerabilities discussed. 

 known attack patterns discussed above. 

 

Table 7.10 below gives a non-exhaustive list of security standards to guide the development of 

microservices. A comprehensive list is provided in Appendix B security artefact B.2.3. Other 

directives should be derived from the organization security policies. 
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Table 7.10. Microservices security standards 

Microservices Security Standards 

Any client communication with a microservice must be done via API Gateway to provide load balancing, and a 
standard set of security capabilities and communication to API gateway should be authenticated 

Each microservice must be protected using a defense in depth approach 

The microservices composition must use a well-known and secure open standard protocol for centralized 
authentication using tokens. The token must be generated using an algorithm that follows the cryptography standard 
and should have an associated time to live 

Authentication tokens must be encrypted 

Each microservices must have a unique API key for calling another microservice 

API calls made by users and microservices must be limited to only those necessary for those users or microservices 
to perform their functions 

All API requests must be logged to a centralized logging and monitoring system 

A tool to monitor and visualize inter-microservice communication must be deployed as part of the management 
capabilities of the microservices architecture 

All communication in the microservices composition must use transport layer security 

All microservices must run in an approved application container technology  

Containers must be configured according to approved security best practices  

 

The secure design principles and the security standards ensures that microservices composition resist 

attacks. However, microservices compositions should also be designed to be able to detect attacks, 

react to attacks and recover from attacks. In this regard, microservices should be built with both 

monitoring and adaptation in mind. The next section discuss how software engineers can be equipped 

to design such microservices. 

 

Monitoring and adaptation mechanisms 

SAFEMicroservices’ aim to monitoring is twofold. Firstly, microservices need to be built with 

appropriate logging of user activities, and monitoring tools are needed to monitor microservices. 

Secondly, software engineers should be guided to avoid vulnerabilities that can results from improper 

implementation of logging, such as logging of sensitive information. With this in mind, 

SAFEMicroservices uses common weakness types from CWE associated with logging and formulate 

recommendations to guide software engineers. Figure 7.11 below shows an example of monitoring 

guidelines. A comprehensive list of monitoring guidelines is provided in Appendix B security artefact 

B.2.4. 
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Table 7.11. Microservices monitoring guidelines 

Monitoring guidelines CWE Vulnerabilities 

Log all information important for identifying the source or nature of an 
attack 

CWE-223: Omission of Security-relevant 
Information 

Do not log sensitive information on the log  CWE-532: Information Exposure Through 
Log Files 

Log information in much details CWE-778: Insufficient Logging 

 

Software engineers are free to use monitoring tools of their choice. SAFEMicroservices recommends 

that software engineers adopt approaches such as the circuit breaker pattern and load balancing to 

ensure microservices respond appropriately to attacks at runtime as adaptation mechanisms. 

 

(c)  Summary of planning phase deliverables 

The SAFEMicroservices planning phases produces four reusable security artefacts as shown in Table 

7.12.  

 

Table 7.12. Summary of planning phase deliverables 

Planning phase deliverables Summary of deliverable 

B.1.4 Microservices abuse and misuse cases Catalog of strategies attacker can use to exploit 
microservices 

B.2.2 Security standards Directives software engineers should comply with to 
ensure secure microservices 

B.2.3 Secure design principles Guideline to be followed to ensure secure microservices 
composition 

B.2.4 Monitoring and adaptation mechanisms Guidelines to ensure microservices are monitored and to 
ensure microservices can respond to attacks 

 

The next section discusses the activities of the coding phase. 

 

7.2.3 Coding phase 

The coding phase in SAFEMicroservices commences when software engineers use the various 

security artefacts from the preliminary phase and planning phase to write secure microservices source 

code.  Figure 7.8 below shows the five essential security-focused activities of SAFEMicroservices 

coding phase.   
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Figure 7.8. SAFEMicroservices coding phase activities 

 

The five essential security focused-activities of the coding phase shown in Figure 7.8 above can be 

viewed as secondary activities that aim to address the need adopt secure programming best practises 

(SDA-2) and validate security requirements and secure coding standards (SDA-3). First, the 

SAFEMicroservices artefacts required to perform the five activities comprehensively are shown next, 

as well as all resultant security artefacts.  

 
Required Security Artefacts: 

A.3.1 Catalog of architectural-level secure coding guidelines  

A.4.2 Secure pipeline 

B.1.4 Microservices abuse cases and protection measures 

B.2.1 Security policies and standards 

B.2.2 Secure design principles 

C.1.1 Platform-specific secure coding guidelines  

C.1.2 Security test cases  

C.4.1 Runtime infrastructure template  

C.4.2 Microservices code 

 

The relationship between the various security artefacts is vital to understand SAFEMicroservices. To 

this end, Figure 7.9 below presents a conceptual model that depicts in brief the relationship between 

these artefacts. The security goal specifies the security capability of a microservices composition and 

the security policy states what protection mechanisms need to be implemented on a microservices. 
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Figure 7.9. Conceptual model of relationship between SAFEMicroservices artefacts 

 

Next, the five activities of the coding phase are discussed. 

 

(a)  C.1 Write security test cases 

SAFEMicroservices requires that software engineers write both security unit test cases and 

acceptance tests cases. The purpose of the security unit test cases is to validate an individual unit that 

makes up a microservices to determine if each unit meets the security expectation. The acceptance 

test cases determine whether the microservice or the microservices composition satisfies a given 

security criterion during its operation. The security and acceptance test cases should be written in 

such a way that any violation of security artefacts A.3.1, B.1.4, B.2.1, B.2.2 and C.1.1 are detected. 

In SAFEMicroservices, software engineers are free to use libraries or technologies of their choice to 

write security test cases. The security test cases should be written both for microservices and the 

runtime infrastructure and should be comprehensive to ensure extensive test coverage of the written 

source code. 

 

(b)  C.2 Design and write secure microservices code and infrastructure code  

Software developers write secure code for both microservices and templates for automating the 

creation of the deployment infrastructure.  Software engineers need to ensure that the design and 
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writing of code follow the guidelines specified in security artefact A.3.1, B.2.1, B.2.2 and C.1.1 and 

that protection measures are incorporated into the microservices. In addition, microservices should 

be designed and developed in such a way that they are fully equipped to respond to attacks at runtime 

using the adaptation mechanisms that are built from adaptation requirements discussed in the security 

architecture of the composition. The microservices should also be built to support comprehensive 

monitoring as discussed before.   

 

SAFEMicroservices adopts the concept of “infrastructure as code”. Infrastructure as code manages 

and provisions deployment infrastructure using source code templates that are executed by 

configuration tools (Morris, 2016). Using template to create infrastructure, enables software 

engineers to test templates using security test cases. This ensures that deployment infrastructure is 

thoroughly tested before deploying any microservices. The deployment infrastructure should be 

created with minimum operating system services and network functionality. The aim is to promote 

microservice that are secure-by-default. Changes to the infrastructure template should be versioned, 

tested and tracked to ensure auditability.  

 

(c)  C.3 Execute static analysis and security test cases 

Software engineers need to test the code for both microservices and the infrastructure before the 

changes are submitted to the shared repository. Testing should utilize the static analysis tools installed 

on the software engineer’s integrated development environments (IDE). In addition, before 

committing source code to a shared repository, a software engineer should ensure that all the security 

test cases have been executed successfully. 

 

(d)  C.4 Perform manual security code reviews 

Manual security code reviews ensure that software engineers collaborate to create safe microservices. 

Reviews are vital to identifying some of the design flaws that cannot be identified by tools and also 

to identify security flaws such as hardcoded credentials. In addition, manual reviews are vital to 

encourage software engineers to write readable microservices source code that is easy to maintain. 

 

(e)  C.5 Fix failed security tests cases 

Software engineers need to address any security vulnerabilities before submitting their source code 

to a common repository. By so doing, software engineers receive early feedback on security issues, 

and security vulnerabilities can be given early attention in the microservices development life-cycle.  
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(f)  Summary of the coding phase deliverables 

The SAFEMicroservices security artefacts produced by the coding phase is a suite of security test 

cases, a tested template to create the runtime infrastructure and source code for microservices. These 

artefacts are reusable components in the development of secure microservices. The activities of the 

coding phase ensure that the objective of SAFEMicroservices of ensuring that software engineers get 

timely feedback on security vulnerabilities on the microservices source code is met. 

 

Next, the code integration phase is discussed.  

   

7.2.4  Code Integration phase 

The code integration phase in SAFEMicroservices commences when the software changes made by 

software engineers have been successfully tested by a software engineer on the IDE, and the software 

changes have also successfully been peer-reviewed. The objective of SAFEMicroservices is to 

automate the building and packaging of software changes, the execution of a suite of test cases, and 

validation of microservices artefacts using the development infrastructure created in the preliminary 

phase. Figure 7.10 below shows the three essential security-focused activities of the 

SAFEMicroservices coding integration phase extracted from the coding integration phase in Figure 

7.3. 

 

 

Fig 7.10. SAFEMicroservices code integration phase activities 

 

The three essential security-oriented activities of the coding integration phase shown on Figure 7.10 

aim to assist software engineers to adopt secure programming best practices (SDA-2) and to validate 

security requirements and secure programming best practices (SDA-3). These three activities are 

discussed next.  

 

(a)  D.1 Build microservices and execute security test cases 

The building of microservices source code is performed by code integration tools. Software engineers 

are free to choose the code integration tool of their choice, preferably the tool should build and execute 
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test cases in an automated manner. The build process should produce deployable microservices 

artefacts and execute test cases written by the software engineer in the coding phase.  

 

(b)  D.2 Validate licenses, libraries and container images 

In SAFEMicroservices, it is vital to ensure that any open source software libraries used in 

microservices are known and any security vulnerabilities in those libraries are detected. Also, the 

third-party libraries should be from trusted sources. This activity is vital to ensure that microservices 

compositions do not inherit security vulnerabilities from third-party components. The code 

integration system should provide mechanisms to validate third-party libraries and their respective 

licenses. In addition, the code integration system should also validate container images. The 

validation process should produce a security testing report which is used to decide if the software 

changes are safe enough to be deployed to production. The security testing report is a vital artefact 

that should be used to sign-off microservices for deployment in both the pre-production and the 

production environment. 

 

(c)  D.3 Fix failed security test cases 

Software engineers need to attend to any security vulnerabilities that may be detected during the 

execution of the test cases by the build tool or the validation of third-party libraries and container 

images.  

 

(d)  Summary of the code integration phase deliverables 

The deliverables of the code integration phase are the microservices artefacts that are ready to be 

deployed into a pre-production environment and a security testing report that provide software 

engineers with a view into the security state of the microservices artefacts, the third-party libraries 

used and the security status of the container images. The activities of the code integration phase ensure 

that the objective of SAFEMicroservices of making sure that software engineers are offered guidance 

on how to incorporate security-oriented activities, tools and techniques in their daily software 

development tasks is met. Furthermore, the activities also assist software engineers to get timely 

feedback on security vulnerabilities on the microservices source code before any deployment. 

  

7.2.5  Pre-production deployment phase 

The pre-production phase in SAFEMicroservices is used to deploy microservices artefacts to an 

environment where business users can perform quality assurance before a decision is made to deploy 

the microservices in a production environment. Figure 7.11 below shows the security-focused 
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activities of the SAFEMicroservices pre-production deployment phase. Figure 7.11 is an extract of 

the pre-production deployment phase shown in Figure 7.3 above.  

 

 

Fig 7.11.  SAFEMicroservices pre-production deployment phase activities 

 

The essential five security focused-activities of the pre-production deployment phase shown on 

Figure 7.11 aims to assist in validating security requirements and secure programming best practices 

(SDA-3) and to ensure the secure configuration of the runtime infrastructure (SDA-4). These five 

activities are discussed next.  

 

(a)  E.1 Provision pre-production environment 

The provisioning of a pre-production environment should be automated as much as possible in 

SAFEMicroservices. A configuration management tool should be used to create the infrastructure in 

conjunction with the infrastructure template, an artefact created and tested in the coding phase. The 

use of templates ensures that consistent configurations are created that satisfy the security 

requirements. This goes a long way to ensure secure-by-deployment in microservices. The 

environment should be validated to ensure for example that no unnecessary services are running that 

can compromise security. 

 

(b)  E.2 Deploy to pre-production 

Once the environment has been created and validated the microservices can be deployed. Software 

engineers can use tools of their choice to deploy microservices. However, the deployment pipeline 

should be secured to ensure that an attacker does not gain access and deploy corrupted microservices 

artefacts. 

 

(c)  E.3 Validate microservices 

Software testers manually test the microservices and ensure that both functional and non-functional 

requirements of the microservices are satisfied. In addition, there is a need to make sure that 
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microservices’ access to certain resources such as file and directory is only limited to what is 

necessary for microservices to perform their function. 

 

(e)  E.4 Penetration testing 

The last step of the pre-production deployment phase is to ensure that penetration testing is 

performed. Penetration testing is an authorized simulated attack on microservices composition 

performed to evaluate security. Penetration testing is performed to identify vulnerabilities, including 

the potential for unauthorized parties to gain access to microservices and data. SAFEMicroservices 

does not dictate which tools to use to perform the test, and software engineers can use any tools of 

their choice. What is essential in SAFEMicroservices is that feedback from penetration testing is 

given attention before microservices are deployed to a production environment.  

 

(f)  E.5 Fix failed security tests  

The purpose of this activity is to ensure that software engineers address any security vulnerabilities 

that may be detected during the penetration testing. This is vital to ensure that microservices are not 

deployed with known security vulnerabilities.  

 

(g)  Summary of pre-production deployment phase deliverables 

The essential SAFEMicroservices artefact of the pre-production deployment phase is a security 

testing report that covers both the results of security requirements validation done manually by 

software testers and also the outcome of the penetration testing exercise. The stakeholders that have 

a vested interest in the application can use both results from functional requirements validation 

together with the security testing report to decide if the microservices can be deployed into a 

production environment. The stakeholder can analyse the security testing report and decide the 

priority of any reported vulnerabilities. If the vulnerabilities are of a low priority, then a decision to 

deploy the microservices can be made.  

 

7.2.6 Operational phase 

SAFEMicroservices operational phase aims to ensure that microservices compositions always 

maintain their security posture while in use. Any microservices maintenance activities should not 

degrade the protection measures of the microservices composition. Figure 7.12 below shows the three 

essential security-focused activities of SAFEMicroservices operational phase extracted from Figure 

7.3 above.  
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Figure 7.12.  SAFEMicroservices operational phase activities 

 

The objective of the three essential security focused-activities of the operational phase shown in 

Figure 7.12 is to assist software engineers to continuously monitor the behaviour of components of 

the microservices composition (SDA-4) and to ensure that a microservices composition securely 

respond to attacks using adaptation mechanisms (SDA-6) at runtime. These three essential activities 

are discussed next. 

 

(a)  D.1 Provision production environment and deploy 

The first activity is to create a secure microservice runtime environment. This environment should be 

created using a tested infrastructure template, that was used to create the pre-production and went 

through rigorous testing using penetration testing techniques. This ensures that a safe runtime 

environment 

 

(b)  D.2 Monitor microservices composition 

SAFEMicroservices requires that software engineers constantly gain access to the behaviour of the 

microservices composition. In this regards, various tools should be used to monitor microservices. 

As discussed in the coding phase, microservices should be built with an inherent ability to trace user 

activities in order to identify attackers and any malicious modifications. Monitoring requirements that 

are part of the security architecture should guide software engineers in ensuring that both the 

monitoring infrastructure is in place and microservices are comprehensively monitored to detect any 

attacks at runtime. 

 

(c)  D.3 Respond to attacks 

Microservices should be able to respond securely to attacks using adaptation mechanisms that are 

inbuilt within the microservices. The adaptation mechanisms are part of the security architecture and 

were discussed in the preliminary phase. 
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(d) Summary of the operational phase deliverables 

The operational phase in SAFEMicroservices should provide a real-time monitoring view of 

microservices. Various tools reviewed in Chapter 6 can be used to provide a real-time dashboard that 

software engineers can use to gain continuous insight into the operation of microservices.    

 

The next section discusses the benefit of SAFEMicroservices framework. 

 
7.3  Summary of SAFEMicroservices benefits 

Table 7.13 below provides a summary of the expected benefits of using the SAFEMicroservices 

approach in each phase. 

 

Table 7.13. SAFEMicroservices benefits 

Phase SAFEMicroservices benefits 

Preliminary phase  Promotes security awareness among software engineers and 
other stakeholders so that software security is 
accommodated in any technology migration plan 

 Software engineers proactively understand and identify 
threats and potential vulnerabilities early in the 
development process. This helps to mitigate potential 
design flaws that are usually not easily found using other 
techniques such as code reviews and static source analysis 

 Software engineers gain an opportunity to fix security 
vulnerabilities early in the design phase and avoid 
expensive re-engineering efforts that may be required after 
source code is written or a security breach has occurred 

Planning phase 

 

 Software engineers use abuse or misuse cases to devise 
upfront defense mechanisms that cover all possible 
microservices attack pattern 

 Software engineers use abuse or misuse cases to create a 
comprehensive roadmap for security testing of 
microservices 

Coding phase  Software engineers are responsible for secure development 
 Security vulnerabilities like buffer overflow, SQL injection 

and cross-site scripting can be identified by static analysis 
tools and given early attention 

 An improvement of the developer's security knowledge 
using static analyzers tools that provide suggested security 
corrections and improvements to the code  

 Software engineers get timely feedback on violation of 
secure coding guidelines 

 Promotion of collaboration and sharing of knowledge on 
software quality among software engineers 

 Software engineers are encouraged to write readable 
software code using code review mechanism 

Code integration phase  Ensure that software engineers get timely feedback on 
security vulnerabilities on the software source code 

 Automate security testing 
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Pre-production deployment phase  Feedback from penetration testing is easily integrated into 
the software development process 

Operational phase  Software engineers get a continuous insight into the 
operation of software in a production environment. 

 

 

Table 7.14 below gives a not exhaustive list of tools that software engineers can use in 

SAFEMicroservices as reviewed in Chapter 6. Software engineers are free to choose any tools of their 

choice.  

 

Table 7.14. Example of tools for SAFEMicroservices 

Phase Tool or Method Classification Example of Required Tools and Techniques 

Preliminary phase Threat modeling tools Threat Dragon (OWASP 2018), STRIDE, Attack trees 
(Saini, Duan & Paruchuri, 2008), misuse cases (Sindre & 
Opdahl, 2005) 

Planning phase 
 

Security planning tools and 
secure designs 

SAFEcode Security user-stories (ben Othmane, Angin & 
Bhargava, 2014,), OWASP Application Security 
Verification Standard (Boberski, Williams & Wichers, 2009) 

Coding phase Static analysis tools FindSecurityBugs (Arteau, 2016), Brakeman (Collins, 
2012), SonarQube (Guaman et al., 2017), Xanitizer, 
(Xanitizer, 2017), VisualCodeGepper (Alsmadi et al., 2018) 

Code review tools Crucible (Rigby et al., 2012), Collaborator (Wang et al., 
2012) and Gerrit (McIntosh et al., 2016). 

Code integration 
phase 

Continuous integration tools Jenkins (Soni & Berg, 2017), TeamCity (Mahalingam, 
2014), Bamboo (Watson, 2016), GitLab (Cheng, 2017), 
Travis (Travis, 2015) 

Open source license checker 
 

Whitesource (Harutyunyan, Bauer & Riehle, 2018), Open 
source License checker (Kapitsaki, Kramer & Tselikas, 
2017) 

Pre-production phase Environment configuration 
tools 

Chef (Taylor & Vargo, 2014), Puppet (Loope, 2011), 
Ansible (Hall, 2015) 

Container validation tools Anchore (Anchore, 2018), Clair (Clair, 2018), Docker Bench 
(Tak et al., 2017) 

Operational phase Monitoring tools appDynamics, Dynatrace and Prometheus 

Response to attacks patterns circuit breaker pattern (Fontesi & Weber, 2016), Netflix 
Hystrix (Christensen, 2012) 

 

Next, a conclusion is provided. 
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7.4.  Conclusion 

The development of a secure microservices composition that can continue to function securely under 

malicious attacks is a complex exercise. In this regard, the SAFEMicroservices framework provides 

a methodology that can address this challenge successfully. SAFEMicroservices provides a 

coordinated approach to assist software engineers to implement and manage microservices security 

controls effectively. SAFEMicroservices offers a holistic approach to security and identifies 

opportunities in the software development life-cycle where security-focused tools and techniques can 

be leveraged. 

 

The essential contribution of SAFEMicroservices is a systematic and flexible approach to security 

that accommodates variations in the implementation using different technologies and the risk profile 

of each microservices composition. SAFEMicroservices makes the development of secure 

microservices a part of the software development culture. The systematic integration of security 

testing further reinforces the secure software development culture into all phases of the software 

development life-cycle that ultimately improves the software security skills of software engineers.  

 

In the next chapter, SAFEMicroservices is validated using selected security-focused tools and 

techniques. A microservices composition is designed and developed using the SAFEMicroservices 

approach to demonstrate that SAFEMicroservices can be used to develop secure microservices.
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Chapter 8 

 

SAFEMicroservices Framework  

Implementation  
 

 

8.0  Introduction 

Chapter 7 proposed and discussed SAFEMicroservices, a practice-oriented framework to assist 

software engineers to develop secure microservices. The security-oriented activities in 

SAFEMicroservices assist software engineers to use suitable tools and techniques during their 

daily microservices development tasks. The next step is to perform an empirical evaluation of 

SAFEMicroservices to observe by means of an instantiation, if the framework is adequately 

specified to support the development of secure microservices compositions.  

 

Accordingly, this chapter discusses the use of SAFEMicroservices to develop PickMeUp, a 

microservices composition discussed in Chapter 3. The security-oriented activities of 

SAFEMicroservices are used to identify and refine protection measures and ensure their 

integration into PickMeUp to ensure an application that can resist, detect and respond to attacks. 

SAFEMicroservices is also used at various development stages of PickMeUp to ensure traceability 

of analysis, design, coding, and testing of the microservices. SAFEMicroservices is used in such 

a way that the development of PickMeUp provides a proof-of-concept of the framework.  

  

The chapter is organized as follows: Section 8.1 defines the evaluation criteria used to determine 

the success of the implementation in this chapter. Section 8.2 provides an overview of PickMeUp. 

The technologies chosen to develop PickMeUp are discussed in Section 8.3. Section 8.4 discusses 

the software development methodology adopted to develop PickMeUp. Section 8.5 explains the 
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inception stage of PickMeUp and how SAFEMicroservices is used to ensure a security risk 

assessment. Section 8.6 discusses how SAFEMicroservices is used in the construction of various 

architecture component of PickMeUp. In Section 8.7, integration testing and hardening of features 

of PickMeUp that are developed incrementally are discussed. Section 8.8 discusses the deployment 

and monitoring of PickMeUp. Section 8.9 discuss the evaluation results. A conclusion then follows 

in Section 8.10. 

 

8.1 Evaluation criteria 

The objective of the implementation in this chapter was to determine if SAFEMicroservices 

provided the following: 

 Easy to follow and effective steps – the researcher considered the ease of use as an ideal 

attribute considering that software engineers are under pressure to delivery software. The 

framework should therefore not impact the productivity of engineers. Besides, the value of 

the framework is in its effectiveness in ensuring secure software.  

 Easy support of security-focused tools – the researcher considered tools support as a 

success criterion because as discussed in Chapter 6, there is limited guidance on how tools 

can be integrated to assist software engineers create secure applications. In this regard, 

freely available tools and technologies are used throughout the development of PickMeUp.   

 Easy with which the framework can be used in an iterative software development method 

- the aim of this criteria was to determine if the proposed framework could be used with a 

software methodology that is used mostly in industry. 

 

The above three attributes were considered the three-fold basic success criteria of the 

SAFEMicroservices by the researcher. 

 

8.2  Overview of microservices composition for prototyping  

PickMeUp is an imaginary on-demand taxi application such as Uber (Cramer & Krueger, 2016). 

The PickMeUp microservices composition was introduced in Chapter 3. PickMeUp was 

decomposed into a set of microservices by first identifying the functional business capabilities. 

The scope or functional context of each microservice was determined using the single 
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responsibility principle (SRP), and the common closure principle (CCP) discussed in Chapter 3.  

Figure 8.1 below provides a high-level architecture diagram showing the interaction of various 

components. The user interface is not considered part of the microservices composition in this 

discussion. 

 

The microservices responsible for handling business functionality are defined below: 

 Trip management microservice – a service that handles all requests for a trip from a 

passenger. 

 Passenger management microservice – a service for managing passenger information. 

 Driver management microservice – a service for managing driver information. 

 Passenger notification microservice - a service responsible for all forms of passenger 

notifications. 

 Driver notification microservice – a service responsible for all forms of driver notifications. 

 Payments microservice – a service that handles all forms of payments for service rendered. 

 

PickMeUp also has other microservices dictated by the microservices architectural style and non-

functional requirements such as authentication. These microservices are defined below:  

 API gateway – an entry point into the microservices composition for all external clients. 

 Service registry – a registry to enable microservices in PickMeUp to locate one another. 

 Message broker – a message buffer to allow microservices to communicate by sending 

messages when necessary.  

 Authentication microservices – a service responsible for security. 
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Figure 8.1. PickMeUp Microservices composition  

 

The next section discusses the technologies chosen to implement PickMeUp. 

 

8.3  Implementation technologies 

The Spring Boot framework (Gutierrez, 2016) was chosen as a technology to develop PickMeUp 

microservices. Spring Boot is a readily available Java-based technology framework that simplifies 

the development of RESTful web services using the microservices architectural style. Various 

freely and readily available software libraries were used in conjunction with the Spring Boot 

technology framework to create the components of PickMeUp. The libraries are identified below: 
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 Microservices - the RESTful communication model using the JSON messaging format was 

used to develop the PickMeUp microservices. Each microservice exposed a RESTful API 

using the Spring Framework libraries (Varanasi & Belida, 2015).  

 The API gateway - the API gateway was developed using the Netflix Zuul library (Netflix, 

2019). The Netflix Zuul library is a freely available library that easily integrates into the 

Spring Boot framework. 

 Service registry - the service registry was developed using the Eureka library (Netflix, 

2019). Eureka is a REST-based service that is primarily used for locating microservices 

for load balancing and failover (Netflix, 2019). The client-side discovery approach was 

used as a mechanism for microservices to locate one another by directly querying the 

Eureka-based service registry.  

 Message broker - the message broker was developed using RabbitMQ (Videla & Williams, 

2012). RabbitMQ is easily supported by the Spring Boot framework. 

 PostgreSQL (Obe & Hsu, 2017) database was used to store data. 

 Docker was used as the container technology to deploy each component of PickMeUp.  

 

8.4  Software development methodology 

SAFEMicroservices supports both sequential and iterative software development methodologies. 

The sequential software development approach suits the integration of security-focused activities, 

and the use of security validation strategies between the analysis, design, coding, and testing 

development stages. On the other hand, the iterative and incremental software development 

methodologies limit their ability to accommodate the security-focused activities and the use of 

security validation strategies (ben Othmane et al., 2014). With this in mind, an Agile methodology, 

an iterative approach was chosen to develop PickMeUp to determine the suitability of 

SAFEMicroservices in an iterative software methodology and in the process add value to the 

research in this study.  

 

As SAFEMicroservices was integrated with an Agile methodology, it needed to be identified 

where security checkpoints would fit in. An understanding of the Agile methodology was therefore 
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required. The Agile software development methodology can be divided into three stages namely 

(Ambler, 2013): 

 Inception stage – defines the scope of the project and model of the initial architecture. 

 Construction stage – develops the software in a set of iterations. 

 Transition stage – the stage is used for integration testing and hardening the software 

deliverable developed in iterations to make it ready as a release for use in a production 

environment. 

 

Figure 8.2 below shows how the SAFEMicroservices security checkpoints were positioned in the 

Agile software development methodology. The operational phase of SAFEMicroservices was 

considered beyond the scope of the Agile software development methodology.  

 

The Agile methodology capture a functional requirement as a user story. A user story is a way to 

capture a description of a software feature from an end-user perspective (Beck et al., 2001). The 

user stories are added to a list called product backlog. The software features encapsulated in user 

stories are developed incrementally in the construction stage and comprehensively tested in the 

transition stage to ensure that they are ready for release into a production environment. 

 

Figure 8.2. The relationship between SAFEMicroservices phases and Agile methodology stages  
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The sections below discuss how the SAFEMicroservices was used to develop PickMeUp in 

conjunction with the Agile software development methodology. The discussion is structured 

according to the three Agile methodology stages namely inception, construction and transition as 

shown in Figure 8.2 above.  

 

The next section discusses the PickMeUp inception stage. 

 

8.5  Inception stage 

Following the Agile software methodology, the inception stage was used by the researcher to 

define the scope of PickMeUp and the initial model of the initial architecture using the functional 

requirements. In addition, the inception stage was also used to ensure the documentation of the 

security requirements of PickMeUp. Recall that documenting the security requirements of 

microservices composition (SDA-1) is one of the secure development activities identified in 

Chapter 6. In this regard, the Agile methodology’s inception stage was used to perform a risk 

assessment to identify threats to and vulnerabilities of PickMeUp along with their associated 

impacts. The SAFEMicroservices security-oriented activities discussed in the framework’s 

preliminary and planning phase assisted to reach the goal of documenting the security requirements 

of PickMeUp.  

 

The discussion in each of the next section provides a list of SAFEMicroservices activities 

performed in the Agile methodology inception stage, and then discuss each activity. First, the use 

of the SAFEMicroservices preliminary phase activities in the development of PickMeUp is 

discussed below. 

 

8.5.1  SAFEMicroservices preliminary phase activities 

The use of SAFEMicroservices in the development of PickMeUp provided the researcher with an 

opportunity to extend the Agile software methodology’s inception stage with four activities from 

SAFEMicroservices shown in Table 8.1 below. Table 8.1 provides a list of security activities 

prescribed by the preliminary phase of SAFEMicroservices and the deliverables of each activity. 
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SAFEMicroservices was a convenient framework in the sense that the preliminary phase not only 

provided guidance on how to perform the four activities listed in Table 8.3 but also provided ready-

made reusable security artefacts that were used in the development of PickMeUp. This took away 

the burden of performing the cumbersome, time-consuming activities of the SAFEMicroservices 

preliminary phase from the beginning. This made it easier to gain a good understanding of the 

security risks associated with PickMeUp without spending much time performing an architecture-

centric threat modeling, threat and vulnerability analysis.  

 

Table 8.1. SAFEMicroservices preliminary phase activities 

Preliminary phase activities Required security artefacts  

A.1 Architecture-centric threat modeling A.1.1 Security threats and associated vulnerabilities 

A.2 Threats and vulnerabilities root cause analysis A.2.2 Microservices architecture common weaknesses  
         Enumeration 

A.3 Architecture-level secure coding guidelines  
     identification and classification 

A.3.1 Catalogue of architecture-level secure coding  
         Guidelines 

A.4 Creation of development infrastructure A.4.2 Secure build pipeline 

  

The application of four SAFEMicroservices activities of the preliminary phase in PickMeUp is 

discussed below. 

 

(a)  A.1 Architecture-centric threat modeling 

The researcher performed the threat modeling of PickMeUp using the architecture-level security 

threats and their associated vulnerabilities security artefact shown as A.1.1 in Table 8.1. The 

SAFEMicroservices architecture-centric threat modeling approach discussed in Chapter 5 

provided the list of the architecture-level security threats and their associated vulnerabilities. The 

security artifact provided an understanding of the security risks in PickMeUp. The artefact also 

provided the researcher with a foundation towards a systematic approach to make and evaluate 

design decisions for PickMeUp. Besides, the list assisted the researcher in identifying potential 

design flaws in PickMeUp that could not easily have been found using other techniques such as 

code reviews and static source analysis.  For example, without an architecture-centric approach, a 

threat such as insecure microservices discovery and the associated vulnerabilities could not have 

been easily identified.  In addition to the artefacts provided by SAFEMicroservices, a risk 
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assessment was further conducted to identify risk in the basic functional requirements of 

PickMeUp that is not rooted in the architecture. The security threats were used as high-level 

security goals for PickMeUp.  This is discussed further in the coding phase below. 

 

(b)  A.2 Threat and vulnerabilities root cause analysis 

The researcher performed the root cause analysis using the microservices architecture common 

weakness enumeration security artefact, shown as A.2.2 in Table 8.1 and provided in Appendix A 

as A.2.2. The SAFEMicroservices threats and vulnerability root cause analysis method provided 

the artefact as a ready-made catalog of common vulnerabilities that apply to PickMeUp. As a 

result, there was no need to perform a detailed threat and vulnerability root cause analysis for 

PickMeUp. The catalog provided by SAFEMicroservices was a quick guide toward understanding 

the various architectural decisions that impact the security of each component of PickMeUp. For 

example, to limit the security threats of insecure microservices API, the researcher could quickly 

identify what architectural decisions are the root cause of the threat. This gave the researcher 

guidance on what to consider when designing the APIs on microservices in PickMeUp.  

 
(c)  A.3 Architecture-level secure coding guidelines identification and classification 

The researcher referred to the architecture-level secure coding guidelines identification and 

classification security artefact shown as A.3.1 in Table 8.1 and provided in Appendix A as A.3.1 

to understand secure coding guidelines to apply in the development of PickMeUp. The 

SAFEMicroservices framework provided a list of architecture-level secure coding guidelines that 

provided the guidance required to design and create secure microservices design for PickMeUp 

from the ground up. The guidelines provided in Appendix A as A.3.1 augmented the language 

specific guidelines for the Java framework that was used to develop PickMeUp. The application 

of the secure coding guideline is discussed later in the construction stage of PickMeUp. 

 

(d)  A.4 Development infrastructure set up 

The inception stage of PickMeUp was also used by the researcher to set up the infrastructure for 

the development of various components. As indicated above, SAFEMicroservices aim to be 

technology-agnostic. In this regard, the following freely available tools were used to set-up the 
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development infrastructure in line with the high-level workflow diagram of the development 

infrastructure provided in SAFEMicroservices on Figure 7.5. 

 IntelliJ (IntelliJ 2011) was used as the integrated development environment (IDE).  

 FindSecurityBugs static analysis tool was installed on IntelliJ. FindSecurityBugs was 

reviewed in Chapter 6. 

 Jenkins (Berg 2012) was installed as a code integration tool. Jenkins provides native code 

integration pipeline features. SonarQube plugin was installed on Jenkins for static analysis. 

The Anchore plug-in (Anchore 2018) was installed on Jenkins to validate container images. 

Tasks for automating the compiling and executing security tests cases were created on 

Jenkins pipeline. The OWASP dependency-check (Long 2015) plugin was installed to 

validate the third-party libraries. 

 Gerrit (McIntosh et al. 2016), a manual code review tool was configured to manage the 

microservices source code review process. 

 Atlassian Bitbucket (Atlassian 2019) was configured as a version control system. 

 

Figure 8.3 below shows the security-related plug-ins installed on the Jenkins code integration tool.  
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Figure 8.3. Security plug-ins installed on Jenkins. 

 

In order to ensure the security of the development infrastructure for PickMeUp, the following 

access controls measures were put in place as per recommendations in SAFEMicroservices: 

 Access to Jenkins administration console was limited using a username and password. 

 Access to BitBucket was limited to the use of secure socket shell (SSH) access keys.  

 Access to Gerrit was also limited to the use of SSH access keys. 

 

The next section discusses the use of SAFEMicroservices to plan for security during the inception 

stage of PickMeUp. 
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8.5.2  SAFEMicroservices planning phase activities 

The use of SAFEMicroservices in the development of PickMeUp provided the researcher with an 

opportunity to extend the Agile software methodology inception stage with two 

SAFEMicroservices activities shown in Table 8.2 below. Table 8.2 provides a list of security 

activities prescribed by the planning phase of SAFEMicroservices and the deliverables of each 

activity. The SAFEMicroservices planning phase also provided the design artefacts that describe 

how security controls should be positioned to maintain confidentiality, integrity, availability, and 

non-repudiation in PickMeUp. As a result, the SAFEMicroservices manual, cumbersome and 

time-consuming activities of the planning phase were not required to be performed in detail by the 

researcher in the development of PickMeUp.  

 

Table 8.2. Planning phase activities and deliverables 

Planning phase activities Required security artefacts 

B.1 Microservices abuse or misuse cases identification B.1.4 Microservices abuse cases & protection measures 

B.2 Creation of security architecture B.2.1 security standards 
B.2.2 Secure design principles 
B.2.3 Monitoring and adaptation mechanisms 

 

The application of two SAFEMicroservices activities of the planning phase in the development of 

PickMeUp is discussed below. 

 

(a)  B.1 Microservices abuse or misuse cases identification 

The security artefact depicted B.1.4 on Table 8.2 and provided in Appendix A as B.1.4 was used 

by the researcher identify abuse or misuse cases in microservices. As part of the approach to elicit 

microservices abuse and misuse cases, the SAFEMicroservices identify attack patterns associated 

with microservices. The SAFEMicroservices attack patterns were applicable to PickMeUp and 

provided an understanding of how to protect PickMeUp from such attacks. Besides, the 

SAFEMicroservices framework provided a ready-made list of microservices abuse cases and 

protection measures. The list was not only useful to the identification of protection measures, but 

it assisted in identifying tools and techniques to use to mitigate the attacks.  
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The researcher used the abuse cases provided by SAFEMicroservices for two purposes; first, to 

create security user stories for Agile methodology. The user, in this case, is a malicious attacker. 

The security user stories created were then linked to the security goal which was created from the 

security threat associated with the abuse cases. Secondly, the researcher used the abuse cases to 

construct security test cases in the coding phase. The security test cases were created from the 

attack scenarios elicited from attack patterns. The attack scenarios were designed to test the written 

source code to ensure that the microservices software satisfied the security requirements. Figure 

8.4 below shows the relationship between security goals, security use stories and development 

tasks created for PickMeUp. 

 

 

Figure 8.4. Conceptual model of relationship between abuse cases, user stories and goal 

 

(b)  B.2 The security architecture of a microservices composition 

SAFEMicroservices provided the researcher with three important artefacts towards the creation of 

the security architecture of PickMeUp. The artefacts are B.2.1 – B.2.3 on Table 8.2. First, the 

researcher adopted the security standards and secure design principles to ensure that the design of 

PickMeUp components were secure. These security standards also provided guidance towards 

creating secure designs and how to ensure that microservices in PickMeUp communicate securely. 

Secondly, the monitoring and adaptation mechanisms, shown as B.2.3 on Table 8.2, provided 

guidance on how to design microservices with monitoring and adaptation in mind. The design 

decisions are further discussed in the construction stage of PickMeUp. 



 

172 

8.5.3  Summary of the Inception stage 

The adoption of SAFEMicroservices in PickMeUp provided the following general benefits in 

security requirements elicitation: 

 SAFEMicroservices assisted the researcher in clarifying security requirements. Awareness 

of security was increased by an awareness of specific business assets that are at risk. The 

identification of PickMeUp security threats, and the abuse cases assisted in reasoning about 

security risk in concrete terms. This helped ensure clarity of security requirements in this 

research.  

 SAFEMicroservices allowed security requirements not only to be derived from functional 

requirements as implicit requirements but also from the architecture and the technology. 

This assisted in ensuring this research appreciates the importance of a broader security 

strategy. 

 SAFEMicroservices provided a reusable development infrastructure that allowed 

automated validation of security. Automated security testing provided timely feedback on 

detected security issues on the source code. This is discussed further in the next phases. 

 

The next section discusses the construction stage of PickMeUp. 

 

8.6  Construction stage 

In the Agile methodology, the construction stage is for developing software in a set of iterations. 

For each iteration, the researcher determined the goal of the iteration and selected a set of 

functional user stories to achieve the goal. Functional requirements were elicited and captured as 

functional user stories, and the software code was written incrementally to address the requirement. 

At the end of the iteration, the artefact was potentially shippable. This section discusses the 

application of the SAFEMicroservices coding phase in the development of PickMeUp. 

 

8.6.1  Coding phase 

The use of SAFEMicroservices in the construction stage of the Agile software development 

methodology allowed the construction stage to be extended with four activities shown in Table 

8.3. The functional user stories and the security user stories discussed above were used to guide 
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the writing of microservices source code. At the beginning of each iteration, the functional features 

of PickMeUp to be developed were defined. The security goal of the iteration was provided by the 

security threat of the component of the PickMeUp that was under construction in the iteration as 

per Figure 8.5 above. The user stories linked to the security goal were added into the iteration to 

ensure that software increments were constructed with security in mind.  

 

Table 8.3. Coding phase activities and deliverables 

SAFEMicroservices activities Security artefacts produced 

C.1 Writing security tests for the PickMeUp C.1.2 Suite of security tests cases 

C.2 Designing and writing secure microservices and 

infrastructure code 

 None 

C.3 Static analysis on the code and manual code review None 

C.4 Perform manual security code review C.4.1 Runtime infrastructure template 

C.4.2 Microservices code 

C.5 Fix failed security test cases  

 

The construction phase used the six reusable artefacts of SAFEMicroservices shown on Table 8.4 

below. Details use of each artefact is provided in the discussion of each activity below.  

 

Table 8.4. Artefacts required for coding phase activities and deliverables 

Coding phase required security artefacts 

A.3.1 Catalog of architecture-level secure coding guidelines 

A.4.2 Secure build pipeline 

B.1.4 Microservices abuse cases and protection measures 

B.2.2 Security standards 

B.2.3 Secure design principles 

B.2.4 Monitoring and adaptation mechanisms 

B.1.1 Platform-specific coding guideline, in this case, Java secure coding guidelines 



 

174 

The use of SAFEMicroservices activities listed in Table 8.3 is now discussed next. 

 

(a)  C.1 Security test cases 

The researcher wrote two types of security test cases namely security unit test and acceptance test. 

Security test cases were written in a manner that validated the microservices code against secure 

design principles and microservices security standards. Microservices abuse cases were used as 

attack scenarios to test the microservices to ensure that security requirements were satisfied. Spring 

Boot Test provided utilities to assist with unit testing (Reddy, 2017). Also, The Hamcrest library 

(Acetozi, 2017) was added to the spring framework to assist in testing.  

 

The acceptance tests were documented using a security testing framework that uses Behaviour 

Driven Development (BBD) concepts to create security specifications that are executable as 

standard integration tests as part of the Jenkins build process. The security test specifications were 

documented using the language Cucumber (Ye, 2013), a language based on Gherkin domain-

specific language (Härlin, 2016) which is simple and allows software engineers and testers to write 

complex tests while keeping the test comprehensible even to non-technical users. Figure 8.5 shows 

an example of an executable acceptance test case written using Cucumber. The acceptance tests 

cases were executed as integration tests on the Spring Boot Framework. Integration testing focuses 

on testing if the components work well together. 

 

 

Figure 8.5. Example of an acceptance test case 
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(b)  C.2 Design and write secure code and infrastructure code 

The microservices security standards and secure designs principles provided in 

SAFEMicroservices were used to make designs decisions for PickMeUp. The researcher 

considered ten design decisions shown of Table 8.5 to guide the development of PickMeUp. 

Limiting the number of standards to comply with was meant to make the scope of PickMeUp 

manageable for this research. 

 

Table 8.5. PickMeUp security standards 

PickMeUp security standards 

1 Any client communication in PickMeUp must be done via the PickMeUp API Gateway 

2 Every microservices in PickMeUp must authenticate to the PickMeUp API gateway 

3 Each microservices in PickMeUp must have a unique API key for calling another microservice 

4 All API requests in PickMeUp must be logged to a centralized logging and monitoring system 

5 All communication in the PickMeUp must use Transport Layer Security 

6 All PickMeUp microservices must run in an approved application container technology  

7 Deployment of microservices in PickMeUp must be automated 

8 Data available to a microservice in PickMeUp must be limited what the microservices requires to function 

9 Microservices in PickMeUp must only be able to access messaging channels that they require to function 

10 Development of microservices must follow the secure coding guidelines provided 

 

In order to ensure compliance with the standards in Table 8.5, the following additional technology 

choices were made to implement PickMeUp in addition to those discussed in section 8.2 above: 

 Oauth2 (Guiterrez, 2016), an authorization framework was used for microservices 

authentication in PickMeUp. The framework seamlessly integrates into the Spring Boot 

framework using the Spring framework. Also, the JSON Web Token (Raman & Dewailly, 

2018) was used to represent the claims secured between two communicating components 

in PickMeUp. JWT also seamlessly integrate into the Spring Boot framework. 

 A microservices dedicated to monitoring was created for PickMeUp. The monitoring 

mechanisms on the microservice were built using the Hystrix (Christensen, 2012) and 
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Turbine (Netflix, 2018) libraries. Hystrix provides monitoring for all REST call and re-

routing of a request in case of failure of a microservices. Turbine aggregated all Hystrix 

monitoring data into meaningful date for display on the dashboard. The functioning of the 

monitoring microservices is discussed later in the chapter. 

 Each microservices implemented the circuit breaker pattern (Montesi &Weber, 2016) 

using the Netflix Hystrix (Montesi &Weber, 2016) library to ensure that each 

microservices were designed for failure. A circuit breaker pattern accepts microservices 

failures and tracks each failure by wrapping a call to a microservices a monitor. When a 

microservices is in the failed stage, circuit sends the error message without making a call 

to the microservices, and when the microservice is available, the request is sent to the 

microservice. Further details are discussed below in the monitoring section.  

 

The development tasks of PickMeUp were represented as user stories and listed on the product 

backlog as mentioned. Development of the features of PickMeUp was done in iterations. An agile 

development board was created on the Atlassian Jira (Fisher, Koning &Ludwigsen, 2013) to keep 

track of the development task of PickMeUp. The microservices were written in Java programming 

language and packaged as Docker images. Figure 8.6 below shows an example of a script to 

package and deploy the trip management microservices as a docker image. The microservices 

requires port 8081 to function. Chef configuration management tool was used to automate the 

provision of Docker containers. 

 

Figure 8.6. Script to deploy trip management microservice as Docker image 
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(c)  C.3 Static analysis and manual review 
Microservices source code changes done by a researcher on the local machine were tested by 

executing security unit tests, and static analysis was done using the FindSecurityBug static analysis 

tools. Figure 8.7 below shows an example of the security issues identified by the static analysis 

tool on the researcher’s IDE. In Figure 8.7 the static analysis tool was able to detect a weak random 

number generator that the researcher had used in the source code. The tool provided a suggestion 

to mitigate the issue. Performing security testing on the local machine allowed the researcher to 

quickly identify security issues on the source code and to quickly fix the issues. This ensured 

timely feedback on security issues to the researcher. After fixing security issues reported on the 

IDE, the code was submitted to the Gerrit system for manual review to help identify any violation 

of policies, standards or design flaws that could not be identified by the static analysis tools.  

 

 

 Figure 8.7. Static analysis on IntelliJ 

 

8.6.2 Summary of construction phase 

The use of SAFEMicroservices in the construction phase of PickMeUp provided the following 

benefits: 

 SAFEMicroservices made it possible to get timely feedback on security issues on the 

microservices source code, and this made it possible to fix security issues early in the 

development process. 
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 SAFEMicroservices provided reusable microservices security artefacts that made it 

possible to focus more on writing microservices source code instead of performing security 

analysis.  

 

8.7  Transition stage 

As per the Agile software methodology, the transition stage was used by the researcher for 

integration testing and for hardening the increment of PickMeUp to make them ready as a release 

for use in a production environment. In Chapter 5, it was noted that secure development of 

microservices requires that software engineers adopt secure programming best practices (SDA-2), 

validate security requirements and secure coding guidelines (SDA-3) and also securely configure 

the runtime infrastructure (SDA-4). The transition stage of PickMeUp provided an opportunity to 

the researcher to integrate activities of the SAFEMicroservices' coding integration phase and pre-

production deployment phase to assist in this regard.  The discussion in this section first provides 

a list of SAFEMicroservices activities performed in the Agile methodology transition stage, and 

then the discussion of each activity is presented.  

 

First, the application of the SAFEMicroservices code integration phase activities is discussed 

below. 

 

8.7.1 Code integration phase 

The coding phase commenced as soon as the manual review was completed, and no security flaws 

were identified. The researcher extended the transition stage of the Agile software development 

methodology with three activities from SAFEMicroservices shown in Table 8.6. 
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Table 8.6. SAFEMicroservices code integration phase activities 

SAFEMicroservices code integration phase activities 

D.1 Build microservices and execute security test cases 

D.2 Validate licences, libraries and container images 

D.3 Fix failed security test cases 

 

The use of each activity in PickMeUp is discussed below. 

 

(a)  D.1 Build microservices and execute security test cases 

The Jenkins code integration tool compiled the source code of the microservices and then executed 

the security tests cases. The activity was automated. 

 

(b)  D.2 Validate license, libraries and container images 

The Anchore plugin installed on Jenkins validated the docker images, and the OWASP 

dependency-check plugin validated the libraries to identify if microservices used trusted licenses. 

Figure 8.8 below shows an example of a dashboard provided by Jenkins to view the status of 

validation performed by the Anchore plugin.  
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Fig 8.8. Anchore Docker image validation 

 

(c)  D.3 Fix failed security test cases 

Any security issues that were reported during building of microservices and execution of security 

test cases or any failure during validation of licenses, libraries and container images were identified 

at this point. These security issues were added to the backlog as security user stories and the fixed 

in the subsequent iteration by the researcher. This activity aimed at ensuring that no microservices 

were deployed with security issues. 

 

The next section discusses the deployment and operation of PickMeUp. 

 

8.7.2  Pre-production deployment phase 

The pre-production phase commenced as soon all the validations of the code integration phase 

were successful. The use of SAFEMicroservices in the transition stage of the Agile software 

development methodology allowed the transition stage to be extended with four activities shown 

in Table 8.7 below. 

  



 

181 

Table 8.7. Pre-production deployment activities 

SAFEMicroservices pre-production deployment phase activities 

E.1 Provision pre-production environment and deploy 

E.2 Validate security requirements and infrastructure 

E.3 Penetration testing 

E.4 Fix failed security tests 

 

The activities are discussed next. 

 

(a)  E.1 Provision preproduction deployment environment and deploy 

The provisioning of a pre-production environment was automated. The Chef configuration 

management tool was used to provision docker containers running each component of PickMeUp 

in conjunction with the infrastructure template, an artefact created and tested in the coding phase. 

 

(b)  E.2 Validate security requirement and infrastructure 

The validation of security requirements was manual performed by the researcher to ensure 

authentication was being successfully done according to the security standards. In addition, the 

validation also made sure that microservices access to certain resources such as file and directory 

was only limited to what is necessary for the microservices to perform their function. 

 

(c)  E.3 Penetration testing 

A basic penetration testing of PickMeUp was performed using the OWASP ZAP. Figure 8.9 below 

show an example of the OWASP ZAP plugin dashboard depicting security issues identified on the 

services registry that was developed for PickMeUp. Figure 8.9 shows a few security issues like 

SQL injection and cross site scripting identified by the tool. This tool can be deployed on a 

software engineer development machine and a scan performed before submitting the code to a 

common repository to quickly identify security issues. 
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Fig 8.9. Microservices penetration testing 

 

8.7.3 Summary of the transition phase 

The use of SAFEMicroservices in the transition phase of PickMeUp enabled the integration of 

various security-focused tools into the build pipeline to ensure the automation of various security 

validation tasks. This simplified tasks such as security testing, and the provision of the runtime 

environment.  

 

Finally, the integration of the SAFEMicroservices operational phase activities is discussed briefly. 
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8.8 The Operational phase 

The essential activities in this phase were to ensure that instances of the microservices were 

monitored. Figure 8.10 below shows a simple dashboard showing the monitoring details of a 

microservices for getting passenger details. The circuit closed means that the microservices is 

currently available. However, the microservices was available fifty percent of the time so far. The 

Hystrix implementation in each microservices enabled monitoring microservices to gather 

information about the status of each microservice in PickMeUp. 

 

Fig 8.10. Microservices monitoring using Hystrix 

 

8.9  Evaluation results 

As mentioned above, the purpose of the implementation was to perform a basic empirical 

evaluation of SAFEMicroservices using three criteria. Below the evaluation based on the three-

fold criteria is presented 

 Easy to follow and effective steps – the activities of SAFEMicroservices can general be 

considered easy to follow. The researcher was able to follow the step of 

SAFEMicroservices and the tools integrated into the development environment were 

effective in identifying software weaknesses. However, the artefacts provided by 

SAFEMicroservices still requires background security knowledge to navigate and also 

understand. After the implementation of PickMeUp the view of the researcher is that it 

would be helpful to create an introductory document for SAFEMicroservices that can 

introduce security concepts to software engineers not trained in security.  
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 Easy support of security-focused tools – the tools can easily be integrated into the 

framework. For example, various testing tools were easily integrated into the continuous 

integration system as plugin. The installation is straight forward and easy to perform. 

Documentation on the tools is readily available on the web. The installation of tools is also 

a once-off activity and the researcher spend less than hour to install all the plugins on the 

Jenkins. However, the researcher still needed to learn how to use the tools. The observation 

of the researcher is that depending on the tool chosen, the use of tools may be less intuitive. 

 Easy with which the framework could be used in an iterative software development method 

- the implementation of PickMeUp used the Agile methodology. The observations of the 

researcher are that although the implementation of PickMeUp can be considered a success, 

creating security test cases from abuse cases require more security knowledge that many 

software engineers may not possess. In that regards, there is still a need for someone in the 

team who possess good security knowledge to effectively implement SAFEMicroservices. 

In addition, there can be many abuse cases to consider for a simple microservice software 

change and a software engineer is expected to document all or most of the security test 

cases to test simple software change. This can be overwhelming and can affect the Agile 

principle of fast releases. There is therefore still a need to balance between the acceptable 

security level and the rate of software release when using SAFEMicroservices.  

 

8.10  Conclusion 

This chapter discussed the development of PickMeUp, an experimental microservices-based 

application using SAFEMicroservices. The purpose of the development of PickMeUp was to 

perform an empirical evaluation of SAFEMicroservices to determine through observation if the 

framework is adequately specified for the task of developing secure microservices. PickMeUp was 

developed from the ground up using the Agile methodology. The security-focused activities of 

SAFEMicroservices were used with success in the various phases on the development cycle of 

PickMeUp from inception to deployment. The various tools and techniques proposed in 

SAFEMicroservices were also used successful in the development of PickMeUp.  
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Although some of SAFEMicroservices phases such as the preliminary phase and the planning 

phase are mostly manual, time-consuming and cumbersome, SAFEMicroservices provided 

reusable security artefacts that simplified the development of PickMeUp for this research. The 

security threats and vulnerabilities catalog and the microservices architecture common weakness 

enumeration catalog provided the necessary foundation to perform a risk assessment of PickMeUp 

and to understand the risk of the application. The architecture-level secure coding guidelines, 

design principles and standards provided the necessary architectural knowledge required to make 

design decisions for PickMeUp that take security into consideration. In addition, the 

SAFEMicroservices artefacts empowered the researcher with the necessary information and 

protection measures to address the security challenges of PickMeUp. The use of various testing 

tools integrated into the development pipeline provided quick feedback on security vulnerabilities 

during the implementation phase of PickMeUp. 

 

The implementation of SAFEMicroservices discussed in this chapter can be considered a success. 

The implementation discussed in this chapter also showed that SAFEMicroservices can be used in 

an iterative software development process. 

 

In the next chapter, a theoretical evaluation of SAFEMicroservices is provided to augment the 

empirical evaluation performed in this chapter.  
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PART IV
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Chapter 9 

 

Evaluation of the  

SAFEMicroservices Framework 
 

 

 

9.0  Introduction 

In Chapter 7, a software framework for developing secure microservices called 

SAFEMicroservices was proposed. The aim of the framework is to provide guidance on how to 

develop secure microservices from the start by incorporating security-oriented activities into the 

microservices software development process. In Chapter 8, SAFEMicroservices was integrated 

with the Agile methodology, to develop an example microservices-based application called 

PickMeUp.  

 

The aim of the implementation in Chapter 8 was not only to provide proof that the security-focused 

activities, tools and techniques proposed in SAFEMicroservices can be practically used to develop 

a secure application, but to also determine the suitability of SAFEMicroservices in an iterative and 

incremental software development process. Iterative and incremental software development 

processes generally provide a challenge when integrating secure software development practices 

(ben Othmane 2014). The implementation in Chapter 8 provided an empirical evaluation that 

applied the SAFEMicroservices in practice to establish if the theory outlined in the definitions of 

the framework can be successfully translated into a practical and meaning implementation 

(Shepperd & Ince 1993). 
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The next step is to perform a theoretical evaluation of the framework to establish if it is based on 

sound theory. As observed by Shepperd and Ince (1993), an evaluation of any model requires both 

a theoretical and an empirical evaluation. The chapter is organized as follows: Section 9.1 discuss 

the evaluation strategy. Section 9.2 discuss the evaluation of SAFEMicroservices. A conclusion 

of the evaluation is discussed in Section 9.3  

 

9.1  Evaluation strategy 

 SAFEMicroservices can be defined as a process (IEEE 1990) since the framework defines a set 

of activities that can be used to develop, maintain and deliver secure microservices. In general, a 

good software process is one that delivers quality software and enhances software development 

productivity (Elsen, Liem & Akbar, 2016). This definition is based on the argument that an 

evaluation of a process model such as SAFEMicroservices is based on the hypothesis that security 

as a quality of microservices is determined by the quality of the activities or process used to 

develop the microservices. With this in mind, it becomes important in this evaluation to first 

defines security as a quality in the context of microservices. In this regard, a secure microservices 

can be defined as one that capture user input correctly, perform expected business functionality 

correctly and resist security breaches (Raghavan & Zhang, 2017). This implicates that it enforces 

data validation, functions as expected and secures its data (Raghavan & Zhang, 2017). 

 

Since SAFEMicroservices is a quality process, using a quality model becomes a natural method to 

evaluate the framework since such a model encapsulate the concept of quality (ISO, 2011). The 

quality model is a set of characteristics and the relationships between characteristics which provide 

the basis for specifying quality requirements (ISO, 2011). The quality requirements in this context 

refer to security requirements. Also, common process models become vital to evaluate 

SAFEMicroservices as a software development process to determines its limitation and area of 

improvements (Noopur, 2006). This implies comparing SAFEMicroservices to existing process 

models that are designed for the same purpose (Noopur, 2006). With this in mind two approaches 

are chosen in this chapter to evaluate SAFEMicroservices namely: 

i. By means of a quality model - this approach is referred to as the SAFEMicroservices quality 

model in this chapter 
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ii. By comparison with existing secure software development processes – this approach is 

referred to as the secure software development processes comparison. 

 

Using the definition of security quality provided above, an evaluation question for 

SAFEMicroservices is formulated and provided below. 

 

How adequately specified is SAFEMicroservices to provide security assurance that microservices 

developed using the framework are free from vulnerabilities, and that the microservices functions 

in an intended manner?  

 

The two evaluation approaches listed above are now discussed.  

 

9.2 SAFEMicroservices quality model 

The evaluation of SAFEMicroservices discussed in this section adapts the quality model defined 

by ISO 25010 (ISO, 2011). The ISO 25010 quality model is chosen because it is the most recent 

model that defines a comprehensive list of quality characteristics. In addition, there is currently 

active and ongoing research work on using ISO 25010 to evaluate software development models. 

The work includes (Fontdevila et al,. 2017, König & Steffens, 2018, Estdale & Georgiadou, 2018) 

among many others.  

 

The ISO 25010 quality model is now briefly defined as background.  

 

9.2.1  ISO 25010 quality model 

The ISO 25010 quality model provides a list of characteristics and sub characteristics that 

contribute towards quality. This research has identified the characteristics that apply to the 

evaluation of SAFEMicroservices. These characteristics are defined in Table 9.1 below in the 

context of this evaluation. The characteristics are used as evaluation requirements for 

SAFEMicroservices. They are used as a set of requirements that SAFEMicroservices should 

embody to be defined as an ideal process quality model. 
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Table 9.1. ISO 25010 quality model characteristics 

Characteristics of 
quality model  

Definition of 
characteristics 

Sub-characteristic Definition of sub-characteristics 

Functionality 
suitability 
 

Functional 
suitability means 
that the proposed 
framework fits the 
operational needs 
and requirements 
of developing 
secure 
microservices 

Functional 
completeness 

The extent to which the set of activities provided by 
the framework covers all the aspects of developing 
secure microservices. 
 

Functional 
appropriateness 

The extent to which the framework facilitates the 
accomplishment of the goal of developing secure 
microservices. 

Reliability  Reliability 
compliance 

The extent to which the framework meets needs for 
reliability under normal operation. 
 

Performance 
efficiency 

Performance 
efficiency 
describes how the 
components of the 
frameworks 
execute 
efficiently.  

Resource Utilization The extent to which tools recommended in the 
framework meet acceptable levels when performing 
their functions. 

Maintainability Maintainability 
describes how 
easy it is to 
understand and 
adapt the various 
components of the 
framework to meet 
the needs of a 
development team 
 

Modularity The extent to which the framework advocate for 
discrete components such that a change to one 
component has minimal impact on the entire 
framework. 

Re-usability The extent to which the artefacts of the framework 
can be re-used. 

Analysability The extent of effectiveness and efficiency with 
which it is possible to understand and adapt the 
framework. 

Modifiability The extent to which the framework can be extended 
by the software development team to meet specific 
needs. 

Testability The extent of effectiveness and efficiency with 
which test criteria can be established for the 
framework. 

Security Security subsumes 
how to keep data 
safe 

Confidentiality The extent to which the framework ensures that data 
are accessible only to those authorized to have 
access. 

Integrity The extent to the framework prevents unauthorized 
access to, or modification of information or assets. 
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Characteristics of 
quality model  

Definition of 
characteristics 

Sub-characteristic Definition of sub-characteristics 

  Non-repudiation The extent to which actions or events in the 
framework can be proven to have taken place 
without any repudiation. 
 

Accountability The extent to which the actions of an entity in the 
framework is traced uniquely to the entity. 

Authenticity The extent to which the framework allows the 
identity of a subject or resource to be proved to be 
the one claimed. 

Compatibility Compatibility 
defines the ability 
of components of 
the framework to 
work together with 
other software 
products. 

Co-existence The extent to which a component of the framework 
performs their required functions efficiently in a 
shared environment without causing harm to other 
components running on the same environment. 
 

Interoperability The extent to which components of the framework 
exchange information and use the information that 
has been exchanged. 

Portability Portability means 
that the necessary 
changes can be 
quickly done and 
easily installed. 
 

Adaptability The extent to which components of the framework 
can be adapted for different or evolving hardware, 
software or other operational or usage environments. 

Installability The extent which component of the framework can 
be successfully installed and/or uninstalled in a 
specified environment. 

Replaceability The extent to component of the framework can be 
replaced by another for the same purpose in the 
same environment. 

 

The evaluation in this section takes the specification of SAFEMicroservices in Chapter 7 as input 

and assesses the specification against the characteristic provided in Table 9.1. The characteristic 

in Table 9.1 are used as a level of conformance to an ideal quality model. Next, Table 9.2 provides 

an assessment of SAFEMicroservices using the ISO 25010 characteristics and sub-characteristics. 
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Table 9.2. SAFEMicroservices evaluation using ISO 25010 

Characteristics of 
Quality Model  

Sub-characteristic SAFEMicroservices 

Functionality 
suitability 
 

Functional 
completeness 

 SAFEMicroservices defines activities, tools and method for developing 
secure microservices. The framework does not however define project 
management aspect of the secure development process. From a light-
weight point of view the framework can be considered complete. In 
addition, SAFEMicroservices is designed in a manner that it can also be 
used with other secure development process were possible. 

Functional 
appropriateness 

 SAFEMicroservices was used to develop a PickMeUp. The various 
artefacts were used with success to facilitate the accomplishment of the 
goal. 
 

Performance 
efficiency 

Resource 
Utilization 

 The various tools that SAFEMicroservices recommend are being used 
in industry and are at an acceptable level when performing their 
functions. 

Maintainability Re-usability  SAFEMicroservices provide the following reusable artefact, a catalog 
of security threats and vulnerabilities, architecture-level secure coding 
guidelines, secure design principles and security standards for 
microservices. These catalogs are generic and can be used by any team 
developing microservices. 

Analysability  SAFEMicroservices guides software engineers to effectively 
incorporate the six secure development activities into the entire 
microservices development life cycle. SAFEMicroservices identify six 
critical phases in the software development process that are common to 
both sequential and iterative methodologies and apply to new trends in 
software development. These phases are used to integrate security-
oriented activities, tools, and techniques into the development process. 
The framework is defined in such a way that it can be analysed. 

Modifiability  SAFEMicroservices can be extended by a software development team 
to meet specific needs. The framework is generic in approach to security 
and allows engineers to use artefacts in their organization-specific 
environments 
 

Security Confidentiality 
Integrity 
Non-repudiation 
Accountability 
Authenticity 

 SAFEMicroservices provide guidance on how to create a secure 
development environment and how to ensure the deployment 
infrastructure is secure to avoid the microservices build pipeline from 
being a weak link that attackers can use to breach security. Also, the 
protection measures provide the necessary guidance that engineers can 
use to develop secure microservices. 
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Characteristics of 
Quality Model  

Sub-characteristic SAFEMicroservices 

Compatibility Co-existence  Various tools can be used in SAFEMicroservices. Software engineers 
can choose any security-focused tools that suit their environment.  There 
is no expected detriment to other products deployed in the same 
environment. 
 

Portability Adaptability  SAFEMicroservices is a systematic and flexible approach to security 
that accommodates variations in the implementation using different 
technologies and the risk profile of each microservice.  
 

Installability  The tools used in SAFEMicroservices are easy to install. Software 
engineers can use the freely available plugin. 

Replaceability  SAFEMicroservices is designed in such a way that the security-focused 
activities, techniques, and artefacts can be used with other frameworks. 
 

 

 

Table 9.3 indicates that SAFEMicroservices conforms to most of the characteristic of ISO 25010 

when evaluated using the eleven sub-characteristics. However, the following limitations of a 

theoretical evaluation are recognized in this research. The evaluation does not directly address the 

theory that underlies SAFEMicroservices but considers instead the theoretical basis expressed in 

the specification in Chapter 8 by the researcher. The evaluation is in actual fact measuring 

SAFEMicroservices indirectly using another quality process model, in this case ISO25010. The 

researcher recognizes that although conformance to the standards is a recognized way to evaluate 

a process model like SAFEMicroservices, as is the case when a process model requires 

international certification, validation using such an approach cannot be guaranteed to address the 

totality of the level of security expected from a framework to present an argument that 

SAFEMicroservices is a suitable framework. In addition, there is a need to test the requirements 

of ISO 25010 in the industry context to determine the consistence of the theory behind 

SAFEMicroservices to reality although this may be a costly exercise. 

 

The next section compares SAFEMicroservices with other secure software development process. 
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9.3 Secure software development process model comparison 

Although SAFEMicroservices focuses on developing secure microservices compositions, this 

section evaluates SAFEMicroservices by comparing the framework with existing secure software 

development methodologies that can be used for the same purpose. Three popular secure software 

development methodologies namely Microsoft’s Security Development Life cycle (SDL) (Howard 

& Lipner 2006), OWASP's Comprehensive, Lightweight Application Security Process (CLASP) 

(OWASP 2006) and McGraw' Touchpoints (McGraw (2006)) are considered. These 

methodologies are recognized as significant players in the field.  

 

A separate comparison of Microsoft’s SDL, CLASP, and Touchpoints is provided in De Win et 

al. 2009. For the purposes of this thesis, the comparison by De Win et al. 2009 was revisited by 

reviewing the latest documentation of these methodologies to determine any process improvement 

that might have occur since the initial comparison.  The CLASP book version 1.2 available from 

the OWASP website (OWASP, 2018) was used for CLASP. The book by Howard and Lipner 

(2006) was used for Microsoft SDL and the Microsoft web site was also checked for updates on 

the SDL. The book by McGraw (2006) was used to understand Touchpoints.   

 

The comparison of the secure software development processes in this chapter is based on two areas 

namely: 

 Risk assessment process – the activities of identifying threats and vulnerabilities 

 Software construction process – the activities used to develop, test and deploy an 

application 

 

The comparison in this thesis does not cover the initial project management aspects and security 

training that other secure software development processes consider important. This is already an 

accepted weakness of SAFEMicroservices. 

 

The next section discusses the comparison. 
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9.3.1 Risk assessment process comparison 

The risk process is about identifying threats to and vulnerabilities of a given system. The 

comparison discussed in this section is based on the specification of threat modeling and how 

elicited threats and vulnerabilities are analyzed in each secure software development process. The 

comparison is meant to provide a high-level view and does not consider the depth of the specified 

methodology for each category. Table 9.3 document the comparison using a few sets of basic 

security-focused activities. A tick (√) means that the framework provides security-focused 

activities or guidance that address the requirements and an x means that there is no guidance or 

specification of the activities. 

 

Table 9.3 Risk assessment process comparison of SAFEMicroservices to other frameworks 

Risk Assessment Microsoft 
SDL 

CLASP Touch-
points 

SAFEMicroservices 

1. Architecture-
level threat 
modeling 

1.1 Develop system understanding √ √ √ √ 

1.2 Identify the external 
dependency 

√ x x √ 

1.3 Identify threats and threat types √ √ √ √ 

1.4 Assign risk to threats √ √ √ √ 

1.5 Perform weakness analysis x x √ √ 

1.6 Identify countermeasures √ √ x √ 

 
2. Analysis-level 
threat modeling 

2.1 Perform vulnerabilities analysis x x √ √ 

2.2 Identify and describe threats 
agents 

x √ √ x 

2.3 Elicit and describe abuse cases x √ √ √ 

2.4 Attack-pattern elicitation x x √ √ 

2.5 Rank misuse case x x √ x 

2.6 Identify protection measures x √ x √ 

2.7 Document security architecture x √ x √ 

 

Table 9.3 above shows that among the few selected security activities in the risk assessment 

process, of the three popular frameworks TouchPoint covers most areas of the architecture-level 
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threat modeling and analysis-level threat modeling. Microsoft's SDLC and OWASP generally do 

not adequately specify how to perform an attack-driven analysis and elicit abuse cases.  On the 

other hand, SAFEMicroservices provides guidance on most of the security-focused activities in 

the risk assessment process but does not identify and describe threats agents and does not assign a 

ranking to misuse cases. Risk rating, however, is generally an arbitrary exercise (De Win et al. 

2009). Besides, Table 9.3 shows that from a high-level view SAFEMicroservices does have a 

broader scope on both the architecture-level and analysis-level compared to the existing 

framework. This research does acknowledge the limitation of SAFEMicroservices that it is 

specified for a microservices architectural style compared to other frameworks that are 

architectural agnostic.  In addition, not evaluated in this thesis is the depth in which each of the 

areas listed in Table 9.3 is covered in SAFEMicroservices.  

 

The next question that should be asked in the evaluation of SAFEMicroservices is whether the 

security-focused activities and resulting artefacts that are produced in the risk assessment process 

are fit for software engineers. To answer this question, a threat to the validity of both the 

architecture-level threat modeling and the threat analysis is identified. First, the architecture-level 

threat modeling process in SAFEMicroservices leverages the Microsoft SDL threat process which 

is a well-tested process (Win et al.2009). The threat classification approach uses the Microsoft 

STRIDE, again a tested methodology. Although SAFEMicroservices does not assign a rating on 

the misuse cases, a rating is provided on the likelihood of an attack which is derived from the 

attack pattern in the CAPEC dictionary, a community-driven database of common attacks. Also, 

the analysis of the security threats and software weaknesses leverages a community-driven 

database of common weakness and common attack patterns. This makes the SAFEMicroservices 

threat modeling and analysis fit for software engineers, barring errors that software engineers can 

make in both architecture-level threat modeling and analysis. 

 

The next section compares the construction process of the popular secure software development 

frameworks with SAFEMicroservices. 
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9.3.2  Software construction process comparison 

The comparison in this section considers the activities provided by each secure development 

process for creating secure development infrastructure, coding, testing, deployments and support. 

Figure 9.4 below shows a comparative view of the development processes. 

 

Table 9.4 Construction process comparison of SAFEMicroservices with other frameworks 

Implementation Microsoft 
SDL 

CLASP Touch-
points 

SAFEMicroservices 

1. Secure 
development 
infrastructure 

1.1 Secure use of version control system x x x √ 

1.2 Use of branching strategy x x x √ 

1.3 Secure use of code integration tool x x x √ 

1.4 Support for automated security 
testing 

x x x √ 

 
2 Coding 

2.1 Use of security standards x √ x √ 

2.2 Use of secure coding guideline √ √ x √ 

2.3 Address reported issues x √ x √ 

2.4 Validate remediation x √ x √ 

 
3 Testing 

3.1 Build test cases using risks x x √ √ 

3.2 Execute security tests x √ x √ 

3.3 Perform unit testing x x √ √ 

3.4 Perform integration testing x x √ √ 

3.5 Static code analysis x √ x √ 

3.6 Manual code reviews √ x x √ 

3.7 Penetration testing √ x √ √ 

3.8 Validation of external libraries x √ x √ 

3.9 Validate container or infrastructure √ x x √ 

3.10 Perform risk-based security testing 
 

x x √ √ 

3.11 Validate correct use of tools √ x x x 

3.11 Security report √ x x √ 
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Implementation Microsoft SDL CLASP Touch-
points 

SAFEMicroservices Implementation 

 
4 Deployments 
and Support 

4.1 Code Sign-off √ x x x 

4.2 Configure monitoring and 
logging 

x x √ √ 

4.3 Safe runtime configuration x x x √ 

4.4 Verify infrastructure x x x √ 

4.5Secure deployments x √ x √ 

4.6 Vulnerabilities reporting √ √ x √ 

4.7 Fix security issues √ √ x √ 

 

Figure 9.4 above shows that among the few selected security-focused activities common to the 

construction process, existing secure software development processes do not provide guidance on 

how to set up a secure development environment. Very little is mentioned concerning such 

important aspect of software development such as the security of the code repository, continuous 

integration as well as source code branching and source code merging policies. 

SAFEMicroservices provide guidelines on how to create a development infrastructure, how to 

ensure comprehensive testing and deployments. Table 9.4 shows that on a high-level, 

SAFEMicroservices provides comprehensive end-to-end guidelines on how to ensure the 

development of secure microservices.  

 

Although SAFEMicroservices does provide guidance to software engineers in the entire software 

development life cycle, the researcher does recognize that SAFEMicroservices is a light-weight 

framework and does not go into much details when discussing security-focused activities 

compared to other secure development frameworks. Framework such as Microsoft SDL and 

Touchpoints have rich literature in the form of books and websites written specifically for those 

frameworks and are tried and tested in the field. With this in mind, the view of the researcher is 

that SAFEMicrosevices can augment existing frameworks rather than be a competitor. In addition 

to guidance provided by existing frameworks, SAFEMicroservices can be used to address areas 

where existing frameworks are limited. 
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9.4  Conclusion 

A theoretical evaluation by comparison of SAFEMicroservices was discussed in this chapter to 

augment the empirical evaluation done in Chapter 9. The evaluation in this chapter was based on 

two approaches, the use of a quality model and by comparing SAFEMicroservices with other 

software development processes that are similar in nature. The limitation of each of the approach 

was acknowledged in the discussion.   

 

Taking into consideration the limitations of the evaluation approach and the identified limitation 

of SAFEMicroservices, the framework is adequately specified to provide grounds for confidence 

that microservices compositions developed using the framework are free from vulnerabilities. The 

researcher acknowledges however that although a framework is important towards the 

development of secure software, other factors not considered in this research may impact on the 

quality of software. The view supported by the research is that by using SAFEMicroservices, 

software engineers can perform the security-focused activities in any software development 

methodology, taking into consideration the organisation’s culture and the technology landscape, 

thereby ensuring that the chances of successful adoption of the framework is enhanced. The 

limitation of SAFEMicroservices is that it is specified for the microservices architectural style and 

need to be extended to be useful in team using other software architectures.
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Chapter 10 

 

Conclusion and Future Work 
 

 

 

10  Introduction 

This thesis proposed a software development framework for secure microservices. The primary 

objective of the proposed framework is to guide software engineers to develop microservices from 

the ground up so that such microservices are inherently secure. The framework seeks to wean 

software engineers from a reactive approach to security where software security receive attention 

as and when security breaches occur. Reactive approach to security is expensive because it requires 

re-engineering efforts that are often required after microservices are written or a security breach 

has occurred.  

 

This thesis introduced the microservices architectural style and its security challenges. A risk 

assessment of the architectural style was performed to identify the security threats and 

vulnerabilities in the architecture. The identification of the risks allowed for the identification of 

security-focused activities that are required to be performed by software engineers in their day-to-

day development tasks. The activities referred to as secure development activities in this thesis are 

the foundation on which the proposed software development framework is built. Furthermore, the 

secure development activities were used to identify security-oriented tools and techniques that can 

assist in the day-to-day development tasks of secure microservices. 

 

In Chapter 1 the motivation of this research was proposed together with the objective of the 

research. This chapter revisits the objectives to determine the success of the research. In addition, 

the research contributions are stated, and future research discussed. The chapter is then concluded 
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10.1  Revisiting the research objectives 

The primary objective of this research is to propose a software development framework for secure 

microservices. The framework is constructed using a three main research questions. Secondary 

questions are proposed to assist in understanding the main research questions. In order to determine 

if the research objective has been met, the research questions defined in Chapter 1 are now 

revisited. 

 

RQ1 - What are the security challenges associated with the microservices architectural style?  

The state-of-the-art discussed in Chapter 3 identified the following five new security challenges 

of microservices: 

i. Increased attack surface - an instance of a microservice is a unique network endpoint that 

requires a dedicated open network port to expose an application programming interface. 

Every instance of microservice require its own open port for communication. This gives 

an attacker an increased attack surface as new microservices are deployed across the 

network and an attack can be made on each microservices. 

ii. Indefinable security perimeters - the deployment of microservices on containers result in 

containers being quickly set up anywhere within the network without any consideration for 

the traditional notion of demilitarized security perimeters.  

iii. Security monitoring is complex – containers on a host machine can use network address 

translation which makes it challenging to identify network traffic coming to and from 

containers.   

iv. Authentication is centralized - microservices deployed on separate containers presents a 

challenge of authenticating users and sharing user credentials between microservices in a 

symmetric and secure manner.  

v. Threat modeling and risk assessment are localized - the microservices ownership model 

discussed in Chapter 3 emphasizes team autonomy and ensuring that threat modeling, and 

risk assessment is done before new versions of microservices are released becomes a 

challenge. 
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The following secondary research questions related to RQ1 are addressed below: 

 

(a) How does the microservices architectural style differ from common SOA 

implementations?  

The state-of-the-art discussed in Chapter 2 and Chapter 3 of this thesis identified the following 

four key differences between microservices and traditional SOA implementations: 

i. Services granularity – microservices are fine-grained components that focus on a single 

purpose and aim to do it well, whereas in SOA, a service can encapsulate a large product 

or a legacy system and is therefore course-grained. 

ii. Security – traditional SOA implementations uses the enterprise service bus (ESB) as a 

security layer. Each service in SOA does not have to implement its security. On the 

contrary, in the microservices architecture, each microservices is an independent unit that 

is responsible for its security. 

iii. Component sharing – traditional SOA implementations are based on making component 

reusable and shareable. In the microservices architectural style, each microservices is a 

single unit and is designed to have its data with minimal dependencies to ensure its 

autonomy. 

iv. Service communication – a microservices communicate predominantly using a known 

application programming interface layer, whereas traditional SOA implementation uses a 

messaging middleware component responsible for mediation, routing, message 

enhancement, and protocol transformation. 

 

(b) What are the security risks of microservices? 

The risk assessment of the microservices architectural performed in Chapter 5 in this thesis 

identified the following five risks associated with microservices:  

i. Insecure application programming interfaces - a weak set of application programming 

interfaces (APIs) exposes microservices to injection types of attacks, API manipulation and 

functionality misuse among other attacks.  
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ii. Unauthorized access - when there is no proper scalable identity access management system, 

a microservices is vulnerable to unauthorized access leading to tampering with data and 

information disclosure.  

iii. Insecure microservices discovery - when microservices use discovery mechanisms that are 

not secure, spoofing, information disclosure and denial of service may occur. 

iv. Insecure runtime infrastructure - containers and virtual machine, where microservices are 

deployed, may be compromised by the presence of errors or malware and an attacker can 

exploit the weakness to gain access to the microservices.  

v. Insecure message broker - when the message broker is not correctly secured, spoofing, 

tampering with data, information disclosure and denial of service may occur. 

 

(c) What methods can an attacker use to exploit weaknesses in microservices? 

In Chapter 5, an analysis of security threats and vulnerabilities associated with microservices 

identified the following attack methods that a malicious agent can use when there are no sufficient 

protection measures: 

i. Injection of unexpected items – an attacker can exploit the weaknesses on the microservices 

API validation mechanisms by manipulating the content that is sent as part of the request 

parameter.  

ii. Use deceptive interactions – an attacker can deceive the microservices during an interaction 

in such a manner that the microservices allows the user to perform actions that they are not 

authorized to do. 

iii. Abuse microservices functionality – an attacker can flood the microservices with many 

requests so that the microservices deplete its allocated computing resource while 

attempting to process the request. In so doing, the microservices may fail to provide 

functionality to legitimate users. 

iv. Subvert microservices access control – an attacker can bypass authentication or 

authorization mechanisms to access the resources of a microservice illegally. 

v. Use probabilistic techniques – an attacker can use brute force or send randomly created 

input data to microservices to analyze their failures and to discover certain assumptions 

made during the design of microservices. 
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vi. Collect and analyze information – an attacker can take advantage of insecure 

communication channels between communication microservices or gain access to 

microservices logs and read sensitive information. 

 

The second main research question is now revisited below  

 

RQ2 - How can software engineers build microservices in a systematic way in which security 

is an integral part of the entire microservices lifecycle? 

In Chapter 5, as a starting point to address this question, the threat modeling exercise identified six 

important main activities to incorporate in the day-to-day software development tasks. The six 

identified activities are: 

i. Document security requirements of microservices compositions 

ii. Adopt secure programming best practices 

iii. Validate security requirements and secure programming best practices 

iv. Secure configuration of runtime infrastructure 

v. Continuously monitor the behavior of components of the microservices composition 

vi. Securely respond to attacks using adaptation mechanisms 

 

Then in Chapter 7 this thesis proposed a software development framework that defined secondary 

security-focused activities to support the six activities above. The proposed framework provides a 

road map that can be used to ensure that the six activities are part of the daily software development 

tasks. The proposed framework defines a systematic way of integrating security in a software 

development process.  

 

The secondary research questions related to RQ2 are now addressed below: 
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a) What are the design flaws associated with the microservices architectural style and 

how can they be avoided? 

The framework proposed in this thesis discussed an approach to analyse microservices threats and 

vulnerability that are rooted in the architectural style. The framework identified the following 

architectural design flaws: 

i. Failure to comprehensively validate microservices inputs 

ii. Failure to ensure data integrity of messages, deployment files and configuration files 

iii. Failure to correctly identify, authenticate and authorize users 

iv. Failure to limit access to microservices resources accordingly 

v. Failure to limit the attack surface 

 

b) What guidelines can software engineers use to design and implement secure 

microservices and how can these guidelines be presented in a manner that is useful 

and convenient for software engineers especial those not trained in software security? 

The framework proposed in this thesis identified and constructed three important guidelines to 

address this research questions namely: 

i. Secure coding guidelines – the secure coding guidelines in the thesis are elicited by 

performing a root cause analysis of security threats and vulnerabilities of microservices 

composition. The guidelines are architecture-centric to assist software engineers avoid 

design choices that lead to security flaws in microservices.  

ii. Secure design principles – the principles were identified from the review performed in 

Chapter 6 and from a root cause analysis performed in the proposed framework. The design 

principles provide a set of rules that software engineers can use to avoid introducing 

vulnerabilities during the design of microservices.  

iii. Microservices standards – the purpose of standards is to establish a set of mandatory 

requirements that software engineers must comply with in their daily development 

activities. The standards were created from a set of common security weaknesses and best 

practices suggested in literature. 
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c) How can security-focused tools, techniques, and practices be integration in the 

development lifecycle to so that they become part of the software engineer's daily 

software development tasks? 

The software development framework proposed in Chapter 7 used the six main security-focused 

activities listed in research question RQ2 above in this chapter to identify security-focused tools, 

techniques and practices. The proposed framework then identified phases in the software 

development process where the six main activities are to be performed. This approach provides a 

method to appropriately determine how to integrate the tools, techniques and practices so that they 

become part of the software engineer’s daily development tasks. 

 

RQ3 - How can protection measures be correctly implemented and preserved to ensure that 

microservices are safe at all times? 

The software development framework proposed in this thesis discussed the comprehensive use of 

guidelines to assist software engineers in implementing protection measures. The guidelines are 

discussed in the secondary question above. In addition, the proposed framework discussed security 

validation techniques that software engineers should use to ensure that protection measures and 

guidelines are correctly followed. Microservices should undergo extensive security testing before 

any deployment. The testing techniques defined in the proposed framework include: 

i. Static security testing 

ii. Manual code review 

iii. Security unit test and acceptance test execution 

iv. Penetration testing 

 

10.2  Research contributions 

This thesis provides a holistic security perspective of the microservices architectural style. First, 

the thesis identifies the security challenges of the architectural style using risk assessment 

techniques. The assessment brings to the fore the various security threats and vulnerabilities in 

microservices that are rooted in the architectural style. In addition, protection measures are 

suggested. The thesis also identified security-focused activities that should be incorporated in the 

development process of microservices. The tools are also reviewed to assist software engineers 
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make an informed decision when choosing tools to incorporate into their daily development tasks. 

The security-focused activities are further used to identify tools, techniques and methods that can 

be used to improve the security of microservices. 

 

This thesis also designs a catalog of microservices security threats, security weaknesses, and their 

mitigations. Software engineers can use the catalog as quick reference in their day-to-day 

microservices development tasks or as a manual to gain foundational knowledge to perform a risk 

assessment in a microservices-based software project. 

 

Furthermore, the thesis designs a dictionary of coding guidelines to mitigate common 

microservices security weakness and common attacks on microservices. The dictionary is provided 

as a reusable artefact in a manner that is easy to use for software engineers who are not trained in 

security. Software engineers can use the dictionary as quick reference in their day-to-day 

microservices development tasks.  

 

The thesis proposes a software development framework to build secure microservices from the 

ground up based on the identification of security-focused activities that are required in a 

microservices development lifecycle. The framework is specified in a manner that makes it 

agnostic to both culture and technology characteristics in a software development team to allow 

software engineers to apply software security controls within their unique organizational 

circumstances.  

 

This research also proposed a secure development framework for secure microservices based on 

the assumption that software engineers are willing to adopt secure software development practices. 

The framework has defined best practices to follow in developing secure microservices but not 

much has been considered about the context in which software development team operate. Success 

of any software development approach is based on the ingenuity of various stakeholders and their 

interactions with one another, and this has not been considered or tested in this research. There is 

therefore a possibility that adopting the proposed framework may be considered out of touch with 

a team’s culture, team skill set and team size. Furthermore, this thesis has also not identified the 
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minimum security skill set required to effectively adopt the framework or proposed measures to 

deal with resistance of software engineers in a team in adopting some or all of the security-focused 

activities or use of tools.  

 

10.3  Future work 

One of the fundamental premises on which the proposed software development framework for 

secure microservices is based on, is that few software engineers are trained in security. To remedy 

the lack of security expertise, the framework provides ready-made catalogs of threats and 

protection measures, a catalog of secure design principles, and a set of security standards. Future 

work is to ascertain the effect of these catalogs on the development of security skills among 

software engineers. Besides, an investigation is required to determine whether the catalogs created 

in this thesis have sufficient information to be used as a security teaching aid. A qualitative analysis 

is required to provide guidance on which section of the catalog engineers both with security 

knowledge and those without consider vital. 

 

Furthermore, there is need to investigate further how the framework can be effectively used in 

different software development teams as discussed. 

 

10.4  Conclusion 

This chapter has presented the conclusion of this thesis by revisiting the research objectives. The 

limitation of this research and the future research direction are also discussed. The main goal of 

this thesis was to propose a software development framework for secure microservices.  

 

The framework proposed in this thesis first identify the risk associated with the microservices 

architectural style as a basis towards understanding the security challenges of microservices. The 

security threats and vulnerabilities identified in the risk assessment are then used to identify 

important security-oriented activities that should be incorporated into the daily development tasks. 

The identification of security-oriented activities is further used to identify tools and techniques 

that can assist software engineers create secure software as part of their day-to-day software 
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development activities. In addition, the security threats and vulnerabilities are used to create 

catalogs that software engineers can use as quick references during the development of 

microservices. The proposed secure software development framework is validated by creating a 

microservices-based application. 

 

The research conducted in this thesis is considered successful based on the research objectives and 

research questions formulated in Chapter 1. A software development framework of secure 

microservices has been created. The framework has been validated by developing an application 

using the artefacts of the framework. The contributions of this research were presented and 

opportunities for future research identified.
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Appendix A 

 

Appendix A provides the security artefacts produced in the SAFEMicroservices preliminary phases. 

 

(a) A.2.2 Microservice architecture common weakness enumeration 

Table A.2.2 below is an artefact produced in the preliminary phase of SAFEMicroservices. The table contains a list of common vulnerabilities 

associated with each microservices threat. Software engineers can use this artefact to quickly identify vulnerabilities associated with each 

threat and the architectural concept that is the root cause of the vulnerabilities in microservices.   

 

Table A.2.2 Microservices architecture common weakness enumeration 

 Security threats 

Architecture 

category 

Common vulnerabilities Insecure 

API 

Unauthorized 
access 

Insecure 
microservices 
discovery 

Insecure 
runtime 
infrastructure 

Insecure 
message 
broker 

Validate Input  Improper input validation (CWE-20) √ x √ x x 

 Improper neutralization of request data (CWE-138,150, 
643,74,76,77,78,943,95,96, 93) 

√ x √ x  x 

 Acceptance of extraneous untrusted data with trusted data √ x √ x √ 

 Cross-site request forgery (CSRF) (CWE-352) √ x x x √ 

 Deserialization of untrusted data (CWE-502) √ x √ x √ 

 Failure to sanitize special elements in request data (CWE-75,) √ x √ x x 

 Improper filtering of request data (CWE-790,791,792, 
795,796,797) 

√ x √ x x 

 Argument injection mechanisms (CWE-88) √ x √ x x 
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Architecture 

category 

Common vulnerabilities Insecure 
API 

Unauthorized 
access 

Insecure 
microservices 

discovery 

Insecure 
runtime 

infrastructure 

Insecure 
message 
broker 

 Validate input  XML injection (CWE-91) √ x √ x √ 

 

Authorise 
actors 

 Improper handling of privileges and permissions (CWE-266,267, 
268,269, 270 271, 272, 273,279,280,281, 732) 

√ √ √ √  √ 

 Improper access control (CWE-284) √ √ √ √  √ 

 improper or missing authorization mechanisms (CWE-862, 863, 
939) 

√ √ √ √  √ 

 improper management of users (CWE-286) √ √ √ √  √ 

 Bypassing of authorization mechanisms (CWE-566, 639) √ √ √ √  √ 

 Insufficient compartmentalization (CWE-653) √ √ √ √  √ 

 

Authenticate 
Actor 

 Poor password management (CWE-258, 259,262,798,836,916, 
640,620, 521) 
 

√ x x √ √ 

 Bypassing of authentication mechanisms (CWE-288, 289,290, 
294,302, 305) 

√ x √ √ √ 

 Improper authentication mechanisms (CWE 287, 291, 293,304, 
322) 

√ x √ √  √ 

 Use of single-factor authentication (CWE 308) √ x √ x  √ 

 Relying on client-side authentication (CWE-308) √ x √ x  √ 

 

Encrypt data  Poor management of credentials information (CWE-256, 
257,260) 
 

√ x √ x √ 

 Inadequate encryption of sensitive data (CWE-312,319, 
326,327,328,331,) 

√ x √ √  √ 

 Use of hard-coded cryptographic keys (CWE-319) √ x x √  √ 
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Architecture 

category 

Common vulnerabilities Insecure 
API 

Unauthorized 
access 

Insecure 
microservices 

discovery 

Insecure 
runtime 

infrastructure 

Insecure 
message 
broker 

 Encrypt data 

(continued) 
 Use of expire cryptographic keys √ x x √  √ 

 Use of weak algorithms (CWE-338, 337,339, 759, 780, 760) √ x x x  √ 

 Insecure storage of sensitive information √ x √ √  √ 

 

Identify 
Actors 

 Improver validation of certificates (CWE-295, 296,298, 299, 
370) 

√ x √   √ √ 

 Insufficient verification of data authenticity (CWE-345) √  x √  √  √ 

 Insufficient verification of communication channel request 
(CWE-940, 941) 

√  x √  √  √ 

 

Limit access  Execution with unnecessary privilege x x √ √ √ 

 Improper information exposure (CWE-201, 209, 212) √ x √   

 

Limit 
Exposure 

 Information exposure through error message (CWE-210, 211, 
214,550) 
 

√ x √ √ √ 

 Inclusion of untrusted libraries (CWE-829) √ x √  √  √ 

 

Verify 
message 
Integrity 

 Lack of proper checksum validation (CWE-353, 354, 649)  √ x √  √ √ 

 Improper exception and error handling (CWE-390, 391, 755)  x √  √  √ 

 

Audit  Improper output neutralisation for logs (CWE-117) √ x x √ x 

 Omission of security-related information (CWE-223)  √ x  √  √  √ 

 Sensitive information exposure through logs (CWE-532)  √ x x  √  √ 

 Insufficient logging (CWE-778)   √ x x  √  √ 
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(b) A.3.1 Catalog of architecture-level secure coding guidelines 

Table A.3.1 is an artefact produced in the preliminary phase of the SAFEMicroservices. The artefact provides a set of guidelines grouped by 

architecture concept and software engineers can use the artefacts as a quick reference manual to identify which guidelines to apply when 

dealing with part of the application where the concepts apply. 

 

Table A.3.1 Catalog of architecture-level secure coding guidelines 

Architecture 
category 

Common vulnerabilities Introduction phase Secure coding guidelines  

Validate Input  Improper input validation (CWE-20) Design and 
implementation 

 Validate all inputs and validation should consider 
relevant properties such as length, input type, and 
acceptable values 

 Use and specify an output encoding that is 
supported by a downstream component that 
consumes its output 

 Decoded and canonicalized inputs to the 
microservices current internal representation 
before validated 

 Do not use user inputs to constructs all or part of 
an SQL command without neutralizing special 
elements 

 Create a whitelist using regular expressions that 
define valid input according to the requirements 
specifications and strictly filter any input that 
does not match against the whitelist.  

 Properly encode microservices output and quote 
any elements that have special meaning between 
communicating component in the microservices 
composition. 

 Improper neutralization of request data (CWE-
138,150, 643,74,76,77,78,943,95,96, 93) 

Implementation 

 Acceptance of extraneous untrusted data with 
trusted data 

Design and 
implementation 

 Cross-site request forgery (CSRF) (CWE-352) Design 

 Deserialization of untrusted data (CWE-502) Design and 
implementation 

 Failure to sanitize special elements in request 
data (CWE-75) 

Design and 
implementation 

 Improper filtering of request data (CWE-
790,791,792, 795,796,797) 

Implementation 

 Argument injection mechanisms (CWE-88) Design and 
implementation 

 XML injection (CWE-91) Design and 
implementation 

  



 

236 

Architecture 
category 

 Common vulnerabilities Introduction phase Secure coding guidelines  

Authorise actors  Improper handling of privileges and permissions 
(CWE-266,267, 268,269, 270 271, 272, 
273,279,280,281, 732) 

Design and 
implementation 

 Microservices should only use trusted libraries to 
avoid execution of malicious commands 

 microservices should run lowest privileges to 
accomplish task 

 Ensure appropriate compartmentalization of 
microservices where trust boundaries are 
unambiguous 

 microservices should perform access control 
validation in the business logic 

 Ensure that roles are mapped with data and 
functionality in a microservices 

 Microservices should use role-based access 
control to enforce the roles at the appropriate 
boundaries. 

 Microservices should not cache sensitive 
information 

 Improper access control (CWE-284) Design and 
implementation, 
operation 

 improper or missing authorization mechanisms 
(CWE-862, 863, 939) 

Design and 
implementation, 
operation 

 improper management of users (CWE-286) Design and 
implementation, 
operation 

 Bypassing of authorization mechanisms (CWE-
566, 639) 

Design and 
implementation 

 Insufficient compartmentalisation (CWE-653) Design and 
implementation 

  

Authenticate Actor  Poor password management (CWE-258, 
259,262,798,836,916, 640,620, 521) 
 

Design and 
implementation 

 Microservices should not hard code credentials in 
source code or properties files 

 Password used in the microservices should expire 
after a given time and be changed 

 Use vetted authentication frameworks 
 Microservices should use a multi-factor 

authentication 
 microservices should not delegate authentication 

to clients 
 Microservices should use strong passwords 
 Password changes must be verified 
 Microservices should not use password hash for 

authentication 

 Bypassing of authentication mechanisms (CWE-
288, 289,290, 294,302, 305) 

Design and 
implementation 

 Improper authentication mechanisms (CWE 287, 
291, 293,304, 322) 

Design and 
implementation 

 Use of single-factor authentication (CWE 308) Design 

 Relying on client-side authentication (CWE-308) Design and 
implementation 
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Architecture 
category 

Common vulnerabilities Introduction phase Secure coding guidelines  

Encrypt data  Poor management of credentials information 
(CWE-256, 257,260) 
 

Design  Passwords or cryptographic keys should not be 
stored in property files or hard-coded but consider 
storing hashes of passwords 

 Use well vetted algorithm that is considered to be 
strong 

 Microservices should not store sensitive 
information in cookies 

 do not reuse nonce values 
 validate for certificate expiry 
 use approve random number generators that 

conform to FIPS 140-2 

 Inadequate encryption of sensitive data (CWE-
312,319, 326,327,328,331,) 

Design and operation 

 Use of hard-coded cryptographic keys (CWE-
319) 

Design 

 Use of expire cryptographic keys Design 

 Use of weak algorithms (CWE-338, 337,339, 759, 
780, 760) 

Implementation 

 Insecure storage of sensitive information Design and 
implementation 

  

Identify Actors  Improver validation of certificates (CWE-295, 
296,298, 299, 370) 

Design and 
implementation 

 Always check that data is encrypted with the 
intended owner's public key 

 Validate the certificate full chain trust, host name, 
expiry date, and revocation status 

 Verify that the request for communication 
channel is coming from the expected origin 

 Insufficient verification of data authenticity 
(CWE-345) 

Design and 
implementation 

 Insufficient verification of communication 
channel request (CWE-940, 941) 

Design and 
implementation 

  

Limit access  Execution with unnecessary privilege Design and 
implementation, 
configuration, 
operation 

 Use default error messages so that unexpected 
errors do not disclose sensitive information. 

 Compartmentalize the microservices into 
unambiguous trust boundaries and ensure 
sensitive information does not go over trust 
boundaries 

 Perform extensive input validation for any 
privileged code 

 Isolate the privileged code as much as possible 
from other code 

 Improper information exposure (CWE-201, 209, 
212) 

Implementation 

  



 

238 

Architecture 
category 

Common vulnerabilities Introduction phase Secure coding guidelines  

Limit Exposure  Information exposure through error message 
(CWE-210, 211, 214,550) 
 

Design and 
implementation, 
operation 

 Ensure that microservices does not run in debug 
mode in production 

 Ensure that error message are handled internally 
and do not display error message with sensitive 
information. 

 Error message from the runtime environment 
should not be displayed to the users  

 Inclusion of untrusted libraries (CWE-829) Implementation 

  

Verify message 
Integrity 

 Lack of proper checksum validation (CWE-353, 
354, 649)  

Design and 
implementation 

 Ensure proper implementation of checksums in 
the protocol design and ensure checksum is added 
to each message before it is sent 

 properly check the checksum before parsing the 
message 

 Improper exception and error handling (CWE-
390, 391, 755) 

Implementation 

  

Audit  Improper output neutralisation for logs (CWE-
117) 

Design and 
implementation 

 Log all information that may be useful to identify 
the source and nature of attack. 

 Protect log files against unauthorized read/write. 
 Do not deploy microservices in debug mode 
 do not log excessively 

 Omission of security-related information (CWE-
223) 

Design and 
implementation, 
operation 

 Sensitive information exposure through logs 
(CWE-532) 

Design and 
implementation, 
operation 

 Insufficient logging (CWE-778)  Operation 
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Appendix B 

 

(a) B.1.4 Microservices abuse cases and protection measures 

The Table B.1.4 is a catalog of abuse cases and protection measures. 

 

Table B.1.4. Catalog of microservices abuse cases and protection measures 

Architecture 
category 

Common vulnerabilities Abuse or misuse cases Protection Measures (Including tools 
and techniques) 

Validate 

Input 

 Improper input validation 
(CWE-20) 

 As an attacker, I can manipulate request 
parameters to compromise the operation of 
microservices. 

 As an attacker, I can supply values as parameters 
to the API that a microservices implementation 
uses to determine which class to instantiate and I 
can then create control flow paths through the 
microservices that were not intended. 

 As an attacker, I can manipulate resource 
identifiers passed on as parameters to 
microservices API so that I gain control and 
perform an action on the resource. 

 As an attacker, I may either alter the path or 
add/overwrite unexpected parameters in the 
“query string" on the HTTP query string when 
calling the microservice REST API. 

 As an attacker, I may supply multiple HTTP 
parameters with the same name to cause a 
microservices to interpret values in unanticipated 
ways. 

 As an attacker, I can exploit a microservices 
composition component by injecting additional, 
malicious content during its processing of 
serialized objects. 

 Ensure all input content that is 
delivered to by a microservices is 
sanitized against an acceptable 
content specification. 

 Perform input validation for all 
content. 

 Use an input validation 
framework such as OWASP 
ESAPI Validation API. 

 Use static analysis tools such as 
FindBugs on IDE and continuous 
integrations toolchains to detect 
input-validation.  

 Perform fuzz testing.  
 Validate object before 

deserialization process 
 Limit which class types can be 

deserialized. 

 Improper neutralization of 
request data (CWE-138,150, 
643,74,76,77,78,943,95,96, 
93) 

 Acceptance of extraneous 
untrusted data with trusted 
data 

 Cross-site request forgery 
(CSRF) (CWE-352) 

 Deserialization of untrusted 
data (CWE-502) 

 Failure to sanitize special 
elements in request data 
(CWE-75,) 

 Improper filtering of request 
data (CWE-790,791,792, 
795,796,797) 

 Argument injection 
mechanisms (CWE-88) 

 XML injection (CWE-91) 
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Architecture 
category 

Common vulnerabilities Introduction phase Secure coding guidelines  

Authorise 
actors 

 Improper handling of 
privileges and permissions 
(CWE-266,267, 268,269, 270 
271, 272, 273,279,280,281, 
732) 

 As an attacker I can bypass access restriction and 
gain access to privileged functionality on 
microservices. 

 As an attacker I may elevate my privilege and gain 
access to the privileged functionality on 
microservices. 

 As an attacker I may direct the microservice to 
execute command on my behalf by loading 
libraries. 

 As an attacker I can use a privilege to perform an 
unsafe action on a microservices. 

 As an attacker I can use unprotected channels into 
the microservice. 

 Microservices should only use 
trusted libraries to avoid 
execution of malicious commands 

 microservices should run lowest 
privileges to accomplish task 

 Ensure appropriate 
compartmentalization of 
microservices where trust 
boundaries is unambiguous 

 microservices should perform 
access control validation in the 
business logic 

 Ensure that roles are mapped with 
data and functionality in a 
microservices 

 Microservices should use role-
based access control to enforce 
the roles at the appropriate 
boundaries. 
Microservices should not cache 
sensitive information 

 Improper access control 
(CWE-284) 

 improper or missing 
authorization mechanisms 
(CWE-862, 863, 939) 

 improper management of 
users (CWE-286) 

 Bypassing of authorization 
mechanisms (CWE-566, 639) 

 Insufficient 
compartmentalization (CWE-
653) 
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Architecture 
category 

Common vulnerabilities Introduction phase Secure coding guidelines  

Authenticate 
Actor 

 Poor password management 
(CWE-258, 
259,262,798,836,916, 
640,620, 521) 
 

 As an attacker I can access credential on source 
code repository to gain access to the system. 

 As an attacker I can re-use an old password to gain 
access to the system. 

 As an attacker I can bypass authentication and 
gain access to the system. 

 As an attacker I can use a client session to gain 
access to microservices.  

 Microservices should not hard 
code credentials in source code or 
properties files 

 Password used in the 
microservices should expire after 
a given time and be changed 

 Use vetted authentication 
frameworks 

 Microservices should use a multi-
factor authentication 

 microservices should not delegate 
authentication to clients 

 Microservices should use strong 
passwords 

 Password changes must be 
verified 

 Microservices should not use 
password hash for authentication 

 Bypassing of authentication 
mechanisms (CWE-288, 
289,290, 294,302, 305) 

 Improper authentication 
mechanisms (CWE 287, 291, 
293,304, 322) 

 Use of single-factor 
authentication (CWE 308) 

 Relying on client-side 
authentication (CWE-308) 

  

Encrypt data  Poor management of 
credentials information 
(CWE-256, 257,260) 
 

 As an attacker I can use credentials on file, 
cookies or source code to access microservices 

 As an attacker I can access information by 
listening on the communication channel being 
used by services 

 As an attacker I can use expired certificates to 
access microservices-based  

 As an attacker I can use brute force to crack 
encryption algorithms 

 Passwords or cryptographic keys 
should not be stored in property 
files or hard-coded but consider 
storing hashes of passwords 

 Use well vetted algorithm that is 
considered to be strong 

 Do not store sensitive information 
in cookies 

 do not reuse nonce values 
 validate for certificate expiry 
 use approve random number 

generators that conform to FIPS 
140-2 

 Inadequate encryption of 
sensitive data (CWE-312,319, 
326,327,328,331,) 

 Use of hard-coded 
cryptographic keys (CWE-
319) 

 Use of expire cryptographic 
keys 

 Use of weak algorithms 
(CWE-338, 337,339, 759, 
780, 760) 
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Architecture 
category 

Common vulnerabilities Introduction phase Secure coding guidelines  

Identify 
Actors 

 Improver validation of 
certificates (CWE-295, 
296,298, 299, 370) 

 As an attacker I can use a corrupted certificate to 
access microservices. 

 As an attacker I can use another application to 
gain access to a microservice. 

 As an attacker I can use an expired certificate to 
access microservices 

 Always check that data is 
encrypted with the intended 
owner's public key 

 Validate the certificate full chain 
trust, host name, expiry date, and 
revocation status 

 Verify that the request for 
communication channel is coming 
from the expected origin 

 Insufficient verification of 
data authenticity (CWE-345) 

 Insufficient verification of 
communication channel 
request (CWE-940, 941) 

  

Limit access  Execution with unnecessary 
privilege 

 As an attacker I can inject items to read error 
messages returned by microservices 

 As an attacker I can use the privileges of a 
microservice to gain control of the whole system 
or environment 

 Use default error messages so that 
unexpected errors do not disclose 
sensitive information. 

 Compartmentalize the 
microservices into unambiguous 
trust boundaries and ensure 
sensitive information does not go 
over trust boundaries 

 Perform extensive input 
validation for any privileged code 

 Isolate the privileged code as 
much as possible from other code 

 Improper information 
exposure (CWE-201, 209, 
212) 

  

Limit 
Exposure 

 Information exposure through 
error message (CWE-210, 
211, 214,550) 
 

 As an attacker I can inject items to read error 
messages returned by microservices 

 As an attacker I can use known weaknesses in 
software libraries to gain access to microservices 

 Ensure that microservices does 
not run in debug mode in 
production 

 Ensure that error messages are 
handled internally and do not 
display error message with 
sensitive information. 

 Error message from the runtime 
environment should not be 
displayed to the users  

 Inclusion of untrusted 
libraries (CWE-829) 
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Architecture 
category 

Common vulnerabilities Introduction phase Secure coding guidelines  

Verify 
message 
Integrity 

 Lack of proper checksum 
validation (CWE-353, 354, 
649)  

 As an attacker I can corrupt or alter data or 
messages in transit 

 Ensure proper implementation of 
checksums in the protocol design 
and ensure checksum is added to 
each message before it is sent 

 Properly check the checksum 
before parsing the message 

 Ensure that microservices does 
not ignore errors 

 Improper exception and error 
handling (CWE-390, 391, 
755) 

  

Audit 
 

 Improper output 
neutralisation for logs (CWE-
117) 

 As an attacker I can read sensitive information on 
logs 

 As an attacker I can inject my information on logs 
 As an attacker I can disguise my actions while 

manipulating microservices 
 

 Log all information that may be 
useful to identify the source and 
nature of attack. 

 Protect log files against 
unauthorized read/write. 

 Do not deploy microservices in 
  debug mode 
 do not log excessively 

 Omission of security-related 
information (CWE-223) 

 Sensitive information 
exposure through logs (CWE-
532) 

 Insufficient logging (CWE-
778)  

 

 

  



 

244 

 
(b) B.2.2 Secure design principles 

Table 2.2.2 below provide design principles that software engineers should use when designing secure microservices 

 
Table B.2.2. Microservices secure design principles 

 Security designs 
principles 

Principle description  Implementation  Risk to designs principles 

1 The principle of least 
privilege 

All components in a microservice 
composition should be assigned 
minimum necessary rights when 
accessing any resource, and the 
rights should be in effect for the 
shortest duration necessary.  

 Define an unambiguous trust boundary in a 
microservices composition 

 Components in a microservices composition 
should allow sensitive data to go outside the 
defined trust boundary 

 Ensure microservice execute with minimum 
required privileges 

CWE-272: Least privilege 
violation 
CWE-250: Execution with 
unnecessary privileges 

2 The principle of failing 
securely 

In the event of a component in a 
microservices composition failing, it 
should do so securely. 

 Ensure redundancy of each component in a 
microservices compositions 

 Ensure component in the microservices 
composition do not propagate sensitive 
information such as system configuration 
and user data in the case of exception. 

CWE-636: Not failing securely 

3 The principle of 
defense in depth 
 

The components should use layering 
of security defenses to reduce the 
chance of a successful attack.  

 User layered security mechanisms  CWE-656: Reliance on security 
through obscurity 

4 The principle of 
economy of 
mechanism 

 The components should ensure that 
multiple conditions are met before 
granting access permission.  

 Avoid complex security mechanisms that 
cannot easily be understood 

 Avoid complex data models 
 Adopt secure programming principles 
 Microservices must avoid having multiple 

subjects sharing access mechanisms 

 CWE-637: Unnecessary 
complexity in the protection 
mechanism 
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 Security designs 
principles 

Principle description  Implementation  Risk to designs principles 

 5 The principle of 
separation of privilege 

The design of each component 
should be kept simple. 

 Ensure that multiple conditions are met 
before permitting access to a microservices 
composition resource. 

 Use isolated accounts with limited 
privileges to use for a single task 

 CWE-269: Improper privilege 
management 
CWE-268: Privilege chaining 

6 The principle of open 
design 

The security of microservices 
composition should not be based on 
the secrecy of its design or 
implementation 

 Use publicly vetted algorithms and 
procedures that have undergone more 
extensive security analysis and testing 

 CWE-656: Reliance on Security 
Through Obscurity 

7 Principle of complete 
mediation 

Every access to every resource must 
be validated for authorization. 

 Invalidate cached privileges whenever there 
is update of user privileges. 

 Do not access control decisions as much as 
possible. 

CWE-638: Not Using Complete 
Mediation 

 

(c) B.2.3 Security standards 

This artefact is produced by the SAFEMicroservices planning phase. The artefact provides a list of standards that software engineer should 

follow when designing and deploying microservices. 

 

Table B.2.3. Microservices security standards 

 Microservices security design and deployment standards Architecture 
components 

1 Any communication with a microservice must be done via API Gateway to provide load balancing, and a standard set of 
security capabilities and communication to API gateway should be authenticated 

Microservices 

2 Each microservice must be protected using a defense in depth approach Microservices 

3 The microservices composition must use a well-known and secure open standard protocol for centralized authentication 
using tokens. The token must be generated using an algorithm that follows the cryptography standard and should have an 
associated time to live 

Microservices 
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 Microservices security design and deployment standards Architecture components 

4 Authentication Tokens must be encrypted  Microservices 

5 Each microservices must have a unique API key for calling another microservice   Microservices 

6 API calls made by users and systems must be limited to only those necessary for those users or systems to perform their 
functions 

 Microservices 

7 All API requests must be logged to a centralized logging and monitoring system  API gateway 

8 A tool to monitor and visualize inter-microservice communication must be deployed as part of the management 
capabilities of the microservices architecture 

 Microservices 

9 All communication in the microservices composition must use Transport layer security  Microservices, API gateway, 
services registry, message 
broker 

10 All microservices composition components must run in an approved application container technology   Microservices, API gateway, 
services registry, message 
broker 

11 Containers must only provide capabilities required to support the microservices running it, and nothing more  Runtime infrastructure 

12 Container should not run network specific operations but network configuration should only be applied to the container 
at startup and not be dynamically assigned or modified 

 Runtime infrastructure 

13 All the code or libraries required to execute within the container must be within the container image and never be loaded 
dynamically 

 Runtime infrastructure 

14 Container should run with minimum set of privileges required to perform its function  Runtime infrastructure 

15 Inter-container communication should only be done via port binding, with ports explicitly opened in a container 
configuration file 

 Runtime infrastructure 

16 The file system in containers should set to be read only to prevent malicious overwrites  Runtime infrastructure 

17 Containers hosting microservices should only expose a single port or the minimal number of ports required to support 
the microservices 

 Runtime infrastructure 

12 Connectivity to microservices should be controlled through IP Filtering technologies  Runtime infrastructure 

13 Operation of microservices, their resource consumption and performance should be monitored and spikes in 
consumption addressed through capacity management activities 

Runtime infrastructure 



 

247 

 
(d) B.2.4 Monitoring guides 

Table E.2.3 Provide monitoring guidelines that software engineers should use when design the monitoring components of microservices 

 

Table B.2.4. Monitoring guidelines 

 Microservices monitoring guidelines CWE Vulnerabilities 

1 Log all information important for identifying the source or nature of an attack CWE-223: Omission of Security-relevant 

Information 

2 Do not log sensitivity information on the log files CWE-532: Information Exposure Through Log 

Files 

3 Log information on user events in much details so that attack behavior can be detected and ensure that 

all login successes and failures are logged. 

CWE-778: Insufficient Logging 

4 Do not log the user input data into log files without neutralizing the input CWE:117 Improper output neutralization for 

logs 

5 Do not log unnecessary information that makes it hard to process log files or perform a forensic 

analysis in the event of attack 

CWE: 779: Logging of excessive data 

6 Use a centralized logging approach that supports multiple levels of logging details  CWE: 779: Logging of excessive data 

CWE-778: Insufficient Logging 

7 Always make sure that the level of logging is set appropriately in a production environment CWE-778: Insufficient Logging 

8 Make sure the log level is not set to debug mode debug log files before deploying the application into 

production. 

CWE-532: Information Exposure Through Log 

Files 

9 The log files should be protected against unauthorized read/write. CWE-532: Information Exposure Through Log 

Files 
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Appendix C 

 

(a) C.1. Mapping security threats to CAPEC attack mechanisms 

Table C.1. shows the list of attack mechanisms that can be used to exploit weakness in microservices. The table is meant to guide software 

engineers understand the attacks associated with each threat 

 

Table C.1 Mapping security threats to attack patterns 

Security threats Applicable CAPEC mechanisms of attack 

Insecure application programming interfaces  CAPEC-152: Inject unexpected items 
 CAPEC-210: Abuse existing functionality 
 CAPEC-255-Manipulate data structures 
 CAPEC-223: Employ probabilistic techniques 
 CAPEC-118: Collect and analyze information 
 CAPEC-225: Subvert access control 
 CAPEC-156: Engage in deceptive interaction 

Unauthorized access,   CAPEC-225: Subvert access control 

Insecure service discovery  CAPEC-152: Inject unexpected items 
 CAPEC-210: Abuse existing functionality 
 CAPEC-255-Manipulate data structures 
 CAPEC-223: Employ probabilistic techniques 
 CAPEC-118: Collect and analyze information 
 CAPEC-156: Engage in deceptive interaction 

Insecure message broker  CAPEC-210: Abuse existing functionality 
 CAPEC-255-Manipulate data structures 
 CAPEC-225: Subvert access control 
 CAPEC-156: Engage in deceptive interaction 
 CAPEC-118: Collect and analyze information 

Insecure runtime infrastructure  CAPEC-225: Subvert access control 

 


