
COPYRIGHT AND CITATION CONSIDERATIONS FOR THIS THESIS/ DISSERTATION

o Attribution — You must give appropriate credit, provide a link to the license, and indicate if
changes were made. You may do so in any reasonable manner, but not in any way that
suggests the licensor endorses you or your use.

o NonCommercial — You may not use the material for commercial purposes.

o ShareAlike — If you remix, transform, or build upon the material, you must distribute your
contributions under the same license as the original.

How to cite this thesis

Surname, Initial(s). (2012). Title of the thesis or dissertation (Doctoral Thesis / Master’s
Dissertation). Johannesburg: University of Johannesburg. Available from:
http://hdl.handle.net/102000/0002 (Accessed: 22 August 2017).

http://www.uj.ac.za/
https://ujdigispace.uj.ac.za/

A software development framework for secure

microservices

by

Peter Tshifa Nkomo

Thesis
submitted in fulfillment of the requirements for the degree

Doctor of Philosophy
in

Computer Science

in the
Faculty of Science

at the
University of Johannesburg

Supervisor
Professor Marijke Coetzee

January 2019

1

Acknowledgements

I would like to acknowledge the scholarly support and motivation that I received from my

supervisor Professor Marijke Coetzee. This thesis would not have been possible without her

attention to details, drive for excellence and perfection.

I would like to thank my wife Rugare for her patience, love and support while I was busy

working on the thesis.

I would also like to thank my two daughters, Grace and Hannah for being patience with me

during the research period.

Lastly, to God be the glory.

2

Abstract

The software development community has seen the proliferation of a new style of building

applications based on small and specialized autonomous units of computation logic called

microservices. Microservices collaborate by sending light-weight messages to automate a business

task. These microservices are independently deployable with arbitrary schedules, allowing

enterprises to quickly create new sets of business capabilities in response to changing business

requirements. It is expected that the use of microservices will become the default style of building

software applications by the year 2023, with the microservices’ market projected to reach thirty-

two billion United States of American dollars.

The adoption of microservices presents new security challenges due to the way the units of

computation logic are designed, deployed and maintained. The decomposition of an application

into small independent units increases the attack surface, and makes it a challenge to secure and

control network traffic for each unit. These new security challenges cannot be addressed by

traditional security strategies. Software engineers developing microservices are facing growing

pressure to build secure microservices to ensure the security of business information assets and

guarantee business continuity.

The research conducted in this thesis proposes a software development framework that software

engineers can use to build secure microservices. The framework defines artefacts, development

and maintenance activities together with methods and techniques that software engineers can use

to ensure that microservices are developed from the ground up to be secure. The goal of the

framework is to ensure that microservices are designed and built to be able to detect, react, respond

and recover from attacks during day-to-day operations. To prove the capability of the framework,

a microservices-based application is developed using the proposed software development

framework as part of an experiment to determine its effectiveness. These results, together with a

comparative and quality review of the framework indicate that the software development

framework can be effectively used to develop secure microservices.

3

Table of Contents

PART I

Chapter 1 - Introduction

1.0 Motivation ..1

1.1 Description of the problem area ...2

1.2 Motivation ..3

1.3 Problem statement ..3

1.4 Research objective ...4

1.5 Research contributions ...5

1.6 Research methodology ...6

1.7 Thesis outline ...8

Chapter 2 - Service-Oriented Architecture

2.0 Introduction ..12

2.1 Enterprise integration ...13

2.2 Service-Oriented Architecture ...14

2.3 Service architecture ..15

2.3.1. Web services ...15

2.3.2 Service taxonomy in SOA ..20

2.3.3. Service ownership model ..22

2.4 Service composition architecture ...23

2.4.1 Orchestration of services ..23

2.4.2 Service orchestration and business processes ..24

2.5. Motivating Example..25

2.6 Implementation challenges of SOA. ..28

2.7 Conclusion ...29

4

Chapter 3 - Microservices Architecture

3.0 Introduction ..31

3.1 Trends in continuous software delivery ...32

3.2 Microservices architecture ...34

3.2.1 A microservice ...34

3.2.2 Microservice architecture ...35

3.2.3 PickMeUp microservices example ...36

3.3 Microservices compositions...38

3.3.1 Synchronous communication ...38

3.3.2 Asynchronous communication ...39

3.3.3 Application programming interface gateway ...41

3.4 Microservices discovery ..42

3.5 Microservices deployment strategies ...44

3.6 Microservices composition example..45

3.7 Microservices architecture taxonomy ..46

3.8 Microservices architecture security challenges ...47

3.9 Conclusion ...48

Chapter 4 - Security of Web Services

4.0 Introduction ..50

4.1 Information security concepts ..51

4.2 Information security services ...53

4.3 Generic web service security model ..56

4.4 SOAP web services security ..57

4.4.1 Message-level security in SOAP ..59

4.4.2 Policy-driven security in SOAP web services ...60

5

4.4.3 Messaging bus and security of SOAP web services ..62

4.5 REST web services security...63

4.5.1 Security tokens ..64

4.6 Security challenges of the microservices architecture ...66

4.6.1 Increased attack surface ...66

4.6.2 Indefinable security perimeters ..66

4.6.3 Security monitoring is complex ...67

4.6.4 Authentication is centralised ..67

4.6.5 Threat modeling and risk assessment is localised ..67

4.7 Conclusion ...68

PART II

Chapter 5 - Software Development Activities for Secure Microservices

5.0 Introduction ..70

5.1 Secure software development frameworks ..71

5.2 Security threat modeling ..72

5.3 Microservices composition threat modeling ..73

5.3.1 Microservices composition security objectives ...74

5.3.2 Microservices composition overview ..74

5.3.3. Decomposition of a microservices composition ...75

5.3.4 Security threats classification ...76

5.4 Microservices compositions security requirements ...83

5.5 Software development activities for secure microservices compositions86

5.6 Conclusion ...88

Chapter 6 - Secure Microservices Development

6. 0 Introduction ...90

6. 1 Review approach ...91

6

6.2 Document security requirements of microservices compositions ...92

6.2.1 Microservices architecture and security policies ...92

6.2.2 Categories of security policies ...93

6.2.3 Challenges of a microservices composition security policy ..95

6.2.4 General observation and discussion ...95

6.3 Adopt secure programming best practices ...96

6.3.1 Taxonomy of secure programming practices ...97

6.3.2 Enforcing secure programming practices ...100

6.3.3 General Observation and Discussion ...101

6.4 Validate security requirements and secure coding standards ..102

6.4.1 Required attributes of security testing tools ...103

6.4.2 Review of security testing tools ...104

6.4.3 General Observations and Discussion ..105

6.5 Secure configuration of runtime infrastructure ..106

6.5.1 Capabilities for Secure Configurations ..107

6.5.2 Review of tools for secure configurations ...108

6.5.3 General observations and discussion ...110

6.6 Continuously monitor components of the microservices composition111

6.6.1 Requirements for security monitoring ...112

6.6.2 Review of existing monitoring tools ..113

6.6.3 General Observation and Discussion ...116

6.7 Securely respond to attacks using adaptation mechanisms..117

6.7.1 Requirement for secure self-adaptation..117

6.7.2 General observations and discussion ...118

6.8 Summary ..119

6.9 Conclusion ...121

7

PART III

Chapter 7 - SAFEMicroservices - A Development Framework for Secure Microservices

Composition

7.0 Introduction ..124

7.1 Aims of the SAFEMicroservices framework ...125

7.2 SAFEMicroservices framework ...127

7.2.1 Preliminary phase ...131

7.2.2 Planning phase ...139

7.2.3 Coding phase ..147

7.2.4 Code Integration phase ...151

7.2.5 Pre-production deployment phase ..152

7.2.6 Operational phase ...154

7.3 Summary of SAFEMicroservices benefits...156

7.4. Conclusion ..158

Chapter 8 - SAFEMicroservices Framework Implementation

8.0 Introduction ..159

8.1 Evaluation criteria ..160

8.2 Overview of microservices composition for prototyping ..160

8.3 Implementation technologies ...162

8.4 Software development methodology ...163

8.5 Inception stage ...165

8.5.1 SAFEMicroservices preliminary phase activities ...165

8.5.2 SAFEMicroservices planning phase activities..170

8.5.3 Summary of the Inception stage ...172

8.6 Construction stage ..172

8.6.1 Coding phase ...172

8.6.2 Summary of construction phase ..177

8

8.7 Transition stage ..178

8.7.1 Code Integration phase ...178

8.7.2 Pre-production deployment phase ..180

8.7.3 Summary of the transition phase ..182

8.8 The Operational phase ...183

8.9 Evaluation results ...183

8.8 Conclusion ...184

Chapter 9 - SAFEMicroservices Framework Evaluation

9.0 Introduction ..187

9.1 Evaluation strategy...188

9.2 SAFEMicroservices Quality Model ...189

 9.2.1 ISO 25010 Quality Model ..189

9.3 Process Model Comparison ...194

9.3.1 Risk assessment process comparison ...195

9.3.2 Software construction process comparison ..197

9.4 Conclusion ...199

PART IV

Chapter 10 - Conclusion

10 Introduction ...200

10.1 Revisiting the research objectives ..201

10.2 Research contributions ...206

10.3 Future work ..208

10.4 Conclusion ...208

References….…………………………………………………………………………………..210

9

Appendix A…………………………………………………………………………………….232

A.2.2 Microservice architecture common weakness enumeration……………………………..232

A.3.1 Catalog of architecture-level secure coding guidelines………………………………….235

Appendix B……………………………………………………………………………….........239

B.1.4 Microservices abuse cases and protection measures………………………………..........229

B.2.2 Secure design standards…………………………………………………………….........244

B.2.3 Security standards……………………………………………………………..................245

B.2.4 Monitoring guides………………………………………………………………………..247

Appendix C…………………………………………………………………………………….248

10

Table of Figures

Figure 1.1. Thesis layout ..11

Figure 2.1. Driver service with multiple capabilities ...15

Figure 2.2. Basic SOAP Message ..17

Figure 2.3. Structure of a WSDL document ..17

Figure 2.4. The relationship between SOAP, WSDL, and UDDI ...18

Figure 2.5. REST request ...19

Figure 2.6. Example of JSON response ...20

Figure 2.7. SOA services taxonomy ..21

Figure 2.8. SOA Services Ownership model ...22

Figure 2.9. Orchestration of services ...24

Figure 2.10. BPMN for the PickMeUp application process ..26

Figure 2.11. BPEL process for PickMeUp application..27

Figure 2.12. PickMeUp SOA application ..28

Figure 3.1. The relationship between software development methods ..33

Figure 3.2. Microservices architecture, continuous delivery, and autonomous teams36

Figure 3.3. Mapping business capabilities to microservices..37

Figure 3.4. Synchronous microservices communication ...38

Figure 3.5. Asynchronous communication between microservices ...40

Figure 3.6. Microservices API gateway ...41

Figure 3.7. Microservices client discovery ..43

Figure 3.8. Server-side microservices discovery ...43

Figure 3.9. PickMeUp microservices composition ..46

Figure 3.10 Microservices service taxonomy ..47

Figure 3.11. The microservices service ownership model ...47

Figure 4.1. Security concepts relationships ...52

Figure 4.2. Information security services and SOA assets ..55

11

Figure 4.3 Web service security model..57

Figure 4.4 SOAP message intermediaries ...58

Figure 4.5. Encrypted SOAP header message ...59

Figure 4.6. Interceptors ..60

Figure 4.7. Example Security policy..62

Figure 4.8. ESB and security of web services ...63

Figure 4.9. Example payload of JWT ..64

Figure 4.10. Authentication using JWT ...65

Figure 4.11. API key authentication ..65

Figure 5.1. Microservices threat modeling steps ...73

Figure 5.2. PickMeUp Microservices composition ...76

Figure 5.3. Elicitation of security requirements of a microservices composition84

Figure 7.1: Secure development activities in SAFEMicroservices ...128

Figure 7.2. security control gates in an iterative and sequential methodology129

Figure 7.3. SAFEMicroservices ...130

Figure 7.4. SAFEMicroservices preliminary phase activities ...131

Figure 7.5. SAFEMicroservices development infrastructure high-level design138

Figure 7.6. SAFEMicroservices planning phase activities ..140

Figure 7.7. Common attack patterns categories in the CAPEC taxonomy141

Figure 7.8. SAFEMicroservices coding phase activities ...148

Figure 7.9. Security artefacts required during the coding phase..149

Figure 7.10. Conceptual model of relationship between SAFEMicroservices artefacts151

Figure 7.11. SAFEMicroservices code integration phase activities ..153

Figure 7.12. SAFEMicroservices pre-production deployment phase activities155

Figure 8.1. PickMeUp Microservices composition ...162

Figure 8.2. The relationship between SAFEMicroservices phases and Agile methodology stages

..164

Figure 8.3. Security plug-ins installed on Jenkins. ..169

12

Figure 8.4. Conceptual model of relationship between abuse cases, user stories and goal171

Figure 8.5. Example of an acceptance test case ...174

Figure 8.6. Script to deploy trip management microservice as Docker image176

Figure 8.7. Elicitation of Security Design principles ...177

Figure 8.8. Anchore Docker image validation ...180

Figure 8.9. Static testing on IntelliJ ...182

Figure 8.10. Penetration testing ...183

13

Table of Tables

Table 5.1. STRIDE analysis of insecure application programming interfaces78

Table 5.2. STRIDE analysis of the threat of insecure APIs...79

Table 5.3. STRIDE analysis of the threat of Insecure microservices discovery80

Table 5.4. STRIDE analysis of insecure runtime infrastructure ..81

Table 5.5. STRIDE analysis of the threat of insecure message broker ..82

Table 5.6. Summary of microservices vulnerabilities ...83

Table 5.7. Microservices composition security requirements and protection measures85

Table 5.8. Secure microservices composition development activities ..86

Table 6.1. Guiding questions on microservices security policies ..92

Table 6.2. Guiding questions on secure programming practices ...96

Table 6.3. Methods to enforce secure programming practices ..100

Table 6.4. Formulated research questions on automated security testing103

Table 6.5. Review of security testing tools ..105

Table 6.6. Formulated research questions on secure configurations ...107

Table 6.7. Review of configuration management tools ...108

Table 6.8. Formulated research questions on monitoring mechanisms112

Table 6.9. Review of most common monitoring tools...114

Table 6.10. Review of most common monitoring tools...117

Table 6.11. Summary of the review of security activities ...119

Table 7.1. Architecture concepts ...134

Table 7.2. CWE architecture concepts applicable to microservices security threats134

Table 7.3. Microservices architecture common weakness enumeration135

Table 7.4. Example of a catalog architecture-level secure coding guidelines137

Table 7.5. Summary of SAFEMicroservices preliminary phase deliverables139

Table 7.6. Association of security threats to CAPEC mechanisms of attacks141

14

Table 7.7. Microservices abuse or misuse case and protection measures142

Table 7.8. Gap analysis of protection measures for common design flaws143

Table 7.9. SAFEMicroservices secure design principles ...145

Table 7.10. Microservices security standards ..146

Table 7.11. Microservices monitoring guidelines ..147

Table 7.12. Summary of planning phase deliverables ...147

Table 7.13. SAFEMicroservices benefits ..156

Table 7.14. Example of tools for SAFEMicroservices ..157

Table 8.1. SAFEMicroservices preliminary phase activities ...166

Table 8.2. Planning phase activities and deliverables..170

Table 8.3. Coding phase activities and deliverables ..173

Table 8.4. artefacts required for coding phase activities and deliverables173

Table 8.5. PickMeUp security standards ...175

Table 8.6. SAFEMicroservices code integration phase activities..179

Table 8.7. Pre-production deployment activities ...181

Table 9.1. ISO 25010 quality model characteristics definitions ..190

Table 9.2. SAFEMicroservices evaluation using ISO 25010 ..192

Table 9.3. Risk assessment process comparison of SAFEMicroservices to other frameworks ..195

Table 9.4. Construction process comparison of SAFEMicroservices with other frameworks…197

Table A.2.2. Microservices architecture common weakness enumeration……………………..232

Table A.3.1. Catalog of architecture-level secure coding guidelines…………………………..235

Table B.1.4. Microservices abuse cases and protection measures……………………………...239

Table B.2.2. Microservices secure design principles.......………………………………………244

Table B.2.3. Microservices security standards…………………………………………………245

Table B.2.4 Monitoring guidelines……………………………………………………………..247

PART I

1

Chapter 1

Introduction

1.0 Introduction

Enterprises need timely access to information to be able to retain business agility and boost productivity

(Da Xu, 2014). The key to unlocking the value of existing technologies is often the ability to integrate

existing applications and to assemble various technology components quickly to create new sets of

business capabilities (Porter & Heppelmann, 2015). Over the years, enterprises have adopted an

architectural style called service-oriented architecture (SOA), that aims to create an integrated

information technology infrastructure that is scalable, and can quickly respond to changing needs (Natis

& Schulte, 2003). Despite the popularity of SOA, implementing SOA in a fast-paced business

environment with many new competitors frequently joining the market has proved to be a challenge.

SOA-based applications are complicated to maintain and enhance in response to new business changes,

and can become bottlenecks to business innovation. A new architecture called the microservices

architecture, that is used to realize SOA, has emerged to enable organizations to make the development

or enhancement of applications faster and easier to manage (Pahl & Jamshidi, 2016).

The microservices architectural style is based on small and specialized autonomous units of computation

logic called microservices, that are independently deployed using arbitrary schedules (Newman, 2015,

Lewis & Fowler, 2014). Microservices communicate using point-to-point exchanges of message by

means of lightweight mechanisms over the hypertext transfer protocol (HTTP) or by listening to events

within their operating environment (Dragoni et al., 2017). Research indicates that the microservices

architecture is to become the default software architecture by the year 2023 (LightStep, 2018). The

microservices architecture’s market is projected to reach thirty-two billion United States of American

dollars by the year 2023 (Infoholic Research LLP, 2017).

2

Although the microservices architecture constitutes an essential trend in software design with significant

implications in the manner in which software is constructed, surveys such as the one conducted by

Dragoni et al. (2017) highlight a general lack of comprehensive research into microservices security. On

the other hand, it is estimated that the total cost of cybercrime damages will be six trillion United States

of American dollars annually by the year 2021 (Morgan, 2018). In this regard, software engineers face

a growing pressure to build secure applications. The challenge, however, is that a limited number of

software engineers is trained in secure software development (Zhu et al., 2013). Feng et al. (2016)

observes that the security of software often receives attention when security weakness or breaches are

reported. Consequently, it is not uncommon that the same security issues re-occur over and over again

(Veracode, 2017).

The aim of this research is to address the challenge of building secure microservices in agile software

development environments with quick turnaround times. The focus is placed on the identification of

security activities that can be integrated with the phases of software development frameworks and

methodologies such as the Agile methodology. The aim is to develop a generic framework that can be

applied to a variety of software development methodologies.

1.1 Description of the problem area

To date, no formal approach exists to secure microservices, therefore practitioners are left to guidance

found in blogs, online articles, and software development conferences, where such discussions are often

limited in scope and detail (Yarygina, 2018). Furthermore, research on microservices security such as by

Sun, Nanda, and Jaeger (2015), Fetzer (2016), Otterstad and Yarygina (2017), Yarygina and Bagge

(2018) is mostly piecemeal approaches focusing on certain parts of the microservices architecture and do

not take a comprehensive view to microservices security. Although it is vital to address the security of

individual components of a microservices-based application, new security challenges are likely to emerge

when various parts of the application interconnect (Fernandez-Buglioni, 2013). To address the security

challenge, a holistic risk analysis of the microservices architectural style is required together with a

systematic approach to building microservices in a way in which security is an integral part of the entire

microservices lifecycle (Fernandez-Buglioni, 2013). Microservices need to address security throughout

the whole lifecycle to prevent or minimize the impact of attacks identified in a risk analysis (Feng et al.,

2016). Building microservices with security in mind in this manner avoids expensive re-engineering

3

efforts that may be required after source code is written or a security breach has occurred (De Alwisa et

al., 2018).

1.2 Motivation

The microservices architecture is experiencing a market proliferation at a time when there is an increase

in cybercrime. Secure software development approaches have been proposed to ensure that software is

developed with fewer security weaknesses such as the Microsoft SDL (Howard & Lipner, 2006),

TouchPoint (McGraw, 2006) and OWASP’s Comprehensive, Lightweight Application Security Process

(CLASP) (OWASP, 2006), among many others. However, these approaches are not designed for new

trends in software development that many enterprises are investing in to ensure rapid software releases

to retain business agility and boost productivity. On the one hand, software engineers are under immense

pressure to create production-ready software applications quickly, yet on the other hand, there is no

systematic guidance to assist software engineers, who often are not trained in software security, to

develop secure software. Consequently, every year the top ten common security weaknesses are

strikingly similar to those reported in the previous years. Software engineers can thus benefit from a

light-weight software development methodology, with easy-to-use reusable security artefacts, that

provide guidance on how to develop secure microservices from the start of the development process.

1.3 Problem statement

Even though the microservices architecture makes the building of complex applications easier, the

management of microservices security has become more challenging. The management of the security

of traditional SOA-based monolithic applications can be performed using a centralised security

component that ensures that security services such as authentication, and authorisation are of high

assurance. Due to the distributed nature of microservices, such a centralised security component could

impact efficiency and limit the purpose of the architecture. The absence of assurance provided by

centralised security, coupled with the lack of formal approaches to secure microservices, creates a need

to augment software development frameworks with relevant security activities to assist software

engineers when creating microservices-based applications.

4

1.4 Research objective

In order to address the research problem, the primary objective of this research is to propose a

microservices software development methodology that can assist software engineers to quickly build

secure microservices so that these microservices can detect, resist, react and recover from security

attacks.

The objective of this research is met by addressing the following research questions (RQ):

RQ1 - What are the security challenges associated with the microservices architectural style?

This question is addressed by first understanding the emergence of the microservices architectural style

and how it differs from traditional SOA implementations. The microservices architectural style is a

relatively new area of research (Di Francesco, Malavolta & Lago, 2017). In that regard, there is a need

to first understand the concepts and components of both the SOA model and the microservices

architectural style. This understanding is vital to determine if protection measures used to secure

traditional SOA implementations in the past are sufficient in microservices implementations.

Furthermore, a risk assessment can assist to fully understand the security challenges of the microservices

architectural style. Once a risk assessment is conducted, it becomes vital to analyze weaknesses of the

microservices architectural style from the perspective of a potential attacker to reason better about

appropriate countermeasures. To this end, the following secondary questions are defined:

a) How does the microservices architectural style differ from common SOA implementations?

b) What are the security risks of microservices?

c) What methods can an attacker use to exploit weaknesses in the microservices architecture?

RQ2 - How can software engineers build microservices in a systematic way so that security is an

integral part of the entire microservices lifecycle?

The objective of this question is to ensure that software engineers do not use a reactive approach to secure

microservices. The question is addressed by first understanding the design flaws that software engineers

should avoid when using the microservices architectural style. This understanding is vital because a

component of the system with many design flaws tend to correlate with a high number of security

weaknesses (Feng et al., 2016, Mirakhorli, 2014). Once the potential design flaws are identified,

appropriate design guidelines can be identified to assist software engineers to avoid subtle architecture-

level security weaknesses. Also, in a fast-paced development environment, software engineers should be

5

able to count on security-focused tools and techniques to guide the quick development of secure

microservices. In this process, microservices maintenance activities should not deteriorate any current

protection measures. To address this research question in more detail, the following secondary questions

are defined:

a) What are the design flaws associated with the microservices architectural style?

b) What guidelines can software engineers use to design and implement secure microservices and

how can these guidelines be presented in a manner that is useful and convenient for software

engineers especial those not trained in software security?

c) How can security-focused tools, techniques, and practices be integrated in the development

lifecycle so that they become part of the software engineer's daily software development tasks?

RQ3 - How can protection measures be correctly implemented and preserved to ensure that

microservices are safe at all times?

This research question directly follows from question RQ2 stated above. While it is essential to identify

security weaknesses and their countermeasures, there is also the risk that guidelines and protection

measures may not be followed, or may be implemented incorrectly. An incorrect implementation may

result in the introduction of new weaknesses (IEEE Center for Secure Design, 2015). Strategies should

be in place to detect the avoidance of guidelines and incorrect implementation of protection measures,

as not many software engineers are trained in security (Zhu et al. (2013) and are under pressure to deliver

working software.

1.5 Research contributions

This thesis provides a holistic security perspective of the microservices architectural style. The study

identifies the security challenges of the microservices architectural style and designs a catalogue of

microservices security threats, security weaknesses, and their mitigations. Furthermore, the study designs

a dictionary of coding guidelines to mitigate common microservices security weakness and common

attacks on microservices. The catalogue and dictionary are provided as reusable artefacts in a manner

that is easy to use for software engineers who are not trained in security. Software engineers can use the

catalogue and dictionary to gain background knowledge that is required to conduct risk assessments, or

as security training manuals when performing brainstorming sessions during threat modelling exercises.

6

Furthermore, the catalogue and guidelines can be used as a reference by software engineers in their day-

to-day microservices development tasks.

In addition, a software development framework is further proposed to build secure microservices from

the ground up based on the identification of security-focused activities that are required in a

microservices development lifecycle. The framework is specified in a manner that makes it agnostic to

both culture and technology characteristics in a software development team to allow software engineers

to apply software security controls within their unique organizational circumstances.

To date, two publication has been published from this research.

Nkomo, P. T. and Coetzee, M. (2016) Engineering Secure Adaptable Web Services Compositions, In

Proceedings of the 2016 International Conference on Information Resources Management, CONF-IRM

2016, May 18-20 Cape Town, South Africa, ISBN: 978-0-473-35594-4

Nkomo, P.T and Coetzee, M (2019) Software Development Activities for Secure Microservices, In

Proceedings of the 19th International Conference on Computational Science and its Applications, ICCSA

2019, July 1-4 St Petersburg, Russia, Lecture Notes in Computer Science (LNCS) 11623

1.6 Research methodology

The research in this thesis commences with the formulation of a problem statement and research

questions to justify the purpose of the research. The ultimate aim is to develop a systematic light-weight

software development methodology that software engineers can use to develop secure microservices.

The main contribution is a conceptual framework called SAFEMicroservices, that takes the form of a

secure software development framework. In order to achieve this, the research is conducted using

deductive reasoning and empirical research methods, and is qualitative in nature. The formulated research

questions are addressed throughout the research strategy and through the development of a systematic

light-weight software development methodology. The systematic light-weight software development

methodology makes use of techniques and knowledge identified in the literature review (Ramesh et al.,

2004).

To address the research objectives, the research questions that are posed are investigated further over the

course of this thesis to gain an understanding of the problem domain and to provide a sound motivation

7

for the solution proposed for the research problem. In order to achieve this, a scientific and well-defined

research methodology must be followed to ensure the soundness of the results found during the course

of this work. The research makes use of a strategy discussed in Olivier (2009). The strategy discussed in

Olivier (2009) consists of a detailed investigation of the literature, followed by an in-depth analysis and

review. The findings of the review are used to motivate the proposed framework. Finally, the framework

is evaluated. Each of these methods are now described in more detail.

Literature review:

This research conducts a literature review of service-oriented architecture, microservices, web services

security, and security threats and risks, tools and techniques that can be used in the development of secure

software. This ensures that a solid understanding is gained of all concepts that contribute to every facet

of the problem and provide the basis for a complete solution. The current state-of-the-art is determined

through the review of the literature, and also, the limitations of existing methods, techniques, and

approaches used in the past to address the problem statement are ascertained. The literature review is

conducted in Chapters 2 to 6 to determine the current state of the microservices security to gain insight

into existing methods, techniques, and approaches which have been previously proposed to address the

problem statement. From the literature review a formal foundation for the proposed solution is defined

by the sets of security requirements, microservices specific threats and security activities that are derived.

Framework:

The formal foundation for the proposed framework is found by the literature review. A basis is provided

to create a software development framework that guides software engineers to identify relevant risks and

threats and to apply protection measures comprehensively. The security framework aims to define a

systematic way of doing things in the microservices architecture environment, following secure software

engineering principles to incorporate system security features during development. The

SAFEMicroservices framework presents an innovative technique that supports current standards,

policies and procedures, best practices and supporting tools. The framework is proposed by the researcher

in Chapter 7 to address the problem statement.

8

Evaluation:

The evaluation of the framework is performed according to a formal and rigorous approach. Due to the

nature of the software development framework, it would be very difficult to determine its real value as

perceived by industry. A real-world evaluation would be complex and costly to implement. Such a

framework can only prove its real value after being used for many years in industry. In order to

comprehensively evaluate the conceptual framework, two types of evaluation are performed. Firstly, an

implementation of an example application is presented and reviewed. This proof-of-concept

implementation is used to determine if the proposed software development methodology can adequately

be used to develop secure microservices. The evaluation criteria are identified in the review and analysis

of literature. Secondly, a comparative evaluation of the framework is done with regards to the

functionality that it provides, to determine if it does make a contribution. Finally, the framework quality

is reviewed by using a well-established quality model, where quality is determined by a number of

evaluation criteria.

Finally, the researcher presents a critical evaluation to determine if the framework meets the requirements

initially identified for this research. Additional arguments are made as to the relevance of the solution

and if software engineers will adopt the proposed solution.

1.7 Thesis outline

This thesis consists of four parts namely Part I, Part II, Part III, and Part IV. Each part consists of several

chapters. Figure 1.1 below depicts the layout of the thesis. Part I provides the required background and

review of the literature and is essential to the formulation of the proposed systematic light-weight

software development methodology. Essential concepts are presented in this part of the thesis and provide

the building blocks of the proposed software development methodology. Part I consist of Chapter 1,

Chapter 2, Chapter 3 and Chapter 4. The current chapter, Chapter 1, presents the research topic and

introduces the problem that the thesis attempts to address.

Chapter 2 defines SOA and review the SOA model. This chapter aims to understand SOA as the

foundation on which the microservices architecture is constructed. The technologies that enable SOA are

discussed, and the chapter also describes how units of computation logic called services are combined to

automate enterprise business tasks. Lastly, the challenges of SOA are identified.

9

Chapter 3 presents the state-of-the-art in microservices and the microservices architectural style. The

principles and concepts behind the architecture are explained. Lastly, the general security challenges of

the microservices architecture are presented.

Chapter 4 provides a background to understanding the security of both traditional SOA implementation

and the microservices architecture implementation. General security concepts are defined in this chapter.

Also, the chapter discuss how security is implemented in SOA and microservices.

Part II of the thesis discusses the security risk assessment of microservices. An analysis of the risks

associated with microservices culminates in the identification of activities that should be part of the

development lifecycle of microservices. Part II of this thesis consists of Chapter 5 and Chapter 6.

Chapter 5 discusses a preliminary security risk assessment of microservices. The chapter aims to identify

weaknesses in microservices and harm that may arise from misuse of microservices by a malicious user.

The chapter concludes by identifying security-focused activities that can assist in developing secure

microservices.

Chapter 6 identifies and reviews available security-focused tools and techniques that can be used to

perform security-focused activities identified in Chapter 5. This chapter aims to understand how software

engineers can adopt tools and techniques as part of their daily development activities.

Part III of the thesis proposes a software development framework that can be used to develop secure

microservices. The methodology is demonstrated by developing an example application. The framework

is then evaluated. Part III consists of Chapter 7 and Chapter 8.

Chapter 7 discusses the proposed systematic light-weight software development framework that can be

used to develop secure microservices. The various reusable artefacts of the methodology are introduced.

Chapter 8 demonstrates the applicability of the framework proposed in Chapter 7 in practice. An

example application is used to demonstrate the feasibility of using the proposed framework.

10

Part IV of the thesis evaluates the proposed methodology and provide concluding remarks. Part IV

consist of Chapter 9 and Chapter 10.

Chapter 9 evaluates the proposed light-weight methodology using evaluation criteria identified in the

review of literature.

Chapter 10 presents the conclusions of the thesis. Research contribution and future research directions

are discussed.

Appendix presents a list of all the artefacts produced in this thesis.

11

Figure 1.1. Thesis layout

12

Chapter 2

 Service-Oriented Architecture

2.0 Introduction

Enterprise information systems can be composed of a variety of legacy, custom and third-party

applications (Markus & Tanis, 2000). As an enterprise grows, the need for timely access to information

becomes imperative to be able to retain business agility and boost productivity (Da Xu, 2014). Enterprises

need to harness different types of technologies to fend off business disruption, compete against new

market entrants, create new revenue streams, and meet customer demands. The key to unlocking the

value of existing technologies is often the ability to integrate existing applications and to assemble

various technology components quickly to create new sets of business capabilities (Porter &

Heppelmann, 2015). To this end, it becomes vital for an enterprise to adopt an architecture that leads to

highly flexible and maintainable systems that can continuously adapt to new business requirements

(Krafzig, Banke & Slama, 2005). Over the past number of years, the need to integrate enterprise

applications has led to the emergence of many integration patterns. The natural progression of the various

integration efforts has culminated into an architectural style called Service-Oriented Architecture (SOA),

that aims to create an integrated information technology infrastructure that is scalable, and can quickly

respond to changing needs (Natis & Schulte, 2003).

This chapter aims to review the SOA model, understand its enabling technologies and to identify its

challenges. The understanding gained in the review is vital towards answering research question RQ1.

First, various integration patterns adopted before SOA are briefly reviewed as background. Then,

Service-Oriented Architecture (SOA) is discussed by giving an overview of various enterprise integration

patterns adopted in the past before the adoption of SOA in Section 2.1. Section 2.2 introduces and discuss

SOA concepts and enabling technologies. Section 2.3 discusses how essential components called

services, the main building blocks of SOA, are classified. Section 2.4 describes how services are

combined to automate enterprise business tasks. Section 2.5 discusses the challenges of implementing

SOA. A summary and conclusion then follow.

13

2.1 Enterprise integration

In the past, the need to integrate enterprise applications has led to the emergence of many integration

patterns. The earliest integration pattern was the sharing of data, where applications produced files to be

directly consumed by other applications (Ray, 2010). File sharing challenges identified were: a standard

file format was required for all applications; the output of one application rarely produced what another

application needed thus requiring additional processing; and file transfers lacked timeliness (Hohpe &

Woolf, 2004). To compensate for file sharing challenges, the sharing of information via enterprise

databases later became a more familiar pattern (Hohpe & Woolf, 2004, Vernadat, 2007). However,

effective sharing of enterprise databases required standardization and governance across systems, which

was challenging when systems were owned by different teams or organizations (Hohpe & Woolf, 2004).

To address the need for real-time data sharing, remote procedure calls (RPC) was adopted that enabled

one computer to call a procedure on another computer while abstracting the socket layer (Olsson & Keen,

2004). Unfortunately, remote procedure calls did not offer code reuse as the logic for network

communication was embedded in the client and server applications. Furthermore, the client in an RPC

model of communication was required to wait for a server to respond before proceeding (Ni & Yuan,

1996).

Asynchronous messaging, typically enabled by Message-Oriented Middleware (MOM) technology

evolved to address the limitations of RPC for integration (Menasce, 2005). In asynchronous messaging,

applications communicate by sending and receiving messages from a buffer called a queue, and no

dedicated communication link is established between applications. Later, the emergence and ubiquity of

the Internet and the World-Wide Web provided web-based technologies that could be used as basic

building blocks for enterprise integration (Linthicum, 2003, Newcomer & Lomow, 2005). By leveraging

MOM functionality and web technologies and protocols, a design paradigm that can combine reusable,

coarse-grained components was adopted called Service-Oriented Architecture (SOA) (Natis & Schulte,

2003).

The next section defines Service-Oriented Architecture by giving a definition and describing the concepts

service-orientation and Service-Oriented Architecture.

14

2.2 Service-Oriented Architecture

Service-Oriented Architecture (SOA) can better be understood by first describing service-orientation as

underlying concept. Service-orientation is a design approach that aims to create individually constructed

units of logic in a way that allow the units of logic to be collectively and repeatedly utilized to realize a

specific business goal (Erl, 2008). These units of logic are called services (Erl, 2008). A service-oriented

environment is based on a vendor-neutral architectural model, allowing an enterprise technology

landscape to evolve in line with business requirements without being limited to the characteristics of a

proprietary platform (Erl et al., 2014). To achieve service-orientation, the units of logic should have the

following characteristics:

 Be assembled and reconfigured effectively in response to changing business requirements (Dhara,

Dharmala & Sharma, 2015).

 Support a standardized contract for communications that hides underlying technology disparities,

allowing each unit of logic to be individually governed and evolved (Erl, Merson & Stoffers,

2017).

 Exist within a business-centered functional context, to allow units of logic to mirror and evolve

with business requirements. Each unit of logic is delivered and viewed as an asset that is expected

to be reused in different business contexts (Erl, Merson & Stoffers, 2017).

The concept of service-orientation is the foundation of the service-oriented architecture. SOA represents

an architectural style that aims to create an integrated information technology infrastructure that is

scalable, reliable, and responsive to the changing business requirements of an enterprise (Shirley et al.,

2012). SOA positions units of logic called services as the primary means through which an integrated

information technology infrastructure can be realized (Erl, 2005) and defines how various systems within

the entire enterprise interact (Wolff, 2016). Implementations of SOA are traditionally a combination of

technologies, products, application programming interfaces and supporting infrastructure (MacLennan

& Van Belle, 2014) ensuring that a deployed SOA tends to vary from one enterprise to another. As an

architectural model, SOA encompasses the following (Erl, 2005):

 Service architecture - the architecture of a single unit of logic or service.

 Service composition architecture - the architecture of many aggregated units of logic working

together to perform a business function.

15

The next two sections discuss service architecture and service composition architecture respectively.

2.3 Service architecture

A service is a unit of logic deployed as a physically independent software program with specific design

characteristics that supports a business goal (Erl, Merson & Stoffers, 2017). Each service is designed

within a specific business-related functional context and is comprised of a set of capabilities related to

the functional context. A service is, therefore, a container of a set of related functions called service

capabilities (Erl, 2008) that are accessed using standardized interfaces. Figure 2.1 below depicts a Driver

Service from an on-demand taxi application such as the one provided by Uber (Cramer & Krueger, 2016).

The service exposes capabilities to retrieve a list of available drivers, add new driver and remove a driver

from the system.

Figure 2.1. Driver service with multiple capabilities

The most widely used services in SOA are based on eXtensible Markup Language (XML) and JavaScript

Object Notation (JSON). XML is a self-descriptive markup language designed to store and transport

information (Moller & Schwartzbach, 2006). JSON is a lightweight, text-based, language-independent

data interchange format (Crockford 2006). Services that are based on XML and JSON are referred to as

web services (Dhara, Dharmala & Sharma, 2015, Pautasso, 2014). Web services have become an

essential means to implement SOA (Ochieng et al., 2011). To this end, the next section discusses web

services in more details.

2.3.1. Web services

A web service is a software system identified by a Uniform Resource Identifier (URI), that has public

interfaces and bindings defined and described using XML or JSON (Dhara, Dharmala & Sharma, 2015).

A URI is a string character that identifies a resource. Interaction with a web service is performed in a

manner prescribed by the web service definition. The web service definition is given using XML or JSON

16

messages, and messages are conveyed over the HyperText Transfer Protocol (HTTP) (Fielding, 1999).

Public interfaces are standardized communication interfaces which act as service contracts that form an

interaction agreement between a web service and its consumers. The service contract is a fundamental

part of the service architecture as the contract definition gives the web service a public identity and

expresses the web service's functional context (Erl, 2008).

In the context of SOA, it is important to note that merely using web services does not necessarily translate

to a SOA implementation, and not all SOA implementations are based on web services. However, the

relationship between SOA and web services is essential and is mutually influential (Ochieng et al., 2011,

Candido et al., 2013). When web services are used to implement SOA, the implementation represents a

web services-based implementation of SOA. In a web-services-based SOA implementation, the web

services architecture becomes vital.

There are two popular architectural styles currently in use in web services architecture, namely the Simple

Object Access Protocol (SOAP) and Representational State Transfer (REST). The two web service

architectural styles are discussed next.

a) SOAP

SOAP is a lightweight protocol that exchanges structured information in a distributed environment using

XML technology (Box et al., 2004). The SOAP specification defines the standard message format used

by most web services implementations. SOAP originally stood for "Simple Object Access Protocol” but

is now considered a standalone term. The SOAP message is contained in an envelope (Box et al., 2004).

Inside the envelope is an optional header element and body element. The header is used to hold extra

meta-information about the message or any security information. The body of the SOAP message

contains the payload that carries incoming or outgoing information. Figure 2.2 below shows the basic

structure of a SOAP message which includes the envelope, header, and body.

17

<env:Envelope xmlns:env="http://www.w3.org/2003/05/soap-envelope">
 <env:Header>
 ...
 </env:Header>
 <env:Body>
 ...
 </env:Body>
</env:Envelope>

Figure 2.2. Basic SOAP Message

In a SOAP-based web services architecture, a Web Services Description Language (WSDL) document

provides an XML grammar to describe web services (Chinnici et al., 2007). A WSDL document

describes a web service as a set of uniform resource indicators (URI) that consume XML request

messages and provide XML response messages. The WSDL document describes the physical address,

the network protocol and message format used by the web service. Figure 2.3 below shows the structure

of a WSDL document. The interfaces element represents the web service interface that may contain

multiple operations. The service element represents one or more uniform resource indicators (URI)

through which the web service can be accessed. Messages represent collections of input or output

parameters and can contain multiple parts that represent either incoming or outgoing information. The

binding element associates protocol and message format information to the functions of a web service.

<definitions>
 <interface name="">
 ...
 </interface>
 <message name="">
 ...
 </message>
 <service>
 ...
 </service>
 <binding name=" ">
 ...
 </binding>
</definitions>

Figure 2.3. Structure of a WSDL document

The web service architecture defines a central directory to host the WSDLs so that the web services can

be discovered. The Universal Description, Discovery Integration (UDDI) (Liu et al., 2005) provide such

mechanisms (World Wide Web Consortium, 2003). UDDI allows web services to advertise themselves.

18

UDDI is the broker component of web services architecture that allows service providers and requestors

to locate each other. UDDI is usually implemented as a distributed database with interconnected servers.

Figure 2.4 below adapted from Erl (2004) depicts the relationship between SOAP, WSDL, and UDDI.

Figure 2.4. The relationship between SOAP, WSDL, and UDDI

In Figure 2.4, the provider of a web service describes the web service using a WSDL document and

optionally publishes it to a UDDI repository. A web service consumer queries the repository to locate a

web service and is sent the WSDL document of the service. The WSDL document can also be retrieved

from the service provider out of band using, e.g. an email message. The WSDL document describes the

format of requests and responses that the web service provider expects and provides respectively. All

messages sent between the service provider, service consumer and repository are sent using SOAP.

Next, the REST architectural style used in the web services architecture is discussed.

b) Representation State Transfer (REST)

REST is a software architectural style that supports the transmission of data using the Hypertext Transfer

Protocol (HTTP) (Fielding, 2000). A REST web service is represented as a resource and exposed with a

uniform resource identifier (URI). REST defines how the state of resources are addressed and transferred

over HTTP by a wide range of clients written in different languages. Figure 2.5 shows an example of a

request to access a resource using the RESTful style.

19

GET --header ‘Accept:application/json’

 ‘https://localhost:8084/service/user/5678/details’

Figure 2.5. REST request

REST defines four basic architectural design principles (Fielding, 2000) as follows:

 HTTP methods are used explicitly. For example, in Figure 2.5, the resource is retrieved using

the HTTP GET method. The GET method is used to request the representation of a specified

resource following the protocol defined in the request for comment RFC 2616 (Fielding et al.,

2009).

 A uniform resource identifier (URI) with a structure similar to directories is exposed. The URI

should be a self-documenting interface which can be intuitively understood without requiring

any explanation or reference. In Figure 2.5 the URI is /service/user/5678/details’, which defines

the document type resource.

 Data transfer should use XML, JavaScript Object Notation (JSON), or both. JSON is a

lightweight data-interchange format that is self-describing and easy to understand. JSON is built

using two structures namely a collection of name-value pairs and an ordered list of values. JSON

is text only and can quickly be sent to and from a server to be understood by any programming

language. Figure 2.6 shows an example of a JSON response received when a request in Figure

2.5 above is processed.

 A REST web service should be stateless (Christensen, 2009). A service consumer includes all

the data that is needed for the request to be fulfilled in the HTTP headers and body of a request,

so that no information is stored on the server to generate a response.

20

{

 "name":"John",

 "surname":"Smith",

 "userid":"5678",

 "roles":[

 {

 "id":1

 "name":"agent"

 }

]

}

Figure 2.6. Example of JSON response

REST has emerged in the last few years as the predominant web service design model due to its adoption

and use. Its simple style has made it a better choice for software engineers than SOAP web services (De

Giorgio, 2010).

In any SOA-based initiative it is vital to understand different types of services, and how the web service

types are effectively communicated to stakeholders in an organization. The next section discusses the

primary classification of services in SOA.

2.3.2 Service taxonomy in SOA

Services in SOA are classified according to the role the service plays in the overall architecture. This

formal classification is called a service taxonomy (Richards, 2015). There are four basic types of services

namely business services, enterprise services, application services, and infrastructure services (Bean

2009, Marks & Bell, 2008), as shown in Figure 2.7. The types of services are defined below.

 Business services are abstract high-level coarse-grained services that define the core business

operation. Business services provide no implementation or protocol details (Richards, 2015).

They are represented using WSDL or Business Process Execution Language (BPEL). Business

services are required for the successful completion of business processes.

 Enterprise services implement the functionality of business services and are concrete coarse-

grained services. A middleware component is used as a bridge that provides an abstraction

between the business services and corresponding enterprise services. Example of an enterprise

21

service can be a service to retrieve customer details. The service encapsulates functionality that

can be shared by many applications within the enterprise. Consequently, the use of enterprise

services in SOA is based on the concept of sharing (Richards, 2015). Although sharing reduces

duplication, there is often a considerable penalty in the form of tight coupling. This increases the

overall risk of making changes to enterprise services since these services are globally available

to the organization. Changes to enterprise services require regression to test all possible uses of

enterprise services within the organization, to ensure that the change does not affect existing

functionality.

 Application services are usually specific to the context of a given application and are therefore

fine-grained. The functionality provided by this type of a service is not found at an enterprise

level but specific to an application within an enterprise. For example, a service to calculate de-

merit points for drivers enlisted in the on-demand taxi application is an example of an application

service since it will be specific to an application and not the whole enterprise.

 Infrastructure services are shared services that do not represent business functionality but are

used to provide additional functionality such as logging, auditing, monitoring, and security.

Figure 2.7. SOA services taxonomy

22

The classification of services results in a service ownership model that spans multiple administrative

boundaries (Brown et al., 2014). Service ownership is vital to understand because it affects how teams

should be coordinated to implement a SOA-based application successfully. The next section discusses

the ownership of services in SOA.

2.3.3. Service ownership model

Services in SOA are owned and maintained by different service providers, spanning different

administrative boundaries (Brown et al., 2014). An owner of a service can be defined as a group within

the organization that has the responsibility of developing and maintaining the service. Business services

are usual owned by business users, and enterprise services are owned by shared services teams such as

systems architects. Application services are usually owned by the application development teams, and

the infrastructures services are owned either by application development teams or a team responsible for

infrastructure (Richards, 2015). Integration architects typically own the middleware components. Figure

2.8 shows the ownership model of services in SOA.

Figure 2.8. SOA Services Ownership model

In any SOA implementation, the service ownership model requires coordination among multiple groups

to create or maintain applications. Any enhancement of the SOA-based application requires business

users to be consulted about the abstract business services, shared services teams to be consulted about

the enterprise services created to implement the business services. Furthermore, application development

teams should be coordinated so that enterprise services can invoke lower-level functionality, and

infrastructure teams should be coordinated to ensure nonfunctional requirements are met through the

infrastructure services. Furthermore, input is required from the middleware teams or integration

architects managing the messaging middleware. The effort required to develop, test, deploy, and maintain

services should, therefore, be considered when migrating to SOA-based implementations.

23

An important design principle in service-orientation is to ensure that services are designed so that they

can be effectively assembled and reconfigured to meet business requirements. The principle is important

because the automation of many business tasks require a collaboration of services. When services work

together to perform a business function, a service composition is formed (Hoffmann & Weber, 2014),

discussed next.

2.4 Service composition architecture

Service-orientation requires that services are designed to be flexible logical units that can participate in

aggregated structures. Aggregating of services in SOA enable complex business tasks to be automated.

Even though service compositions are comprised of services, it is the service capabilities that are

individually invoked and executed to carry out the function of the service composition (Erl, 2008). To

qualify as a service composition, at least two participating services and a service composition initiator

need to be present, otherwise the service interaction becomes a point-to-point exchange (Sheng et al.,

2014). In SOA, service compositions are created through service orchestration, discussed next.

2.4.1 Orchestration of services

The service responsible for composing other services assumes the role of a composition controller, and

composed services become composition members (Erl, 2008). Creating composition with a composition

controller and composition members is called orchestration (Sheng et al. 2014). The composition

controller coordinates asynchronous interactions between composition members and support

sophisticated and complex service composition logic that can result in long-running runtime activities.

When there is no composition controller, services interact using point-to-point exchanges within a

choreography (Sheng et al., 2014). Figure 2.9 shows an example of an orchestration of services to

automate a business task to get loan quotations. The loan request service assumes the role of composition

controller and coordinates interactions with the credit scoring service, calculate interest rate service, and

amount eligible service. Service orchestration is fundamental to the successful implementation of SOA.

Services compositions need to manage many types of scenarios that may arise at runtime. Therefore, the

design of services as candidates for orchestration requires that services are well prepared to participate

in complex service compositions (Alferez & Pelechano, 2013). Features such as security, transaction

24

management, reliable messaging and message routing should form part of the specification of a typical

service composition architecture (Erl, 2008). In general, many service compositions are dedicated to the

execution and maintenance of complex business processes (Josuttis, 2007). A business process can be

defined as a set of activities that once completed, accomplish a goal such as deliver a service or product

to a consumer (Bhattacharya et al., 2009).

Figure 2.9. Orchestration of services

The next section briefly discusses how services are orchestrated to perform different activities that make

up a business process.

2.4.2 Service orchestration and business processes

A graphical representation of a business process is created using Business Process Management Notation

(BPMN) (White & Bock, 2011). BPMN is a standard for business process modeling and provides a

graphical notation for specifying business processes using flowchart technique. The graphical business

processes created using BPMN are then transformed to be executed using various business process

modeling tools such as Business Process Execution Language (BPEL) (Pant & Juric, 2008).

Conceptually, BPEL is an XML language for describing business flows and sequences. A business

process, as seen by BPEL, is a collection of coordinated service invocations and related activities that

produce a result, either within a single organization or across several (Parsley, 2005). BPEL is, therefore,

an example of an orchestration language used to create service composition. BPEL provides many

constructs to support common tasks. Examples include:

 <invoke> used to invoke web services

25

 <receive> used to wait for the request sent to a web service

 <assign> used to manipulate data variables in a process

 <sequence> used to define a set of activities in a process invoked in an ordered sequence

 <flow> used to define a set of activities that will be invoked in parallel

 <while> for defining loops, etc.

 <partnerLinks> for defining web services that are invoked by the process

The next section discusses an example to illustrate the various SOA concepts discussed above. The

example uses BPEL to create a service composition utilizing the BPEL constructs discussed above.

2.5. Motivating example

Consider an imaginary on-demand taxi application such as Uber (Rogers, 2015) that is implemented as

an SOA-based application as shown in Figure 2.10. The application is referred to as the PickMeUp

application.

Registered passengers request taxi rides using mobiles phone or desktop computers. As soon as the

request is made, a notification about location and passenger details is sent to the nearest driver. The driver

either accepts or rejects a request for a ride. In case the ride is rejected, a notification is sent to drivers in

the area. If the driver accepts the ride, driver details are sent to the customer along with the estimated

arrival time. The passenger can track the drivers and drivers can track the exact location of the passenger

to reach their exact location. The payment procedure between the passenger and the driver is either cash

or credit card.

26

Figure 2.10. BPMN for the PickMeUp application process

In a typical SOA implementation, the business analyst uses the Business Process Management Notation

(BPMN) to visualize the PickMeUp business process graphically. The BPMN process diagram is used

by the software developer to create an executable process using BPEL. BPEL is used to orchestrate web

services into an SOA services composition. The composition initiator is a service called TaxiService. The

TaxiService orchestrates various business services such as the LocationService for retrieving the location

of the passenger requesting the service, the DriverService to get the information about the driver who is

dispatched to the passenger, the PaymentsService to bill the client and the VehicleService to manage

registered vehicles. The TaxiService is executed in a BPEL engine such as ActiveBPEL. ActiveBPEL is

a commercial-grade open source implementation engine for BPEL (Qian et al., 2007). To external clients

of the PickMeUp application, the TaxiService is exactly like any other web service and is described using

a WSDL and consumed using SOAP messages.

Figure 2.11 show an example of a BPEL service composition for TaxiService. The TaxiService

orchestrates the VehicleService, LocationService and DriverService. The orchestrated services are shown

as part of the <partnerLinks> elements.

27

<?xml version="1.0"?>
<process name="TaxiService" ..>
 <variables>
 --
 </variables>
 <flow>
--
 </flow>
 <partnerLinks>
 <partnerLink name="registeredVehicleService"
 partnerLinkType="vhs:vehicleLT"
 myRole="registeredVehicle"
 partnerRole="VehicleService"/>
 <partnerLink name="mapService"
 partnerLinkType="loc:locationLT"
 partnerRole="LocationService"/>
 <partnerLink name="registeredDrivers"
 partnerLinkType="driv:driverLT"
 myRole="registeredDriver"
 partnerRole="DriverService"/>

 </partnerLinks>
</process>

Figure 2.11. BPEL process for PickMeUp application

The orchestrated business services employ an Enterprise Service Bus (ESB) as an integration hub that

mediates the invocation of web service to complete a business transaction. The ESB provides additional

capabilities such as augmenting request information when necessary, modifying the format of data from

one type to another, and transforming a request from one protocol to another. Various enterprise services

are defined to provide functionality for business services. Security and logging services are provided as

infrastructure services. Figure 2.12 shows the SOA application depicting the various concepts discussed

above.

28

Figure 2.12. PickMeUp SOA application

In the next section, the challenges of developing an SOA-based application is described.

2.6 Implementation challenges of SOA

Implementing SOA in an enterprise has many challenges. To start with, there has been a lack of

consensus on how to implement SOA correctly (Newman, 2015). The existing narrative on SOA

implementations has often been provided by technology vendors whose aim is to sell their technology

products (Lee, Shim & Kim, 2010). Furthermore, there is a lack of guidance on how to define the

granularity of services in SOA, and how to ensure that services are not tightly coupled. Software

engineers are expected to design and implement services and service compositions that meet the qualities

that SOA stakeholders expect, although there is no blueprint to guide them on how to partition a complex

application into a set of collaborating services. Moreover, there is often a misconception that legacy

systems can easily be integrated into SOA without taking into consideration technical constraints of the

legacy components, such as immature technology, that may require significant rework (Lewis et al.,

2007). This often poses a risk to the adoption of SOA.

Successful deployments of SOA-based applications require extensive coordination among various

stakeholders as identified in the SOA service ownership model (Bell, 2008). Multiple reviews and

29

approvals are vital among the various groups who own business services, enterprise services and

infrastructure services (Richards, 2015). Furthermore, changes to some enterprise services may have a

substantial ripple effect with regards to regression testing (Bhuyan, Prakash & Mohapatra, 2012).

Typically, many SOA-based applications require a history of an extensive suite of regression tests

(Bartolini et al., 2011). This increases the time required for testing and the personnel required to complete

testing.

SOA services compositions can become complicated. When this complexity arises, it is not always

intuitive to know in an orchestration which part of the application to modify when new business

requirements arise. As a result, software engineers tend to be hesitant to make enhancements because of

the fear of causing damage to existing SOA-based applications due to unknown dependencies (Richards,

2015). Consequently, the rate of enhancement and delivery of new business capabilities is reduced.

Furthermore, when a service composition becomes complex, new software engineers on the team require

much time to become familiar with the software source code and other infrastructure components. This

may increase the software project delivery timeline.

The implementation challenges of SOA have been the major pitfall towards the adoption of the

architecture. Many enterprises compete in a fast-paced business environment with a lot of new

competitors frequently joining the market, and can, therefore, not afford slow software releases.

2.7 Conclusion

Enterprises are often expected to harness different types of technologies to create new revenue streams

and meet customer demands. The solution to harnessing technologies is usually to integrate existing

applications and to assemble various technology components quickly to create new sets of business

capabilities. SOA became an architecture that promised highly flexible and maintainable systems that

can continuously adapt to new business requirements. The basic building blocks of SOA is web-based

technologies and protocols. Using services as its foundation, SOA enables an integrated information

technology infrastructure that is scalable, reliable, and can quickly respond to changing needs of an

organization.

30

Despite the popularity of SOA, implementing SOA in a fast-paced business environment with many new

competitors frequently joining the market has proved to be a challenge. SOA-based applications are

complicated to maintain and enhance in response to new business changes and can become bottlenecks

to business innovation. The stiff competition enterprises are exposed to requires investment in fast-paced

software development environments with quick software release cycles to stay ahead of competitors. The

elaborate service ownership model of SOA does not readily support fast-paced software development

teams due to the requirement for extensive coordination to make software changes or enhancements.

The need to harness enterprise technologies to meet customer demands quickly require an approach that

makes development or enhancement of applications faster and easier to manage. The challenges of

incorporating new requirements in complex SOA applications have led enterprises to consider adopting

an architecture which allows for fast and flexible development and provisioning of business processes.

A new architecture called the microservices architecture can realize SOA and has emerged to enable

organizations to make development or enhancement of applications faster and easier to manage. To

differentiate microservices architecture from the SOA discussed in this chapter, the implementation of

SOA discussed in this chapter will be referred to as the traditional SOA implementation. In the next

chapter, microservices architecture is discussed.

31

Chapter 3

 Microservices Architecture

3.0 Introduction

Nowadays, enterprises operate in a fast-paced business environment where competition is fierce. To be

able to maintain their competitive advantage, enterprises invest in fast-paced software development

technologies that support speedy software releases (Lesser & Ban, 2016). The state of software

development and software operations report of 2017 found that companies that excel have forty-six times

more frequent software deployments than others (Forsgren et al., 2017). These companies have four

hundred and forty times faster lead time from the moment software source code is committed to a

software repository to when the source code is deployed in a production environment (Forsgren et al.,

2017). It is thus vital to enterprises to employ strategies to quickly create production-ready software

applications.

In the quest to compete in a fast-paced business environment, the complexity of maintaining and

enhancing traditional SOA applications, has presented significant challenges to many enterprises

(Zimmermann, 2015). These challenges have led to the emergence of a new architectural style to

implementing SOA called the microservices architecture (Dragoni et al., 2017, Zimmermann, 2017). The

microservices architecture uses a collection of small, loosely coupled software components called

microservices that collaborate to automate business functionality, and can be developed within fast

software release cycles (Nadareishvili et al., 2016). The microservices architecture promises to provide

agility by allowing each microservice to be quickly built, modified, tested and deployed in isolation. The

adoption of microservices is thus in line with the emergence of trends that aim to frequently and

consistently deliver high-quality working software with minimum project overhead (Bossert, 2016). The

success of companies such as Amazon (Bernstein, 2015), Netflix (Ravichandran, Taylor & Waterhouse,

2016), SoundCloud (Baresi, 2017), Facebook (Feitelson, Frachtenberg & Beck, 2013), Google (Kim,

2014) and several others can be attributed to the adoption of the microservices architecture.

32

This chapter presents the state-of-the-art in microservices and microservices architecture. An

understanding of the microservices architecture is essential to answer research question RQ1 formulated

Chapter 1. First, in Section 3.1 the chapter briefly discusses the various trends in continuous software

delivery that have contributed to the adoption of microservices architecture as they are a precursor of a

microservices architecture. Section 3.2 introduces and discuss microservices and microservices

architecture, including principles and concepts of the architecture. Section 3.3 discuss the collaboration

of microservice to automate a business task. Section 3.4 discuss how the location of a microservice

instance is identified by other collaborating microservices at runtime. Next, in Section 3.5, the

deployment strategies of microservices are discussed. In Section 3.6 an example of collaborating

microservices is introduced to demonstrate the concepts of a microservices architecture. The

classification of microservices in the microservices architecture is then discussed in Section 3.7. The

security challenges of microservices and a conclusion then follow in section 3.8 and 3.9 respectively.

3.1 Trends in continuous software delivery

The concepts of agile methodology, continuous integration, continuous delivery, and continuous

deployment have significantly changed the way in which online business is enabled (Bossert, 2016). An

understanding of these concepts is essential to understanding microservices architecture.

Agile software development is a methodology based on iterative development, where requirements and

software evolve as self-organizing cross-functional teams collaborate (Schmidt, 2016). The benefit of

agile development is that early feedback is provided on the status of functionality being developed.

Continuous integration is a practice of frequently integrating new software changes into an existing code

repository in a manner that ensures that each commit of software source code into the repository results

in the compilation and testing of software. Any arising errors can be noticed and corrected immediately

(Hilton et al., 2016).

Closely related to continuous integration is the concept of continuous delivery. Continuous delivery is

an extension of continuous integration that makes sure that new software changes are reliably released

quickly and sustainably at any time (Loukides, 2012). Continuous delivery requires automating testing

33

and an automated release process that ensure that software changes are deployed any time. Continuous

deployment refers to the frequent release of software into a production environment.

Over the past few years, a new trend called DevOps has emerged that aims to unify agile software

development, continuous integration, continuous delivery, continuous deployment with software

operations (Bass, Weber & Zhu, 2015). DevOps aims to shorten software development cycles, increase

the frequency of deployments and create more dependable software releases that are closely aligned with

business objectives (Fowler, 2013). The goals of DevOps are achieved using automation at all steps of

software development from integration, testing, releasing software to production and also the

management of servers (Davis & Daniels, 2015). Figure 3.1 below shows the relationships between these

concepts.

Figure 3.1. The relationship between software development methods

A common set of DevOps and continuous delivery ideologies at companies such as Amazon (Bernstein,

2015), Netflix (Ravichandran, Taylor & Waterhouse, 2016), SoundCloud (Baresi, 2017), Facebook

(Feitelson, Frachtenberg & Beck, 2013), Google (Kim, 2014) and several others has led to the adoption

of a new architectural style called a microservices architecture. Microservices architecture is seen as a

natural fit to enable continuous delivery and has become a prelude of a new form of concrete

implementation of SOA (Kravchuk et al., 2017).

The next section describes microservices and microservices architecture.

34

3.2 Microservices architecture

Microservice architectures aim to overcome the shortcomings of traditional SOA architectures, also

called monolithic architectures, where all of the application’s logic and data are managed in one

deployable unit. To be able make a distinction between these architectures, this section defines and

discusses a microservice and the microservices architecture respectively. To illustrate concepts, the

PickMeUp example is extended for this purpose. Next, a microservice is defined.

3.2.1 A microservice

A microservice is defined as a self-contained, autonomous, lightweight unit of logic running in its own

process (Nadareishvili et al., 2016). Microservices communicate using lightweight mechanisms over

hypertext transfer protocol (Dragoni et al., 2017), using the RESTful architectural style as a means of

communication. A microservice provides a narrowly-focused standardized application programming

interfaces to its consumers. Microservices have the following characteristics:

 Microservices is a modularization concept (Krivic et al., 2017) where a large application is

decomposed into small microservices that communicate using standardized interfaces.

 Each microservice should be designed so that it fulfills only one task and performs the assigned

task well (Daya et al., 2016).

 Microservices can be implemented in different technology (Dragoni et al., 2016). There is no

restriction on the technology or programming language at hand, as long as the microservice

presents a standardized interface for communication. The technology suitable to the work at hand

is adopted.

 Microservices are deployed independently of other microservices (Thönes, 2015). Each

microservices is a self-contained process that can run on its own. Changes to one microservices

can be taken into production, independent of changes made to other microservices. This makes it

easy to roll-back features that fail after new deployments are made. The automated deployment

of a microservice should preferably be applied (Thönes, 2015, Zimmermann, 2016).

 Microservices should easily be replaced by other microservices offering the same communication

interface (Le et al., 2015) to reduce the overall risks of incorrect decisions made at development

time.

35

 Microservices should be designed so that that they can work together to perform a task.

The adoption of microservices brings many benefits such as:

 Agility – due to shortened build, test, and deployment cycles (Lawton, 2015, Killalea, 2016). Each

microservice can incorporate the flexibility needed to employ microservice's specific needs for

replication, persistence, monitoring, and security.

 Reliability – due to the fact that a fault with one microservice only affects that microservice and

its consumers, unlike a single-tier application were a failure affects the entire application

(Balalaie, Heydarnoori & Jamshidi, 2015).

 Availability – due to minimal downtime required when deploying a new version of a microservice

(Jose & Shettar, 2017). Only the microservice being deployed is impacted, and the entire

application that uses microservices does not require a full restart of the whole application.

 Modifiability – due to the flexibility to adopt or consume new frameworks, libraries, data sources,

and other resources. Microservices tend to be easier to work with and to understand (Le et al.,

2015).

 Management – due to the use of agile methodology, where the development effort is divided

across teams that are smaller and work more independently (Newman, 2015, Zúñiga-Prieto et al.,

2016).

3.2.2 Microservice architecture

The microservices architectural style is an approach that structures an application as a set of loosely

coupled collaborating microservices. There are no set of rules when choosing between various

frameworks or protocols to use in a microservices architecture. However, the protocol should be

lightweight, keeping in mind that the microservices architecture relies heavily on messaging between

collaborating microservices. Using this architecture style, an enterprise can structure development teams

as a collection of small autonomous teams, usually at most nine members, who focus on one or more

microservices (Lalsing, Kishnah & Pudaruth, 2012).

Figure 3.2 shows the relationship between microservices architecture, continuous delivery, and small,

agile autonomous development teams.

36

Figure 3.2. Microservices architecture, continuous delivery, and autonomous teams

Next, the PickMeUp example is extended to illustrate the various principles and concepts behind the

microservices architecture.

3.2.3 PickMeUp microservices example

The PickMeUp SOA application is now decomposed into a set of smaller, collaborating microservices

to illustrate the principles and practice of microservices architecture. The benefits of microservices

architecture increase when the functional scope of each microservice is carefully considered (Dragoni et

al. 2017). The recommendation is that a microservice should correspond to an organization’s business

capabilities (Newman 2015, Balalaie, Heydarnoori & Jamshidi 2015, Dragoni et al. 2017). A business

capability is defined as an activity that a business does, to generate value (Sandkuhl & Söderström 2016).

For example, in the PickMeUp SOA application business model discussed before, the management of

passenger information is identified as an example of a business capability. The following are useful

guidelines that define the functional scope of microservices:

 The Single Responsibility Principle (SRP) establishes the responsibility of microservice to be

limited only to a single part of the business functionality of the application (Rahman & Gao

2015, Killalea 2016). For example, in the PickMeUp application, a microservice to maintain

driver details should only focus on that use case. When the SRP is applied, the microservice will

change when its business functionality changes. SRP ensure that the functionality of each

37

microservice is isolated from another microservice and changes on one microservice does not

require other microservices to change.

 The Common Closure Principle (CCP) states that software components that change for the same

reason should be grouped in the same package (Albattah & Melton 2014). Any business

functionality that is likely to change for the same purpose or is tightly coupled should be in the

same microservice. This can ensure that any change in business requirements impacts only a

single microservice.

The microservices architecture decomposes an application into collaborating microservices. In the

PickMeUp application, the first step is to identify business capabilities. Then, the functional context of

each microservices is determined using SRP and CCP. Figure 3.3 below shows an example of how the

operational context of microservices is defined from the business capabilities. Three capabilities namely

Passenger Management, Driver Management, and Trip Management are used as an illustration.

Figure 3.3. Mapping business capabilities to microservices

Once the functional scope is identified, the technology that is suitable for each microservices at hand is

chosen as they each can be developed using a different technology stack. The essential requirement for

the microservices architecture is that independent microservices collaborate to automate a business

38

functionality. When microservices work together to fulfill a business task, a microservices composition

is created. The next section discusses how a microservices composition is formed.

 3.3 Microservices compositions

In a microservice architecture, choreography is preferred when creating a microservices composition,

unlike traditional SOA, were orchestration is used. In choreography, there is no central microservice

called a composition controller that controls communication with other microservices (Butzin,

Golatowski & Timmermann, 2016). Microservices in choreography communicate using point-to-point

exchanges or by listening to events on their environment (Sheng et al., 2014). The inter-communication

mechanisms can either be synchronous or asynchronous, discussed next.

3.3.1 Synchronous communication

Synchronous communication is a point-to-point style of communication were microservices

communicate directly with each other in a blocking way. For each request that is sent, the calling

microservice waits for a response. The entire message routing logic resides on each microservices.

Figure 3.4 shows synchronous point-to-point communication between the Trip Management

Microservice and the Driver Management Microservice. The Trip Management Microservice invokes

the Driver Management Microservice by sending a request using the REST architectural style and waits

until a response is received from the later.

Figure 3.4. Synchronous microservices communication

39

The synchronous model of communication works well for relatively simple microservices compositions.

As the number of microservices increases in the microservices composition, synchronous communication

becomes overwhelmingly complex. The disadvantages of this model of communication is:

 When microservices synchronously invoke one another, there is the possibility that one

microservice may be unavailable or exhibit high latency (Newman, 2015). The failure of one

microservice can potentially cascade to other microservices throughout the microservices

composition.

 Non-functional requirements such as monitoring have to be implemented at each microservice

within the composition to mitigate against failures resulting from a single microservice (He &

Yang, 2017).

 Many microservices typically run in a virtualized environment where the number of

microservices instances, and their locations change dynamically. Consequently, mechanisms are

required to enable each microservice to make requests to other dynamically changing sets of

ephemeral microservices instances (Rotter et al., 2017).

 Microservices may use a diverse set of protocols, some of which might not be web-friendly

(Richardson, 2016). This may require each microservices to be equipped with the logic to

transform messages.

The challenges of implementing a synchronous model of communication in a microservices composition

make asynchronous communication a more suitable approach. Asynchronous communication is

discussed next.

3.3.2 Asynchronous communication

In asynchronous communication, several channels are used to exchange messages. Microservices are

connected to a message bus and subscribe to channels of interest (Dragoni et al., 2017). Any number of

microservices can send messages to a channel. Similarly, any number of microservices can receive

messages from a channel. There are two kinds of message channels, namely point-to-point and publish-

subscribe.

 A point-to-point channel delivers a message to exactly one microservice that is reading from the

channel.

40

 A publish-subscribe channel delivers each message to all microservices that subscribe to the

channel. Microservices use publish-subscribe channels for the one-to-many interaction styles

were each request is processed by multiple service instances.

Figure 3.5 shows an asynchronous model of communication using the microservices from the on-demand

taxi application example. The Trip Management Microservice publishes a message to a channel that is

of interest to both the Passenger Management Microservice and the Driver Management Microservice.

Here, the asynchronous model of communication has the following advantages:

 Easy to add new microservices to the microservices composition as a new microservice is added

by connecting the microservice to the message bus and ensuring that other microservice emit the

events required by the new microservice (Newman, 2015).

 Microservices are decoupled from each other in the microservices composition making them

independent of each other (Richter et al., 2017).

Figure 3.5. Asynchronous communication between microservices

As microservices expose a fine-grained application programming interface (API), it can be a challenge

when there is a mismatch between the needs of various external clients. For example, the desktop browser

client typically can consume an API that provides more elaborate details than mobile clients.

41

Next, the use of an application programming interface gateway to address different needs of

microservices clients is discussed.

3.3.3 Application programming interface gateway

The API gateway is an essential component of the microservices architecture. The API gateway acts as

a lightweight entry point for a diverse set of external clients (Montesi & Weber, 2016). Zuul (Netflix,

2013) from Netflix is an example of an implementation of the API gateway pattern (Macero, 2017).

Figure 3.6 shows an example of an API gateway that exposes the functionality of the Trip Management

Microservice and the Payments Microservice as light-weight API to mobile clients.

The API gateway provides the following benefits.

 It gives the ability to provide a different application programming interface that is suitable to the

needs to each client (Montesi & Weber, 2016).

 The gateway can be used to provides lightweight message routing and transformation according

to the requirements of each microservice (Alpers et al., 2015).

 The gateway provides a central place to apply non-functional requirements such as security and

monitoring (Balalaie et al., 2015).

 The gateway makes microservices to become more lightweight as all the non-functional

requirements are implemented at the gateway (Montesi & Weber, 2016).

Figure 3.6. Microservices API gateway

The gateway provides the following benefits.

42

 It gives the ability to provide a different application programming interface that is suitable to the

needs to each client (Montesi & Weber, 2016).

 The gateway can be used to provides lightweight message routing and transformation according

to the requirements of each microservice (Alpers et al., 2015).

 The gateway provides a central place to apply non-functional capabilities such as security and

monitoring (Balalaie et al., 2015).

 The gateway makes microservices to become even more lightweight as all the non-functional

requirements are implemented at the gateway (Montesi & Weber, 2016).

In the microservices architecture, microservices discovery is an essential aspect of the microservices

architecture (Balalaie, Heydarnoori & Jamshidi, 2015). Discovering microservices becomes essential due

to the deployment of microservices in virtualized environments. When microservices are deployed in

virtualized environments, strategies to locate microservices are essential because the network location of

microservices are assigned dynamically (Rotter et al., 2017). The next section discusses how

microservices instances are discovered in the architecture.

3.4 Microservices discovery

Microservices discovery utilizes a microservices registry (Montesi & Weber, 2016). A microservices

registry is a database of microservices, their instances, and their locations. Microservices cases are

registered with the microservices registry when the microservice starts up and de-registered when the

microservice shuts down. An example of a microservices registry is Eureka developed by Netflix

(Netflix, 2012). The following approaches are used to locate an instance of a microservice:

 Client-side discovery. In this approach, clients of a microservices directly query the microservices

registry to find the locations of a microservice instance (Montesi & Weber, 2016). The limitation

of this approach is that it couples the microservice client to the microservice registry. Figure 3.7

shows an example of client-side discovery. At runtime, the Trip Management Microservice

queries the registry for the location of the Driver Management Microservice.

43

Figure 3.7. Microservices client discovery

 Server-side discovery. When making a request to a microservice, the client makes a request via a

router or a load balancer located at a known static location (Montesi & Weber, 2016). The router

or load balancer then queries a service registry, which might be built into the router. Once the

router or load balancer discovers the location of the microservice instance from the registry, it

then forwards the request to microservices instances. AWS Elastic Load Balancer (Guide, 2010)

is an example of a server-side discovery router. Figure 3.8 shows microservices using server-side

discovery. The Trip Management Microservice forwards a request to the router, that is

responsible for locating and delivering the request to microservices instances.

Figure 3.8. Server-side microservices discovery

44

3.5 Microservices deployment strategies

Various deployment strategies can be used to deploy microservices. These are:

 Deploying multiple microservices instances per host (Dragoni et al., 2015). The host may be a

physical or virtual machine. Each microservice instance is deployed as a process on the host or

multiple service instances are deployed in the same virtual machine (Newman, 2015). The

limitation of this approach is the risk of conflicting resource requirements for each microservices

deployed on the same host. It may also be difficult to isolate each microservice instance or to

monitor and limit the resources consumed by a single microservice instance.

 Deploying each microservice instance on its own host (Johansson, 2017). The benefits of this

approach are that microservices instances are isolated from one another. There is no possibility

of conflicting resource requirements for microservices. Monitoring, managing, and redeploying

of a microservice instance is simplified. The drawbacks are that there is potentially less efficient

resource utilization compared to running multiple microservices per host.

 Deploying one microservice instance per container (Jaramillo, Nguyen & Smart, 2016). A

container image is a filesystem image consisting of the microservice and libraries required to run

the microservice (Merkel, 2014). The microservice is packaged as a container image and

deployed as a container. The benefit of this approach is that it is straightforward to scale a

microservice by changing the number of container instances. Docker containers (Merkel, 2014)

are becoming a common container technology for packaging and deploying services (Anderson,

2015). Each microservice is packaged as a Docker image. Containers are extremely fast to build

and start (Merkel, 2014).

 Serverless deployment (McGrath & Brenner, 2017). This uses a deployment infrastructure

provided by public cloud providers. Code for a microservice is packaged and uploaded into the

deployment infrastructure provided by the cloud providers. The providers hide the concept of

servers, physical or virtual hosts, or containers. Examples include AWS Lambda (Sbarski &

Kroonenburg, 2017), Google Cloud Functions (Wagner & Sood, 2016), Azure Functions (Baldini

et al., 2017). The infrastructure runs the microservices, and the infrastructure providers charge

based on resources consumed. The serverless deployment infrastructure automatically scales

microservices to handle the load. The benefits of using serverless deployment are that it

eliminates time to spend low-level managing infrastructure by the development team. The

drawback is that the deployment environment typically may have far more constraints on

45

supported languages, for example, Amazon Web Services AWS Lambda (McGrath & Brenner,

2017). This approach is also not suitable for long-running stateful applications (Baresi, Mendonça

& Garriga, 2017).

The next section summaries the various concepts of the microservices architecture discussed above using

the PickMeUp example.

3.6 Microservices composition example

The various architectural components of the microservices composition for the PickMeUp application

are shown in Figure 3.9 namely the API gateway, a service registry, and message broker. The deployment

strategy adopted for the application is to deploy components of the application on separate Docker

containers that run on a single host.

Figure 3.9 above shows a set of collaboration microservices that form a microservices composition.

Access to the composition is done via the API gateway. The gateway locates the instance of a trip

management microservices using the service registry. The trip management microservices communicate

either directly by calling other microservices’ REST interface or by sending a message to the message

broker. Each microservice is deployed in its Docker container.

46

Figure 3.9. PickMeUp microservices composition

Another important aspect of the microservice architecture is the classification or taxonomy of

microservices, discussed next.

3.7 Microservices architecture taxonomy

The microservices architecture has a limited microservice taxonomy. Microservices are classified into

functional microservices and infrastructure microservices (Richards, 2015).

 Functional microservices support business requirements. They are accessed using an application

programming interface (API) which acts as a microservice facade. The API serves as an

abstracting layer so that changes can be made to the service without affecting the consumer.

 Infrastructure microservices supports non-functional tasks such as auditing, logging, and

monitoring. They are generally not accessible externally.

47

Figure 3.10 below shows the taxonomy of microservices. A functional microservices is accessible to the

external client through an application programming interface. The functional microservice delegates all

its non-functional tasks to the infrastructure microservice.

Figure 3.10 Microservices service taxonomy

The limited microservice taxonomy makes microservices ownership less complicated. An application

development team may own the functional microservices and the infrastructure microservices. This

allows development teams to be broken down into smaller independent teams whose work is integrated

as it is delivered. There is less coordination among teams to provide a microservice. This fosters complete

ownership by self-contained teams making development, testing, and maintenance less complicated.

Figure 3.11 depicts microservices ownership model in the microservices architecture.

Figure 3.11. The microservices service ownership model

3.8 Microservices architecture security challenges

Despite the undeniable success of microservices architecture, the biggest challenge is security. The

adoption of microservices architecture as part of DevOps practices introduces complications when

48

implementing security controls. As development teams continue to deliver software in short and agile

sprints cycles, usually one to two weeks in length, often little attention is given to the security of the

application.

The preferred models of deploying microservices provide an attacker with increased options to attack

microservices compositions. In most instances, the myriad of distributed microservices are often

designed to trust each other completely. A compromise of a single microservice could bring down the

entire application.

Furthermore, many of the most popular tools used for ensuring continuous integration, continuous

delivery and continuous deployment and DevOps are often new to the market or are open-sourced. The

relative immaturity leads to concerns about the degree to which secure development standards are being

adhered to. Most of the security challenges arise from the way microservices are deployed.

3.9 Conclusion

The past few years have seen the emergence of agile methodology, continuous integration, continuous

delivery, and continuous deployment and DevOps whose aim is to shorten software development cycles

and increase the frequency of software deployment. The objective of these methodologies is to quickly

build potentially shippable software increments and bringing changes to production as soon as possible.

A common set of DevOps ideologies at various companies has to lead to the adoption of a new

architectural style called microservice architecture that decomposes applications into small units of logic

called microservices.

Microservices communicate synchronously or asynchronously to fulfill a business task using lightweight

protocols. Collaborating microservices create a microservices composition. Adoption of the

microservices architecture has been one of the DevOps success stories. This chapter has presented the

various aspects that captures the fundamental understanding of microservices architecture. The benefits

of adopting this architectural style have also been introduced.

49

Providing secure and reliable microservices-based applications is increasingly needed to ensure

successful adopting of microservices architecture. The next chapter discusses the fundamental concepts

of web services security which provides the basic building blocks to understanding SOA and

microservices security. The chapter also shows how the current security practices in SOA falls short

when applied to the new microservices architecture.

50

Chapter 4

 Security of Web Services

4.0 Introduction

The development of secure microservices applications is not a problem that has been solved. To date,

little research focuses on microservice security. However, the core security principles that apply to

SOAP-based, and RESTful web services hold for microservices as well. There is a large body of work

on security protocols and security best practices for web services that can be used when building

microservices applications.

SOA security is a topic that has been extensively discussed in literature (Buecker et al., 2008, Kanneganti

& Chodavarapu, 2008, Shashwat, Kumar & Chanana, 2017). When distributed SOA applications were

developed, secure silo-based application logic had to be made available to external partners, leading to a

major change in how services need to be protected. SOA security comprises of general security standards

as well as web services security standards that are generally XML-based. Security requirements of web

services are specified in a security policy document, and referenced within the WSDL. WS-Security

(Nadalin et al., 2006) specifies the way integrity and confidentiality can be enforced, and security tokens

used for authentication. Middleware is used to enforce distributed security via components such as

interceptors (Shah & Patel, 2008).

In contrast, the RESTful style of web services does not provide any formal guidance on how security

mechanisms should be applied and leaves their implementation to the discretion of software engineers.

Such services mainly rely on ad-hoc security mechanisms or transport layer security. With microservices,

security becomes more of a challenge because no middleware component is available to manage security-

based functionality. Instead, each microservice is required to manage security on its own, or in other

cases, the API gateway is given the responsibility of managing the security of the application.

51

In order to provide a foundation for this research, this chapter provides a background to the security of

both traditional SOA implementations and microservices architecture implementations. Section 4.1

defines security concepts. Section 4.2 identifies general information security services that are required to

meet the security requirements of both the traditional SOA-based and microservices-based systems.

Section 4.3 discusses web services security vulnerabilities and section 4.4 then introduce the web services

security model. Section 4.5 discusses the implementation of the web service security model in SOAP-

based web services. Section 4.6 discusses the implementation of the web service security model for

RESTful web services. Section 4.7 then identify the new security challenges of microservices. A

conclusion then follows in section 4.8.

4.1 Information security concepts

The information security of both traditional SOA and microservices architecture implementations can be

defined as the degree to which malicious harm to assets of the application is prevented, reduced, and

adequately responded to. The objective of information security is to protect valuable or sensitive

information while making the information readily available to the users of the application (Kissel, 2013).

Figure 4.1 below adapted from Firesmith (2004) shows the relationships between various information

security concepts defined above.

52

Figure 4.1 Security concepts relationships

The vital information security concepts are:

 Asset - anything that has value to an organization’s operations and continuity (Kissel 2013, Priya

& Arya, 2016) such as services, servers and information.

 Attack - an unauthorized attempt to cause harm to assets (Kissel, 2013).

 Attacker- an agent that initiate an attack to cause harm to assets, by disrupting normal operations

or stealing information, using attack methods, tools, and techniques (Priya & Arya, 2016).

 Vulnerability - a weakness in the system's requirements, system's design, system's

implementation or operation that an attacker can exploit to achieve a malicious motive (Kissel,

2013). A dictionary of all publicly known information security vulnerabilities or exposures are

documented by the Common Vulnerability Exposure (CVE) project (Mitre 2017).

53

 Attack surface - the sum of vulnerabilities in a given system that is accessible to an attacker

(Giarratano, Guise & Bodin, 2017).

 Threat - any circumstance or event that creates a possible danger that might be exploited by an

attacker to breach the security of a system (Bertino et al., 2009, Kissel, 2013). A threat exists

typically when an entry point into the system provides access to an asset (Priya & Arya, 2016).

 Security goal - a desirable ability of a system to resist a specific category of threats (Cherdantseva

& Hilton, 2013).

 Security policy - an aggregation of directives, regulations, rules, and practices that prescribes how

assets are protected, and how information is distributed in a secure manner (Ross, McEvilley &

Oren, 2016). A security policy represents a set of security constraints that must be enforced to

assure secure access to assets.

 Security mechanism - a method, tool, or procedure for enforcing a security policy. It is a

countermeasure that helps reduces one or more security vulnerabilities (Ross, McEvilley & Oren

2016).

 Security requirement - the functional, assurance, and strength characteristics of a protection

mechanism (Kissel, 2013). It is a quality of service requirement that specifies a required level of

security using system-specific criteria (Penzenstadler et al., 2014).

Both traditional SOA-based applications and those based on the microservices architecture need to be

able to handle traditional security demands of protecting information and ensuring that access is only

granted to entities that are permitted. ISO 27002 (ISO, 2013) defines five categories of information

security services to meet the global and pervasive security requirements of any given information system

including service-oriented applications. At the time of writing ISO 27002 was undergoing revision to

cater for more security services. The next section identifies the information security services that are

required to ensure secure applications.

4.2 Information security services

Both traditional SOA-based and microservices-based applications need to be able to resist security

threats. ISO 27002 defines security services that can provide protection to achieve this goal. The five

information security services identified by ISO 27002 are:

54

 Authentication – the information security service that ensures that an entity is identified before

access to a resource is granted (ISO, 1989). In web services, authentication requires that web

service must provide proof that its claimed identity is true (Erl, 2008). In general, an entity can

prove identity by presenting what they know with a username and password, or what they have

for example an authentication token, or what they are with a biometric.

 Access control - the information security service that controls what type of access an entity is

granted to a resource. The decision to grant access may depend on criteria such as the action the

entity wants to perform, the resource on which the action is being requested, and the groups the

requester belongs to.

 Data confidentiality – the information security service that is concerned with protecting the

privacy of the contents of a message. A message is considered to have remained confidential if

in its message path no service or agent that is not authorized to do so viewed its contents.

Confidentiality can be enforced by defining appropriate access levels for information (ISO,

1989).

 Data integrity - the information security service that ensures that information in transit is not

tampered with, or any tampering of information is be detected (ISO, 1989). In the context of web

services, integrity ensures that the state of the message contents remains intact from the time of

transmission to the point of delivery (Erl, 2008).

 Non-repudiation (non-deniability) – the information security service that ensures that the entity

cannot deny creating or modifying the resource after the fact (ISO, 1989).

Figure 4.2 below shows how information security services are positioned to protect the assets of an

application (Yamany, Capretz & Allison, 2010). The information security services may be implemented

as components to ensure that access to assets is only granted to entities that are permitted.

55

Figure 4.2. Information security services and SOA assets

The challenge of using web services is that they have known security vulnerabilities that an attacker can

exploit to compromise an application. The next section briefly identifies the common security threats

associated with web services.

The following are common threats that can occur for SOAP-based and REST-based web services that

make use of XML messages:

 Buffer overflows occur when an attacker crafts an XML message in such a way that the XML

message references its elements recursively. This causes a memory overflow when the XML is

parsed and may trigger error messages which reveal information about the web service. The

server parsing an XML file may repetitively use more resources to parse the file, and this can

result in denial of service (DOS) (Chan, Chua & Lee, 2016).

 XML injections occur when a server does not validate data correctly. A malicious web service

message may be used to create XML data which inserts a parameter into an SQL query and send

to the server which then executes the message using the rights of the web service. Another attack

is to poison the schema, a file that an XML parser uses to understand the XML's grammar and

structure. This allows the XML parser to process malicious web service messages (Chung et al.,

2014).

 Session hijacking involves gaining unauthorized control of a legal user's valid session state and

56

use it to gain that particular user's privileges in the application. This is done by intercepting or

sniffing web services messages (Chung et al., 2014).

There are numerous more threats that can compromise the confidentiality, integrity, or availability of

SOAP-based and REST-based web services (Vorobiev & Han, 2006, Popa, 2015). Ensuring that web

services provide authentication, access control, integrity, confidentiality, and non-repudiation is critical

for an enterprise and its customers. The next section discusses a generic security web service model that

can be used to support information security services, discussed in section 4.2 above.

4.3 Generic web service security model

The web service security model, shown in Figure 4.3, supports, integrates and unifies several popular

security models, mechanisms, and technologies, and enables a variety of systems to interoperate securely

(Della-Libera et al., 2002). The generic model can apply to both SOAP and REST web services and may

thus also apply to microservices-based applications. The web service security model is generic and can

be used to support more specific security models. The aim of the security model for web service security

is to ensure that:

 A web service, both SOAP and REST, can require that an incoming message provides

information that expresses its origin and ownership. The expression of such information is

referred to as making a claim. A claim is a statement about a subject that is used for example to

assert the subject’s identity or the subject’s authorized role (Bigdoli, 2006). Claims can be a name,

security key, permission or a capability. If a message arrives without having the required claims,

the web service may ignore or reject the message. A set of claims and related information is called

a policy (Della-Libera et al., 2002).

 A requester, which can be an end user or another web service can send messages with proof of

the required claims by associating security tokens with the messages. Thus, web services

messages both demand a specific action and prove that their sender has the claim to demand the

action.

 Another web services can be contacted to provide the required claims. The other web services

referred to as security token services, may, in turn, require a set of claims (Della-Libera et al.,

2002). The security token services are used to broker trust between different trust domains by

issuing security tokens.

57

Figure 4.3 Web service security model

The goal of service-orientation requires that SOA be realized in a manner independent of technology and

using open standards. The security architecture of web services should thus implement the web service

security model in a manner that promotes the goal of service-orientation.

The next section discusses a concrete realization of the web services security model in the SOAP-based

web services. Both SOAP and REST expose data over HTTP requests and responses, but make use of

very different formats and semantics. As REST has different security considerations, REST security is

discussed in the following section.

4.4 SOAP web services security

The SOAP messaging model utilizes a large combination of networks devices and applications that may

be globally distributed. Web services that use SOAP messages interact by exchanging messages which

may go through various intermediaries before reaching the intended destination. SOAP intermediaries

are applications that can process parts of a SOAP message and forward the message as it travels from its

origination point to its final destination point. Figure 4.4 shows the SOAP communication model using

intermediaries. An approach called transport-layer security establishes a secure channel for data

exchange, but is not sufficient to ensure end-to-end security in a SOAP messaging model. Intermediaries

within the SOAP message path have access to messages and can, therefore, access the content of the

message even when the message is not intended for them. Mechanisms are required to ensure that

58

different parts of messages used by web services are only revealed to intended parties in the message

path.

Figure 4.4 SOAP message intermediaries

Considering the nature of the SOAP messaging model and the requirement to design web services as

candidates for orchestration that demands that web services are well prepared to participate in complex

service compositions, the following are necessary to ensure security:

 Different parts of messages used in web services communication with information such as credit

card details are protected, so that these selected parts of the message are only revealed to intended

parties in the message path. This requirement is referred to as message-level security (Kearney,

2005, Ahmed & Bhargava, 2015, Medhi et al., 2016).

 Security rules and security enforcement mechanisms are not to be hard-coded in each web

service to ensure that the web service is well prepared to participate in complex service

compositions. Security requirements should instead be declared separately of the web service

(Chetty & Coetzee, 2010). This approach is referred to as policy-driven security (Pearson &

Sander, 2010, Chhetri et al., 2012).

 Components responsible for enforcing information security services on behalf of web services

are required, since web services may not know the context in which they will be invoked at

runtime. This approach is referred to as security as a service (Dawoud et al., 2010, Hussain &

Abdulsalam, 2011).

The next section briefly discusses how message-level security and policy-driven security are

implemented in the SOAP message model.

59

4.4.1 Message-level security in SOAP

Message-level security in SOAP ensures that different parts of the message have different levels of

protection to ensure that only the intended party has access to sensitive information. An extension called

WS-Security provides a means to extend SOAP message headers to address security concerns for

authentication, authorization, non-repudiation, and confidentiality (Atkinson et al., 2002). WS-Security

is a message-level standard that is used to secure SOAP messages using:

 XML digital signature to provide applications with authentication, data integrity and non-

repudiation abilities (Rosenberg & Remy, 2004).

 XML encryption to ensure confidentiality of SOAP message (Rosenberg & Remy, 2004).

 Security tokens such as username tokens and X.509 certificates (Hawanna et al., 2016) to ensure

authentication and propagation of credential between web services. WS-Security provides a

means to specify and associate security tokens in SOAP messages (Rosenberg & Remy, 2004).

In line with the web service security model, security tokens for use in WS-Security may be

provided by other web services.

Figure 4.5 shows an example of a SOAP header message that contains an encrypted username and

password using the WS-Security syntax. The example is used to enable authentication. The username

and password are examples of security tokens and are contained in the UsernameToken element. The

UsernameToken is an example of a WS-security token that carries a security claim. The token is

encrypted to enable confidentiality.

<soapenv:Header>
 <wsse:Security ...>

 <wsse:UsernameToken wsu:Id="1">
 <wsse:Username>
 <xenc:EncryptedData>...</xenc:EncryptedData>
 </wsse:Username>

 <wsse:Password>
 <xenc:EncryptedData>...</xenc:EncryptedData>
 </wsse:Password>
 </wsse:UsernameToken>

 </wsse:Security>
 </soapenv:Header>

Figure 4.5. Encrypted SOAP header message

60

WS-Security allows the requester to add security information that applies to that particular message to a

SOAP message header. WS-Security is enforced through SOAP message interceptors which process the

SOAP request message before the web service is invoked (Taher et al., 2011, Lin et al., 2013). Typically,

a web service has a security interceptor component developed according to the web service description

language (WSDL) document. The interceptor acts as a security filter for incoming and outgoing SOAP

messages. Interceptors exist for both the invoking web services and the web services being invoked. On

the invoking web services side, the client, the client security interceptor is responsible for adding tokens

on SOAP headers, signing and encrypting the SOAP message. On the side of the web services being

invoked, the interceptor is responsible for verifying the message signature and checking that the message

has not been tampered with in transit. When sending responses, the web service interceptor adds WS-

Security headers on the response message to ensure integrity and confidentiality of the response message.

Figure 4.6 show an interceptor between a web service and a client.

Figure 4.6. Interceptors

Securing web service compositions is complex as various services with different security requirements

needs to be invoked together to get a response. Web services participating in a composition may require

mechanisms to propagate authentication and authorization across composed services (Erl, 2008). Since

each web service in a composition is autonomous and independent from the other, mechanisms may be

required to persist the security context after authentication with the composition controller is successful.

4.4.2 Policy-driven security in SOAP web services

SOA web services should not support security as software engineers of a web service may not know the

context in which the web service is to be used (Rudra & Vyas, 2015, Memeti et al., 2015). Service-

orientation requires that a web service be developed in such a way that it can participate in many

61

composition scenarios. As a result, security requirements and mechanisms should not be hard-coded in

web services. Instead, security requirements of each web service need to be declared separately in a

security policy document. A good design of a security policy is a significant requirement to successfully

guarantee secure access to resources of an SOA-based application (El Hassani et al., 2015). The

advantage of using a security policy in SOA is that:

 It separates security logic from business logic, leaving the former to security specialists.

 It becomes easier to ensure consistency of security enforcement across various services

compositions where a web service participates.

 It enhances interoperability as security policies of web services that are a candidate for

composition can be assessed at design time and decisions can be made on how to make their

security implementations compatible.

A good design of a security policy requires an understanding of the following terms:

 Subject. A subject is an entity requesting access to a web service. A subject possesses one or

more attributes. In the context of an SOA-based application, a subject can represent a system

end user, another web service in a web service composition or a user role. A subject may also

represent an aggregated set of users, a composition of web services and a list of roles (Brodecki

et al., 2011).

 Resource. A resource is data, a web service or any component of the SOA system.

 Action. Action defines the type of access requested on a resource.

 Obligation. An obligation is a directive on what must be carried out before or after access is

granted.

 Target. Target is a set of simplified condition that must be met.

 Object. An object is an SOA system resource for which access is managed.

An essential standard in SOA with regard to describing security policies of SOAP web services is the

WS-SecurityPolicy specification (Della-Libera et al., 2002). WS-SecurityPolicy is a widely accepted

security standard that allows web services to advertise their policies using XML. The standard provides

means to describe a set of rules used to define security objectives to be satisfied when web services

interact. This standard is part of the existing WS-Policy framework proposed for policy descriptions

(Bajaj et al., 2004). WS-SecurityPolicy expresses security capability of web services using policy

62

assertions. For example, Figure 4.7 below shows an assertion that stipulates that a request to a web service

should be encrypted.

<wsp:Policy xmlns:wsp="..." xmlns:sp="...">

 <sp:EncryptedParts>

 <sp:Body/>

 </sp:EncryptedParts>

</wsp:Policy>

Figure 4.7. Example Security policy

Security policies defined using WS-policy are associated with a web service by attaching it to a web

service using WS-PolicyAttachment (Box et al., 2004) or by embedding it on the WSDL file. The policy

is made accessible through the UDDI registry (Bhatti et al., 2007). Association of the WS-Policy can be

done at design time or at deployment time. At runtime, the security policy of a web service is enforced

using a component called a policy interceptor (Lins et al., 2016, Gallino et al., 2011). When a request is

made to a web service, the SOAP request message is intercepted by one or more policy interceptors

defined on the invoking web services side (Jansen et al., 2015). The interceptors execute security policies

that are attached to the invoking web services or client. Required security headers are added to the request

message to ensure that the request message complies with the security policy of the web service or client

sending the request. At the invoked web service, the request message is intercepted by the policy

interceptors before it reaches the target web service. Security policies are executed, and if successful,

the request message is passed to the web services. After the web services executes, a response is

generated, which is intercepted by the policy interceptors, and security policies are applied before the

response is sent to the requesting web service.

4.4.3 Messaging bus and security of SOAP web services

The practice of using interceptors to handle security functionality on behalf of web services assist to

reduce the processing burden on the web service (Dawoud et al., 2010). Traditionally, many SOA

applications have been built around a mediator called the enterprise service bus (ESB) as a component

in the security model (Opincaru & Gheorghe, 2015). As part of the ESB security, mediations ensure that

63

the appropriate message protection services are applied to all incoming web service invocation. This

removes the need for each web service to independently manage and evaluate trust relationships with

every possible web service invocation. Figure 4.8 below shows the ESB providing security as a service

to a web services composition.

Figure 4.8. ESB and security of web services

The next section discusses a concrete realization of the web services security model in the REST

messaging model.

4.5 REST web services security

REST web services lack a specific security model, unlike SOAP-based services which rely on the WS-

Security standard (Kakavand et al., 2016). Most REST web services rely on transport-layer security and

custom message protection mechanisms (Iacono & Nguyen, 2015). Transport-layer security offers secure

point-to-point communication channels. Web services that use the REST model of communication work

with Hyper Text Transfer Protocol (HTTP) Uniform Resource Locator (URL) paths and should be

64

protected in the same manner in which websites are secured. The starting point to ensuring REST web

services is implementing the below best practices (Oftedal & Stock, 2014):

 Input validation. Validating all inputs on the server protects REST web services from injection

attacks. Validation should ensure that only well-formed input is passed to a web service.

 No sensitive data in the URL. Usernames, password or token should not be part of the URL

because URL can easily be accessed. Sensitive values should be exchanged using the POST

method.

 Restrict method execution. Use of methods like POST and DELETE methods should be

restricted. For example, the GET method should not be allowed to delete data.

In addition to the above best practices, REST web services generally use security tokens for security.

The use of a security token in the REST messaging model as a realization of the web services security

model is discussed next.

4.5.1 Security tokens

REST web services can use JSON Web Tokens (JWT) (Jones, Bradley & Sakimura, 2015) as the format

for security tokens for authentication and ensuring message integrity. A JWT is a JSON data structure

that contains a set of claims that can be used for access control decisions (Jones, Bradley & Sakimura,

2015). JWTs are protected for integrity using a signature or a message authenticated code. The claims in

a JWT are encoded as a JSON object used as the payload of a JSON Web Signature (JWS) structure or

as the plaintext of a JSON Web Encryption (JWE) structure, enabling the claims to be digitally signed

(Jones & Hildebrand, 2015). The Figure 4.9 below shows an example of the JWT payload that contains

identification information, but in general, the payload can contain any information of security interest.

Figure 4.9 shows an example JWT payload.

{
 "name": "test user",
 "email": "john@johndoe.com",
 "admin": true
}

Figure 4.9. Example payload of JWT

65

JWT is used mostly for authentication and is sent as part of the HTTP headers. Figure 4.10 below shows

the use of a JWT token acquired from an authentication server. The authentication service is an example

of a security token service. Once the user is logged in, each subsequent API request includes the JWT.

The JWT allows the user to access web services, and resources that are permitted with that token.

Figure 4.10. Authentication using JWT

Clients of a REST web service can also use predefined keys called application programming interface

keys (API keys) to authenticate and access web services (Farrell, 2009). An API key is a piece of code

assigned to a specific program, developer, or user that is used whenever that entity makes a call to an

API. The key is typically a long string of generated characters which follow a set of generation rules

specified by the authority that creates them. The key can be sent as part of a parameter to a URL, as part

of the HTTP header or as a cookie. Figure 4.11 shows an API key sent as part of the header on the request

for a trip.

GET /requestTrip HTTP/1.1

 X-API-Key: abcdef12345

 Figure 4.11. API key authentication

66

API keys and JWT does not solve the problem of confidentiality. Therefore, a custom mechanism needs

to be used to ensure data confidentiality and non-repudiation in a REST messaging model.

The adoption of the microservices architecture introduces new security challenges that cannot be

addressed by the web services security model. Adoption of microservices requires a new way of thinking

about security. The next section identifies the new security challenges.

4.6 Security challenges of the microservices architecture

Although microservices are a way of implementing web services, the approaches that have been used to

secure traditional SOA implementations in the past are not sufficient in microservices implementations.

Microservices are changing the assumptions about how SOA-based applications are created and

consequently how SOA applications should be secured. The adoption of microservices architecture

presents the following new security challenges.

4.6.1 Increased attack surface

When microservices are considered from a networking perspective, the instance of a microservice is a

unique network endpoint with an open network port exposing an application programming interface

(Thönes, 2015, Esposito, Castiglione & Choo, 2016). When a new instance of microservice is created,

a new application programming interface is exposed. An attack on the microservices-based application

can be made directly on each microservice (Dragoni et al., 2016). This gives the attacker an increased

attack surface due to the spread of microservices instances exposed across the network. Security of

microservices consequentially become a distributed security challenge.

4.6.2 Indefinable security perimeters

 Many microservices are deployed in containers (Merkel, 2014, Stubbs et al., 2015, Amaral et al., 2015).

The challenge of deploying microservices on containers is that containers can be set up quickly from

anywhere within the network without any consideration for the traditional notion of demilitarised security

perimeters (Combe et al., 2016, Herger et al., 2017). Containers allow port mapping functionality to

masquerade standard microservices application programming interface ports to dynamically allocated

ones (Marmol et al., 2015). The use of dynamic addressing and scaling of microservices makes it a

67

challenge to statically configure internet protocol addresses or steer network traffic to traditional

perimeter security appliances.

4.6.3 Security monitoring is complex

Containers present a security monitoring challenge. Containers on a host machine can use network

address translation (NAT) which makes them invisible to the outside world (Anderson 2015). Network

address translation is the process where a network device, usually a firewall, assigns a public address to

a computer inside a private network. Network traffic from containers using NAT is challenging to

identify. When containers use NAT, a definition of security policies becomes complicated because it

becomes difficult to know which microservices is running in each container. Containers may also bundle

applications with a lot of software libraries and files that software engineers may not be aware of

(Pittenger, 2016). This may increase the security risk due to vulnerabilities that may be hidden inside the

software libraries (Moradi et al., 2017).

4.6.4 Authentication is centralised

Microservices deployed in containers interact remotely, mostly over HTTP. The challenge of this

approach is how users of microservices are authenticated and how user credentials are passed between

microservices in a symmetric manner (Esposito et al., 2016). Another challenge when ensuring inter-

microservices communication between a large number of microservices is that when microservices use

transport layer security, certificate revocation becomes a harder problem (Yarygina, 2017). The

microservices that initiate the handshake may get a list of revoked certificates from the corresponding

certificate authority which can grow bigger.

4.6.5 Threat modeling and risk assessment is localised

The emphasis on team autonomy makes it challenging to ensure that threat modeling, and risk assessment

is done before new versions of microservices are released (Ur, Ashfaque & Williams, 2016). Continuous

delivery can mean that new vulnerabilities are delivered with every new microservices deployment

(Wilde et al., 2016).

The five challenges above provide an answer to research question RQ2 formulated in Chapter 1.

Considering the challenges listed above, the adoption of microservices, therefore, require new ways of

ensuring security.

68

4.7 Conclusion

Building traditional SOA-based and microservices-based applications that are secure is a complex

exercise. Security plays an essential part in the decision to adopt SOA, also when adopting microservices

architecture as a concrete implementation of SOA. Since traditional mechanisms of securing SOA-based

applications are not sufficient within a microservices architecture, new mechanisms are required to

ensure secure microservices-based SOA implementations. Still, the problem of how to provide web

service-based systems that are secure by default is an unsolved research challenge.

The security challenges of microservices discussed above demand that security should be an integral part

of the architecture. Securing microservices requires that security requirements be incorporated from the

beginning and security be made part of the microservices build, test, and delivery chain. The challenge

of an increased attack surface and complex networking resulting from the communication model of

microservices requires a new security strategy to mitigate this new threat. The rapid approach to

designing and deploying microservices requires a new security design and testing approach to ensure that

no new vulnerabilities are introduced with each deployment. Monitoring mechanisms are required to

monitor the communication paths and containers. When changes that may affect the security of the

microservices-based application are detected at runtime, changes to microservices security configuration

is required to stay up to date with a change that may occur on the underlying deployment environment.

To this end, the next chapter discusses a preliminary risk analysis of the microservices architecture to

provide an understanding of security threats, the potential attacker's profile, the most likely attack vectors

and the assets most likely to be targeted by an attacker. This knowledge is useful to ensure that

microservices-based applications are designed to avoid vulnerabilities and to withstand any attack.

69

PART II

70

Chapter 5

Software Development Activities for

Secure Microservices

5.0 Introduction

Organizations face countless challenges in the business world as they need to be able to counter disruptive

competitors, adapt to new trends, be highly flexible, and provide engaging customer experiences. The

adoption of Agile methodology and continuous delivery practices, by employing microservices

architectures is therefore essential (Bossert 2016). However, the decomposition of an application into a

set of distributed and collaborating microservices, using microservices architecture principles, increases

an application’s attack surface.

Furthermore, the continuous delivery practices increase the rate of releasing new software changes,

leaving little time to identify and understand potential or actual adversary loopholes that can be

introduced into a microservices composition through each new deployment. On the contrary, malicious

attackers have unlimited time and resources to devise ways to attack microservices compositions. It,

therefore, becomes vital to carry out a preliminary security risk analysis at design-time of the entire

microservices composition.

A preliminary risk analysis provides an understanding of security threats from a hypothetical attacker’s

point of view. Identified security threats equip software engineers of microservices compositions with

knowledge of assets most likely to be targeted, the most likely attack vectors, and the potential attacker's

profile. The knowledge is useful to ensure that microservices compositions are designed to avoid

vulnerabilities and to withstand any attack, and in the event of an attack to ensure that adverse

consequences of an attack are minimized.

71

In this regard, this chapter aims to identify security threats that could arise as a result of flaws in the

design of microservices compositions and harm that may arise from misuse of a microservices

composition by malicious users. The preliminary risk analysis leads to a list of security requirements to

be met by this research to be able to develop secure microservices compositions. The contribution of this

review is a list of development activities for secure microservices.

This chapter is organized as follows; Section 5.1 introduce secure development frameworks. Section 5.2

introduces threat modeling to identify, enumerate and prioritize security threats. Section 5.3 discusses

threat modeling of a microservices composition. Section 5.4 uses the outcomes of threat modeling to

elicit security requirements of a microservices composition. Section 5.5 Suggests protection mechanisms

and techniques that can be used to satisfy the security requirements obtained from Section 5.4. A list of

software development activities to ensure the implementation of secure microservices compositions is

then derived. A conclusion then follows in section 5.6.

5.1 Secure software development frameworks

To date, the construction of secure software is directed by a number of guidelines, best practices and

undocumented expert knowledge such as blogs and discussions. There exist a number of best practices

for areas such as threat modeling, risk management, or secure coding (De Win et al., 2009) and various

new approaches to support the development of secure software in agile environments. To be able to

support the development of secure applications, it is very important that these aspects are combined into

an integrated and more comprehensive construction method. Traditionally, sequential software

development approaches integrate security engineering activities commonly defined in a sequence,

where security verification and validation gates are created for each of the development stages of

analysis, design, coding, and testing.

Frameworks that are used to develop secure software depend on a risk assessment being conducted to

identify weaknesses in the software (Shostack, 2008). The identified weaknesses are used to elicit

security requirements of the system and also to guide the creation of secure designs. Furthermore,

software engineers identify protection measures from the identified risks and incorporate these measures

72

in the system during the development. Testing of the system is used to ensure that the risk is mitigate

using identified protection measures.

The next section discusses threat modeling to assess the security risk of microservices for this research.

5.2 Security threat modeling

Various security weakness or vulnerabilities possibly exist on microservices and their runtime

infrastructure that an attacker can exploit to breach the security of microservices-based applications. To

be able to understand the security of microservices compositions, the composition needs to be analysed

from the perspective of a potential attacker. The process of identifying and documenting security threats

is called threat modeling (Shostack 2008). Threat modeling provides a good foundation to identify

security requirements (Myagmar, Lee & Yurcik, 2005). This type of view can be gained by first

identifying, enumerating and prioritizing security threats of a microservices composition.

Threat modeling identifies entry points into a system and the associated threats that each entry point

exposes. They are three main approaches to threat modeling namely (Shostack 2008):

 Architecture-centric threat modeling - The architecture-centric threat modeling approach also

called system-centric, or design-centric approach focuses on the design of a system. The approach

attempts to step through the components of the system identifying the potential types of attacks

against each component (Martins et al., 2015).

 Asset-centric threat modeling - The asset-centric threat modeling approach starts by identifying

and quantifying the value of vital assets in a system and the motivation of the attacker (Rauter,

Kajtazovic & Kreiner, 2016).

 Attack-centric threat modeling - Attack-centric threat modeling starts by identifying the goals of

an attacker and the possible techniques that the attacker might use to achieve malicious goals

(Tuma et al., 2017).

The next section uses threat modeling to identify security threats in microservices compositions where

microservices compositions are realized by a set of collaborating microservices.

73

5.3 Microservices composition threat modeling

Architecture-centric threat modeling is used next to identify security threats in a microservices

composition. The architecture-centric threat modeling approach is more suitable in this context as it

provides a means to step through the components of a microservices composition to identify potential

types of attacks against each component. The PickMeUp microservices composition discussed in

previous chapters is used as an example of a microservices composition. The architecture-centric threat

modeling steps from the Microsoft threat modeling process is followed, as shown in Figure 5.1 as per

microservices compositions (Priya & Arya, 2016).

Figure 5.1. Microservices threat modeling steps

Next, the first step of threat modeling, shown in Figure 5.1, is performed where the security objectives

of a microservices composition are identified.

74

5.3.1 Microservices composition security objectives

A microservices composition is a set of collaborating microservices. Each microservice is an open system

similar to any web service, and therefore needs to address security services as prescribed by ISO 7498-2

namely:

 Authentication

 Access control

 Data confidentiality

 Data integrity

 Non-repudiation

In addition to identifying security objectives, an essential step in the architecture-centric threat modeling

approach is to determine the components of the application as a foundation towards the elicitation of

potential types of attacks. In this regard, the next section provides an overview of the architecture of a

microservices composition and list the essential components.

5.3.2 Microservices composition overview

The second step of threat modeling as shown in Figure 5.1 uses the PickMeUp application shown in

Figure 5.2 to illustrate essential components that any microservices architecture application generally

would consist of as follows:

 The API gateway - a lightweight entry point into an application.

 A set of microservices - components that automate business functionality.

 Service registry - a database of instances and locations of all active microservices in a

microservices composition.

 Message broker - used by microservices in composition to publish and receive messages.

 Containers or virtual machine - provide the runtime environment to microservices.

To find threats in microservices, sources of threats and specific components of the application that may

be affected should be known. The next section performs the third step of the architecture-centric threat

modeling to identify parts of PickMeUp that are potential sources of threats.

75

5.3.3. Decomposition of a microservices composition

The various architectural components of the PickMeUp application are shown in Figure 5.2 below. Steps

1 to 13 shows the flow of information from when a request for a trip is received from a passenger using

a mobile device until the final response is sent. For the sake of brevity, information flow for payment is

not shown. The deployment strategy adopted for the application is to deploy components of the

application on separate Docker containers. The containers run on a single host.

When Figure 5.2 is viewed from the attacker’s perspective, the following architectural components

provide potential entry points to maliciously access and compromise the PickMeUp microservices

composition:

 The API gateway and the microservices API - the attacker may use the gateway and microservices

API to perform various types of injection attacks.

 The service registry - the attacker may control the service registry to compromise the

microservices composition or to shut the microservices composition down by ensuring that

collaborating microservices cannot locate one another.

 Message broker - the attacker may gain access to messages exchanged by microservices or to

bring the message broker down so that the composition ceases to function.

 Container or virtual machine - the attacker may gain control of the runtime environment where

the application is running and control or shut down the microservices composition.

The four entry points listed above in general form the attack surface of any microservices composition.

Considering the technical design and implementation choices made during the development of the API

gateway, service registry, message broker, containers or virtual machines the following security threats

are now derived by the researcher from the four entry points listed above:

 Insecure application programming interfaces

 Unauthorized access

 Insecure microservice discovery

 Insecure runtime infrastructure

 Insecure message broker

76

Figure 5.2. PickMeUp Microservices composition

The next section discusses each security threat in more detail. Attention is given to the methods that an

attacker can exploit to compromise the microservices composition. First, a security threat classification

model is presented as a foundation towards understanding each threat.

5.3.4 Security threats classification

Conceptually, threat modeling is performed by applying a methodology (Shostack 2014). In this regard,

each security threat identified above is reviewed using a threat categorization model developed by

Microsoft called STRIDE (Shostack 2014, Scandariato, Wuyts & Joosen, 2015). Even though there are

many threat modeling tools available, the researcher chose STRIDE as it offers a very systematic

approach to analyse threats against each of the microservices architectural components. STRIDE

provides a clear understanding of how an identified vulnerability can impact the whole system and

77

supports a comprehensive review of security services such as authentication, authorization,

confidentiality, integrity, nonrepudiation, and availability. STRIDE is an acronym that stands for:

 Spoofing - an attempt by an attacker to gain access to an application using false identity

(Shostack, 2014).

 Tampering - the unauthorized modification of information or data (Shostack, 2014).

 Repudiation - the ability of an attacker to deny an action that has been performed (Scandariato,

Wuyts & Joosen, 2015).

 Information disclosure - when private data is revealed to an unintended user (Scandariato, Wuyts

& Joosen, 2015).

 Denial of service - the process of making an application unavailable to legitimate users

(Shostack, 2014).

 Elevation of privilege - occurs when a user with limited or no privileges assumes the identity of

a privileged user to access an application (Shostack, 2014).

STRIDE allows characterizing of identified threats and provides a method to reason about each security

threat, and to determine potential exploits that can be used by an attacker. The five security threats

identified by the researcher in the previous step are now discussed in detail using the STRIDE model.

This section considers the attack methods associated with each security threat and the vulnerabilities that

make the attack possible.

a) Insecure application programming interfaces

A weak set of APIs exposes microservices to a variety of security attacks that may result in tampering

with data, information disclosure, denial of service and elevation of privileges (Cloud Security Alliance,

2017). Table 5.1 below list the attack methods and weaknesses on the composition that can make the

attack possible.

78

Table 5.1. STRIDE analysis of insecure application programming interfaces

Security threats
(STRIDE)

 Attack methods Exploitable weaknesses or known
 Vulnerabilities

Tampering with
data

 Intercept and modify messages sent to a
microservices API when communication
channels used is not secured.

 Exploit vulnerability in mechanisms
used for transport-layer security.

 Perform all forms of injection attacks on
the API.

 Insecure communication channel
 Lack of mechanisms to protect against

injections of all forms on the APIs
 Weak access control schemes on the

microservices API
 Vulnerability CVE-2014-3566 (Sheffer, Holz

& Saint-Andre, 2015) that allows an attacker to
obtain clear text when Secure Socket Layer
(SSL) v3.0 is used.

Information
disclosure

 Perform all forms of injection attacks on
the microservices API.

 Exploit weak access control schemes
used to protects APIs

 Lack of mechanisms to protect against injections
of all forms on the APIs

 Weak access control schemes on the API. For
example, the United States of America Internal
Revenue Service (IRS) exposed over three
hundred thousand (300 000) customer records
using a vulnerable web API (Borazjani, 2017).

 Vulnerability CVE-2017-9805 (NIST, 2017) in
the REST plugin of a web application
framework called Struts. The vulnerability
resulted in the Equifax data breach were an
attacker gained access to consumer credit
reports of about one hundred and forty-three
(143) million United States citizens (Gressin,
2017, O’Brien, 2017).

Denial of Service Craft a request to API gateway that fans
out into multiple computationally
expensive requests to microservices
behind the gateway so that
microservices slow down and impact all
legitimate users (Behrens & Heffner,
2017).

 Failure to prioritize authenticated traffic over
unauthenticated traffic

 Lack of reasonable microservices requests
time-outs

 Lack of fallback options when microservices
does not respond on time

 Lack of fault isolation mechanisms.

Elevation of
privileges.

 Exploit a parser of messages used on the
API that allow deserialization of hostile
or tampered objects by changing the
serialized object to gain administrative
privileges.

 Insecure message deserialization

In addition to the threat of insecure application programming interfaces, microservices are exposed to

the threat of unauthorized access, discussed next.

79

b) Unauthorized access

When there is no proper scalable identity access management system, a microservices composition is

vulnerable to unauthorized access (Cloud Security Alliance, 2017). Unauthorized access can lead to

tampering with data and information disclosure. Table 5.2 below list the attack methods and weaknesses

on the microservices composition that can make the attacks possible.

Table 5.2. STRIDE analysis of the threat of insecure APIs

Security threats
(STRIDE)

 Attack methods Exploitable weaknesses or known
 vulnerabilities

Tampering with data Use harvested login credentials to
gain access and tamper with data.

 Gain administrative access to a
microservices runtime environment
that use single-factor authentication
mechanism and destroy data.

 Insecure management consoles. For example,
an online hosting and code publishing provider
called Code Space went out of business when
an attacker gained access to the company's
Amazon Web Service's (AWS) control panel
account and destroyed customer's data (Cloud
Security Alliance, 2017). The Amazon Web
Service environment is a popular platform for
running microservices.

 Lack of scalable identity access management
 Lack of multi-factor authentication

Information disclosure

 Use methods such as phishing and
fraud to gain access to credentials
that are often re-used.

 Cryptographic keys and passwords embedded
in software source code that is in public facing
software repositories. For example, an attacker
accessed a software repository used by Uber
software engineers and used the login
credentials to access Uber customer data
(Newcomer, 2017, Giles, 2017).

 Lack of scalable identity access management
 Lack of multi-factor authentication

The use of services registries in a microservice may pose a threat of insecure microservice discovery,

discussed next using the STRIDE categorization model.

c) Insecure microservices discovery

When microservices use discovery mechanisms that are not secure spoofing, information disclosure and

denial of service may occur. Table 5.3 below list the attack methods and weaknesses on the microservices

composition that can make the attack possible.

80

Table 5.3. STRIDE analysis of the threat of insecure microservices discovery

Security threats
(STRIDE)

 Attack methods Exploitable weaknesses or known
 Vulnerabilities

Spoofing Intercept microservices registration
requests sent to a service registry to gain
access to private information about a
microservice.

 Insecure communication channels
 Insecure certificate distribution

Information
disclosure

 Gain access to microservices identity
during microservices lookup queries.

 Insecure communication channels between
a microservice and the service registry.

Denial of service
attack

 Flooding registration messages to the
service registry to force the service
registry to consume and exhaust its
resources and ultimately become slow or
stop functioning.

 De-register a microservice from the
registry by sending a bogus de-registration
message to the service registry.

 Messages for registration or de-registration
sent without integrity protections

 Lack of message verification

 In addition to insecure microservice discovery, the runtime infrastructure where microservices are

deployed may pose a security threat, discussed next using the STRIDE categorization model.

d) Insecure runtime infrastructure

Containers and virtual machine, where microservices are deployed, may be compromised by the presence

of errors or malware on the infrastructure that an attacker can exploit to infiltrate microservices

compositions. Vulnerabilities in the microservices runtime infrastructure may result in spoofing,

information disclosure, denial of service, and elevation of privileges (Cloud Security Alliance, 2017).

Table 5.4 below list the attack methods and weaknesses on the composition that can make the attack

possible.

81

Table 5.4. STRIDE analysis of insecure runtime infrastructure

Security threats
(STRIDE)

 Attack methods Exploitable weaknesses or known
 vulnerabilities

Spoofing Sniff secrets like cryptographic keys,
certificates, and passwords.

 Gains control of a container and receive,
redirect and manipulate information
being delivered to containers, an attack
called Address Resolution Protocol
(ARP) spoofing (Scott et al., 2017).

 Inject a malicious payload into network
connections.

 An insecure configuration of containers
and virtual machines and using default
container settings that allow open
communication such as in Docker
containers (Scott et al., 2017).

 Improper user access rights
 Insecure communication channels

Information
disclosure

 Inject malicious code into the containers
to gain access to sensitive information.

 Vulnerability CVE-2014-6271 (Shetty,
Choo, & Kaufman, 2017) also known as
shellshock that allows one to inject
malicious code into the command line
interface connects users to Unix-based
systems.

 Host operating system vulnerabilities
 Runtime software vulnerabilities

Denial of service
attack

 Create malicious image payload which
may require an inordinate amount of
time, disk space and memory to
decompress in such a way that
decompressing images result in denial
of service.

 Lack of content verification on containers.
 Vulnerability CVE-2017-14992 (Redhat,

2017) which allows a remote attacker to
cause a denial of service by using a crafted
docker image payload on Docker-CE and
all earlier Docker versions.

Elevation of
privileges.

 Escape from the confines a
compromised virtual machine and
obtain elevated access to the host
machine, the host's local network and
adjacent systems. Elevate access
privileges and cause damage to
microservices running on the host.

 Vulnerability CVE-2015-3456 (Brook &
Brooks, 2015) also called Virtualized
Environment Neglected Operations
Manipulation (VENOM) allows an
attacker to escape from the confines a
compromised virtual machine and
potentially obtain elevated access to the
host machine, host's local network, and
adjacent systems.

An attacker can also leverage the decoupled nature of publish-subscribe message brokers used in

microservices compositions, discussed next.

82

e) Insecure Message Broker

When the message broker is not correctly secured spoofing, tampering with data, information disclosure

and denial of service may occur. Table 5.5 below list the attack methods and weaknesses on the

composition that can make the attacks possible.

Table 5.5. STRIDE analysis of the threat of insecure message broker

 Security threats
(STRIDE)

 Attack methods Exploitable weaknesses or known
 vulnerabilities

 Spoofing Intercept and modify messages sent to the
API when communication channels used is
not secured.

 Exploit vulnerability in mechanisms used
for transport-layer security.

 CVE-2014-3566 (Sheffer, Holz & Saint-
Andre, 2015) that allows an attacker to
obtain clear text data against any
application that uses Secure Socket
Layer (SSL) v3.0.

 Tampering With data Modify stored messages or messages in
transit in the publish-subscribe model of
communication.

 Tamper with data by maliciously changing
messages exchanged by microservices.

 Exploit message parsers that perform
insecure message deserialization by
sending crafted messages to perform
remote code execution or to create
recursive objects graphs.

 Unsafe deserialization. Message broker
relies on message parsers to function. A
parser in a message broker calls Spring
AMQP (Gutierrez, 2017) was found
with vulnerability CVE-2017-8045
(Pivotal, 2017) that allows unsafe
deserialization of message. Unsafe
deserialization is listed among the top
ten most critical web application
security risks by OWASP in 2017
(OWASP, 2017).

 Information
disclosure

 Read sensitive messages in transit between
publisher-broker-subscriber or at rest when
the channel of communication used by
microservices is not secured

 Vulnerability CVE-2017-9805 (NIST,
2017) found in the REST plugin of a
web application framework called
Struts. The vulnerability resulted in The
Equifax data breach were an attacker
gained access to consumer credit reports
of about one hundred and forty-three
(143) million United States citizens
(Gressin, 2017, O’Brien, 2017).

 Denial of Service Set up a disguised microservices that
publish many large messages to the broker
to exhaust the resources of the message
broker.

 Exploit mishandled exceptions that arise in
a message being queue again after it has
been dequeued. This may potentially
exhaust the resources of the message
buffer that stores the message in a manner
that no new messages are accepted.

 Open message publishing
 Open message subscription

Table 5.6 gives a high-level summary of a list of flaws associated with each security threat identified

above. The software weaknesses are extracted from Tables 5.1 – Table 5.5.

83

Table 5.6. Summary of microservices vulnerabilities

Security threats Security vulnerabilities

Insecure application programming interfaces Lack of mechanisms to protect against injections of all
forms of APIs

 Weak access control schemes
 Insecure message deserialization
 Insecure communication channel

Unauthorized access

 Lack of scalable identity access management
 Lack of multi-factor authentication

Insecure microservice discovery Insecure communication channels
 Insecure registration and certificate distribution
 Registration messages sent without integrity protections
 Lack of registration message verification

Insecure runtime infrastructure Improper user access rights
 Host operating system vulnerabilities
 Runtime software vulnerabilities
 Insecure container or virtual machine configuration
 Poisoned container images

Insecure message broker Open message publishing
 Open message subscription
 Insecure message deserialization

In the next section, the five security threats and security flaws in Table 5.6 are used in a systematic

manner to elicit a set of general security requirements common to most implementations of microservice

compositions. First, a definition of security requirements is provided.

5.4 Microservices compositions security requirements

Security requirements for a microservices composition describe more concretely the conditions and

capabilities that must be met or be possessed by the microservice composition to assure the security of

assets. The Open Security Alliance (Open Security Alliance, 2003) distinguishes four different types of

security requirements:

 Secure functional requirements - describe the security services that should be integrated into each

functional requirements of the system (Jain & Ingle, 2011). They specify what should not happen

on the system during execution. The requirements are elicited from identifying abuses to the

system referred to as misuse cases (Open Security Alliance, 2003).

 Functional security requirements- describe the functional behaviors that enforce the security of

the system under inspection (Jain & Ingle, 2011).

84

 Non-functional security requirements- security related architectural requirements, such as

robustness and scalability. They are typically derived from architectural principles and best

practices or standards (Jain & Ingle, 2011). Non-functional security requirements are considered

out of scope in this chapter.

 Secure development requirements - describe the activities required during system development

which assure that the outcome is not subject to security flaws (Open Security Alliance, 2003).

Security requirements of interest for this research are secure functional requirements, functional security

requirements and secure development requirements. As shown in Figure 5.3 this chapter elicits the

security requirements of a microservices composition from the following:

 Security needs of the user of a microservices composition

 Microservices composition security threats

 Best practice and standards

 Regulations and laws

Figure 5.3. Elicitation of security requirements of a microservices composition

Using the five security threats and security flaws listed in Table 5.6 above, Table 5.7 below derives and

documents security requirements for a secure microservices composition. Satisfying the security

requirements should lead to more secure microservices compositions. The approach adopted in this

section to elicit security requirements is to consider such requirements as constraints that limit the manner

in which the microservices composition is developed, and how each component of the composition (the

microservices, the message broker, the service registry, the API gateway, and the runtime infrastructure)

should function to ensure overall security. The security requirements are expressed as positive statements

85

to help verify their satisfaction (Haley et al., 2008). Also, Table 5.7 suggests a list of protection measures

that can be used to satisfy the security requirements.

Table 5.7. Microservices composition security requirements and protection measures

Security threats Security requirements Suggested protection measures

Insecure application
programming interfaces

 Only authenticated users should access
the API

 Keys, tokens, and password should be
rotated periodically

 The API should validate all requests.
 The communication channel between

microservices should be secure

 Use keys or security tokens or passwords
to protect API

 Perform input validations on the
microservices API

 The API should white-list permitted
HTTP methods

 Ensure secure management of keys,
password, and tokens

 Use transport-layer security
 Monitor the microservices API at all

times

Unauthorized access

 Access to microservices should be denied
by default

 The microservices composition should
use multi-factor authentication at all
entry points

 Any credentials used in the microservices
composition should be rotated
periodically

 Use keys, security tokens, and password
to protect API

 Use transport-layer security
 Automate management of keys,

password, and tokens

Insecure microservice
discovery

 The service registry should authenticate
all requests for registration

 Communication between microservices
and service registry should use a secure
channel

 Messages for registration and de-
registration should be protected for
integrity

 Ensure the host on which the service
registry run is securely configured

 The service registry should use
certificates and certificates should be
distributed securely

 Use transport- layer security
 Monitor the service registry at all times

Insecure runtime
infrastructure

 Containers and virtual machines should
only use verified operating systems
platforms or container-specific operating
systems

 The outbound network traffic sent by
container should be monitored and
controlled

 The configuration of containers and
virtual machines should comply with the
configuration standards

 Create secure configurations of
infrastructure

 Validate the configurations of
infrastructure

 Scan container images before
deployment

 Group containers by relative sensitivity
and only run containers of a single
sensitivity level on a single host

 Monitor infrastructure at all times

86

Security threats Security requirements Suggested protection measures

Insecure message broker The message broker should authenticate
all requests

 A secure channel should be used for
communications

 The client should protect the message it
sends for integrity.

 A redundancy mechanism should be
configured to guarantee the delivery of
the messages

 User transport-layer security
 Use authentication plugins or write a

custom filter to authenticate a message
 Set up read and write permissions on the

message broker
 Monitor the service registry at all times

The list of security requirements and the protection measures in Table 5.7 above points to the need to

integrate security in different phases of the software development lifecycle such as requirements

gathering, design, implementation, and testing (ben Othmane et al., 2014). To achieve this, various

security-focused activities are required during the different development phases of microservices to

assure that the microservice composition is not subject to security vulnerabilities. The Open Security

Alliance refer to such security-focused activities as secure development activities (Open Security

Alliance, 2003). In this regard, the next section uses Table 5.7 to identify the essential security-focused

activities that should be incorporated into the development process of microservices and microservices

compositions.

5.5 Software development activities for secure microservices compositions

Using the security requirements and suggested protection measures in Table 5.7, this section derives a

list of software development activities that can be used to ensure that microservices are adequately

protected. Table 5.8 below gives a list of security-focused activities to address each of the five security

threats.

Table 5.8. Secure microservices composition development activities

Security threats Security-focused activities

Insecure application programming interfaces Document security requirements for the microservices API at
design time

 Adopt secure programming best practices for input
validations on the API and white-listing permitted HTTP
methods

 Validate the implementation of the API during the
continuous delivery phase for adherence to secure coding
standards and security requirements

 Monitor the API continuously at runtime

87

Security threats Security-focused activities

Unauthorized access

 Document microservice API access requirements
 Validate the API for adherence to access requirements during

the continuous delivery phase

Insecure microservice discovery Document of security requirements for microservice
discovery at design time

 Validate security requirements for service discovery during
continuous delivery phase

 Monitor the service registry at all times

Insecure runtime infrastructure Documentation of security requirements for runtime
infrastructure

 Create a secure configuration of runtime infrastructure
 Test the infrastructure for adherence to security requirements
 Monitor the infrastructure at all times

Insecure message broker Document of security requirements for message broker
 Validate the message broker for message broker adherence to

security requirements
 Monitor the message broker at all times

The security-focused activities in Table 5.8 above can generally be summaries into the following six

secure development requirements, prefixed with SDA:

1. Document security requirements of microservices compositions (SDA-1) – security of

microservices compositions requires a flexible way to manage security requirements and

protection measures. Documentation is vital to provide a security strategy to secure various assets

of the microservices (Terala & Cole, 2015).

2. Adopt secure programming best practices (SDA-2) - some of the protection measures suggested

in Table 5.7 to protect the API are documented guidelines to mitigate known assaults on many

web applications. A vital activity is to ensure that engineers adopt these guidelines to ensure that

microservices are designed and implemented to avoid vulnerabilities. Examples of such

documented instructions include validating inputs, ensuring that the application executes with the

least set of privileges required for the job and sanitizing any data sent to other application to avoid

injection attacks.

3. Validate security requirements and secure programming best practices (SDA-3) – validating the

implementation of a microservices composition against a set of security requirements and security

coding standards at various stages of the microservices’ build, test and deployment is vital to

ensure end-to-end security (Ciuffoletti, 2015, Callanan & Spillane, 2016).

88

4. Secure configuration of runtime infrastructure (SDA-4) - a vital security activity is to ensure that

containers and the virtual machine are securely configured in an automated manner. Such

configuration eliminates human errors that may result in misconfiguration.

5. Continuously monitor the behavior of components of the microservices composition (SDA-5) -

ensuring continuous security of microservices composition requires engineers to have a view of

the behavior of the various components at runtime. Given the potential for harm that can arise

from persistent attacks by hostile entities at runtime, there is a need to monitor microservices and

their runtime environments (Haselböck & Weinreich, 2017, Peinl, 2016). Monitoring allows

identification, detection, and even ability to foresee critical events and situations that occur during

runtime (Gander et al., 2013, Asim et al., 2014).

6. Securely respond to attacks using adaptation mechanisms (SDA-6)- microservices compositions

are distributed systems implemented using a collection of components that independently evolve

and react to their environments and other external factors. The distributed nature of component

creates many potential points of failures. A microservices composition should be built to

withstand failures of individual components. Mechanisms that ensure that the application

responds adequately to changes at runtime to maintain an appropriate security posture are referred

to as secure adaptation mechanisms (Gabbrielli et al., 2016, Florio et al., 2016, Hassan &

Bahsoon, 2016).

The six activities listed above can be view as the development activities for secure microservices

compositions. Next, a conclusion is provided.

5.6 Conclusion

Nowadays, the impact of security breaches on an enterprise can be overwhelming. Microservices

compositions, like any web applications should therefore be developed with security in mind. Building

secure microservices compositions is, however, a complicated exercise. This chapter has laid the

foundation towards understanding the microservices architecture's security threats using an attacker's

point of view and identified security requirements common to most implementation of the microservice

architecture. Suitable protection measures have also been identified. Even when security requirements

and protection measures are identified early during the development process, there is still the challenge

of validating if the implementation of various components of the architecture is safe. Furthermore, there

89

is a need to ensure that the runtime environment does not provide attackers with the means to control or

compromise the microservices composition. To this end, this chapter identified security-focused

activities that ensure that the suitable protection measures are implemented.

Although building a secure microservices composition is a complex exercise, the identification of

security-focused activities in this chapter can go a long way towards achieving the security goals of a

microservices composition. The security-focused activities include documenting security requirements

at design time to provide a security strategy to secure various assets of the microservices composition.

Furthermore, this chapter also noted the importance of encouraging microservices software engineers to

adopt documented security guidelines to eliminate known security vulnerabilities in microservices

compositions. Also, ensuring comprehensive security testing is another vital activity required to identify

and eliminate security flaws before microservices compositions are deployed to a production

environment. The chapter has also identified the importance of creating a secure runtime infrastructure

for microservices compositions. In addition, mechanisms should be in place to ensure that software

engineers have insight into the behavior of microservices at all times to be able to identify attacks. If a

microservice composition is attacked, the composition should be equipped with the ability to respond

and maintain its security posture.

In this regard, this chapter provided a necessary preliminary security risk analysis of the entire

composition by applying a threat modeling technique to identify security threats in a microservices

composition. Then, the various security flaws often associated with each threat were identified and used

to derive various security requirements common to most microservices compositions. Furthermore, the

suggested protection measures were used to derive a set of important security-focused activities that

should be incorporated into the development process of a microservices composition. The activities

constitute the secure development activities of a microservices composition.

The next chapter reviews the literature on the six identified security-focused activities that form the

secure development activities of a microservices composition. The aim of the review is to identify various

tools, techniques, and methods that can be used to support software engineers in incorporating the six

secure development activities to become part of their daily software development task.

90

Chapter 6

Secure Microservices Development

6. 0 Introduction

The threat modeling exercise in Chapter 5 identified six software development activities to consider so

that the security goals of a microservices composition can be achieved. The challenge in a microservices

development environment is that microservices are typically developed using the Agile methodology,

where the general perception is that the incorporation of security in the development process would be

against agile values (Oyetoyan et al., 2016). Consequently, many Agile teams tend to release software

without performing full-scale security testing, and later address any security vulnerabilities by deploying

new releases (Heinrich et al., 2017). The general perception of security within Agile teams has had a

significant impact on the development of software in general. The general reluctance is reflected in the

State of Software Security report of 2017 were the top ten common security vulnerabilities in 2017 were

strikingly similar to that of 2016 (Veracode, 2017). Finding ways to seamlessly incorporate the six

software development activities in a manner that does not impact the Agile values and benefits will thus

be beneficial to the microservices development community.

This chapter aims to understand how to effectively incorporate the six secure development activities

using existing tools, techniques, and methods so that the security of microservices compositions can be

improved. The organization of this chapter is as follows. First Section 6.1 introduces the approach that

is used to identify and review the relevant literature. Section 6.2 identifies essential concepts that assist

in documenting security activities of microservices compositions effectively. Section 6.3 obtains secure

programming practices that can ensure that microservices are designed and developed in a manner that

makes them inherently safe. Section 6.4 identifies and reviews available tools that can be used to

determine security flaws during the development process of a microservices-based application. Section

91

6.5 identifies tools that can be used to create safe runtime environments for microservices to prevent the

environment from being a source of security risks to the application. Next, Section 6.6 identifies and

reviews mechanisms that can give continuous insight into the behavior and health status of microservices

to detect attacks at runtime. Section 6.7 identifies mechanisms that can be used to enable microservices

to react to malicious attacks at runtime securely. A summary and conclusion follow in Section 6.8 and

6.9 respectively.

6. 1 Review of software development activities for secure microservices

The microservices architecture can be considered a relatively new area of research (Di Francesco,

Malavolta & Lago, 2017). In this regard, this chapter adopts a systematic mapping research approach

(Petersen et al., 2008) that is commonly used for research areas that are not yet mature (Kitchenham &

Charters, 2007). The process used in this chapter is first to formulate guiding research questions on each

software development activity for secure microservices compositions identified in Chapter 5. Each

question is used as criteria to identify relevant literature from publications. An analysis is performed for

each activity to identify potential areas that still require research attention.

Most security challenges experienced in a microservices architecture are those generally familiar to all

SOA implementations (Dragoni et al., 2016). Any new microservices security problem that is not found

in general SOA implementations can be due to network complexity arising from the arrangement of

components within the microservices architecture. The review in this chapter, therefore, considers not

only literature specific to microservices but also literature relevant to SOA in general. Journals,

conference publications, and various industry articles are reviewed.

The structure of the discussion to follow is according to the identified secure software development

activities for secure microservices compositions namely:

 Document security requirements of microservices compositions

 Adopt secure programming best practices

 Validate security requirements and secure coding standards

 Secure configuration of runtime infrastructure

 Continuously monitor components of the microservices composition

 Securely respond to attacks using adaptation mechanisms

92

Next, the documentation of the security requirements of microservices compositions is reviewed.

6.2 Document security requirements of microservices compositions

A secure microservices composition can be created by implementing the security services dictated by

ISO 7498-2 namely authentication, access control, data confidentiality, data integrity, and non-

repudiation. A comprehensive specification of protections mechanisms can support effective

authentication, access control, data confidentiality, data integrity, and non-repudiation in a microservices

composition (El Hassani et al., 2015). A security policy is used to specify protection mechanisms in order

to manage security (ISO, 1989). Consequently, an understanding of different types of security policies

applicable to microservices becomes essential to specify comprehensive protection measures effectively.

To this end, Table 6.1 formulates questions to ensure effective management of the security concerns of

a microservices composition. A prefix REVQ denotes each question to differentiate from the research

questions formulated in Chapter 1.

Table 6.1. Guiding questions on microservices security policies

Research questions Motivation

REVQ1. How does the microservices architecture
affect the design of security policies for a
microservices composition?

To identify the attributes of a good microservices
security policy design.

REVQ2. What types of security policies are required
to document protection measures for a microservices
composition comprehensively?

To gain a comprehensive understanding of the different
security policy types required in a microservices
composition.

To be able to answer REVQ1 from Table 6.1, the next section identifies characteristic of the

microservices architecture that affects the design of security policies.

6.2.1 Microservices architecture and security policies

In Chapter 3, microservices, the API gateway, the services registry, the message broker and containers

were identified as critical assets of the microservices architecture. These assets are collectively referred

to as components of the microservices composition. A security policy needs to consider that components

of a microservices composition are loosely coupled and distributed, where each component may have

unique security needs. The following two essential attributes should be taken into account:

93

 Support for distributed and loosely coupled microservices interactions (Brodecki, Szychowiak &

Sasak, 2012, Suzic et al., 2016, Azarmi & Bhargava, 2017). In the composition, some components

need to delegate access control decisions to other components because not every component can

directly ask the end-user for authentication details (Nacer et al., 2017). In PickMeUp, the Driver

Management Microservice relies on the Trip Management Microservice and the Passenger

Management Service to ensure that the passenger requesting a trip is a valid requestor of

information. The security policy defined in such a scenario should determine protection

mechanisms to enable a trust relationship between collaborating microservices. Furthermore,

since collaboration between microservices is predominantly defined over Hyper Text Transfer

Protocol (HTTP), the security policy should also define protection mechanisms to support strong

transport-layer security required for secure communication between distributed components of

the microservices architecture.

 Support for hierarchical security policy domains (Dell'Amico et al., 2013). Microservices

compositions require a high-level security policy to define protection mechanisms for the entire

composition, and also security policies specific to each component of the composition. Each

component of the composition represents a domain where component-specific security policies

can be enforced. To this end, the implementation of the architecture represents a hierarchy of

domains where policies are defined and enforced. The hierarchy ensures that certain sensitive

information remains confined to one component such as a particular microservice and some

information is securely shared between collaborating components. The hierarchical structure thus

requires security policy language support.

To be able to answer REVQ2 from Table 6.1, the next section identifies the various types of security

policies relevant in a microservices composition.

6.2.2 Categories of security policies

 In Chapter 5, the threat modeling of PickMeUp suggested protection mechanisms to mitigate threats

using the STRIDE threat classification model. From the threat analysis, the following list of policies may

be able to document the suggested protection mechanisms sufficiently:

94

1. Data protection policy (Satoh & Tokuda, 2015). Threats related to spoofing, data tampering, and

information disclosure require a data protection policy to protect the data in a composition. The

policy should define an encryption schema to protect data in transit and storage.

2. Access control policy (Andrews, Steinau & Reichert, 2017). An access control policy is required

to define permissions assigned to subjects that access components of the microservices

composition. Subjects in the context of a microservices composition include end-users, and also

components of the composition that require access to other components to function. Access

control aims to limit the damage when a component of the composition is compromised by

defining permissions required by each component and resources accessed by each component.

3. Microservice technology-specific policy (Yu et al., 2018). Microservices are built using software

libraries that may contain security vulnerabilities. In the 2017 State of Software Security report,

eighty-eight percent (88%) of applications written in Java, a popular technology for creating

microservices, had at least one component-based vulnerability (Veracode, 2017). Therefore,

microservices should have a technology-specific security policy focusing on mitigating

weaknesses in libraries. For example, for microservices developed using Java technology, a

technology-specific security policy should focus among others on mitigating the effects of the

OWASP Java top ten vulnerabilities (OWASP, 2013).

4. Network security policy (Yu et al., 2018). The network security policy is vital to control access

to components of the microservice composition effectively. For example, In the PickMeUp, the

Trip Management Microservice does not need direct access to passenger and driver information.

As a result, the network security policy should deny connection attempts from the Trip

Management Microservice to a passenger database. In the event of Trip Management

Microservice being compromised, the attacker will not have direct access to critical data. The

network policy can also be used to specify how logical addresses are allocated, distributed, and

managed for containers or virtual machines

5. Microservices composition security policies (Satoh & Tokuda, 2015). The security policy of the

entire microservices composition can be viewed as a combination of a policy to protect messages

exchanges between components of the microservices composition and an access control policy

defining how components are accessed. The composition security policy should describe how

exchanged messages are protected to ensure integrity and confidentiality. The policy should also

restrict access to specific capabilities provided by microservices. For example, in PickMeUp the

95

security policy may ensure that Passenger Notification Microservices is only allowed to call

actions on the Passenger Management Microservice to query details of a specific passenger but

may not update records on the database.

6. Virtual Machine and container security policies. The impact of security vulnerabilities in virtual

machine or containers cannot be ignored. Over thirty percent (30%) of official images in docker

hub, for example, contain high priority vulnerabilities (Yu et al., 2018). A security policy is

therefore required to mitigate against security vulnerabilities that may exist in the runtime

environments. The virtual machine or container security policy should define mechanisms to

prevent container breaches and in the event of breaches limit damages that can occur. For

example, the policy may determine mechanisms that block components of the microservices

composition from reading unsafe directories and ensure that each component is granted least

privileges to perform a function.

6.2.3 Challenges of a microservices composition security policy

Specifying a security policy for a microservices composition is a complex exercise. To begin with, there

are no policy languages and a standard to specify a security policy for RESTful web services (Yu et al.,

2018). Moreover, when the microservices composition security policy is created by combining the

security policies of each component, software engineers are forced to study multiple security policy

representations without tool support to identify possible security policy inconsistencies. The task is

further made complex because there is no precise definition of what a security policy inconsistency is in

such compositions (Satoh & Tokuda, 2011, Yu et al., 2018). Furthermore, a microservices composition

may compose other microservices compositions recursively resulting in security policies being applied

recursively. In such scenarios, a software engineer has to check the security policy hierarchy to confirm

that appropriate security is applied end-to-end, and this can be a daunting task.

6.2.4 General observation and discussion

The unavailability of established policy specification languages to represent security policies for

RESTful web services requires that a high-level language be used to manage microservices security

concerns. The absence of a common policy specification language means that there is no standardized

way to communication security requirements across different teams developing microservices. This

presents a security challenge when microservices from different teams collaborate to automate a business

96

function. engineers of microservices should, therefore, ensure that the APIs of all microservices treat all

input values as untrusted data that require strict validation. Despite the non-availability of a common

security policy specification language for RESTful services, existing security policy models such as

access control models can still be applied by each component of the microservices composition.

In addition to managing functional security requirements of microservices, the security of microservices

can be enhanced by using a collection of procedures or suggestions for best practices within an

organization. Secure programming best practices are part of procedures suggested in Chapter 5 that assist

in developing secure microservices compositions. The next section identifies appropriate programmable

practices and investigates how to use these practices to create safe microservices.

6.3 Adopt secure programming best practices

Microservices compositions, like any traditional web application, are not immune to known security

attacks such as SQL injections and Cross Site Scripting (XSS) (Ahmadvand & Ibrahim 2016). Each year,

most of the top ten web application vulnerabilities published by OWASP, (OWASP, 2017) are

vulnerabilities with documented guidelines on how to prevent attacks. Furthermore, in the 2017 State of

the Software Security report (Veracode, 2017), thirty percent of the web applications surveyed still had

SQL injection vulnerabilities. The recurring attacks are a result of software engineers not adhering to

documented security guidelines (Aljawarneh, Alawneh & Jaradat, 2017). Designing and developing

secure microservices compositions should, therefore, prioritize safe programming practices (Zhu et al.,

2014). This section aims to understand how secure programming practices can assist develop safe

microservices. The questions in Table 6.2 below provide a guideline to the review.

Table 6.2. Guiding questions on secure programming practices

Research questions Motivation

REVQ3. Which secure programming best practices can assist
engineers to avoid known security flaws when developing
microservices?

The aim is to elicit a list of secure programming practices
that can help eliminate security flaws in microservices
compositions.

REVQ4. How can software engineers adopt secure
programming practices without affecting the rate of
microservices releases?

The aim is to identify ways to enforce secure programming
practices without impacting Agile values.

97

The next section first identifies a taxonomy to assist in eliciting relevant secure programming best

practices, and then use the taxonomy to identify relevant secure programming best practices.

6.3.1 Taxonomy of secure programming practices

The Microsoft Secure Development Lifecycle defines four security principles namely secure-by-design,

secure-by-default, secure-by-deployment, and secure-by-communication, that provide a basis to reason

about secure software development in general (Howard & Lipner, 2006). This section uses the four

security principles as a taxonomy to assist in eliciting secure programming practices. First, the principles

are defined below in the context of a microservices composition.

 Secure-by-design - the architecture of a composition should contain a security discussion

detailing how security risks are mitigated, and how the attack surface is minimized. The premise

of secure-by-design is that it is often difficult for a microservices composition that is designed in

an insecure manner to be made secure after implementation and deployment. Secure-by-design

implies that components of a microservices composition are designed to be inherently secure.

 Secure-by-default - all components of a microservices composition should be provided with a

default configuration that is secure. Any insecure runtime configuration should be a result of a

deliberate effort by the user. For example, in PickMeUp, enabling default password aging and

password complexity for end users and ensuring that each microservice is deployed with a least

set of privileges goes a long way towards ensuring secure-by-default.

 Secure-by-deployment - the deployment pipeline for microservices is safe. For example, the

PickMeUp deployment pipeline which may constitute the source code version control system,

the tools for continuous integration, and mechanisms used to deploy the final artefacts on

containers should all be safe.

 Secure-by-communication - software engineers should respond promptly to reported security

vulnerabilities. The expectation is that software engineers are aware of newly reported

vulnerabilities and engineers can identify the potential impact any new vulnerabilities may have

on the microservices composition.

The next section attempts to address REVQ3 from Table 6.2 by using the four security principles

discussed above to identify secure programming best practices relevant to a microservices composition.

98

(a) Secure programming practices for secure-by-design

A security flaw in the design of a microservices composition may result in a security breach (Arce et al.,

2014, Williams & Woodward, 2015). In this regard, security requirements should be incorporated into

the initial architectural design of microservices compositions (Kadam & Joshi, 2015, Athanasopoulos et

al., 2015). Furthermore, the following guidelines are vital for safe microservices designs:

 Keep microservices design simple. Complex designs increase the likelihood that errors are

made in implementation, configuration and use of microservices. Furthermore, an elaborate

design makes it hard to enforce security policies (Sahu & Tomar, 2017).

 Ensure input validation on the microservices API. Microservices should ensure that all input

data from untrusted data sources is validated. Validating input data eliminates a majority of

injection vulnerabilities (Almorsy, Grundy & Müller, 2016, Sahu & Tomar, 2017).

 Give attention to source code compiler warnings. Microservices source code should be

compiled using the highest source code compiler warning level. Any compiler warnings

should be eliminated by modifying the code (White, 2015).

 Sanitize data sent to other microservices. Sanitization is cleaning or filtering input data. In

microservices, this involves checking for invalid UTF-8 encoding, removing line breaks, tabs

and extra white space and stripping octets in the input. The output of each microservice should

be secured by stripping out unwanted data. Sanitizing data helps secure data before rendering

to end user and prevents cross-site scripting attacks.

(b) Secure programming practices for secure-by-default
Ideally, microservices compositions should be inherently safe on deployment (Stanek, 2017).

Microservices compositions can be developed in a manner that makes them inherently safe when

engineers adopt the following practices:

 Adhering to the principle of least privilege. Components of a microservices composition should

execute with the least set of permission required to perform a function (Sittig & Singh, 2016,

Neumann, 2018). For example, a microservice should not have access to directories, databases

tables, and any other resources that are not required to perform its function. Any elevation in

permissions or privileges when needed should be authorized and held for a minimum period.

 Practicing defense-in-depth. Security risks in a microservices composition can be managed by

using multiple defense strategies. When one layer of defense becomes inadequate, another layer

of protection can be relied upon to prevent an attack (Williams & McCauley, 2016, Gkioulos &

99

Wolthusen, 2017). For example, a composition should rely on transport-layer security to secure

a connection between microservices as the first line of defense and microservices should use

access tokens to authenticate each other as the second line of defense in a REST communication

model.

 Denying access by default. Denying access by default means that by default, access to

components of the microservices composition should be rejected, and a protection scheme should

define conditions when access is permitted (Bertolino et al., 2014, Ulltveit-Moe & Oleshchuk,

2015).

(c) Secure programming practices for secure-by-deployment

The deployment process of microservices can provide a path that an attacker can exploit to make harmful

changes and deploy such changes into production environments or even perform a denial of service

attack. Secure-by-deployment requires the continuous delivery toolchain, the build, and test environment

to be secured so that changes are safely made in a repeatable and traceable manner. The following best

practices can go a long way towards ensuring secure deployments:

 Guaranteeing safe deployment pipelines. The deployment pipeline of microservices is made up

of the source code version control system, the continuous integration tool for compiling source

code, scripts of transferring the final artefacts to the production server, and mechanisms for

provisioning Docker containers on the production server. Secure by deployment requires that

each step in the deployment process be safe to prevent breaches (Gruhn, Hannebauer & John,

2013, Bass et al., 2015). The deployment pipeline should also provide trusted components that

mediate access to sensitive configuration information required during deployments.

(d) Secure by communication in microservices

Secure-by-communication requires that development teams respond promptly to reports of security

vulnerabilities and communicate information about security updates. To this end, engineers need to keep

abreast with new security vulnerabilities and have access to the latest security information. Software

engineers should, therefore, continuously acquire new information on most recent security exploits.

Although secure programming practices discussed above can adequately ensure safe microservices, the

theoretical knowledge of secure programming practices is not enough. The challenge as outlined in a

100

study by Veracode (2011) is a reluctance by software engineers to adopt secure programming practices.

A survey by Oyetoyan et al. (2016) noted that secure programming was practiced by less than fifty

percent (50%) of engineers and forty percent (40%) of architects. There is, therefore, a need to find ways

to encourage the adoption of secure programming practices. To this end, the next section attempts to

address REVQ4 from Table 6.2 by identifying ways to promote the adoption of secure programming

practices.

6.3.2 Enforcing secure programming practices

Zhu et al. (2013) attribute the reluctance to adopt secure programming practices to the fact that only a

small fraction of engineers is well-trained in secure software development. Efforts to encourage the

adoption of secure programming practices should therefore not underestimate the fact that many

engineers may not be trained in security. To this end, suitable methods to integrate and enforce secure

programming practices are those that seamlessly incorporate the practices into the day-to-day software

development activities of engineers in such a way that engineers view security as part of the expected

behavior of the microservices composition. Table 6.3 below consider each programming practice and

suggest methods to incorporate the programming practice into the microservices development process

seamlessly.

Table 6.3. Methods to enforce secure programming practices

Security principles Secure programming practices Methods to enforce the practices

1. Secure-by-design Keep the microservices design simple

 Document safe coding standards and ensure
reviews of designs and source code

 On developer's integrated development
environment (IDE) and continuous
integration tools use an analysis tool to
detect any cyclomatic complexity of the
microservices source code

Ensure input validation on the
microservices API

 Create security unit tests for input validations
as part of the existing unit testing framework.
The test suite should consider the use and
misuse cases to microservices API

101

 Security principles Secure programming practices Methods to enforce the practices

1. Secure-by-design
(continued)

Give attention to compiler warnings Install compiler warning plugins on
continuous integration tool and ensure those
compiler warnings are set to the highest
level

Sanitize data sent to other
microservices

 Create security unit tests that ensure that
microservices responses do not contain
invalid data and also assert that errors and
exceptions are caught in a manner that makes
microservices secure

2. Secure-by-default Adhering to the principle of least
privilege

 Ensure non-essentials operating system
services are disabled

 Automate the creation of Docker containers
or virtual machines and their security
configurations and ensure security
configurations are comprehensively
validated

 Microservices should always use HTTPS
 For Unix-based systems disable root login

Practicing defense in depth Perform penetration testing

Denying access by default Write security unit tests that assert that
microservices have no access to resources
they should not be permitted to access

 Ensure all microservices administration
interfaces are protected

3. Secure by deployment Ensuring secure deployment pipelines Document secure deployment guidelines
 Ensure secure access to microservices source

code and continuous delivery toolchain and
ensure binaries and other build artefacts are
signed to prevent tampering

 Ensure that keys, secrets, and credentials are
not stored in source code or plain text but in
a secure secret management system

 Monitor the continuous integration and
continuous delivery servers

4.Secure-by-
 communication

 Ensure that the development team has access
to the latest security news and reports

6.3.3 General observation and discussion

The suggested methods to enforce secure programming practices in Table 6.3 provide a practice-oriented

effort to incorporate secure programming practices in the development of secure microservices

compositions. The suggested methods require a bold initiative in teams that use Agile methods and

continuous delivery practices because the methods at the beginning are likely to have a negative impact

102

on the frequency of software releases, and require engineers to change their perception about security.

The following is vital to ensure seamless and effective adoption of secure programming practices:

 Translate secure programming practices into security requirements of a microservices

composition so that software developer view security as part of the expected behavior of the

composition. In this way, engineers will prioritize the security of microservices compositions.

 Use the continuous integration and continuous delivery toolchain to automate the identification

of violations of secure programming practices and security requirements. The toolchain can be

relied upon to provide early security testing feedback to engineers so that the security flaws are

addressed before microservices are deployed to any environment.

Although using secure programming practices is vital in the development of microservices as discussed

above, the benefits of secure programming practices can only be realized when security testing is treated

as an essential step in the microservices development process. The next section discusses how security

testing can be incorporated into the development process as an essential security-focused activity for

secure microservices.

6.4 Validate security requirements and secure programming best practices

In the context microservices, security testing can broadly be defined as testing requirements of

microservices that concern to data confidentiality, data integrity, authentication, authorization, non-

repudiation and also validating the ability of the microservices runtime environment to withstand attacks

(Paul, 2016). Security testing generally validates the correct implementation of specified security

requirements and identifies unintended vulnerabilities, by mostly using penetration testing attempts or

simulated attacks (Tian-yang, Yin-Sheng & You-yuan, 2010). In a fast-paced development environment

such as microservices, it makes sense to automate the validation of security requirements and secure

programming best practices. To this end, this section first identifies suitable criteria to evaluate if

available security-focused tools can be used for automated testing of microservices. The identified

criteria are used to review the feasibility of automating available tools for validating security

requirements and secure programming best practices. Questions in Table 6.4 are used to guide the review.

103

Table 6.4. Formulated research questions on automated security testing

Research questions Motivation
REVQ5. What attributes should a security-oriented testing tool
possess to seamlessly integrate into a fast-paced microservices
development environment?

The aim is to identify criteria to use to evaluate available
tool and determine the feasibility of automating the tools
in the microservices development process so that
security is given early attention in microservices.

REVQ6. Can existing security testing tools be used to automate
security testing in microservices?

The aim is to identify tools that are candidates for
security testing automation so that less human effort is
used on security testing.

The next section attempts to answer question REVQ5 from Table 6.4 by identifying the attributes

required of security testing tools.

6.4.1 Required attributes of security testing tools

The effective use of a tool for automated security testing in microservices depends on how seamlessly

the tools integrate into the microservices development process. In fast-paced development environments

such as microservices, a tool with the following attributes is likely to seamlessly integrate into the

development process without negatively impacting software engineers’ productivity:

 Ease to integrate (Kaur, 2017). Similar to any tool used to analyze source code, security testing

tools should be easy to integrate into an IDE or a continuous integration tool. Ease of integration

increases the chances of the tool being adopted without impacting a software developer’s

productivity.

 Easy to use (Le Ru, 2015). An ideal testing tool should not require engineers to have advanced

security knowledge to use. As indicated by Zhu et al., (2013), many software engineers are

generally not trained in security.

 Natural results interpretation (de Andrade Gomes et al., 2017). engineers should effortlessly be

able to understand reported security flaws, and if possible, the tool should provide details on how

the engineers can fix the security flaws.

 Extensive language support and portability. The microservices architecture is technology

agnostic. The tool should, therefore, not limit engineers to a particular programming language or

development platforms.

 Extensibility. The tool should allow engineers to add new capability when new security

vulnerabilities are reported.

104

Various security testing tools are readily available (Kuusela, 2017). The challenge in a microservices

development process is to identify which tools to integrate to validate security requirements. The next

section uses the five attributes discussed above to review readily available tools and identify their

suitability for automation and answer REVQ6 in Table 6.4.

6.4.2 Review of security testing tools

The integration of security testing tools in software development processes is an opportunity which many

software engineers has not fully exploited (Peischl, Felderer & Beer, 2016). There is a general ignorance

of security testing in many development teams and a significant dependency on external vendors to

perform penetration testing (Cruzes et al., 2017). Consequently, in many software development teams,

little attention is paid to security testing (Shuaibu et al., 2015). In order to address the security testing

challenge, this section reviews readily available tools to identify which tools are suitable for automated

security testing in microservices. First, the types of security testing are defined:

 Static security testing – checks the source code, design documents to find errors, code flaws, and

potentially malicious code when the code is not being executed.

 Dynamic security testing - validates the runtime behavior of the application for security

mechanisms when source code is being executed.

Table 6.5 reviews the popular, readily available, and non-proprietary tools namely GauntIt (Kuusela,

2017), SonarQube (Campbell & Papapetrou, 2013), and FindSecurityBugs (Kuusela, 2017), for their

suitability in microservices using the attributes discussed in section 6.4.1 above. A comprehensive list of

both commercial and non-commercial tools is reviewed by Kuusela (2017).

105

Table 6.5. Review of security testing tools

 SonarQube Gauntlt FindSecurityBug

Description SonarQube is an open source tool
for inspection of code quality
(Campbell & Papapetrou, 2013)

Gauntlt is a security testing
framework that incorporates
other security testing tool
(Kuusela, 2017)

FindSecurityBugs is an open
source security testing tool
(Kuusela, 2017)

Testing
approach

Both static and dynamic
functional testing (SonarQube,
2018).

Dynamic testing functional
testing (Gauntlt, 2017)

Static testing functional testing

Ease to
integrate

Easy set up with simplified
integration using dedicated
plugins for IDEs and continuous
integration tool

Gauntlt is easy to integrate with
continuous delivery tools and
other testing tools. Installing
attack tools and maintaining
them may take time

Easy integration into with
continuous delivery tools and
plugins exist for many IDEs

Easy to use Easy to use on IDE or using a
browser interface. A software
engineer can specify their quality
gates

Security-attack scenarios are
described in a straightforward
human-readable language
called Cucumber (Gauntlt,
2017).

FindSecurityBugs is simple to use,
and there are plugins to integrate
into an IDE.

Results

presentation

Results displayed on a user
interface with notes on detected
issues

Gauntlt require custom parser
to automate results to desired
granularity

Results exportable into a format
understood by continuous delivery
tools

Portability Provides support for more than 20
programming languages like Java,
C++, and C#, etc (SonarQube,
2018)

Gauntlt requires Ruby to be
installed (Storms, 2015)

FindSecurityBugs support only for
Java web applications

Extensibility An extension guide is provided to
assign engineers to write their
plugins (SonarQube, 2018)

New attack scenarios can be
written using a language called
cucumber (Storms, 2015)

FindSecurityBugs can be extended
by writing new detectors

6.4.3 General Observations and Discussion

Table 6.5 above indicates that tools such as SonarQube, GauntIt, and FindSecurityBugs can easily be

integrated into software engineer’s IDEs and continuous integration tools, and are easy to use and

extensible. The tools are all suitable for automating security testing in microservices development

environments. Among the reviewed tools, SonarQube is more suited because it supports many languages

106

and frameworks, provides both static and dynamic testing, and is easy to use and can also be integrated

to other tools like FindSecurityBugs.

The successful use of security testing tools as discussed above, however, requires upfront effort to ensure

that a baseline of ready-to-use security tests cases is provided. The security test cases should preferably

be written in a manner that is understandable by all stakeholders to ensure broader collaboration.

Software development teams should, therefore, consider incorporating a development methodology that

supports communication between the business customers, engineers, and the testers, by using acceptance

tests cases commonly used in behavioral-driven development (Solis & Wang, 2011). Furthermore, the

use of security testing tools should be informed by the results of a thorough threat modeling process as

discussed in Chapter 5. The threat modeling techniques and the available tools discussed above provide

a platform for providing innovative techniques to promote comprehensive security testing (Peischl,

Felderer & Beer, 2016).

In addition to security testing discussed in the section above, the threat modeling exercise conducted in

Chapter 5 identified securing the runtime environment as one of the methods that can reduce the attack

surface of microservices compositions. The next section reviews mechanisms to ensure secure runtime

environments of microservices.

6.5 Secure configuration of runtime infrastructure

Most types of attacks on microservices, whether executed through the network channel or on the

composition, ultimately target the runtime environments where data is stored, and the microservices run.

Any runtime environment that allows default user accounts, run unnecessary operating system services,

and unpatched software libraries provide an attacker with pathways to gain control of microservices

(Terala & Cole, 2015). The runtime should, therefore, be provisioned in a manner that ensures the safety

of microservices. The first step towards ensuring a secure runtime environment is to formalize a secure

configuration baseline of both hardware and software components, and then later validate the

configuration when microservices are deployed (Hochstein & Moser, 2017).

Currently, various tools are used in industry to configure the runtime environments albeit not for security

(Robinson & Northcut, 2016). It makes sense to extend the use of available tools so that the provisioning

107

of the runtime infrastructure also integrates with security aspects. This section aims to understand if it is

possible to create a re-usable template-based security configuration that automatically scales and support

rapid deployment of secure microservices using available tools. Questions in Table 6.6 below are used

to guide the evaluation.

Table 6.6. Formulated research questions on secure configurations

Research questions Motivation

REVQ7. What capabilities makes a tool suitable for
creating secure runtime environments as part of the
microservices development process?

To identify criteria that can be used to identify tools that
can be effectively used to create secure microservices
runtime environments.

REVQ8. Can the widely used configuration
management tools be easily used to create secure
microservices runtime environment?

To understand how to leverage the available tools to
create secure microservices runtime environments.

A vital step towards evaluating the feasibility of using the available tools for automating the creation of

secure runtime infrastructure for microservices is first to identify an evaluation criterion suitable for

microservices. The next section identifies the criteria and addresses REVQ7 in Table 6.6.

6.5.1 Capabilities for secure configurations

The following capabilities are vital to ensure the effective creation of secure runtime environments for

microservices:

 Support for different security requirements (Tang et al., 2015). The microservices composition

is a distributed system composed of components that may have different security needs. As a

result, each component should have its security configuration that defines the security concerns

of the component (Torberntsson & Rydin, 2014, Wettinger et al., 2014).

 Allow authoring and version control of security configuration files (Morris, 2016, Ikeshita et al.,

2017). In a fast-paced microservices development environment, it is essential to ensure that

security configurations files are treated like software source code so that any changes on the

configuration files are tracked and go through the formal change control process before

deployment.

 Support for validation of configurations (Huang et al., 2015, Baset et al., 2017). Any changes to

configurations should be tested first to ensure configurations are not a source of vulnerabilities.

108

 Easy management of dependencies between configuration files (Tang et al., 2015). Dependency

between security configuration files may become unavoidable. These dependencies should

preferably be expressed the same way as software source code dependencies for easier

maintenance.

 Low learning curve (Fernández et al., 2016). Security configuration files should be written in

languages that are close to natural language to make it easy for the software engineers with less

security knowledge to be able to maintain (Fernández et al., 2016).

The next section evaluates the feasibility of leveraging the widely used tools to create re-usable template-

based security configurations. Characteristics identified above are used in the evaluation. The section

aims to address question REVQ8 from Table 6.6.

6.5.2 Review of tools for secure configurations

The tools that are common in the industry for configuration management are Chef (Taylor & Vargo

2014), Puppet (Loope, 2011), Ansible (Hall, 2015), and SaltStack (Myers, 2016). Table 6.7 below

provides a review of each tools using the capabilities discussed above.

Table 6.7. Review of configuration management tools

 Chef Ansible SaltStack Puppet

Description Chef is an open
source
configuration
management tool.
Chef uses a pure-
Ruby domain-
specific language
(DSL) for
describing the state
of system
resources, packages
to be installed,
services that should
be running (Taylor
& Vargo, 20141)

Ansible is a tool for
automating software
provisioning and
configuration
management.
Configuration files are
written in YAML
format. The YAML file
represents a task also
known as a play and
stored in playbooks
(Hall, 2015).

SaltStack is an open
source configuration
management tool. It is
written in Python and is
designed to be highly
modular and easily
extensible (Myers,
2016).

Puppet is also an open
configuration
management tool. The
tool follows the concept
of agent- master
relationship (Loope,
2011). State of system
resources is described
using a declarative
language or a Ruby DSL
and stored in files called
Puppet manifests.
Compiled manifests
reapplied on a target
system.

109

 Chef Ansible SaltStack Puppet

Platform
Support

Chef is supported
on Linux, Mac OS,
and Microsoft
Windows
platforms. Chef
integrates into
cloud-based
platforms such as
Amazon EC2 and
Microsoft Azure
(Marschall, 2015).

Ansible is supported on
Linux. Mac Os, Solaris.
On Microsoft Windows
platforms Ansible
requires a Linux control
machine (Hall, 2015).

SaltStack is supported
on Linux, Mac Os,
Microsoft Windows
platforms (Hall, 2016).
It is not open source and
cannot be customized
easily.

Puppet runs on Linux,
Mac Os, Microsoft
Windows platforms
(Loope, 2011).

Support for
diverse use
cases

Different
configurations
called recipes can
be written using
Ruby for each use
case. The recipes
can be grouped to
form a cookbook
for more natural
management. More
than 800 recipes are
freely available
(Marschall, 2015).

Different playbooks can
be used for each use
case (Hall, 2015). The
Ansible's architecture is
based on controlling
machines and nodes.
However, more features
are in a paid version.

The DSL used by
SaltStack provide a rich
set of features for a
diverse use case (Hall,
2016).

Different resources can
be used for each use
case. Puppet main
features are in its paid
enterprise version
(Loope, 2011).

Authoring and
version control

Recipes can be
versioned and
stored in version
control (Marschall,
2015).

Ansible playbooks can
be stored in version
control systems (Hall,
2013).

Recent versions of
SaltStack support
integration to version
control.

Puppet configuration
files can be stored in
version control systems.

Validation Chef supports unit
tests, functional
tests, and
integration tests of
recipes (Marschall,
2015).

Ansible support unit
test, functional tests,
and integration tests of
playbooks (Hall, 2013).

SaltStack provides a unit
test and integration test
suite.

Puppet support unit
tests, functional tests,
and integration tests of
resources (Loope, 2011).

110

 Chef Ansible SaltStack Puppet

Dependency
management

Dependencies
between recipes can
be defined on each
configuration file
(Marschall, 2015).

A playbook can import
or reference other
playbooks (Hall, 2013).

All of the SaltStack
execution modules are
available to each other
and modules can call
functions available in
other execution modules
(Hall, 2016).

Puppet maintains a
graphical representation
of the list of resources
and their
interdependencies
(Loope, 2011).

Easy learning Chef is easy to
install and set-up.
However, recipes
require knowledge
of Ruby to write or
understand. Chef
has an active
support community.
(Marschall, 2015).
The documentation
although rich
concerning content
can become
difficult to read
because the user
has to navigate
through many links
on the website.

Ansible is easy to
install and set-up. The
playbooks are
expressed in YAML
format that has
minimum syntax and is
easy to learn because it
is close to simple
English representation.

SaltStack is difficult to
set-up for new users as
the available
documentation is
difficult to understand at
the introductory level
(Tsumak, 2016). The
web UI is newer and less
complete compared to
other tools. Support for
non-Linux platform is
not good.

Puppet provides simple
installation and initial
setup. The user interface
is mature and complete.
There is a well-
established support
community. Puppet also
has a robust reporting
capability (Loope,
2011).

6.5.3 General observations and discussion

The review of existing configuration management tools in Table 6.7 above shows that the available tools

possess the required capabilities to create reusable template-based security configurations. The available

configuration management tools are primarily similar in functionality, and engineers of microservices

should be able to use any tool of their choice. In a development team that has no previous experience

with any tool, choosing an ideal tool may be hard. In order to assist software engineers to select an ideal

tool, the review identifies the following critical points for each tool:

 Chef is a software engineer-friendly platform and provides various tools for engineers such as the

Chef developer toolkit and the Chef knife plugin. Chef offers many different recipes or modules

for free that engineers can use off-the-shelf. The capability to create different recipes using Ruby

makes Chef a highly customizable configuration management tool. However, Chef had three

reported security vulnerabilities of medium severity listed on the common vulnerability exposure

(CVE) database at the time of writing, and engineers should ensure that an attacker does not

exploit these.

111

 Puppet is considered a system administrator-oriented tool and may be difficult to use for a

software engineers with no system administration background. However, previous knowledge of

system administration is becoming less relevant with each new release as the tool is improved.

Most of the functionality of Puppet is in the paid-for enterprise version. A development team that

does not need many features can undoubtedly use the open source version. However, the team

may need engineers with strong Ruby programming skills to add new capabilities when the need

arises. Puppet had fifty-one vulnerabilities on CVE at the time of writing.

 Ansible is relatively new and is therefore not as mature compared to Chef and Puppet. However,

Ansible is a better choice for new and small development teams that do not want to spend much

on configuration tools and do not have the time to learn how to use some of the more complicated

configuration management tools. The drawback of Ansible is that the tool is not easy to customize

because it is not open source and the graphical user interface has insufficient features. Ansible

had six security vulnerabilities on CVE at the time of writing.

 SaltStack’s most significant advantage is scalability and resiliency. SaltStack provides multiple

levels of masters in a tiered arrangement that both distributes load and increases redundancy.

SaltStack, however, lacks many features and refinements to make the tool enterprise-ready. The

tools lack support for strict transport-layer security. The tool also poses a significant learning

curve for new users. SaltStack had twenty-one security vulnerabilities on CVE at the time of

writing.

In addition to creating secure runtime environments for microservices discussed above, engineers of

microservices require a continuous insight into the behavior and health status of each component of the

microservices composition. The next section identifies mechanisms to ensure that engineers are aware of

the behavior of the components of a microservices composition at all times.

6.6 Continuously monitor components of the microservices composition

In order to troubleshoot security related challenges at runtime, engineers of microservices always require

insight into the behavior of each component of the microservices composition. An attack on a component

may result in a component responding slowly to requests or becoming unavailable. In a microservices

composition, distributed tracing of communication between components and access to each component's

log files are vital to understanding attacks. To this end, it is essential to identify the features of each

112

component at design time that are necessary and sufficient to describe and understand the component's

runtime security behavior. These features can then be used to determine how any changes in a property

will affect the overall status and health of the application. Monitoring metrics can then be defined using

the essential features of the components. In a microservices architecture:

 Each component of the microservices architecture, for example, the microservices, service

registry and message broker should have its own set of metrics. The metrics define the

availability of each component, determine acceptable responses time of each component, identify

the origin of each request sent to a component and define how to log errors and exceptions in the

application.

 The infrastructure that host the components of a microservices composition should have defined

metrics. The infrastructure metrics are those that pertain to the status of the infrastructure and the

servers on which the microservice is running. Monitoring docker containers, virtual machines,

and networks give an insight into each how each component is using, for example, the CPU,

memory, and connections to resources like the database.

The following questions in Table 6.8 are formulated to guide the review.

Table 6.8. Formulated research questions on monitoring mechanisms

Research questions Motivation

REVQ9. What is required to monitor distributed

microservices effectively?

To understand the requirements for microservice
monitoring

REVQ10. Can available tools assist gain better visibility

of microservices and the runtime environment to ensure

continuous security?

To gain an understanding of what mechanisms are

available to monitor microservices.

REVQ9 is addressed by eliciting the various characteristics that are required to monitor microservices

architecture components effectively, described next.

6.6.1 Requirements for security monitoring

The distributed nature of components in a microservices architecture requires a tool that is:

113

 Customizable (Fatema et al., 2014, Sun, Nanda & Jaeger, 2015). In a microservices architecture,

different components require different security monitoring metrics. Software engineers of

microservices-based applications need tools that allow them to customize the tools to gather

different security metrics for each component.

 Complete. Continuous security of microservices-based applications such as PickMeUp requires

that software engineers have visibility to both the runtime infrastructure, the microservices,

service registry, the API gateway, the message broker and the infrastructure. A suitable tool is

needed to provide a comprehensive view of the application at runtime.

 Scalable (Gogouvitis et al., 2012, Aceto et al., 2013). The number of composed microservices in

the application may increase as new business functionality is automated, and therefore a

monitoring tool needs to scale as new microservices are added.

 Portability (Aceto et al., 2013, Fatema et al., 2014). Microservices are portable artefacts

deployable on different platforms. Therefore, the ability to use a monitoring tool on a different

platform is indispensable.

The next section identifies existing tools that can assist gain better visibility of microservices at runtime

to answer REVQ10 in Table 6.8.

6.6.2 Review of existing monitoring tools

The general observation is that the monitoring tools can broadly be classified as follows:

 Proprietary tools. Proprietary tools belong to Infrastructure provider or third-party organizations.

 Free or open-source tools. Free or open-source tools are freely available monitoring tools.

Table 6.9 provides a summary of a few most common monitoring tools (Fatema et al., 2014). The tools

are CloudWatch, CloudMonix, Dynatrace, Zabbix, Prometheus, and AppDynamincs. The summary

considers the requirements for monitoring discussed above. Characteristic discussed in Section 6.6.1 are

used to review the tools.

114

Table 6.9. Review of most common monitoring tools

 CloudWatch CloudMonix Dynatrace Zabbix Prometheus AppDynamics
(Microservices
IQ)

Description Amazon
CloudWatch is a
web service that
provides real-time
monitoring of
resources
(Amazon, 2017).

CloudMix is
an Inbuilt
monitoring
service for
Azure
resources
(Microsoft,
2014)

Dynatrace
monitors the
availability
and
performance
of
applications
and the
impact on
user
experience

Zabbix is an open
source monitoring
tool for networks,
operating systems,
and applications
(Vacche, 2015)

Prometheus
is an open-
source
monitoring
and alerting
tool

AppDynamics
is an
application
performance
management
(APM) tool for
monitoring and
management of
management of
software
performance
(AppDynamics,
2018).

Licensing Proprietary Proprietary Proprietary Open source Open source Proprietary

Types of
monitoring

Can be used for
performance
monitoring,
Availability
monitoring.
Azure log
analytics monitors
containers
(Amazon, 2017).

Can be used
for
performance
monitoring,
Availability
monitoring.
Azure log
analytics
monitors
containers
(Microsoft,
2014),

Availability
monitoring,
Performance
monitoring,
Container or
Virtual
machine
monitoring.

Availability
monitoring,
Performance
monitoring,
Container or
Virtual machine
monitoring
(Vacche, 2015)
.

Availability
monitoring,
Performance
monitoring,
Container or
Virtual
machine
monitoring.

Availability
monitoring,
Performance
monitoring,
Container or
Virtual
machine
monitoring
(AppDynamics,
2018).

115

 CloudWatch CloudMonix Dynatrace Zabbix Prometheus AppDynamics
(Microservices
IQ)

Customizability Custom metrics
can be sent to
CloudWatch
using an API
(Amazon, 2017).

Supports
native
integrations to
popular third-
party
platforms like
AppDynamics,
Nagios,
Dynatrace to
process
information
(Microsoft
,2014).

REST API
provides
means to
integrate
Dynatrace
into
continuous
deployment
pipeline.

Zabbix support
custom metrics
(Vacche, 2015).

Can be
customized
by writing
new
exporter or
custom
collector.

Alert based on
custom
validation of
HTTP
response.

Complete Can be used to
monitor both
application and
containers.
Docker container
logs can be
retrieved from
CloudWatch
(Amazon, 2017).

CloudMonix
can monitor
the containers
or virtual
machines and
the
microservices
(Microsoft,
2014).

Can monitor
microservices
and Docker
monitoring
integrates
seamlessly,
with no
configuration.

Zabbix can monitor
application and
containers.

Zabbix can
monitor
application
and
containers.

AppDynamics
monitors both
microservices
and the runtime
environment
(AppDynamics
2018).

Scalable When application
auto-scale
programmatically,
events sent to
Amazon
CloudWatch
(Amazon, 2017).

Provides auto-
scaling
capabilities for
Azure VM
(Microsoft,
2014).

Auto-
discovers and
monitors
containers
without
touching
images.

Supports auto-
discovery of servers
and network
devices.

Zabbix may
require new
installation
to handle
the new
load.

AppDynamics
automatically
discovers new
microservices
endpoints.

Portability Amazon
CloudWatch
works on both
Windows and
Linux platforms
(Amazon, 2017).

Azure
supports a
selection of
operating
systems,
programming
languages,
frameworks,
tools,
databases, and
devices. Runs
Linux and
Docker
containers
(Microsoft,
2014)

Supports both
Linux and
Windows
platform.

An agent can be
installed on UNIX
and Windows hosts.
Zabbix also support
agent-less
monitoring using
other protocols like
TCP (Vacche,
2015).

Supports
both Linux
and
Windows
platform

AppDynamics
agents are
available for
many
programming
languages,
frameworks.
An agent can
run Linux and
Docker
containers
(AppDynamics,
2018).

116

6.6.3 General observation and discussion

A review of currently available monitoring tools in Table 6.8, both open source and proprietary, shows

that these tools are adequate to monitor microservices, containers and virtual machines. Most of these

tools are production-ready. The monitoring tools provide proper logging of all relevant and essential

information required by engineers to understand the state of the microservice at any time. The tools

discussed in Table 6.8 provide well-designed dashboards that reflect the health of the microservices,

organized in a manner that is understandable. The tools provide alerts for critical metrics, which enables

engineers to mitigate and resolve problems. With useful logging, dashboards, alerting, the microservice's

availability can be protected, failures and errors detected and reduced. With many tools to choose from,

the following security decisions should be considered:

 The limitation of agent-based tools such as AppDynamics, Dynatrace, and Zabbix is that they

often rely on installing an agent on the container or virtual machine. When the container or virtual

machine is compromised, the results collected from monitoring may not be trustworthy (Sun,

Nanda & Jaeger, 2015). Monitoring for security should be built based on the assumption that the

runtime environment hosting microservices cannot be trusted because it is possible for an attacker

to gain control over it.

 Tools used for monitoring should not introduce any vulnerabilities. Monitoring capabilities such

as user-based access control, secure notification and storage are essential.

In addition to the security considerations above, the following limitations should be considered when

selecting a tool:

 Proprietary tools may result in vendor lock-in as they are part of the technology stack of a vendor.

For example, CloudWatch is a proprietary monitoring tool for Amazon cloud services while

Azure watch is a is a proprietary tool for monitoring Microsoft cloud services.

 Proprietary tools require license fees.

 Open-source tools can be hard to use. The user of the tools should make sure the tools are set up

to be resilient and scalable.

In addition to monitoring microservices, the final security development requirement is to ensure that

microservices respond securely to changes in their runtime environment. The next section reviews

methods that enable microservices to react safely to changes in their environment at runtime.

117

6.7 Securely respond to attacks using adaptation mechanisms

Microservices-based applications are distributed systems implemented using a collection of components

that independently evolve and react to their environments and other external factors. The distributed

nature of components creates many potential points of failures. Failures could be a result of a security

attack or a component becoming unavailable due to technical reasons. The premise of developing secure

microservices-based applications is the ability to withstand failures and expected attacks. The

applications should be built with failure in mind to ensure that the applications can respond securely to

both internal as well as external changes that can affect the security posture. Reaction to changes should

not involve manual intervention. The reaction to changes without manual intervention is called self-

adaption. Secure self-adaptation in microservices is the achievement of a safe, stable and desirable

configuration in the presence of malicious attacks. The below question is used to survey the literature on

microservices secure self-adaptation.

Table 6.10. Review of most common monitoring tools

Research question Motivation

REVQ11. How can microservice be designed to
withstand a failure in the event of a security attack?

To understand the requirements and available methods to
achieve secure self-adaptation of microservices.

The next section identifies elements for self-adaptation.

6.7.1 Requirement for secure self-adaptation

Designing microservices-based application for failure in the event of a security attack require the

application to possess the following capabilities:

 Self-protection: The ability of microservices to secure themselves against potential attacks

(Behringer et al., 2015).

 Self-configuration: Requires the microservices to securely reconfigure themselves, based on self-

knowledge, discovery, and intent (Behringer et al., 2015).

The following approaches can achieve self-protection and self-configuring of the microservices

composition:

118

 Ensuring availability of components (Dragoni et al., 2017) -given that a microservice, the service

registry, the gateway and message broker can be unavailable at runtime as a result of an attack,

deploying replicas of the component can assist in ensuring availability. When one instance is

unavailability, the replica can service requests.

 Self-healing capabilities (Toffeti, 2015) - self-healing is the ability of a component in the

microservices architecture to restart itself if the component is not in health status. A

microservices-based application can take advantage of tools like Kubernetes (Brewer, 2015).

These tools provide functionality to cluster containers.

 Isolating failures (Fontesi & Weber, 2016) - microservices should be equipped with the ability to

fail fast or provide a fallback if the microservices is unavailable or the response time is slow.

Example of implementation is to use the circuit breaker pattern (Fontesi & Weber, 2016). The

Netflix Hystrix (Fontesi & Weber, 2016) is an example of an implementation that uses the circuit

breaker pattern.

6.7.2 General observations and discussion

A review of the literature on self-adapting microservice shows that security is briefly addressed (Sun,

Nanda & Jaeger, 2015). The technology to enable self-healing of microservices is new and not yet

mature. Tools have not yet matured to be used to address the security of microservices. Tools such as

Kubernetes are still on the Alpha-support level for Windows platforms (Kubernetes, 2018). The Netflix

Hystrix library used to isolate failures is only available to microservices built using Java. Only the option

to ensure component availability using clustering and load balancing is established in the software

development community. There is reliance on cloud vendor to achieve scalability (Sun, Nanda & Jaeger,

2015).

The section above has discussed the various security activities that are required to create a secure

microservices-based application. The next section provides a summary of the findings.

119

6.8 Summary

The microservices architecture decomposes applications into a myriad of small, distributed and

conversational microservices that cannot be designed to trust each other entirely. The compromise of one

component may bring down the entire application. Given this background, this chapter reviewed six

security activities that are required to ensure that microservices compositions are designed and developed

for security. Table 6.11 below summaries the review and identify the research gap.

Table 6.11. Summary of the review of security activities

Security
activity

Research
questions

Findings Summary Potential
research

1. Define a
security policy
of microservices
composition

REVQ1. What is
a good
microservices
security policy
design?

1. Support for distributed and loosely
coupled microservices interactions
2. Support for hierarchical security
policy domains

1. There is currently
no policy languages
and a standard to
specify a security
policy for RESTful
web services
2. engineers need to
define a
microservices
composition
security policies
manually

Creating a
hierarchical
security policy
model for a
microservices
composition

REVQ2. What
categories of
security policies
apply to a
microservices
architecture?

1. Data protection policy
2. Access control policy
3. Microservice technology-specific
policy
4. Network security policy
5. Microservice composition security
policies
5.Virtual Machine and container policy

2. Adopting
secure
programming
practices

REVQ3. Which
secure
programming
practices can
assist engineers to
avoid known
security flaws
when developing
microservices?

1. Keep the microservices design simple
2. Ensure input validation on the
microservices API
3. Give attention to compiler warnings
4. Sanitize data sent to other
microservices
5. Adhering to the principle of least
privilege
6. Practicing defense in depth
7. Denying access by default.
8. Ensuring secure deployment pipelines

1. Each year, most
of the top ten web
application
vulnerabilities
published by
OWASP are known
vulnerabilities
2. Software
engineers and
architect are
reluctant to adopt
secure programming
practices
3.A small fraction
of software
engineers are well
trained in secure
software
development

Formulate
practice-
oriented
methods to
integrate safe
programming
practices into
the software
development
process of
microservices

120

Security
activity

Research
questions

Findings Summary Potential
research

2. Adopting
secure
programming
practices
(continued)

REVQ4. Can
secure
programming
practices be
enforced without
affecting the
benefits of
continuous
delivery and agile
methods?

1. Translating secure programming
practices into secure coding standards or
were possible microservices security
requirements
2. Documenting the security
requirements into security policies
3. Using the continuous delivery
toolchain as a point were violations of
secure programming practices, and
security requirements are identified and
attended to

3. Security
testing

REVQ5. What
characteristics
should a security
testing tool posses
to effectively
integrate into a
continuous
delivery and agile
development
environment?

1. Ease to integrate
2. Easy to use
3. Easy results interpretation
4. Extensive language support and
portability
5. Extensibility

1. There is a
significant
dependency on
external vendors to
perform penetration
testing
2. Little attention is
paid to perform
security testing
across the entire
life-cycle of the
development
process in agile
teams

Create a
framework to
ensure
systematic
integration of
security testing
into all phases
of the software
development
life-cycle

REVQ6. Can
existing security
testing tools be
used to automate
security testing in
continuous
delivery and agile
practices?

SonarQube (Campbell & Papapetrou
2013).Gauntlt (Koc et al.
2017)FindSecurityBugs (Arteau 2016)

4. Creating
secure runtime
environment
configurations

REVQ7. What
capabilities
should a platform
or tool possess for
secure
configurations?

1. Support for diverse security
configuration use cases
2. Allow authoring and version control
of security configurations
3. Validation of configurations
4. Easy management dependencies
between configuration files
5. Low learning curve

1. Minimal effort
has been made to
use the various
management tools
to ensure secure
configurations
2. There is a lack of
documented
precedent when it
comes to using
configuration
management tools
for an audit against
security standards

Leverage
existing
configuration
management
tools to create
programmable,
automated and
template-based
security
configurations

121

Security
activity

Research
questions

Findings Summary Potential
research

4. Creating
secure runtime
environment
configurations
(continued)

REVQ8. Can the
widely used
configuration
management tools
be leveraged to
create secure
microservices
runtime
environment?

Tools like Chef, puppet, Ansible can be
used to configure secure runtime
environment for microservices

5. Monitoring
mechanisms

REVQ9. What is
required to
monitor
distributed
microservices
effectively?

1. Customizability
2. Complete
3. scalability
4. Portability

Both open source
and proprietary
tools are adequate to
monitor
microservices and
the containers. Most
of these tools are
production-ready

REVQ10. What
available tools
can assist gain
better visibility of
microservices at
runtime?

Example include CloudWatch,
CloudMonix, Dynatrace, Zabbix,
Prometheus, AppDynamics
(Microservices IQ)

6. Secure
microservices
adaptation

REVQ11. How
can microservices
be designed to
withstand a
failure in the
event of a security
attack?

1. Ensuring availability of components
using clustering technologies
2. Using container orchestration tools for
secure self-healing
3. Isolating failures using the circuit
breaker pattern

The technology to
enable self-healing
is not yet mature
and lacks cross-
platform support

Table 6.11 above shows that although little attention has been paid to develop secure microservices-

based applications, many tools and methods are available that can be used to ensure end-to-end security.

There is therefore a need to create a framework to ensure systematic integration of various tools,

techniques and methods into all phases of the software development life-cycle to ensure security.

6.9 Conclusion

The review in this chapter has shown that the development of a secure microservices composition that

can continue to function securely under malicious attacks is a complex exercise. Despite the challenge,

the goal of creating secure microservices compositions can be achieved when a set of secure development

activities that focus on the security aspects of a composition are integrated early into the development

122

process. First, there is a need to ensure precise documentation of security requirements using various

types of security policies. The security policy comprehensively captures all the protection measures of

various components of the compositions. Then, during the design and development of each microservices

many security vulnerabilities resulting from poorly constructed microservices should be avoided by

adopting secure programming practices. The integration of safe programming practices should be done

in a manner that is friendly to software developers with little security expertise, and also in a way that

does not affect the productivity of software developers.

Microservices compositions applications can also be inherently secure when engineers exploit new

opportunities that security testing tools bring into the microservices development environment.

Conducting security testing early in the development process allow security vulnerabilities to be

identified. Identified security vulnerabilities can then be addressed early in the development process.

Code-driven, configuration management tools, should also be adapted to provide standardized, secure

configurations of microservices and their runtime environments using commonly tested templates.

Microservices compositions can be made more secure by using mechanisms to detect any anomalies at

runtime which can compromise security.

 The next chapter discusses the development of a framework to ensure microservices that provide end-

to-end security. The framework incorporates practice-oriented methods to integrate safe programming

practices into the software development process of microservices and ensure systematic integration of

security testing into all phases of the software development life-cycle. The framework leverages existing

configuration management tools to create programmable, automated and template-based security

configurations.

123

PART III

124

Chapter 7

SAFEMicroservices

A Development Framework for Secure

Microservices Compositions

7.0 Introduction

Secure software development approaches have been created in the past to assist software engineers.

However, many organizations find the cost associated with using existing secure software development

approaches or methodologies prohibitive (Geer, 2010, Viega, 2011). Secondly, existing secure software

development approaches are designed for sequential software development methodologies (Baca &

Carlsson, 2011, Jøsang, Ødegaard & Oftedal, 2015). In this regard, it is difficult for software engineers

to apply these secure software development approaches in iterative software development methodologies

such as the Agile methodology. Furthermore, these existing secure software development approaches

were designed for siloed software development environments were roles of software engineers and

infrastructure engineers are not tightly coupled (De Win et al., 2009). On the contrary, DevOps, a new

trend in software development, advocate for a multidisciplinary team working together in a fast-paced

manner. The existing secure development approaches, therefore, fall short when developing secure

microservices compositions in fast-paced environments. Accordingly, this chapter proposes a practice-

oriented framework to assist software engineers in fast-paced teams in developing secure microservices

compositions from the ground up. The framework is called SAFEMicroservices.

The fundamental premise of SAFEMicroservices is that security should inherently be built in a

microservices composition by using a robust architecture design (Feng et al., 2016, Santos, Tarrit &

Mirakhorli, 2017). SAFEMicroservices is based on the argument that the architecture of microservices

should incorporate design decisions that promote security. This argument is based on a concept called

secure-by-design discussed in Chapter 5. Furthermore, SAFEMicroservices is based on the view that

125

when software engineers adopt appropriate security-focused tools and techniques as part of their daily

software development tasks, a coordinated security strategy can be created that cultivates a security-

conscious culture among software engineers. A security-conscious culture becomes an essential quality

that enables software engineers to build secure and resilient microservices compositions (AlHogail,

2015). SAFEMicroservices is generic in approach to security but flexible enough in its application so

that it accommodates variations in the implementation using different technologies, software

development methodologies, and also considers the risk profile of the intended microservices

composition.

The organization of this chapter follows the following sequence: Section 7.1 introduce the aims of the

SAFEMicroservices. Section 7.2 discusses SAFEMicroservices in detail. Section 7.3 summaries the

benefits of the SAFEMicroservices approach. A conclusion then follows in section 7.4

7.1 Aims of the SAFEMicroservices framework

In addition to addressing the lack of a light-weight secure software development methodology that can

be used in a fast-paced development team, the SAFEMicroservices framework aims to contribute the

following to the development of secure microservices.

a) Comprehensive analysis of security threats and vulnerabilities associated with the

microservices architectural style

Although studies have been undertaken on microservices security, these have been piecemeal approaches

(Sun, Nanda & Jaeger, 2015, Yarygina and Bagge, 2018). Such studies are largely not based on design-

level security considerations which requires a deep understanding of the application's architecture to

uncover design flaws. Design flaws are often one of the underlying causes of the difficulties faced by

software engineers when implementing software patches in the event of security breaches (Feng et al.,

2016). With this in mind, the foundation of SAFEMicroservices is a comprehensive analysis of the

security threats and vulnerabilities rooted in the microservices architectural style.

b) Comprehensive set of coding guidelines focused on a secure architecture of microservices

Although various guidelines are available in the literature to assist software engineers to write secure

code, such documentation tends to be platform or language-specific or generic. Example of such

126

guidelines includes coding guidelines for the Java platform (Long et al., 2011), the Microsoft .NET

platform (Howard & LeBlanc, 2003) or very general guidelines such as the one provided by the Open

Web Application Security Project (OWASP) (OWASP, 2011). Such platform or language-specific

guidelines do not provide software engineers with sufficient guidance to avoid subtle architecture-level

security threats and vulnerabilities. In this regard, SAFEMicroservices presents a microservices

architecture-driven identification and classification of secure coding guidelines to augment existing

secure coding guideline documentation.

c) Assist software engineers to incorporate security in the microservices development lifecycle

Although incorporating security requirements in early phases of microservices software development is

considered the most cost-effective way to develop secure applications (Souag et al., 2016), software

engineers tend to prioritize functional requirements at the expense of security (Oyetoyan et al., 2016).

The reason is that it is difficult for software engineers to justify the incorporation of security-activities

from a customer or end-user perspective during the planning phase (Oyetoyan et al., 2016).

SAFEMicroservices incorporate mechanisms to represent security requirements in a manner that show

tangible business impact and promote security awareness in the organization.

The SAFEMicroservices framework intends to achieve its aims by ensuring that the following five

objectives are met:

 Software engineers are encouraged to become more focused on identifying and mitigating

security flaws and weaknesses in the design of microservices compositions as studies have shown

that many applications are breached due to weaknesses in their design (IEEE Center for Secure

Design, 2015).

 Software engineers are offered guidance on how to incorporate security-oriented activities, tools,

and techniques in their daily software development tasks (Cruzes et al., 2017).

 Security awareness is promoted among software engineers and other stakeholders in the

organization in a manner that makes software security to be accommodated in any technology

migration plan.

 Software engineers get timely feedback on security vulnerabilities on the microservices source

code during software coding, as soon as software changes are committed into the version control

system, and also when software is deployed.

127

 Reusable microservices security artefacts are created early in the software development lifecycle

to make replication of microservices security successes easier in subsequent microservices-based

projects.

The next section discusses the SAFEMicroservices framework in detail.

7.2 SAFEMicroservices framework

To understand how to develop microservices compositions that are inherently safe, Chapter 5 identified

six general secure development activities that provide the necessary foundation for SAFEMicroservices.

SAFEMicroservices aims to assist software engineers to integrate the six secure development activities

into their software development process. To this end, SAFEMicroservices identifies six critical phases

in the software development process that are common to sequential, incremental and iterative

methodologies, thereby ensuring that new trends in software development are applied. These six phases

are the points where the six development activities are integrated into the development process. These

phases are referred to as security checkpoints in SAFEMicroservices. The SAFEMicroservices

framework security checkpoints are briefly defined below:

 Preliminary phase – the preliminary phase is a phase common to most software projects where

customer requirements and the system’s use cases are documented. The phase is also used to

create the development infrastructure.

 Planning phase – planning phase is the period when the software development team identifies

the scope of what needs to be delivered by defining software requirements.

 Coding phase – the coding phase is the period when software engineers develop software using

an integrated development environment (IDE).

 Code integration phase – the code integration phase is when all software changes written by

software engineers are combined and built to create a deployable artefact.

 Pre-production deployment phase – the pre-production deployment phase is when software

artefacts are deployed to pre-production environments for quality assurance.

 Operational phase – operational phase is when the software artefact is deployed to a production

environment and released to end-users.

128

Figure 7.1 below shows where SAFEMicroservices security checkpoints are defined for development

phases to perform the six secure microservices development activities identified in Chapter 5, that are

denoted by SDA1 – SDA6 (Secure Development Activity).

Figure 7.1: Secure development activities in SAFEMicroservices

As indicated above, SAFEMicroservices aims to be generic, to be able to support any type of

developmental methodology such as sequential, incremental and iterative methodologies. In this regard,

Figure 7.2 shows how the SAFEMicroservices security checkpoints can be used in both an iterative and

sequential software development methodologies. On the left, the SAFEMicroservices framework is

applied to a sequential development methodology. On the right, an iterative methodology such as the

Agile methodology is shown where the preliminary phase is first completed, and then the planning,

coding, code integration, and pre-deployment.

129

Figure 7.2. security control gates in an iterative and sequential methodology

Next, Figure 7.3 below presents a detailed view of the complete SAFEMicroservices framework. The

security checkpoints and the vital secondary activities that software engineers should perform to support

the six secure development activities is given. In addition, Figure 7.3 shows both the input required for

each secondary activity and the reusable security artefacts produced by the activities.

130

Figure 7.3. SAFEMicroservices

131

The SAFEMicroservices framework consists of six phases that need to be integrated with the phases of

a relevant software development framework or methodology. There is a total of twenty-one security

activities that need to be performed, seven security artefacts required as input to the activities, and twelve

resultant security artefacts as output. It is vital to point out at this stage that Figure 7.3 above is not meant

to depict SAFEMicroservices as a sequential process using phases but merely to group and show the

various activities that should be performed at a phase in any software development methodology.

Next, each SAFEMicroservices phase is discussed in detail using Figure 7.3 above.

7.2.1 Preliminary phase

SAFEMicroservices preliminary phase aims to perform a risk assessment of the microservices

composition and also pro-actively creates the necessary development infrastructure that software

engineers can use to write and test microservices. Figure 7.4 give the security-focused activities and

security artefacts of the SAFEMicroservices preliminary phase, as defined by the preliminary phase

shown in Figure 7.3.

Figure 7.4. SAFEMicroservices preliminary phase activities

The security focused-activities of the preliminary phase shown in Figure 7.4 are secondary activities that

aim to address the need to document the security requirement of a microservices composition (SDA-1).

These four secondary activities of the preliminary phase are discussed next.

(a) A.1 Architecture-centric threat modeling

An architecture-centric approach is used in SAFEMicroservices to unravel and understand security

threats and vulnerabilities of the microservices architectural style. The approach assists to identify

132

security weaknesses in individual microservices and those that can occur when the various component

of a microservices composition interact. Architecture-centric threat modeling performed in Chapter 5

identified five microservices composition security threats namely:

1. Insecure application programming interfaces,

2. Unauthorized access,

3. Insecure service discovery,

4. Insecure message broker and

5. Insecure runtime infrastructure.

The risk assessment performed in Chapter 5 identified vulnerabilities associated with each threat by

reviewing common vulnerabilities and exposures (CVE), a dictionary of common names for publicly

known security vulnerabilities. The result is presented as an artefact that is adapted as new vulnerabilities

are identified.

Produced security artefacts:

A.1.1 Security threats and associated vulnerabilities.

The next step in SAFEMicroservices is to perform a detail analysis of the security threats and

vulnerabilities.

(b) A.2 Threats and vulnerabilities root cause analysis

The aim of the threat and vulnerabilities root cause analysis in SAFEMicroservices is to first understand

the design decisions that are the root cause of microservices vulnerabilities. This understanding can assist

software engineers to identify appropriate architecture-level guidelines that can be used to avoid both

insecure designs and poor implementation of the microservices architecture. Secondly, the analysis seeks

to assist software engineers to gain a deeper understanding of attack strategies that a malicious user can

employ to exploit the weakness. Such knowledge enables engineers to anticipate threats and devise

protection measures accordingly during the implementation of microservices. The security artefact

employed are shown next.

133

Required Security artefacts:

A.1.1 Security threats and associated vulnerabilities

A.2.1 Common types of vulnerabilities

The artefact that is produced by threat and vulnerabilities root cause analysis is shown next.

Produced Security artefacts:

A.2.2 Microservices architecture common weaknesses enumeration (MACWE)

The analysis of threats and vulnerabilities uses security arterfact A.1.1, identified in the previous step.

The analysis augments this list to be more comprehensive by including common types of vulnerabilities

as denoted by security artefact A.2.1. The list of common types of vulnerabilities is retrieved from a

community-developed dictionary of software weakness types (CWE) database (Mitre 2018) that provide

specific and succinct definitions of common weaknesses. In the CWE dictionary, a vulnerability is

referred to as a software weakness. The CWE database categorises software weakness according to

architecture concepts. Each weakness is prefixed with CWE and is assigned a number. An architectural

concept is a classification criterion that groups vulnerabilities according to common design decisions in

the system architecture (Mitre 2018). Table 7.1 shows a list of architecture concepts from CWE, as

adapted for the context of microservices.

134

Table 7.1. Architecture concepts

Architecture concepts adapted from CWE list

 Validate input – A category of vulnerabilities related to how the microservices composition handles input
validations

 Authorize actors – A category of vulnerabilities related to how a microservices composition handles
authorization

 Limit exposure – A category of vulnerabilities related to the microservices entry points
 Limit access – A category of vulnerabilities related to the way microservices limit access to infrastructure

components
 Encrypt data -A category of vulnerabilities related to how the microservices composition ensures

confidentiality
 Audit – A category of vulnerability related to the way the microservices composition handle logging of

user activities
 Authenticate actors – A category of weakness related to how a composition handles authentication
 Identify actors – A category of weakness related to how the composition identify a user
 Verify message integrity – A category of vulnerabilities related to the way the microservices ensure data

integrity

The architecture concepts in the CWE taxonomy that apply to the microservices composition security

threats as identified in the architecture-centric threat modelling is now identified, as shown in Table 7.2.

This evaluation gives an understanding of common design decisions in the microservices architecture

and the related security threats. The microservices architectural components are also shown.

Table 7.2. CWE architecture concepts applicable to microservices security threats

Security threats Applicable architecture concepts Microservices components

Insecure application
programming interfaces

 Validate input
 Authorize actors
 Authenticate actors
 Limit exposure
 Encrypt data
 Verify message integrity
 Audit

 API gateway
 All microservices

Unauthorized access Authorise actors All components

Insecure microservice
discovery

 Limit exposure
 Encrypt data
 Verify message integrity
 Validate input
 Authorize actors
 Authenticate actors
 Audit

 Service registry, Microservices

Insecure runtime
infrastructure

 Limit access
 Limit exposure
 Authorise actors

 Runtime infrastructure

135

Insecure message broker Limit exposure
 Encrypt data
 Limit access
 Verify message integrity

 Message broker

Next, the vulnerabilities classified under each CWE architectural concept is retrieved. These

vulnerabilities are analysed to gain a deeper understanding of the nature of the weakness. Any security

vulnerabilities classified under the architecture concept but not relevant to the microservices architecture

are eliminated. The analysis allows the CWE dictionary to be extended into a microservices architecture

taxonomy of common weakness types. As an example, Table 7.3 below shows the vulnerabilities related

to the validate input architectural concept. Also indicated are elicited vulnerabilities that are applicable

to security threats. A tick (√) indicates the vulnerability is applicable, and an x means the vulnerability

does not apply. A comprehensive table is provided in Appendix A – security artefact A.2.2.

Table 7.3. Microservices architecture common weakness enumeration

 Services security threats
Architecture
category

Common vulnerabilities Insecure
API

Unauthorized
access

Insecure
microservices
discovery

Insecure
runtime
infrastructure

Insecure
message
broker

Validate

Input

Improper input validation
(CWE-20)

√ x √ x x

Improper neutralization of
request data (CWE-
138,150, 643, 74, 76, 77,
78, 943, 95, 96, 93)

√ x √ x √

Acceptance of extraneous
untrusted data with trusted
data

√ x √ x √

Cross-site request forgery
(CSRF) (CWE-352)

√ x x x √

Deserialization of
untrusted data (CWE-502)

√ x √ x √

Failure to sanitize special
elements in request data
(CWE-75,)

√ x √ x x

Improper filtering of
request data (CWE-
790,791,792, 795,796,797)

√ x √ x x

Argument injection
mechanisms (CWE-88)

√ x √ x x

XML injection (CWE-91) √ x √ x √

136

The microservices architecture common weaknesses enumeration (MACWE), numbered as A.2.2, is an

important artefact in SAFEMicroservices. The security artefact aims to assist software engineers to

understand the architecture design decisions that apply to each microservices security threat and the

associated software weaknesses. Software engineers can use this artefact as a cheat sheet of software

weaknesses to avoid when developing a microservices architecture component during the coding phase

discussed later below. The elicitation of architecture-level secure coding guidelines and classification in

SAFEMicroservices is now discussed below.

(c) A.3 Architecture-level secure coding guidelines identification and classification
The identification of secure coding guidelines makes use of the microservices architecture common

weaknesses enumeration security artefact produced by the threats and vulnerabilities root cause analysis.

Each of the weakness in the microservices architecture common weaknesses enumeration is thoroughly

reviewed to identify design and implementation strategies that software engineers can use to avoid the

weaknesses. Table 7.4 shows the structure of the table used to present the guidelines. For example,

guidelines for Improper input validation (CWE-20) weakness type is shown as an illustration. The

architecture-level secure coding guidelines identification and classification activity require the following

security artefact below.

Required Security Artefact:

A.2.2 Microservices architecture common weaknesses enumeration (MACWE)

The outcome of the architecture-level secure coding guidelines identification and classification activity

is the following artefact.

Produced Security Artefact:

A.3.1 Catalog of architecture-level secure coding guidelines

A comprehensive list of architecture-level secure coding guidelines elicited in this activity is provided in

Appendix A – security artefact A.3.1.

137

Table 7.4. Example of a catalog architecture-level secure coding guidelines

CWE architecture
concepts

 Common vulnerabilities Introduction
phase

Architecture-level secure coding guidelines

Validate input Improper Input Validation
(CWE-20)

Architecture and
Design,
Implementation

 Validate all inputs - validation should
consider relevant properties such as
length, input type, and acceptable
values

 Use and specify an output encoding
that is supported by a downstream
component that consumes its output

 Decoded and canonicalize inputs to the
application's current internal
representation before validated

The catalog of architecture-level secure coding guidelines produced in the preliminary phase is an

essential reusable artefact in SAFEMicroservices. The artefact is intended to assist software engineers to

avoid creating vulnerable microservices designs.

(d) A.4 Creation of development infrastructure

The creation of development infrastructure is administrative in nature and ensures that the necessary

microservices development infrastructure required by software engineers is in place before the writing

of microservices source code commences. Infrastructure requirements are used to guide the creation of

the infrastructure in order to ensure that the infrastructure meets both the performance, security and

scalability standards and is also not the weakest link that an attacker can use to compromises the

microservices artefacts that ultimately get deployed. Figure 7.5 below shows a high-level design of the

SAFEMicroservices development infrastructure that should be set up.

The infrastructure proposed in Figure 7.5 enables software engineers to acquire (1) microservices source

code from a secure repository to make the necessary software changes. Once software changes are

completed, the engineer should be able to submit the changes for review (2) to the code review system.

The code integration system fetches the changes from the code review system (3), builds the changes,

and executes security test cases and submit the verification results to the code review system (4). The

reviewer, another software engineer, retrieves the verification results from the code review system (5),

and if the feedback of the test execution done by the code integration system is positive, the reviewer can

proceed with a manual review of the code changes to check for any security issues on the changes that

138

were not identified by the code integration system. If the changes do not violate any security

requirements, secure coding guideline, and secure design principles, the reviewer approves (6) the

software changes for integration. The changes are then integrated into the main code base (7), and the

code integration system fetches the integrated source code (8), builds the code, executes the security test

cases and if all is successful, the integration system build and validate the artefact (9), and then the

artefact can be deployed to pre-production environments for quality assurance.

Fig 7.5. SAFEMicroservices development infrastructure high-level design

SAFEMicroservices does not dictate the tools to be used. However, the infrastructure should meet the

following basic standards:

 Access to the version control system, code integration system and code review system should be

secured through well-defined authentication and authorisation mechanisms. The activities of

software engineers on each of the system should be tracked and auditable.

 Software engineers should adhere to a source code branching strategy that adheres to best

practices when using the version control. Branching, in revision control is the duplication of

139

source code so that modifications can happen in parallel along both branches. The originating

branch is called the parent branch. Source code should only be merged into the parent branch

after a rigorous security testing and peer code review and only source code from the parent branch

should be deployed.

(e) Summary of preliminary phase deliverables
The outcomes of the preliminary phase are important re-usable security artefacts that software engineers

can use in any microservices-based project. The artefacts are summarized below in Table 7.5.

Table 7.5. Summary of SAFEMicroservices preliminary phase deliverables

SAFEMicroservices activity Activity deliverable
Architecture-threat modeling A list of security threats and associated vulnerabilities

Threats and vulnerabilities root cause analysis A catalog of microservices architecture common

weakness classified by threat type, affected security
properties or architectural concepts

Architecture-level secure coding guidelines
identification and classification

A catalog of architecture-level secure coding
guidelines classified by threat type, affected security
properties, and architecture concepts

Creation of development infrastructure Secure build pipeline that software engineers can
confidently use to build microservices and perform
comprehensive security testing quickly

The activities of the preliminary phase ensure that SAFEMicroservices meet the objectives of making

sure that software engineers focus more on identifying and mitigating security flaws and weaknesses in

the design of microservices compositions. Besides, the deliverables of the preliminary phase are re-usable

artefacts that are essential in the development of microservices.

The next section discusses the SAFEMicroservices planning phase.

7.2.2 Planning phase

The purpose of the SAFEMicroservices planning phase is to construct comprehensive design artefacts

that describe how microservices security controls are positioned to maintain confidentiality, integrity,

availability, and non-repudiation at all times. The description of security controls concerning the security

properties of the microservices composition form the security architecture of the microservices

140

composition. Figure 7.6 below shows the two main security-focused activities of the SAFEMicroservices

planning phase.

Figure 7.6. SAFEMicroservices planning phase activities

The two security activities are aimed at ensuring that software engineers effectively document the

security requirements of microservices composition (SDA-1). These activities are discussed below.

(a) 2.1 Microservices abuse or misuse cases identification

The SAFEMicroservices approach is based on the argument that to secure microservices compositions

effectively, software engineers should think like attackers to gain a sense of how an attacker can misuse

or abuse the microservices composition. Given the traditional shroud of secrecy surrounding software

exploits, SAFEMicroservices takes into consideration that many software engineers are often ill-

equipped in software exploitation (Barnum & Sethi 2007). With this in mind, SAFEMicroservices

identifies common attack patterns applicable to microservices from the catalog provided by the common

types of attack patterns CAPEC (Mitre 2018). An attack pattern describes how an observed attack type

is executed (Chrysikos & McGuire 2018). Each attack pattern in the CAPEC catalog is prefixed with

CAPEC and a number.

The approach adopted by SAFEMicroservices is first to query the CAPEC database using the

mechanisms of attack search criteria to first identify all the categories of common type of attack patterns.

Figure 7.7 below shows the categories of attack patterns under the mechanisms of attack criteria in

CAPEC.

141

Fig 7.7. Common attack patterns categories in the CAPEC taxonomy

The next step identifies all the attack patterns relevant to each microservices security threat. Table 7.6

gives a non-exhaustive example of a list of attack patterns that are relevant to the insecure application

programming interface security threat. Associating the CAPEC attack patterns to microservices

composition security threat is a manual exercise that requires knowledge gained from analyzing

vulnerabilities discussed above.

Fig 7.6 Association of security threats to CAPEC mechanisms of attacks

Security threat Applicable CAPEC mechanisms of attack

Insecure application programming
interfaces

 CAPEC-152: Inject unexpected items
 CAPEC-210: Abuse existing functionality
 CAPEC-255-Manipulate data structures
 CAPEC-223: Employ probabilistic techniques

Next, each attack pattern is studied to identify how an attack is executed. An abuse or misuse case is then

formulated using the attacker’s strategy. Table 7.7 gives examples of abuse or misuse cases created from

the CAPEC- 152: Inject unexpected items attack patterns. Also, protection measures are identified to

mitigate the attack.

142

Table 7.7. Microservices abuse or misuse case and protection measures

Microservices security
threats

CWE
architectural
concepts

CAPEC
mechanisms of
attack

Abuse or misuse cases Protection measures (Including tools and
techniques)

Insecure application
programming interfaces

Validate input CAPEC: 152: Inject
unexpected items

 As an attacker, I can manipulate request
parameters to compromise the operation of
microservices

 As an attacker, I can supply values as parameters
to the API that a microservices implementation
uses to determine which class to instantiate and I
can then create control flow paths through the
microservices that were not intended

 As an attacker, I can manipulate resource
identifiers passed on as parameters to
microservices API so that I gain control and
perform an action on the resource

 As an attacker, I may either alter the path or
add/overwrite unexpected parameters in the
“query string" on the HTTP query string when
calling the microservice REST API

 As an attacker, I may supply multiple HTTP
parameters with the same name to cause a
microservices to interpret values in unanticipated
ways

 As an attacker, I can exploit a microservices
composition component by injecting additional,
malicious content during its processing of
serialized objects

 Ensure all input content that is delivered to by a
microservices is sanitized against an acceptable
content specification

 Use the validate input secure coding guidelines
provided in A.3.1

 Use an input validation framework such as
OWASP ESAPI Validation API

 Use static analysis tools such as FindBugs on
IDE and continuous integrations toolchains to
detect input-validation

 Perform fuzz testing
 Validate object before deserialization process
 Limit which class types can be deserialized

143

SAFEMicroservices also identify tools and techniques as part of the protection measures that software

engineers can use to prevent the attacks. Table 7.7 below indicates abuse cases derived for the

insecure application programming interface security threat and the relevant protection measures. The

SAFEMicroservices approach thus enhances the generic CAPEC dictionary into a microservices

architecture common attack pattern enumeration and classification (MACAPEC). MACAPEC is a

vital re-usable security artefact, security artefact B.1.4, in SAFEMicroservices that enable software

engineers to identify attack patterns associated with each security threat, understand the manner in

which the attack is executed and how to protect the microservices composition from attacks. This

understanding is essential to software engineers when creating comprehensive security test cases in

the coding phase. Security artefacts used by this security activity are listed below.

Required Security Artefacts:

A.1.1 Security threats and associated vulnerabilities

B.1.1 Common types of attack patterns

B.1.2 Security requirements

B.1.3 Common design flaws

B.1.4 Microservices abuse cases & protection measures

The last step is to ensure that identified protection measures comprehensively cover all the known

common design flaws. A gap analysis is performed using the top ten known and common mistakes

that software engineers make when designing software as provided for example, by the IEEE (2015).

The list of common design mistakes is reviewed to see if each flaw has been addressed by the

protection measures identified above. Protection measures are identified for any flaws not addressed

using the CAPEC catalog. Table 7.8 is an example of the outcome of the gap analysis.

Table 7.8. Gap analysis of protection measures for common design flaws

 Common design flaws Protection measures

 Earn or give, but never assume trust

 Use protection measures defined for CAPEC: 152- Inject
unexpected items

 Use an authentication mechanism that cannot be
bypassed or tampered with

 Use multi-factor authentication
 Use time-tested authentication mechanisms
 Authentication system designs should automatically provide

a mechanism requiring re-authentication after a period of
inactivity or before critical operations

 Authorize after you authenticate Use defense in depth strategies

 Strictly separate data and control instructions, and
never process control instructions received from
untrusted sources

 Use protection measures defined for CAPEC: 152- Inject
unexpected items

144

The next step after identifying the microservices abuse cases and protection measures is to create a

security architecture of a microservices composition, discussed next.

(b) 2.2 Creation of a security architecture

A security architecture is an abstraction of a design that identifies and describes where and how

security controls are used (Maikel & Asim 2018). In SAFEMicroservices the aim of creating a

security architecture is to enable software engineers to quickly design and create secure microservices

composition using reusable building blocks. SAFEMicroservices assumes the existence of security

policies within an organisation that provide high-level information security goals within an

organisation the security.

The security architecture in SAFEMicroservices is based on the balance and holistic mix of the

following elements:

Required Security Artefacts:

A.3.1 Catalog of architectural-level secure coding guidelines

B.2.1 Security policies and standards

B.2.2 Secure design principles

B.2.3 Monitoring and adaptation mechanisms

Indirectly, the architecture-centric threat modeling performed in the preliminary phase and the

security awareness derived from an analysis of security threats and vulnerabilities and the

identification of abuse cases influences this step. These security artefacts are described next.

Secure design principles

A principle can be defined as a qualitative statement of intent that should be met by the architecture

(Maikel & Asim 2018). Secure design principles are vital in SAFEMicroservices because they

establish the basis for a set of design rules for microservices and also influence the implementation

of security controls. In SAFEMicroservices these principles are elicited mostly from analysing and

grouping of CWE vulnerabilities according to a common theme. Table 7.9 below shows the secure

design principles for microservices elicited from CWE vulnerabilities that share the common theme.

A complete list of secure design principles is provided in Appendix B, security artefact B.2.2. Table

7.9 can be used as a cheat sheet of design principles to apply and the relevant vulnerabilities that

software engineers should avoid.

145

Table 7.9. SAFEMicroservices secure design principles

CWE vulnerabilities Security designs
principles

Principle description

CWE-272: Least privilege violation
CWE-250: Execution with unnecessary
privileges

The principle of least
privilege

All components in a microservice
composition should be assigned minimum
necessary rights when accessing any
resource, and the rights should be in effect for
the shortest duration necessary.

CWE-636: Not failing securely The principle of failing
securely

In the event of a component in a
microservices composition failing, it should
do so securely

CWE-656: Reliance on security through
obscurity

The principle of defense
in depth

The components should use layering of
security defenses to reduce the chance of a
successful attack

CWE-637: Unnecessary complexity in the
protection mechanism

The principle of
economy of mechanism

 The components should ensure that multiple
conditions are met before granting access
permission

CWE-269: Improper privilege management
CWE-268: Privilege chaining

The principle of
separation of privilege

The design of each component should be kept
simple

Next, the creation of security standards is discussed.

Microservices security standards

Standards are directives that establish mandatory mechanisms that software engineers must comply

with. Security standards in SAFEMicroservices ensures that software engineers to develop

microservices that can resist, detect, react and recover from any attack. The security standards are

formulated to avoid:

 known security threats and vulnerabilities discussed.

 known attack patterns discussed above.

Table 7.10 below gives a non-exhaustive list of security standards to guide the development of

microservices. A comprehensive list is provided in Appendix B security artefact B.2.3. Other

directives should be derived from the organization security policies.

146

Table 7.10. Microservices security standards

Microservices Security Standards

Any client communication with a microservice must be done via API Gateway to provide load balancing, and a
standard set of security capabilities and communication to API gateway should be authenticated

Each microservice must be protected using a defense in depth approach

The microservices composition must use a well-known and secure open standard protocol for centralized
authentication using tokens. The token must be generated using an algorithm that follows the cryptography standard
and should have an associated time to live

Authentication tokens must be encrypted

Each microservices must have a unique API key for calling another microservice

API calls made by users and microservices must be limited to only those necessary for those users or microservices
to perform their functions

All API requests must be logged to a centralized logging and monitoring system

A tool to monitor and visualize inter-microservice communication must be deployed as part of the management
capabilities of the microservices architecture

All communication in the microservices composition must use transport layer security

All microservices must run in an approved application container technology

Containers must be configured according to approved security best practices

The secure design principles and the security standards ensures that microservices composition resist

attacks. However, microservices compositions should also be designed to be able to detect attacks,

react to attacks and recover from attacks. In this regard, microservices should be built with both

monitoring and adaptation in mind. The next section discuss how software engineers can be equipped

to design such microservices.

Monitoring and adaptation mechanisms

SAFEMicroservices’ aim to monitoring is twofold. Firstly, microservices need to be built with

appropriate logging of user activities, and monitoring tools are needed to monitor microservices.

Secondly, software engineers should be guided to avoid vulnerabilities that can results from improper

implementation of logging, such as logging of sensitive information. With this in mind,

SAFEMicroservices uses common weakness types from CWE associated with logging and formulate

recommendations to guide software engineers. Figure 7.11 below shows an example of monitoring

guidelines. A comprehensive list of monitoring guidelines is provided in Appendix B security artefact

B.2.4.

147

Table 7.11. Microservices monitoring guidelines

Monitoring guidelines CWE Vulnerabilities

Log all information important for identifying the source or nature of an
attack

CWE-223: Omission of Security-relevant
Information

Do not log sensitive information on the log CWE-532: Information Exposure Through
Log Files

Log information in much details CWE-778: Insufficient Logging

Software engineers are free to use monitoring tools of their choice. SAFEMicroservices recommends

that software engineers adopt approaches such as the circuit breaker pattern and load balancing to

ensure microservices respond appropriately to attacks at runtime as adaptation mechanisms.

(c) Summary of planning phase deliverables

The SAFEMicroservices planning phases produces four reusable security artefacts as shown in Table

7.12.

Table 7.12. Summary of planning phase deliverables

Planning phase deliverables Summary of deliverable

B.1.4 Microservices abuse and misuse cases Catalog of strategies attacker can use to exploit
microservices

B.2.2 Security standards Directives software engineers should comply with to
ensure secure microservices

B.2.3 Secure design principles Guideline to be followed to ensure secure microservices
composition

B.2.4 Monitoring and adaptation mechanisms Guidelines to ensure microservices are monitored and to
ensure microservices can respond to attacks

The next section discusses the activities of the coding phase.

7.2.3 Coding phase

The coding phase in SAFEMicroservices commences when software engineers use the various

security artefacts from the preliminary phase and planning phase to write secure microservices source

code. Figure 7.8 below shows the five essential security-focused activities of SAFEMicroservices

coding phase.

148

Figure 7.8. SAFEMicroservices coding phase activities

The five essential security focused-activities of the coding phase shown in Figure 7.8 above can be

viewed as secondary activities that aim to address the need adopt secure programming best practises

(SDA-2) and validate security requirements and secure coding standards (SDA-3). First, the

SAFEMicroservices artefacts required to perform the five activities comprehensively are shown next,

as well as all resultant security artefacts.

Required Security Artefacts:

A.3.1 Catalog of architectural-level secure coding guidelines

A.4.2 Secure pipeline

B.1.4 Microservices abuse cases and protection measures

B.2.1 Security policies and standards

B.2.2 Secure design principles

C.1.1 Platform-specific secure coding guidelines

C.1.2 Security test cases

C.4.1 Runtime infrastructure template

C.4.2 Microservices code

The relationship between the various security artefacts is vital to understand SAFEMicroservices. To

this end, Figure 7.9 below presents a conceptual model that depicts in brief the relationship between

these artefacts. The security goal specifies the security capability of a microservices composition and

the security policy states what protection mechanisms need to be implemented on a microservices.

149

Figure 7.9. Conceptual model of relationship between SAFEMicroservices artefacts

Next, the five activities of the coding phase are discussed.

(a) C.1 Write security test cases

SAFEMicroservices requires that software engineers write both security unit test cases and

acceptance tests cases. The purpose of the security unit test cases is to validate an individual unit that

makes up a microservices to determine if each unit meets the security expectation. The acceptance

test cases determine whether the microservice or the microservices composition satisfies a given

security criterion during its operation. The security and acceptance test cases should be written in

such a way that any violation of security artefacts A.3.1, B.1.4, B.2.1, B.2.2 and C.1.1 are detected.

In SAFEMicroservices, software engineers are free to use libraries or technologies of their choice to

write security test cases. The security test cases should be written both for microservices and the

runtime infrastructure and should be comprehensive to ensure extensive test coverage of the written

source code.

(b) C.2 Design and write secure microservices code and infrastructure code

Software developers write secure code for both microservices and templates for automating the

creation of the deployment infrastructure. Software engineers need to ensure that the design and

150

writing of code follow the guidelines specified in security artefact A.3.1, B.2.1, B.2.2 and C.1.1 and

that protection measures are incorporated into the microservices. In addition, microservices should

be designed and developed in such a way that they are fully equipped to respond to attacks at runtime

using the adaptation mechanisms that are built from adaptation requirements discussed in the security

architecture of the composition. The microservices should also be built to support comprehensive

monitoring as discussed before.

SAFEMicroservices adopts the concept of “infrastructure as code”. Infrastructure as code manages

and provisions deployment infrastructure using source code templates that are executed by

configuration tools (Morris, 2016). Using template to create infrastructure, enables software

engineers to test templates using security test cases. This ensures that deployment infrastructure is

thoroughly tested before deploying any microservices. The deployment infrastructure should be

created with minimum operating system services and network functionality. The aim is to promote

microservice that are secure-by-default. Changes to the infrastructure template should be versioned,

tested and tracked to ensure auditability.

(c) C.3 Execute static analysis and security test cases

Software engineers need to test the code for both microservices and the infrastructure before the

changes are submitted to the shared repository. Testing should utilize the static analysis tools installed

on the software engineer’s integrated development environments (IDE). In addition, before

committing source code to a shared repository, a software engineer should ensure that all the security

test cases have been executed successfully.

(d) C.4 Perform manual security code reviews

Manual security code reviews ensure that software engineers collaborate to create safe microservices.

Reviews are vital to identifying some of the design flaws that cannot be identified by tools and also

to identify security flaws such as hardcoded credentials. In addition, manual reviews are vital to

encourage software engineers to write readable microservices source code that is easy to maintain.

(e) C.5 Fix failed security tests cases

Software engineers need to address any security vulnerabilities before submitting their source code

to a common repository. By so doing, software engineers receive early feedback on security issues,

and security vulnerabilities can be given early attention in the microservices development life-cycle.

151

(f) Summary of the coding phase deliverables

The SAFEMicroservices security artefacts produced by the coding phase is a suite of security test

cases, a tested template to create the runtime infrastructure and source code for microservices. These

artefacts are reusable components in the development of secure microservices. The activities of the

coding phase ensure that the objective of SAFEMicroservices of ensuring that software engineers get

timely feedback on security vulnerabilities on the microservices source code is met.

Next, the code integration phase is discussed.

7.2.4 Code Integration phase

The code integration phase in SAFEMicroservices commences when the software changes made by

software engineers have been successfully tested by a software engineer on the IDE, and the software

changes have also successfully been peer-reviewed. The objective of SAFEMicroservices is to

automate the building and packaging of software changes, the execution of a suite of test cases, and

validation of microservices artefacts using the development infrastructure created in the preliminary

phase. Figure 7.10 below shows the three essential security-focused activities of the

SAFEMicroservices coding integration phase extracted from the coding integration phase in Figure

7.3.

Fig 7.10. SAFEMicroservices code integration phase activities

The three essential security-oriented activities of the coding integration phase shown on Figure 7.10

aim to assist software engineers to adopt secure programming best practices (SDA-2) and to validate

security requirements and secure programming best practices (SDA-3). These three activities are

discussed next.

(a) D.1 Build microservices and execute security test cases

The building of microservices source code is performed by code integration tools. Software engineers

are free to choose the code integration tool of their choice, preferably the tool should build and execute

152

test cases in an automated manner. The build process should produce deployable microservices

artefacts and execute test cases written by the software engineer in the coding phase.

(b) D.2 Validate licenses, libraries and container images

In SAFEMicroservices, it is vital to ensure that any open source software libraries used in

microservices are known and any security vulnerabilities in those libraries are detected. Also, the

third-party libraries should be from trusted sources. This activity is vital to ensure that microservices

compositions do not inherit security vulnerabilities from third-party components. The code

integration system should provide mechanisms to validate third-party libraries and their respective

licenses. In addition, the code integration system should also validate container images. The

validation process should produce a security testing report which is used to decide if the software

changes are safe enough to be deployed to production. The security testing report is a vital artefact

that should be used to sign-off microservices for deployment in both the pre-production and the

production environment.

(c) D.3 Fix failed security test cases

Software engineers need to attend to any security vulnerabilities that may be detected during the

execution of the test cases by the build tool or the validation of third-party libraries and container

images.

(d) Summary of the code integration phase deliverables

The deliverables of the code integration phase are the microservices artefacts that are ready to be

deployed into a pre-production environment and a security testing report that provide software

engineers with a view into the security state of the microservices artefacts, the third-party libraries

used and the security status of the container images. The activities of the code integration phase ensure

that the objective of SAFEMicroservices of making sure that software engineers are offered guidance

on how to incorporate security-oriented activities, tools and techniques in their daily software

development tasks is met. Furthermore, the activities also assist software engineers to get timely

feedback on security vulnerabilities on the microservices source code before any deployment.

7.2.5 Pre-production deployment phase

The pre-production phase in SAFEMicroservices is used to deploy microservices artefacts to an

environment where business users can perform quality assurance before a decision is made to deploy

the microservices in a production environment. Figure 7.11 below shows the security-focused

153

activities of the SAFEMicroservices pre-production deployment phase. Figure 7.11 is an extract of

the pre-production deployment phase shown in Figure 7.3 above.

Fig 7.11. SAFEMicroservices pre-production deployment phase activities

The essential five security focused-activities of the pre-production deployment phase shown on

Figure 7.11 aims to assist in validating security requirements and secure programming best practices

(SDA-3) and to ensure the secure configuration of the runtime infrastructure (SDA-4). These five

activities are discussed next.

(a) E.1 Provision pre-production environment

The provisioning of a pre-production environment should be automated as much as possible in

SAFEMicroservices. A configuration management tool should be used to create the infrastructure in

conjunction with the infrastructure template, an artefact created and tested in the coding phase. The

use of templates ensures that consistent configurations are created that satisfy the security

requirements. This goes a long way to ensure secure-by-deployment in microservices. The

environment should be validated to ensure for example that no unnecessary services are running that

can compromise security.

(b) E.2 Deploy to pre-production

Once the environment has been created and validated the microservices can be deployed. Software

engineers can use tools of their choice to deploy microservices. However, the deployment pipeline

should be secured to ensure that an attacker does not gain access and deploy corrupted microservices

artefacts.

(c) E.3 Validate microservices

Software testers manually test the microservices and ensure that both functional and non-functional

requirements of the microservices are satisfied. In addition, there is a need to make sure that

154

microservices’ access to certain resources such as file and directory is only limited to what is

necessary for microservices to perform their function.

(e) E.4 Penetration testing

The last step of the pre-production deployment phase is to ensure that penetration testing is

performed. Penetration testing is an authorized simulated attack on microservices composition

performed to evaluate security. Penetration testing is performed to identify vulnerabilities, including

the potential for unauthorized parties to gain access to microservices and data. SAFEMicroservices

does not dictate which tools to use to perform the test, and software engineers can use any tools of

their choice. What is essential in SAFEMicroservices is that feedback from penetration testing is

given attention before microservices are deployed to a production environment.

(f) E.5 Fix failed security tests

The purpose of this activity is to ensure that software engineers address any security vulnerabilities

that may be detected during the penetration testing. This is vital to ensure that microservices are not

deployed with known security vulnerabilities.

(g) Summary of pre-production deployment phase deliverables

The essential SAFEMicroservices artefact of the pre-production deployment phase is a security

testing report that covers both the results of security requirements validation done manually by

software testers and also the outcome of the penetration testing exercise. The stakeholders that have

a vested interest in the application can use both results from functional requirements validation

together with the security testing report to decide if the microservices can be deployed into a

production environment. The stakeholder can analyse the security testing report and decide the

priority of any reported vulnerabilities. If the vulnerabilities are of a low priority, then a decision to

deploy the microservices can be made.

7.2.6 Operational phase

SAFEMicroservices operational phase aims to ensure that microservices compositions always

maintain their security posture while in use. Any microservices maintenance activities should not

degrade the protection measures of the microservices composition. Figure 7.12 below shows the three

essential security-focused activities of SAFEMicroservices operational phase extracted from Figure

7.3 above.

155

Figure 7.12. SAFEMicroservices operational phase activities

The objective of the three essential security focused-activities of the operational phase shown in

Figure 7.12 is to assist software engineers to continuously monitor the behaviour of components of

the microservices composition (SDA-4) and to ensure that a microservices composition securely

respond to attacks using adaptation mechanisms (SDA-6) at runtime. These three essential activities

are discussed next.

(a) D.1 Provision production environment and deploy

The first activity is to create a secure microservice runtime environment. This environment should be

created using a tested infrastructure template, that was used to create the pre-production and went

through rigorous testing using penetration testing techniques. This ensures that a safe runtime

environment

(b) D.2 Monitor microservices composition

SAFEMicroservices requires that software engineers constantly gain access to the behaviour of the

microservices composition. In this regards, various tools should be used to monitor microservices.

As discussed in the coding phase, microservices should be built with an inherent ability to trace user

activities in order to identify attackers and any malicious modifications. Monitoring requirements that

are part of the security architecture should guide software engineers in ensuring that both the

monitoring infrastructure is in place and microservices are comprehensively monitored to detect any

attacks at runtime.

(c) D.3 Respond to attacks

Microservices should be able to respond securely to attacks using adaptation mechanisms that are

inbuilt within the microservices. The adaptation mechanisms are part of the security architecture and

were discussed in the preliminary phase.

156

(d) Summary of the operational phase deliverables

The operational phase in SAFEMicroservices should provide a real-time monitoring view of

microservices. Various tools reviewed in Chapter 6 can be used to provide a real-time dashboard that

software engineers can use to gain continuous insight into the operation of microservices.

The next section discusses the benefit of SAFEMicroservices framework.

7.3 Summary of SAFEMicroservices benefits

Table 7.13 below provides a summary of the expected benefits of using the SAFEMicroservices

approach in each phase.

Table 7.13. SAFEMicroservices benefits

Phase SAFEMicroservices benefits

Preliminary phase Promotes security awareness among software engineers and
other stakeholders so that software security is
accommodated in any technology migration plan

 Software engineers proactively understand and identify
threats and potential vulnerabilities early in the
development process. This helps to mitigate potential
design flaws that are usually not easily found using other
techniques such as code reviews and static source analysis

 Software engineers gain an opportunity to fix security
vulnerabilities early in the design phase and avoid
expensive re-engineering efforts that may be required after
source code is written or a security breach has occurred

Planning phase

 Software engineers use abuse or misuse cases to devise
upfront defense mechanisms that cover all possible
microservices attack pattern

 Software engineers use abuse or misuse cases to create a
comprehensive roadmap for security testing of
microservices

Coding phase Software engineers are responsible for secure development
 Security vulnerabilities like buffer overflow, SQL injection

and cross-site scripting can be identified by static analysis
tools and given early attention

 An improvement of the developer's security knowledge
using static analyzers tools that provide suggested security
corrections and improvements to the code

 Software engineers get timely feedback on violation of
secure coding guidelines

 Promotion of collaboration and sharing of knowledge on
software quality among software engineers

 Software engineers are encouraged to write readable
software code using code review mechanism

Code integration phase Ensure that software engineers get timely feedback on
security vulnerabilities on the software source code

 Automate security testing

157

Pre-production deployment phase Feedback from penetration testing is easily integrated into
the software development process

Operational phase Software engineers get a continuous insight into the
operation of software in a production environment.

Table 7.14 below gives a not exhaustive list of tools that software engineers can use in

SAFEMicroservices as reviewed in Chapter 6. Software engineers are free to choose any tools of their

choice.

Table 7.14. Example of tools for SAFEMicroservices

Phase Tool or Method Classification Example of Required Tools and Techniques

Preliminary phase Threat modeling tools Threat Dragon (OWASP 2018), STRIDE, Attack trees
(Saini, Duan & Paruchuri, 2008), misuse cases (Sindre &
Opdahl, 2005)

Planning phase

Security planning tools and
secure designs

SAFEcode Security user-stories (ben Othmane, Angin &
Bhargava, 2014,), OWASP Application Security
Verification Standard (Boberski, Williams & Wichers, 2009)

Coding phase Static analysis tools FindSecurityBugs (Arteau, 2016), Brakeman (Collins,
2012), SonarQube (Guaman et al., 2017), Xanitizer,
(Xanitizer, 2017), VisualCodeGepper (Alsmadi et al., 2018)

Code review tools Crucible (Rigby et al., 2012), Collaborator (Wang et al.,
2012) and Gerrit (McIntosh et al., 2016).

Code integration
phase

Continuous integration tools Jenkins (Soni & Berg, 2017), TeamCity (Mahalingam,
2014), Bamboo (Watson, 2016), GitLab (Cheng, 2017),
Travis (Travis, 2015)

Open source license checker

Whitesource (Harutyunyan, Bauer & Riehle, 2018), Open
source License checker (Kapitsaki, Kramer & Tselikas,
2017)

Pre-production phase Environment configuration
tools

Chef (Taylor & Vargo, 2014), Puppet (Loope, 2011),
Ansible (Hall, 2015)

Container validation tools Anchore (Anchore, 2018), Clair (Clair, 2018), Docker Bench
(Tak et al., 2017)

Operational phase Monitoring tools appDynamics, Dynatrace and Prometheus

Response to attacks patterns circuit breaker pattern (Fontesi & Weber, 2016), Netflix
Hystrix (Christensen, 2012)

Next, a conclusion is provided.

158

7.4. Conclusion

The development of a secure microservices composition that can continue to function securely under

malicious attacks is a complex exercise. In this regard, the SAFEMicroservices framework provides

a methodology that can address this challenge successfully. SAFEMicroservices provides a

coordinated approach to assist software engineers to implement and manage microservices security

controls effectively. SAFEMicroservices offers a holistic approach to security and identifies

opportunities in the software development life-cycle where security-focused tools and techniques can

be leveraged.

The essential contribution of SAFEMicroservices is a systematic and flexible approach to security

that accommodates variations in the implementation using different technologies and the risk profile

of each microservices composition. SAFEMicroservices makes the development of secure

microservices a part of the software development culture. The systematic integration of security

testing further reinforces the secure software development culture into all phases of the software

development life-cycle that ultimately improves the software security skills of software engineers.

In the next chapter, SAFEMicroservices is validated using selected security-focused tools and

techniques. A microservices composition is designed and developed using the SAFEMicroservices

approach to demonstrate that SAFEMicroservices can be used to develop secure microservices.

159

Chapter 8

SAFEMicroservices Framework

Implementation

8.0 Introduction

Chapter 7 proposed and discussed SAFEMicroservices, a practice-oriented framework to assist

software engineers to develop secure microservices. The security-oriented activities in

SAFEMicroservices assist software engineers to use suitable tools and techniques during their

daily microservices development tasks. The next step is to perform an empirical evaluation of

SAFEMicroservices to observe by means of an instantiation, if the framework is adequately

specified to support the development of secure microservices compositions.

Accordingly, this chapter discusses the use of SAFEMicroservices to develop PickMeUp, a

microservices composition discussed in Chapter 3. The security-oriented activities of

SAFEMicroservices are used to identify and refine protection measures and ensure their

integration into PickMeUp to ensure an application that can resist, detect and respond to attacks.

SAFEMicroservices is also used at various development stages of PickMeUp to ensure traceability

of analysis, design, coding, and testing of the microservices. SAFEMicroservices is used in such

a way that the development of PickMeUp provides a proof-of-concept of the framework.

The chapter is organized as follows: Section 8.1 defines the evaluation criteria used to determine

the success of the implementation in this chapter. Section 8.2 provides an overview of PickMeUp.

The technologies chosen to develop PickMeUp are discussed in Section 8.3. Section 8.4 discusses

the software development methodology adopted to develop PickMeUp. Section 8.5 explains the

160

inception stage of PickMeUp and how SAFEMicroservices is used to ensure a security risk

assessment. Section 8.6 discusses how SAFEMicroservices is used in the construction of various

architecture component of PickMeUp. In Section 8.7, integration testing and hardening of features

of PickMeUp that are developed incrementally are discussed. Section 8.8 discusses the deployment

and monitoring of PickMeUp. Section 8.9 discuss the evaluation results. A conclusion then follows

in Section 8.10.

8.1 Evaluation criteria

The objective of the implementation in this chapter was to determine if SAFEMicroservices

provided the following:

 Easy to follow and effective steps – the researcher considered the ease of use as an ideal

attribute considering that software engineers are under pressure to delivery software. The

framework should therefore not impact the productivity of engineers. Besides, the value of

the framework is in its effectiveness in ensuring secure software.

 Easy support of security-focused tools – the researcher considered tools support as a

success criterion because as discussed in Chapter 6, there is limited guidance on how tools

can be integrated to assist software engineers create secure applications. In this regard,

freely available tools and technologies are used throughout the development of PickMeUp.

 Easy with which the framework can be used in an iterative software development method

- the aim of this criteria was to determine if the proposed framework could be used with a

software methodology that is used mostly in industry.

The above three attributes were considered the three-fold basic success criteria of the

SAFEMicroservices by the researcher.

8.2 Overview of microservices composition for prototyping

PickMeUp is an imaginary on-demand taxi application such as Uber (Cramer & Krueger, 2016).

The PickMeUp microservices composition was introduced in Chapter 3. PickMeUp was

decomposed into a set of microservices by first identifying the functional business capabilities.

The scope or functional context of each microservice was determined using the single

161

responsibility principle (SRP), and the common closure principle (CCP) discussed in Chapter 3.

Figure 8.1 below provides a high-level architecture diagram showing the interaction of various

components. The user interface is not considered part of the microservices composition in this

discussion.

The microservices responsible for handling business functionality are defined below:

 Trip management microservice – a service that handles all requests for a trip from a

passenger.

 Passenger management microservice – a service for managing passenger information.

 Driver management microservice – a service for managing driver information.

 Passenger notification microservice - a service responsible for all forms of passenger

notifications.

 Driver notification microservice – a service responsible for all forms of driver notifications.

 Payments microservice – a service that handles all forms of payments for service rendered.

PickMeUp also has other microservices dictated by the microservices architectural style and non-

functional requirements such as authentication. These microservices are defined below:

 API gateway – an entry point into the microservices composition for all external clients.

 Service registry – a registry to enable microservices in PickMeUp to locate one another.

 Message broker – a message buffer to allow microservices to communicate by sending

messages when necessary.

 Authentication microservices – a service responsible for security.

162

Figure 8.1. PickMeUp Microservices composition

The next section discusses the technologies chosen to implement PickMeUp.

8.3 Implementation technologies

The Spring Boot framework (Gutierrez, 2016) was chosen as a technology to develop PickMeUp

microservices. Spring Boot is a readily available Java-based technology framework that simplifies

the development of RESTful web services using the microservices architectural style. Various

freely and readily available software libraries were used in conjunction with the Spring Boot

technology framework to create the components of PickMeUp. The libraries are identified below:

163

 Microservices - the RESTful communication model using the JSON messaging format was

used to develop the PickMeUp microservices. Each microservice exposed a RESTful API

using the Spring Framework libraries (Varanasi & Belida, 2015).

 The API gateway - the API gateway was developed using the Netflix Zuul library (Netflix,

2019). The Netflix Zuul library is a freely available library that easily integrates into the

Spring Boot framework.

 Service registry - the service registry was developed using the Eureka library (Netflix,

2019). Eureka is a REST-based service that is primarily used for locating microservices

for load balancing and failover (Netflix, 2019). The client-side discovery approach was

used as a mechanism for microservices to locate one another by directly querying the

Eureka-based service registry.

 Message broker - the message broker was developed using RabbitMQ (Videla & Williams,

2012). RabbitMQ is easily supported by the Spring Boot framework.

 PostgreSQL (Obe & Hsu, 2017) database was used to store data.

 Docker was used as the container technology to deploy each component of PickMeUp.

8.4 Software development methodology

SAFEMicroservices supports both sequential and iterative software development methodologies.

The sequential software development approach suits the integration of security-focused activities,

and the use of security validation strategies between the analysis, design, coding, and testing

development stages. On the other hand, the iterative and incremental software development

methodologies limit their ability to accommodate the security-focused activities and the use of

security validation strategies (ben Othmane et al., 2014). With this in mind, an Agile methodology,

an iterative approach was chosen to develop PickMeUp to determine the suitability of

SAFEMicroservices in an iterative software methodology and in the process add value to the

research in this study.

As SAFEMicroservices was integrated with an Agile methodology, it needed to be identified

where security checkpoints would fit in. An understanding of the Agile methodology was therefore

164

required. The Agile software development methodology can be divided into three stages namely

(Ambler, 2013):

 Inception stage – defines the scope of the project and model of the initial architecture.

 Construction stage – develops the software in a set of iterations.

 Transition stage – the stage is used for integration testing and hardening the software

deliverable developed in iterations to make it ready as a release for use in a production

environment.

Figure 8.2 below shows how the SAFEMicroservices security checkpoints were positioned in the

Agile software development methodology. The operational phase of SAFEMicroservices was

considered beyond the scope of the Agile software development methodology.

The Agile methodology capture a functional requirement as a user story. A user story is a way to

capture a description of a software feature from an end-user perspective (Beck et al., 2001). The

user stories are added to a list called product backlog. The software features encapsulated in user

stories are developed incrementally in the construction stage and comprehensively tested in the

transition stage to ensure that they are ready for release into a production environment.

Figure 8.2. The relationship between SAFEMicroservices phases and Agile methodology stages

165

The sections below discuss how the SAFEMicroservices was used to develop PickMeUp in

conjunction with the Agile software development methodology. The discussion is structured

according to the three Agile methodology stages namely inception, construction and transition as

shown in Figure 8.2 above.

The next section discusses the PickMeUp inception stage.

8.5 Inception stage

Following the Agile software methodology, the inception stage was used by the researcher to

define the scope of PickMeUp and the initial model of the initial architecture using the functional

requirements. In addition, the inception stage was also used to ensure the documentation of the

security requirements of PickMeUp. Recall that documenting the security requirements of

microservices composition (SDA-1) is one of the secure development activities identified in

Chapter 6. In this regard, the Agile methodology’s inception stage was used to perform a risk

assessment to identify threats to and vulnerabilities of PickMeUp along with their associated

impacts. The SAFEMicroservices security-oriented activities discussed in the framework’s

preliminary and planning phase assisted to reach the goal of documenting the security requirements

of PickMeUp.

The discussion in each of the next section provides a list of SAFEMicroservices activities

performed in the Agile methodology inception stage, and then discuss each activity. First, the use

of the SAFEMicroservices preliminary phase activities in the development of PickMeUp is

discussed below.

8.5.1 SAFEMicroservices preliminary phase activities

The use of SAFEMicroservices in the development of PickMeUp provided the researcher with an

opportunity to extend the Agile software methodology’s inception stage with four activities from

SAFEMicroservices shown in Table 8.1 below. Table 8.1 provides a list of security activities

prescribed by the preliminary phase of SAFEMicroservices and the deliverables of each activity.

166

SAFEMicroservices was a convenient framework in the sense that the preliminary phase not only

provided guidance on how to perform the four activities listed in Table 8.3 but also provided ready-

made reusable security artefacts that were used in the development of PickMeUp. This took away

the burden of performing the cumbersome, time-consuming activities of the SAFEMicroservices

preliminary phase from the beginning. This made it easier to gain a good understanding of the

security risks associated with PickMeUp without spending much time performing an architecture-

centric threat modeling, threat and vulnerability analysis.

Table 8.1. SAFEMicroservices preliminary phase activities

Preliminary phase activities Required security artefacts

A.1 Architecture-centric threat modeling A.1.1 Security threats and associated vulnerabilities

A.2 Threats and vulnerabilities root cause analysis A.2.2 Microservices architecture common weaknesses
 Enumeration

A.3 Architecture-level secure coding guidelines
 identification and classification

A.3.1 Catalogue of architecture-level secure coding
 Guidelines

A.4 Creation of development infrastructure A.4.2 Secure build pipeline

The application of four SAFEMicroservices activities of the preliminary phase in PickMeUp is

discussed below.

(a) A.1 Architecture-centric threat modeling

The researcher performed the threat modeling of PickMeUp using the architecture-level security

threats and their associated vulnerabilities security artefact shown as A.1.1 in Table 8.1. The

SAFEMicroservices architecture-centric threat modeling approach discussed in Chapter 5

provided the list of the architecture-level security threats and their associated vulnerabilities. The

security artifact provided an understanding of the security risks in PickMeUp. The artefact also

provided the researcher with a foundation towards a systematic approach to make and evaluate

design decisions for PickMeUp. Besides, the list assisted the researcher in identifying potential

design flaws in PickMeUp that could not easily have been found using other techniques such as

code reviews and static source analysis. For example, without an architecture-centric approach, a

threat such as insecure microservices discovery and the associated vulnerabilities could not have

been easily identified. In addition to the artefacts provided by SAFEMicroservices, a risk

167

assessment was further conducted to identify risk in the basic functional requirements of

PickMeUp that is not rooted in the architecture. The security threats were used as high-level

security goals for PickMeUp. This is discussed further in the coding phase below.

(b) A.2 Threat and vulnerabilities root cause analysis

The researcher performed the root cause analysis using the microservices architecture common

weakness enumeration security artefact, shown as A.2.2 in Table 8.1 and provided in Appendix A

as A.2.2. The SAFEMicroservices threats and vulnerability root cause analysis method provided

the artefact as a ready-made catalog of common vulnerabilities that apply to PickMeUp. As a

result, there was no need to perform a detailed threat and vulnerability root cause analysis for

PickMeUp. The catalog provided by SAFEMicroservices was a quick guide toward understanding

the various architectural decisions that impact the security of each component of PickMeUp. For

example, to limit the security threats of insecure microservices API, the researcher could quickly

identify what architectural decisions are the root cause of the threat. This gave the researcher

guidance on what to consider when designing the APIs on microservices in PickMeUp.

(c) A.3 Architecture-level secure coding guidelines identification and classification

The researcher referred to the architecture-level secure coding guidelines identification and

classification security artefact shown as A.3.1 in Table 8.1 and provided in Appendix A as A.3.1

to understand secure coding guidelines to apply in the development of PickMeUp. The

SAFEMicroservices framework provided a list of architecture-level secure coding guidelines that

provided the guidance required to design and create secure microservices design for PickMeUp

from the ground up. The guidelines provided in Appendix A as A.3.1 augmented the language

specific guidelines for the Java framework that was used to develop PickMeUp. The application

of the secure coding guideline is discussed later in the construction stage of PickMeUp.

(d) A.4 Development infrastructure set up

The inception stage of PickMeUp was also used by the researcher to set up the infrastructure for

the development of various components. As indicated above, SAFEMicroservices aim to be

technology-agnostic. In this regard, the following freely available tools were used to set-up the

168

development infrastructure in line with the high-level workflow diagram of the development

infrastructure provided in SAFEMicroservices on Figure 7.5.

 IntelliJ (IntelliJ 2011) was used as the integrated development environment (IDE).

 FindSecurityBugs static analysis tool was installed on IntelliJ. FindSecurityBugs was

reviewed in Chapter 6.

 Jenkins (Berg 2012) was installed as a code integration tool. Jenkins provides native code

integration pipeline features. SonarQube plugin was installed on Jenkins for static analysis.

The Anchore plug-in (Anchore 2018) was installed on Jenkins to validate container images.

Tasks for automating the compiling and executing security tests cases were created on

Jenkins pipeline. The OWASP dependency-check (Long 2015) plugin was installed to

validate the third-party libraries.

 Gerrit (McIntosh et al. 2016), a manual code review tool was configured to manage the

microservices source code review process.

 Atlassian Bitbucket (Atlassian 2019) was configured as a version control system.

Figure 8.3 below shows the security-related plug-ins installed on the Jenkins code integration tool.

169

Figure 8.3. Security plug-ins installed on Jenkins.

In order to ensure the security of the development infrastructure for PickMeUp, the following

access controls measures were put in place as per recommendations in SAFEMicroservices:

 Access to Jenkins administration console was limited using a username and password.

 Access to BitBucket was limited to the use of secure socket shell (SSH) access keys.

 Access to Gerrit was also limited to the use of SSH access keys.

The next section discusses the use of SAFEMicroservices to plan for security during the inception

stage of PickMeUp.

170

8.5.2 SAFEMicroservices planning phase activities

The use of SAFEMicroservices in the development of PickMeUp provided the researcher with an

opportunity to extend the Agile software methodology inception stage with two

SAFEMicroservices activities shown in Table 8.2 below. Table 8.2 provides a list of security

activities prescribed by the planning phase of SAFEMicroservices and the deliverables of each

activity. The SAFEMicroservices planning phase also provided the design artefacts that describe

how security controls should be positioned to maintain confidentiality, integrity, availability, and

non-repudiation in PickMeUp. As a result, the SAFEMicroservices manual, cumbersome and

time-consuming activities of the planning phase were not required to be performed in detail by the

researcher in the development of PickMeUp.

Table 8.2. Planning phase activities and deliverables

Planning phase activities Required security artefacts

B.1 Microservices abuse or misuse cases identification B.1.4 Microservices abuse cases & protection measures

B.2 Creation of security architecture B.2.1 security standards
B.2.2 Secure design principles
B.2.3 Monitoring and adaptation mechanisms

The application of two SAFEMicroservices activities of the planning phase in the development of

PickMeUp is discussed below.

(a) B.1 Microservices abuse or misuse cases identification

The security artefact depicted B.1.4 on Table 8.2 and provided in Appendix A as B.1.4 was used

by the researcher identify abuse or misuse cases in microservices. As part of the approach to elicit

microservices abuse and misuse cases, the SAFEMicroservices identify attack patterns associated

with microservices. The SAFEMicroservices attack patterns were applicable to PickMeUp and

provided an understanding of how to protect PickMeUp from such attacks. Besides, the

SAFEMicroservices framework provided a ready-made list of microservices abuse cases and

protection measures. The list was not only useful to the identification of protection measures, but

it assisted in identifying tools and techniques to use to mitigate the attacks.

171

The researcher used the abuse cases provided by SAFEMicroservices for two purposes; first, to

create security user stories for Agile methodology. The user, in this case, is a malicious attacker.

The security user stories created were then linked to the security goal which was created from the

security threat associated with the abuse cases. Secondly, the researcher used the abuse cases to

construct security test cases in the coding phase. The security test cases were created from the

attack scenarios elicited from attack patterns. The attack scenarios were designed to test the written

source code to ensure that the microservices software satisfied the security requirements. Figure

8.4 below shows the relationship between security goals, security use stories and development

tasks created for PickMeUp.

Figure 8.4. Conceptual model of relationship between abuse cases, user stories and goal

(b) B.2 The security architecture of a microservices composition

SAFEMicroservices provided the researcher with three important artefacts towards the creation of

the security architecture of PickMeUp. The artefacts are B.2.1 – B.2.3 on Table 8.2. First, the

researcher adopted the security standards and secure design principles to ensure that the design of

PickMeUp components were secure. These security standards also provided guidance towards

creating secure designs and how to ensure that microservices in PickMeUp communicate securely.

Secondly, the monitoring and adaptation mechanisms, shown as B.2.3 on Table 8.2, provided

guidance on how to design microservices with monitoring and adaptation in mind. The design

decisions are further discussed in the construction stage of PickMeUp.

172

8.5.3 Summary of the Inception stage

The adoption of SAFEMicroservices in PickMeUp provided the following general benefits in

security requirements elicitation:

 SAFEMicroservices assisted the researcher in clarifying security requirements. Awareness

of security was increased by an awareness of specific business assets that are at risk. The

identification of PickMeUp security threats, and the abuse cases assisted in reasoning about

security risk in concrete terms. This helped ensure clarity of security requirements in this

research.

 SAFEMicroservices allowed security requirements not only to be derived from functional

requirements as implicit requirements but also from the architecture and the technology.

This assisted in ensuring this research appreciates the importance of a broader security

strategy.

 SAFEMicroservices provided a reusable development infrastructure that allowed

automated validation of security. Automated security testing provided timely feedback on

detected security issues on the source code. This is discussed further in the next phases.

The next section discusses the construction stage of PickMeUp.

8.6 Construction stage

In the Agile methodology, the construction stage is for developing software in a set of iterations.

For each iteration, the researcher determined the goal of the iteration and selected a set of

functional user stories to achieve the goal. Functional requirements were elicited and captured as

functional user stories, and the software code was written incrementally to address the requirement.

At the end of the iteration, the artefact was potentially shippable. This section discusses the

application of the SAFEMicroservices coding phase in the development of PickMeUp.

8.6.1 Coding phase

The use of SAFEMicroservices in the construction stage of the Agile software development

methodology allowed the construction stage to be extended with four activities shown in Table

8.3. The functional user stories and the security user stories discussed above were used to guide

173

the writing of microservices source code. At the beginning of each iteration, the functional features

of PickMeUp to be developed were defined. The security goal of the iteration was provided by the

security threat of the component of the PickMeUp that was under construction in the iteration as

per Figure 8.5 above. The user stories linked to the security goal were added into the iteration to

ensure that software increments were constructed with security in mind.

Table 8.3. Coding phase activities and deliverables

SAFEMicroservices activities Security artefacts produced

C.1 Writing security tests for the PickMeUp C.1.2 Suite of security tests cases

C.2 Designing and writing secure microservices and

infrastructure code

 None

C.3 Static analysis on the code and manual code review None

C.4 Perform manual security code review C.4.1 Runtime infrastructure template

C.4.2 Microservices code

C.5 Fix failed security test cases

The construction phase used the six reusable artefacts of SAFEMicroservices shown on Table 8.4

below. Details use of each artefact is provided in the discussion of each activity below.

Table 8.4. Artefacts required for coding phase activities and deliverables

Coding phase required security artefacts

A.3.1 Catalog of architecture-level secure coding guidelines

A.4.2 Secure build pipeline

B.1.4 Microservices abuse cases and protection measures

B.2.2 Security standards

B.2.3 Secure design principles

B.2.4 Monitoring and adaptation mechanisms

B.1.1 Platform-specific coding guideline, in this case, Java secure coding guidelines

174

The use of SAFEMicroservices activities listed in Table 8.3 is now discussed next.

(a) C.1 Security test cases

The researcher wrote two types of security test cases namely security unit test and acceptance test.

Security test cases were written in a manner that validated the microservices code against secure

design principles and microservices security standards. Microservices abuse cases were used as

attack scenarios to test the microservices to ensure that security requirements were satisfied. Spring

Boot Test provided utilities to assist with unit testing (Reddy, 2017). Also, The Hamcrest library

(Acetozi, 2017) was added to the spring framework to assist in testing.

The acceptance tests were documented using a security testing framework that uses Behaviour

Driven Development (BBD) concepts to create security specifications that are executable as

standard integration tests as part of the Jenkins build process. The security test specifications were

documented using the language Cucumber (Ye, 2013), a language based on Gherkin domain-

specific language (Härlin, 2016) which is simple and allows software engineers and testers to write

complex tests while keeping the test comprehensible even to non-technical users. Figure 8.5 shows

an example of an executable acceptance test case written using Cucumber. The acceptance tests

cases were executed as integration tests on the Spring Boot Framework. Integration testing focuses

on testing if the components work well together.

Figure 8.5. Example of an acceptance test case

175

(b) C.2 Design and write secure code and infrastructure code

The microservices security standards and secure designs principles provided in

SAFEMicroservices were used to make designs decisions for PickMeUp. The researcher

considered ten design decisions shown of Table 8.5 to guide the development of PickMeUp.

Limiting the number of standards to comply with was meant to make the scope of PickMeUp

manageable for this research.

Table 8.5. PickMeUp security standards

PickMeUp security standards

1 Any client communication in PickMeUp must be done via the PickMeUp API Gateway

2 Every microservices in PickMeUp must authenticate to the PickMeUp API gateway

3 Each microservices in PickMeUp must have a unique API key for calling another microservice

4 All API requests in PickMeUp must be logged to a centralized logging and monitoring system

5 All communication in the PickMeUp must use Transport Layer Security

6 All PickMeUp microservices must run in an approved application container technology

7 Deployment of microservices in PickMeUp must be automated

8 Data available to a microservice in PickMeUp must be limited what the microservices requires to function

9 Microservices in PickMeUp must only be able to access messaging channels that they require to function

10 Development of microservices must follow the secure coding guidelines provided

In order to ensure compliance with the standards in Table 8.5, the following additional technology

choices were made to implement PickMeUp in addition to those discussed in section 8.2 above:

 Oauth2 (Guiterrez, 2016), an authorization framework was used for microservices

authentication in PickMeUp. The framework seamlessly integrates into the Spring Boot

framework using the Spring framework. Also, the JSON Web Token (Raman & Dewailly,

2018) was used to represent the claims secured between two communicating components

in PickMeUp. JWT also seamlessly integrate into the Spring Boot framework.

 A microservices dedicated to monitoring was created for PickMeUp. The monitoring

mechanisms on the microservice were built using the Hystrix (Christensen, 2012) and

176

Turbine (Netflix, 2018) libraries. Hystrix provides monitoring for all REST call and re-

routing of a request in case of failure of a microservices. Turbine aggregated all Hystrix

monitoring data into meaningful date for display on the dashboard. The functioning of the

monitoring microservices is discussed later in the chapter.

 Each microservices implemented the circuit breaker pattern (Montesi &Weber, 2016)

using the Netflix Hystrix (Montesi &Weber, 2016) library to ensure that each

microservices were designed for failure. A circuit breaker pattern accepts microservices

failures and tracks each failure by wrapping a call to a microservices a monitor. When a

microservices is in the failed stage, circuit sends the error message without making a call

to the microservices, and when the microservice is available, the request is sent to the

microservice. Further details are discussed below in the monitoring section.

The development tasks of PickMeUp were represented as user stories and listed on the product

backlog as mentioned. Development of the features of PickMeUp was done in iterations. An agile

development board was created on the Atlassian Jira (Fisher, Koning &Ludwigsen, 2013) to keep

track of the development task of PickMeUp. The microservices were written in Java programming

language and packaged as Docker images. Figure 8.6 below shows an example of a script to

package and deploy the trip management microservices as a docker image. The microservices

requires port 8081 to function. Chef configuration management tool was used to automate the

provision of Docker containers.

Figure 8.6. Script to deploy trip management microservice as Docker image

177

(c) C.3 Static analysis and manual review
Microservices source code changes done by a researcher on the local machine were tested by

executing security unit tests, and static analysis was done using the FindSecurityBug static analysis

tools. Figure 8.7 below shows an example of the security issues identified by the static analysis

tool on the researcher’s IDE. In Figure 8.7 the static analysis tool was able to detect a weak random

number generator that the researcher had used in the source code. The tool provided a suggestion

to mitigate the issue. Performing security testing on the local machine allowed the researcher to

quickly identify security issues on the source code and to quickly fix the issues. This ensured

timely feedback on security issues to the researcher. After fixing security issues reported on the

IDE, the code was submitted to the Gerrit system for manual review to help identify any violation

of policies, standards or design flaws that could not be identified by the static analysis tools.

 Figure 8.7. Static analysis on IntelliJ

8.6.2 Summary of construction phase

The use of SAFEMicroservices in the construction phase of PickMeUp provided the following

benefits:

 SAFEMicroservices made it possible to get timely feedback on security issues on the

microservices source code, and this made it possible to fix security issues early in the

development process.

178

 SAFEMicroservices provided reusable microservices security artefacts that made it

possible to focus more on writing microservices source code instead of performing security

analysis.

8.7 Transition stage

As per the Agile software methodology, the transition stage was used by the researcher for

integration testing and for hardening the increment of PickMeUp to make them ready as a release

for use in a production environment. In Chapter 5, it was noted that secure development of

microservices requires that software engineers adopt secure programming best practices (SDA-2),

validate security requirements and secure coding guidelines (SDA-3) and also securely configure

the runtime infrastructure (SDA-4). The transition stage of PickMeUp provided an opportunity to

the researcher to integrate activities of the SAFEMicroservices' coding integration phase and pre-

production deployment phase to assist in this regard. The discussion in this section first provides

a list of SAFEMicroservices activities performed in the Agile methodology transition stage, and

then the discussion of each activity is presented.

First, the application of the SAFEMicroservices code integration phase activities is discussed

below.

8.7.1 Code integration phase

The coding phase commenced as soon as the manual review was completed, and no security flaws

were identified. The researcher extended the transition stage of the Agile software development

methodology with three activities from SAFEMicroservices shown in Table 8.6.

179

Table 8.6. SAFEMicroservices code integration phase activities

SAFEMicroservices code integration phase activities

D.1 Build microservices and execute security test cases

D.2 Validate licences, libraries and container images

D.3 Fix failed security test cases

The use of each activity in PickMeUp is discussed below.

(a) D.1 Build microservices and execute security test cases

The Jenkins code integration tool compiled the source code of the microservices and then executed

the security tests cases. The activity was automated.

(b) D.2 Validate license, libraries and container images

The Anchore plugin installed on Jenkins validated the docker images, and the OWASP

dependency-check plugin validated the libraries to identify if microservices used trusted licenses.

Figure 8.8 below shows an example of a dashboard provided by Jenkins to view the status of

validation performed by the Anchore plugin.

180

Fig 8.8. Anchore Docker image validation

(c) D.3 Fix failed security test cases

Any security issues that were reported during building of microservices and execution of security

test cases or any failure during validation of licenses, libraries and container images were identified

at this point. These security issues were added to the backlog as security user stories and the fixed

in the subsequent iteration by the researcher. This activity aimed at ensuring that no microservices

were deployed with security issues.

The next section discusses the deployment and operation of PickMeUp.

8.7.2 Pre-production deployment phase

The pre-production phase commenced as soon all the validations of the code integration phase

were successful. The use of SAFEMicroservices in the transition stage of the Agile software

development methodology allowed the transition stage to be extended with four activities shown

in Table 8.7 below.

181

Table 8.7. Pre-production deployment activities

SAFEMicroservices pre-production deployment phase activities

E.1 Provision pre-production environment and deploy

E.2 Validate security requirements and infrastructure

E.3 Penetration testing

E.4 Fix failed security tests

The activities are discussed next.

(a) E.1 Provision preproduction deployment environment and deploy

The provisioning of a pre-production environment was automated. The Chef configuration

management tool was used to provision docker containers running each component of PickMeUp

in conjunction with the infrastructure template, an artefact created and tested in the coding phase.

(b) E.2 Validate security requirement and infrastructure

The validation of security requirements was manual performed by the researcher to ensure

authentication was being successfully done according to the security standards. In addition, the

validation also made sure that microservices access to certain resources such as file and directory

was only limited to what is necessary for the microservices to perform their function.

(c) E.3 Penetration testing

A basic penetration testing of PickMeUp was performed using the OWASP ZAP. Figure 8.9 below

show an example of the OWASP ZAP plugin dashboard depicting security issues identified on the

services registry that was developed for PickMeUp. Figure 8.9 shows a few security issues like

SQL injection and cross site scripting identified by the tool. This tool can be deployed on a

software engineer development machine and a scan performed before submitting the code to a

common repository to quickly identify security issues.

182

Fig 8.9. Microservices penetration testing

8.7.3 Summary of the transition phase

The use of SAFEMicroservices in the transition phase of PickMeUp enabled the integration of

various security-focused tools into the build pipeline to ensure the automation of various security

validation tasks. This simplified tasks such as security testing, and the provision of the runtime

environment.

Finally, the integration of the SAFEMicroservices operational phase activities is discussed briefly.

183

8.8 The Operational phase

The essential activities in this phase were to ensure that instances of the microservices were

monitored. Figure 8.10 below shows a simple dashboard showing the monitoring details of a

microservices for getting passenger details. The circuit closed means that the microservices is

currently available. However, the microservices was available fifty percent of the time so far. The

Hystrix implementation in each microservices enabled monitoring microservices to gather

information about the status of each microservice in PickMeUp.

Fig 8.10. Microservices monitoring using Hystrix

8.9 Evaluation results

As mentioned above, the purpose of the implementation was to perform a basic empirical

evaluation of SAFEMicroservices using three criteria. Below the evaluation based on the three-

fold criteria is presented

 Easy to follow and effective steps – the activities of SAFEMicroservices can general be

considered easy to follow. The researcher was able to follow the step of

SAFEMicroservices and the tools integrated into the development environment were

effective in identifying software weaknesses. However, the artefacts provided by

SAFEMicroservices still requires background security knowledge to navigate and also

understand. After the implementation of PickMeUp the view of the researcher is that it

would be helpful to create an introductory document for SAFEMicroservices that can

introduce security concepts to software engineers not trained in security.

184

 Easy support of security-focused tools – the tools can easily be integrated into the

framework. For example, various testing tools were easily integrated into the continuous

integration system as plugin. The installation is straight forward and easy to perform.

Documentation on the tools is readily available on the web. The installation of tools is also

a once-off activity and the researcher spend less than hour to install all the plugins on the

Jenkins. However, the researcher still needed to learn how to use the tools. The observation

of the researcher is that depending on the tool chosen, the use of tools may be less intuitive.

 Easy with which the framework could be used in an iterative software development method

- the implementation of PickMeUp used the Agile methodology. The observations of the

researcher are that although the implementation of PickMeUp can be considered a success,

creating security test cases from abuse cases require more security knowledge that many

software engineers may not possess. In that regards, there is still a need for someone in the

team who possess good security knowledge to effectively implement SAFEMicroservices.

In addition, there can be many abuse cases to consider for a simple microservice software

change and a software engineer is expected to document all or most of the security test

cases to test simple software change. This can be overwhelming and can affect the Agile

principle of fast releases. There is therefore still a need to balance between the acceptable

security level and the rate of software release when using SAFEMicroservices.

8.10 Conclusion

This chapter discussed the development of PickMeUp, an experimental microservices-based

application using SAFEMicroservices. The purpose of the development of PickMeUp was to

perform an empirical evaluation of SAFEMicroservices to determine through observation if the

framework is adequately specified for the task of developing secure microservices. PickMeUp was

developed from the ground up using the Agile methodology. The security-focused activities of

SAFEMicroservices were used with success in the various phases on the development cycle of

PickMeUp from inception to deployment. The various tools and techniques proposed in

SAFEMicroservices were also used successful in the development of PickMeUp.

185

Although some of SAFEMicroservices phases such as the preliminary phase and the planning

phase are mostly manual, time-consuming and cumbersome, SAFEMicroservices provided

reusable security artefacts that simplified the development of PickMeUp for this research. The

security threats and vulnerabilities catalog and the microservices architecture common weakness

enumeration catalog provided the necessary foundation to perform a risk assessment of PickMeUp

and to understand the risk of the application. The architecture-level secure coding guidelines,

design principles and standards provided the necessary architectural knowledge required to make

design decisions for PickMeUp that take security into consideration. In addition, the

SAFEMicroservices artefacts empowered the researcher with the necessary information and

protection measures to address the security challenges of PickMeUp. The use of various testing

tools integrated into the development pipeline provided quick feedback on security vulnerabilities

during the implementation phase of PickMeUp.

The implementation of SAFEMicroservices discussed in this chapter can be considered a success.

The implementation discussed in this chapter also showed that SAFEMicroservices can be used in

an iterative software development process.

In the next chapter, a theoretical evaluation of SAFEMicroservices is provided to augment the

empirical evaluation performed in this chapter.

186

PART IV

187

Chapter 9

Evaluation of the

SAFEMicroservices Framework

9.0 Introduction

In Chapter 7, a software framework for developing secure microservices called

SAFEMicroservices was proposed. The aim of the framework is to provide guidance on how to

develop secure microservices from the start by incorporating security-oriented activities into the

microservices software development process. In Chapter 8, SAFEMicroservices was integrated

with the Agile methodology, to develop an example microservices-based application called

PickMeUp.

The aim of the implementation in Chapter 8 was not only to provide proof that the security-focused

activities, tools and techniques proposed in SAFEMicroservices can be practically used to develop

a secure application, but to also determine the suitability of SAFEMicroservices in an iterative and

incremental software development process. Iterative and incremental software development

processes generally provide a challenge when integrating secure software development practices

(ben Othmane 2014). The implementation in Chapter 8 provided an empirical evaluation that

applied the SAFEMicroservices in practice to establish if the theory outlined in the definitions of

the framework can be successfully translated into a practical and meaning implementation

(Shepperd & Ince 1993).

188

The next step is to perform a theoretical evaluation of the framework to establish if it is based on

sound theory. As observed by Shepperd and Ince (1993), an evaluation of any model requires both

a theoretical and an empirical evaluation. The chapter is organized as follows: Section 9.1 discuss

the evaluation strategy. Section 9.2 discuss the evaluation of SAFEMicroservices. A conclusion

of the evaluation is discussed in Section 9.3

9.1 Evaluation strategy

 SAFEMicroservices can be defined as a process (IEEE 1990) since the framework defines a set

of activities that can be used to develop, maintain and deliver secure microservices. In general, a

good software process is one that delivers quality software and enhances software development

productivity (Elsen, Liem & Akbar, 2016). This definition is based on the argument that an

evaluation of a process model such as SAFEMicroservices is based on the hypothesis that security

as a quality of microservices is determined by the quality of the activities or process used to

develop the microservices. With this in mind, it becomes important in this evaluation to first

defines security as a quality in the context of microservices. In this regard, a secure microservices

can be defined as one that capture user input correctly, perform expected business functionality

correctly and resist security breaches (Raghavan & Zhang, 2017). This implicates that it enforces

data validation, functions as expected and secures its data (Raghavan & Zhang, 2017).

Since SAFEMicroservices is a quality process, using a quality model becomes a natural method to

evaluate the framework since such a model encapsulate the concept of quality (ISO, 2011). The

quality model is a set of characteristics and the relationships between characteristics which provide

the basis for specifying quality requirements (ISO, 2011). The quality requirements in this context

refer to security requirements. Also, common process models become vital to evaluate

SAFEMicroservices as a software development process to determines its limitation and area of

improvements (Noopur, 2006). This implies comparing SAFEMicroservices to existing process

models that are designed for the same purpose (Noopur, 2006). With this in mind two approaches

are chosen in this chapter to evaluate SAFEMicroservices namely:

i. By means of a quality model - this approach is referred to as the SAFEMicroservices quality

model in this chapter

189

ii. By comparison with existing secure software development processes – this approach is

referred to as the secure software development processes comparison.

Using the definition of security quality provided above, an evaluation question for

SAFEMicroservices is formulated and provided below.

How adequately specified is SAFEMicroservices to provide security assurance that microservices

developed using the framework are free from vulnerabilities, and that the microservices functions

in an intended manner?

The two evaluation approaches listed above are now discussed.

9.2 SAFEMicroservices quality model

The evaluation of SAFEMicroservices discussed in this section adapts the quality model defined

by ISO 25010 (ISO, 2011). The ISO 25010 quality model is chosen because it is the most recent

model that defines a comprehensive list of quality characteristics. In addition, there is currently

active and ongoing research work on using ISO 25010 to evaluate software development models.

The work includes (Fontdevila et al,. 2017, König & Steffens, 2018, Estdale & Georgiadou, 2018)

among many others.

The ISO 25010 quality model is now briefly defined as background.

9.2.1 ISO 25010 quality model

The ISO 25010 quality model provides a list of characteristics and sub characteristics that

contribute towards quality. This research has identified the characteristics that apply to the

evaluation of SAFEMicroservices. These characteristics are defined in Table 9.1 below in the

context of this evaluation. The characteristics are used as evaluation requirements for

SAFEMicroservices. They are used as a set of requirements that SAFEMicroservices should

embody to be defined as an ideal process quality model.

190

Table 9.1. ISO 25010 quality model characteristics

Characteristics of
quality model

Definition of
characteristics

Sub-characteristic Definition of sub-characteristics

Functionality
suitability

Functional
suitability means
that the proposed
framework fits the
operational needs
and requirements
of developing
secure
microservices

Functional
completeness

The extent to which the set of activities provided by
the framework covers all the aspects of developing
secure microservices.

Functional
appropriateness

The extent to which the framework facilitates the
accomplishment of the goal of developing secure
microservices.

Reliability Reliability
compliance

The extent to which the framework meets needs for
reliability under normal operation.

Performance
efficiency

Performance
efficiency
describes how the
components of the
frameworks
execute
efficiently.

Resource Utilization The extent to which tools recommended in the
framework meet acceptable levels when performing
their functions.

Maintainability Maintainability
describes how
easy it is to
understand and
adapt the various
components of the
framework to meet
the needs of a
development team

Modularity The extent to which the framework advocate for
discrete components such that a change to one
component has minimal impact on the entire
framework.

Re-usability The extent to which the artefacts of the framework
can be re-used.

Analysability The extent of effectiveness and efficiency with
which it is possible to understand and adapt the
framework.

Modifiability The extent to which the framework can be extended
by the software development team to meet specific
needs.

Testability The extent of effectiveness and efficiency with
which test criteria can be established for the
framework.

Security Security subsumes
how to keep data
safe

Confidentiality The extent to which the framework ensures that data
are accessible only to those authorized to have
access.

Integrity The extent to the framework prevents unauthorized
access to, or modification of information or assets.

191

Characteristics of
quality model

Definition of
characteristics

Sub-characteristic Definition of sub-characteristics

 Non-repudiation The extent to which actions or events in the
framework can be proven to have taken place
without any repudiation.

Accountability The extent to which the actions of an entity in the
framework is traced uniquely to the entity.

Authenticity The extent to which the framework allows the
identity of a subject or resource to be proved to be
the one claimed.

Compatibility Compatibility
defines the ability
of components of
the framework to
work together with
other software
products.

Co-existence The extent to which a component of the framework
performs their required functions efficiently in a
shared environment without causing harm to other
components running on the same environment.

Interoperability The extent to which components of the framework
exchange information and use the information that
has been exchanged.

Portability Portability means
that the necessary
changes can be
quickly done and
easily installed.

Adaptability The extent to which components of the framework
can be adapted for different or evolving hardware,
software or other operational or usage environments.

Installability The extent which component of the framework can
be successfully installed and/or uninstalled in a
specified environment.

Replaceability The extent to component of the framework can be
replaced by another for the same purpose in the
same environment.

The evaluation in this section takes the specification of SAFEMicroservices in Chapter 7 as input

and assesses the specification against the characteristic provided in Table 9.1. The characteristic

in Table 9.1 are used as a level of conformance to an ideal quality model. Next, Table 9.2 provides

an assessment of SAFEMicroservices using the ISO 25010 characteristics and sub-characteristics.

192

Table 9.2. SAFEMicroservices evaluation using ISO 25010

Characteristics of
Quality Model

Sub-characteristic SAFEMicroservices

Functionality
suitability

Functional
completeness

 SAFEMicroservices defines activities, tools and method for developing
secure microservices. The framework does not however define project
management aspect of the secure development process. From a light-
weight point of view the framework can be considered complete. In
addition, SAFEMicroservices is designed in a manner that it can also be
used with other secure development process were possible.

Functional
appropriateness

 SAFEMicroservices was used to develop a PickMeUp. The various
artefacts were used with success to facilitate the accomplishment of the
goal.

Performance
efficiency

Resource
Utilization

 The various tools that SAFEMicroservices recommend are being used
in industry and are at an acceptable level when performing their
functions.

Maintainability Re-usability SAFEMicroservices provide the following reusable artefact, a catalog
of security threats and vulnerabilities, architecture-level secure coding
guidelines, secure design principles and security standards for
microservices. These catalogs are generic and can be used by any team
developing microservices.

Analysability SAFEMicroservices guides software engineers to effectively
incorporate the six secure development activities into the entire
microservices development life cycle. SAFEMicroservices identify six
critical phases in the software development process that are common to
both sequential and iterative methodologies and apply to new trends in
software development. These phases are used to integrate security-
oriented activities, tools, and techniques into the development process.
The framework is defined in such a way that it can be analysed.

Modifiability SAFEMicroservices can be extended by a software development team
to meet specific needs. The framework is generic in approach to security
and allows engineers to use artefacts in their organization-specific
environments

Security Confidentiality
Integrity
Non-repudiation
Accountability
Authenticity

 SAFEMicroservices provide guidance on how to create a secure
development environment and how to ensure the deployment
infrastructure is secure to avoid the microservices build pipeline from
being a weak link that attackers can use to breach security. Also, the
protection measures provide the necessary guidance that engineers can
use to develop secure microservices.

193

Characteristics of
Quality Model

Sub-characteristic SAFEMicroservices

Compatibility Co-existence Various tools can be used in SAFEMicroservices. Software engineers
can choose any security-focused tools that suit their environment. There
is no expected detriment to other products deployed in the same
environment.

Portability Adaptability SAFEMicroservices is a systematic and flexible approach to security
that accommodates variations in the implementation using different
technologies and the risk profile of each microservice.

Installability The tools used in SAFEMicroservices are easy to install. Software
engineers can use the freely available plugin.

Replaceability SAFEMicroservices is designed in such a way that the security-focused
activities, techniques, and artefacts can be used with other frameworks.

Table 9.3 indicates that SAFEMicroservices conforms to most of the characteristic of ISO 25010

when evaluated using the eleven sub-characteristics. However, the following limitations of a

theoretical evaluation are recognized in this research. The evaluation does not directly address the

theory that underlies SAFEMicroservices but considers instead the theoretical basis expressed in

the specification in Chapter 8 by the researcher. The evaluation is in actual fact measuring

SAFEMicroservices indirectly using another quality process model, in this case ISO25010. The

researcher recognizes that although conformance to the standards is a recognized way to evaluate

a process model like SAFEMicroservices, as is the case when a process model requires

international certification, validation using such an approach cannot be guaranteed to address the

totality of the level of security expected from a framework to present an argument that

SAFEMicroservices is a suitable framework. In addition, there is a need to test the requirements

of ISO 25010 in the industry context to determine the consistence of the theory behind

SAFEMicroservices to reality although this may be a costly exercise.

The next section compares SAFEMicroservices with other secure software development process.

194

9.3 Secure software development process model comparison

Although SAFEMicroservices focuses on developing secure microservices compositions, this

section evaluates SAFEMicroservices by comparing the framework with existing secure software

development methodologies that can be used for the same purpose. Three popular secure software

development methodologies namely Microsoft’s Security Development Life cycle (SDL) (Howard

& Lipner 2006), OWASP's Comprehensive, Lightweight Application Security Process (CLASP)

(OWASP 2006) and McGraw' Touchpoints (McGraw (2006)) are considered. These

methodologies are recognized as significant players in the field.

A separate comparison of Microsoft’s SDL, CLASP, and Touchpoints is provided in De Win et

al. 2009. For the purposes of this thesis, the comparison by De Win et al. 2009 was revisited by

reviewing the latest documentation of these methodologies to determine any process improvement

that might have occur since the initial comparison. The CLASP book version 1.2 available from

the OWASP website (OWASP, 2018) was used for CLASP. The book by Howard and Lipner

(2006) was used for Microsoft SDL and the Microsoft web site was also checked for updates on

the SDL. The book by McGraw (2006) was used to understand Touchpoints.

The comparison of the secure software development processes in this chapter is based on two areas

namely:

 Risk assessment process – the activities of identifying threats and vulnerabilities

 Software construction process – the activities used to develop, test and deploy an

application

The comparison in this thesis does not cover the initial project management aspects and security

training that other secure software development processes consider important. This is already an

accepted weakness of SAFEMicroservices.

The next section discusses the comparison.

195

9.3.1 Risk assessment process comparison

The risk process is about identifying threats to and vulnerabilities of a given system. The

comparison discussed in this section is based on the specification of threat modeling and how

elicited threats and vulnerabilities are analyzed in each secure software development process. The

comparison is meant to provide a high-level view and does not consider the depth of the specified

methodology for each category. Table 9.3 document the comparison using a few sets of basic

security-focused activities. A tick (√) means that the framework provides security-focused

activities or guidance that address the requirements and an x means that there is no guidance or

specification of the activities.

Table 9.3 Risk assessment process comparison of SAFEMicroservices to other frameworks

Risk Assessment Microsoft
SDL

CLASP Touch-
points

SAFEMicroservices

1. Architecture-
level threat
modeling

1.1 Develop system understanding √ √ √ √

1.2 Identify the external
dependency

√ x x √

1.3 Identify threats and threat types √ √ √ √

1.4 Assign risk to threats √ √ √ √

1.5 Perform weakness analysis x x √ √

1.6 Identify countermeasures √ √ x √

2. Analysis-level
threat modeling

2.1 Perform vulnerabilities analysis x x √ √

2.2 Identify and describe threats
agents

x √ √ x

2.3 Elicit and describe abuse cases x √ √ √

2.4 Attack-pattern elicitation x x √ √

2.5 Rank misuse case x x √ x

2.6 Identify protection measures x √ x √

2.7 Document security architecture x √ x √

Table 9.3 above shows that among the few selected security activities in the risk assessment

process, of the three popular frameworks TouchPoint covers most areas of the architecture-level

196

threat modeling and analysis-level threat modeling. Microsoft's SDLC and OWASP generally do

not adequately specify how to perform an attack-driven analysis and elicit abuse cases. On the

other hand, SAFEMicroservices provides guidance on most of the security-focused activities in

the risk assessment process but does not identify and describe threats agents and does not assign a

ranking to misuse cases. Risk rating, however, is generally an arbitrary exercise (De Win et al.

2009). Besides, Table 9.3 shows that from a high-level view SAFEMicroservices does have a

broader scope on both the architecture-level and analysis-level compared to the existing

framework. This research does acknowledge the limitation of SAFEMicroservices that it is

specified for a microservices architectural style compared to other frameworks that are

architectural agnostic. In addition, not evaluated in this thesis is the depth in which each of the

areas listed in Table 9.3 is covered in SAFEMicroservices.

The next question that should be asked in the evaluation of SAFEMicroservices is whether the

security-focused activities and resulting artefacts that are produced in the risk assessment process

are fit for software engineers. To answer this question, a threat to the validity of both the

architecture-level threat modeling and the threat analysis is identified. First, the architecture-level

threat modeling process in SAFEMicroservices leverages the Microsoft SDL threat process which

is a well-tested process (Win et al.2009). The threat classification approach uses the Microsoft

STRIDE, again a tested methodology. Although SAFEMicroservices does not assign a rating on

the misuse cases, a rating is provided on the likelihood of an attack which is derived from the

attack pattern in the CAPEC dictionary, a community-driven database of common attacks. Also,

the analysis of the security threats and software weaknesses leverages a community-driven

database of common weakness and common attack patterns. This makes the SAFEMicroservices

threat modeling and analysis fit for software engineers, barring errors that software engineers can

make in both architecture-level threat modeling and analysis.

The next section compares the construction process of the popular secure software development

frameworks with SAFEMicroservices.

197

9.3.2 Software construction process comparison

The comparison in this section considers the activities provided by each secure development

process for creating secure development infrastructure, coding, testing, deployments and support.

Figure 9.4 below shows a comparative view of the development processes.

Table 9.4 Construction process comparison of SAFEMicroservices with other frameworks

Implementation Microsoft
SDL

CLASP Touch-
points

SAFEMicroservices

1. Secure
development
infrastructure

1.1 Secure use of version control system x x x √

1.2 Use of branching strategy x x x √

1.3 Secure use of code integration tool x x x √

1.4 Support for automated security
testing

x x x √

2 Coding

2.1 Use of security standards x √ x √

2.2 Use of secure coding guideline √ √ x √

2.3 Address reported issues x √ x √

2.4 Validate remediation x √ x √

3 Testing

3.1 Build test cases using risks x x √ √

3.2 Execute security tests x √ x √

3.3 Perform unit testing x x √ √

3.4 Perform integration testing x x √ √

3.5 Static code analysis x √ x √

3.6 Manual code reviews √ x x √

3.7 Penetration testing √ x √ √

3.8 Validation of external libraries x √ x √

3.9 Validate container or infrastructure √ x x √

3.10 Perform risk-based security testing

x x √ √

3.11 Validate correct use of tools √ x x x

3.11 Security report √ x x √

198

Implementation Microsoft SDL CLASP Touch-
points

SAFEMicroservices Implementation

4 Deployments
and Support

4.1 Code Sign-off √ x x x

4.2 Configure monitoring and
logging

x x √ √

4.3 Safe runtime configuration x x x √

4.4 Verify infrastructure x x x √

4.5Secure deployments x √ x √

4.6 Vulnerabilities reporting √ √ x √

4.7 Fix security issues √ √ x √

Figure 9.4 above shows that among the few selected security-focused activities common to the

construction process, existing secure software development processes do not provide guidance on

how to set up a secure development environment. Very little is mentioned concerning such

important aspect of software development such as the security of the code repository, continuous

integration as well as source code branching and source code merging policies.

SAFEMicroservices provide guidelines on how to create a development infrastructure, how to

ensure comprehensive testing and deployments. Table 9.4 shows that on a high-level,

SAFEMicroservices provides comprehensive end-to-end guidelines on how to ensure the

development of secure microservices.

Although SAFEMicroservices does provide guidance to software engineers in the entire software

development life cycle, the researcher does recognize that SAFEMicroservices is a light-weight

framework and does not go into much details when discussing security-focused activities

compared to other secure development frameworks. Framework such as Microsoft SDL and

Touchpoints have rich literature in the form of books and websites written specifically for those

frameworks and are tried and tested in the field. With this in mind, the view of the researcher is

that SAFEMicrosevices can augment existing frameworks rather than be a competitor. In addition

to guidance provided by existing frameworks, SAFEMicroservices can be used to address areas

where existing frameworks are limited.

199

9.4 Conclusion

A theoretical evaluation by comparison of SAFEMicroservices was discussed in this chapter to

augment the empirical evaluation done in Chapter 9. The evaluation in this chapter was based on

two approaches, the use of a quality model and by comparing SAFEMicroservices with other

software development processes that are similar in nature. The limitation of each of the approach

was acknowledged in the discussion.

Taking into consideration the limitations of the evaluation approach and the identified limitation

of SAFEMicroservices, the framework is adequately specified to provide grounds for confidence

that microservices compositions developed using the framework are free from vulnerabilities. The

researcher acknowledges however that although a framework is important towards the

development of secure software, other factors not considered in this research may impact on the

quality of software. The view supported by the research is that by using SAFEMicroservices,

software engineers can perform the security-focused activities in any software development

methodology, taking into consideration the organisation’s culture and the technology landscape,

thereby ensuring that the chances of successful adoption of the framework is enhanced. The

limitation of SAFEMicroservices is that it is specified for the microservices architectural style and

need to be extended to be useful in team using other software architectures.

200

Chapter 10

Conclusion and Future Work

10 Introduction

This thesis proposed a software development framework for secure microservices. The primary

objective of the proposed framework is to guide software engineers to develop microservices from

the ground up so that such microservices are inherently secure. The framework seeks to wean

software engineers from a reactive approach to security where software security receive attention

as and when security breaches occur. Reactive approach to security is expensive because it requires

re-engineering efforts that are often required after microservices are written or a security breach

has occurred.

This thesis introduced the microservices architectural style and its security challenges. A risk

assessment of the architectural style was performed to identify the security threats and

vulnerabilities in the architecture. The identification of the risks allowed for the identification of

security-focused activities that are required to be performed by software engineers in their day-to-

day development tasks. The activities referred to as secure development activities in this thesis are

the foundation on which the proposed software development framework is built. Furthermore, the

secure development activities were used to identify security-oriented tools and techniques that can

assist in the day-to-day development tasks of secure microservices.

In Chapter 1 the motivation of this research was proposed together with the objective of the

research. This chapter revisits the objectives to determine the success of the research. In addition,

the research contributions are stated, and future research discussed. The chapter is then concluded

201

10.1 Revisiting the research objectives

The primary objective of this research is to propose a software development framework for secure

microservices. The framework is constructed using a three main research questions. Secondary

questions are proposed to assist in understanding the main research questions. In order to determine

if the research objective has been met, the research questions defined in Chapter 1 are now

revisited.

RQ1 - What are the security challenges associated with the microservices architectural style?

The state-of-the-art discussed in Chapter 3 identified the following five new security challenges

of microservices:

i. Increased attack surface - an instance of a microservice is a unique network endpoint that

requires a dedicated open network port to expose an application programming interface.

Every instance of microservice require its own open port for communication. This gives

an attacker an increased attack surface as new microservices are deployed across the

network and an attack can be made on each microservices.

ii. Indefinable security perimeters - the deployment of microservices on containers result in

containers being quickly set up anywhere within the network without any consideration for

the traditional notion of demilitarized security perimeters.

iii. Security monitoring is complex – containers on a host machine can use network address

translation which makes it challenging to identify network traffic coming to and from

containers.

iv. Authentication is centralized - microservices deployed on separate containers presents a

challenge of authenticating users and sharing user credentials between microservices in a

symmetric and secure manner.

v. Threat modeling and risk assessment are localized - the microservices ownership model

discussed in Chapter 3 emphasizes team autonomy and ensuring that threat modeling, and

risk assessment is done before new versions of microservices are released becomes a

challenge.

202

The following secondary research questions related to RQ1 are addressed below:

(a) How does the microservices architectural style differ from common SOA

implementations?

The state-of-the-art discussed in Chapter 2 and Chapter 3 of this thesis identified the following

four key differences between microservices and traditional SOA implementations:

i. Services granularity – microservices are fine-grained components that focus on a single

purpose and aim to do it well, whereas in SOA, a service can encapsulate a large product

or a legacy system and is therefore course-grained.

ii. Security – traditional SOA implementations uses the enterprise service bus (ESB) as a

security layer. Each service in SOA does not have to implement its security. On the

contrary, in the microservices architecture, each microservices is an independent unit that

is responsible for its security.

iii. Component sharing – traditional SOA implementations are based on making component

reusable and shareable. In the microservices architectural style, each microservices is a

single unit and is designed to have its data with minimal dependencies to ensure its

autonomy.

iv. Service communication – a microservices communicate predominantly using a known

application programming interface layer, whereas traditional SOA implementation uses a

messaging middleware component responsible for mediation, routing, message

enhancement, and protocol transformation.

(b) What are the security risks of microservices?

The risk assessment of the microservices architectural performed in Chapter 5 in this thesis

identified the following five risks associated with microservices:

i. Insecure application programming interfaces - a weak set of application programming

interfaces (APIs) exposes microservices to injection types of attacks, API manipulation and

functionality misuse among other attacks.

203

ii. Unauthorized access - when there is no proper scalable identity access management system,

a microservices is vulnerable to unauthorized access leading to tampering with data and

information disclosure.

iii. Insecure microservices discovery - when microservices use discovery mechanisms that are

not secure, spoofing, information disclosure and denial of service may occur.

iv. Insecure runtime infrastructure - containers and virtual machine, where microservices are

deployed, may be compromised by the presence of errors or malware and an attacker can

exploit the weakness to gain access to the microservices.

v. Insecure message broker - when the message broker is not correctly secured, spoofing,

tampering with data, information disclosure and denial of service may occur.

(c) What methods can an attacker use to exploit weaknesses in microservices?

In Chapter 5, an analysis of security threats and vulnerabilities associated with microservices

identified the following attack methods that a malicious agent can use when there are no sufficient

protection measures:

i. Injection of unexpected items – an attacker can exploit the weaknesses on the microservices

API validation mechanisms by manipulating the content that is sent as part of the request

parameter.

ii. Use deceptive interactions – an attacker can deceive the microservices during an interaction

in such a manner that the microservices allows the user to perform actions that they are not

authorized to do.

iii. Abuse microservices functionality – an attacker can flood the microservices with many

requests so that the microservices deplete its allocated computing resource while

attempting to process the request. In so doing, the microservices may fail to provide

functionality to legitimate users.

iv. Subvert microservices access control – an attacker can bypass authentication or

authorization mechanisms to access the resources of a microservice illegally.

v. Use probabilistic techniques – an attacker can use brute force or send randomly created

input data to microservices to analyze their failures and to discover certain assumptions

made during the design of microservices.

204

vi. Collect and analyze information – an attacker can take advantage of insecure

communication channels between communication microservices or gain access to

microservices logs and read sensitive information.

The second main research question is now revisited below

RQ2 - How can software engineers build microservices in a systematic way in which security

is an integral part of the entire microservices lifecycle?

In Chapter 5, as a starting point to address this question, the threat modeling exercise identified six

important main activities to incorporate in the day-to-day software development tasks. The six

identified activities are:

i. Document security requirements of microservices compositions

ii. Adopt secure programming best practices

iii. Validate security requirements and secure programming best practices

iv. Secure configuration of runtime infrastructure

v. Continuously monitor the behavior of components of the microservices composition

vi. Securely respond to attacks using adaptation mechanisms

Then in Chapter 7 this thesis proposed a software development framework that defined secondary

security-focused activities to support the six activities above. The proposed framework provides a

road map that can be used to ensure that the six activities are part of the daily software development

tasks. The proposed framework defines a systematic way of integrating security in a software

development process.

The secondary research questions related to RQ2 are now addressed below:

205

a) What are the design flaws associated with the microservices architectural style and

how can they be avoided?

The framework proposed in this thesis discussed an approach to analyse microservices threats and

vulnerability that are rooted in the architectural style. The framework identified the following

architectural design flaws:

i. Failure to comprehensively validate microservices inputs

ii. Failure to ensure data integrity of messages, deployment files and configuration files

iii. Failure to correctly identify, authenticate and authorize users

iv. Failure to limit access to microservices resources accordingly

v. Failure to limit the attack surface

b) What guidelines can software engineers use to design and implement secure

microservices and how can these guidelines be presented in a manner that is useful

and convenient for software engineers especial those not trained in software security?

The framework proposed in this thesis identified and constructed three important guidelines to

address this research questions namely:

i. Secure coding guidelines – the secure coding guidelines in the thesis are elicited by

performing a root cause analysis of security threats and vulnerabilities of microservices

composition. The guidelines are architecture-centric to assist software engineers avoid

design choices that lead to security flaws in microservices.

ii. Secure design principles – the principles were identified from the review performed in

Chapter 6 and from a root cause analysis performed in the proposed framework. The design

principles provide a set of rules that software engineers can use to avoid introducing

vulnerabilities during the design of microservices.

iii. Microservices standards – the purpose of standards is to establish a set of mandatory

requirements that software engineers must comply with in their daily development

activities. The standards were created from a set of common security weaknesses and best

practices suggested in literature.

206

c) How can security-focused tools, techniques, and practices be integration in the

development lifecycle to so that they become part of the software engineer's daily

software development tasks?

The software development framework proposed in Chapter 7 used the six main security-focused

activities listed in research question RQ2 above in this chapter to identify security-focused tools,

techniques and practices. The proposed framework then identified phases in the software

development process where the six main activities are to be performed. This approach provides a

method to appropriately determine how to integrate the tools, techniques and practices so that they

become part of the software engineer’s daily development tasks.

RQ3 - How can protection measures be correctly implemented and preserved to ensure that

microservices are safe at all times?

The software development framework proposed in this thesis discussed the comprehensive use of

guidelines to assist software engineers in implementing protection measures. The guidelines are

discussed in the secondary question above. In addition, the proposed framework discussed security

validation techniques that software engineers should use to ensure that protection measures and

guidelines are correctly followed. Microservices should undergo extensive security testing before

any deployment. The testing techniques defined in the proposed framework include:

i. Static security testing

ii. Manual code review

iii. Security unit test and acceptance test execution

iv. Penetration testing

10.2 Research contributions

This thesis provides a holistic security perspective of the microservices architectural style. First,

the thesis identifies the security challenges of the architectural style using risk assessment

techniques. The assessment brings to the fore the various security threats and vulnerabilities in

microservices that are rooted in the architectural style. In addition, protection measures are

suggested. The thesis also identified security-focused activities that should be incorporated in the

development process of microservices. The tools are also reviewed to assist software engineers

207

make an informed decision when choosing tools to incorporate into their daily development tasks.

The security-focused activities are further used to identify tools, techniques and methods that can

be used to improve the security of microservices.

This thesis also designs a catalog of microservices security threats, security weaknesses, and their

mitigations. Software engineers can use the catalog as quick reference in their day-to-day

microservices development tasks or as a manual to gain foundational knowledge to perform a risk

assessment in a microservices-based software project.

Furthermore, the thesis designs a dictionary of coding guidelines to mitigate common

microservices security weakness and common attacks on microservices. The dictionary is provided

as a reusable artefact in a manner that is easy to use for software engineers who are not trained in

security. Software engineers can use the dictionary as quick reference in their day-to-day

microservices development tasks.

The thesis proposes a software development framework to build secure microservices from the

ground up based on the identification of security-focused activities that are required in a

microservices development lifecycle. The framework is specified in a manner that makes it

agnostic to both culture and technology characteristics in a software development team to allow

software engineers to apply software security controls within their unique organizational

circumstances.

This research also proposed a secure development framework for secure microservices based on

the assumption that software engineers are willing to adopt secure software development practices.

The framework has defined best practices to follow in developing secure microservices but not

much has been considered about the context in which software development team operate. Success

of any software development approach is based on the ingenuity of various stakeholders and their

interactions with one another, and this has not been considered or tested in this research. There is

therefore a possibility that adopting the proposed framework may be considered out of touch with

a team’s culture, team skill set and team size. Furthermore, this thesis has also not identified the

208

minimum security skill set required to effectively adopt the framework or proposed measures to

deal with resistance of software engineers in a team in adopting some or all of the security-focused

activities or use of tools.

10.3 Future work

One of the fundamental premises on which the proposed software development framework for

secure microservices is based on, is that few software engineers are trained in security. To remedy

the lack of security expertise, the framework provides ready-made catalogs of threats and

protection measures, a catalog of secure design principles, and a set of security standards. Future

work is to ascertain the effect of these catalogs on the development of security skills among

software engineers. Besides, an investigation is required to determine whether the catalogs created

in this thesis have sufficient information to be used as a security teaching aid. A qualitative analysis

is required to provide guidance on which section of the catalog engineers both with security

knowledge and those without consider vital.

Furthermore, there is need to investigate further how the framework can be effectively used in

different software development teams as discussed.

10.4 Conclusion

This chapter has presented the conclusion of this thesis by revisiting the research objectives. The

limitation of this research and the future research direction are also discussed. The main goal of

this thesis was to propose a software development framework for secure microservices.

The framework proposed in this thesis first identify the risk associated with the microservices

architectural style as a basis towards understanding the security challenges of microservices. The

security threats and vulnerabilities identified in the risk assessment are then used to identify

important security-oriented activities that should be incorporated into the daily development tasks.

The identification of security-oriented activities is further used to identify tools and techniques

that can assist software engineers create secure software as part of their day-to-day software

209

development activities. In addition, the security threats and vulnerabilities are used to create

catalogs that software engineers can use as quick references during the development of

microservices. The proposed secure software development framework is validated by creating a

microservices-based application.

The research conducted in this thesis is considered successful based on the research objectives and

research questions formulated in Chapter 1. A software development framework of secure

microservices has been created. The framework has been validated by developing an application

using the artefacts of the framework. The contributions of this research were presented and

opportunities for future research identified.

210

References

Aceto, G., Botta, A., De Donato, W. and Pescapè, A., 2013. Cloud monitoring: A survey.
Computer Networks, 57(9), pp.2093-2115.

Acetozi, J., 2017. Unit Tests. In Pro Java Clustering and Scalability (pp. 121-125). Apress,
Berkeley, CA.

Ahmadvand, M. and Ibrahim, A., 2016, September. Requirements reconciliation for scalable and
secure microservice (de) composition. In Requirements Engineering Conference Workshops
(REW), IEEE International (pp. 68-73). IEEE.

Ahmadvand, M. and Ibrahim, A., 2016, September. Requirements reconciliation for scalable and
secure microservice (de) composition. In Requirements Engineering Conference Workshops
(REW), IEEE International (pp. 68-73). IEEE.

Albattah, W. and Melton, A., 2014, June. Package cohesion classification. In Software
Engineering and Service Science (ICSESS), 2014 5th IEEE International Conference on (pp. 1-
8). IEEE.

Alferez, G.H. and Pelechano, V., 2013, June. Facing uncertainty in web service compositions. In
Web Services (ICWS), 2013 IEEE 20th International Conference on (pp. 219-226). IEEE.

AlHogail, A., 2015. Design and validation of information security culture framework. Computers
in Human Behavior, 49, pp.567-575.

Aljawarneh, S.A., Alawneh, A., and Jaradat, R., 2017. Cloud security engineering: Early stages
of SDLC. Future Generation Computer Systems, 74, pp.385-392.

Almorsy, M., Grundy, J., and Müller, I., 2016. An analysis of the cloud computing security
problem. arXiv preprint arXiv:1609.01107.

Alpers, S., Becker, C., Oberweis, A. and Schuster, T., 2015, September. Microservice based tool
support for business process modeling. In Enterprise Distributed Object Computing Workshop
(EDOCW), 2015 IEEE 19th International (pp. 71-78). IEEE.

Anderson, C., 2015. Docker [software engineering]. IEEE Software, 32(3), pp.102-c3.

Andrews, K., Steinau, S. and Reichert, M., 2017, October. Enabling Fine-grained Access Control
in Flexible Distributed Object-aware Process Management Systems. In Enterprise Distributed
Object Computing Conference (EDOC), 2017 IEEE 21st International (pp. 143-152). IEEE.

211

AppDynamics, A.I.P., AppDynamics Pro Documentation.

Arce, I., Clark-Fisher, K., Daswani, N., DelGrosso, J., Dhillon, D., Kern, C., Kohno, T.,
Landwehr, C., McGraw, G., Schoenfield, B. and Seltzer, M., 2014. Avoiding the top 10 software
security design flaws. Technical report, IEEE Computer Society Center for Secure Design
(CSD).

Arteau, P., Find security bugs, 2016. URL http://find-sec-bugs. GitHub. io.

Athanasopoulos, E., Boehner, M., Ioannidis, S., Giuffrida, C., Pidan, D., Prevelakis, V., Sourdis,
I., Strydis, C. and Thomson, J., 2015, December. Secure hardware-software architectures for
robust computing systems. In International Conference on e-Democracy (pp. 209-212). Springer,
Cham.

Atkinson, B., Della-Libera, G., Hada, S., Hondo, M., Hallam-Baker, P., Klein, J., LaMacchia, B.,
Leach, P., Manferdelli, J., Maruyama, H. and Nadalin, A., 2002. Web services security (WS-
Security). Specification, Microsoft Corporation.

Azarmi, M. and Bhargava, B., 2017, June. End-to-End Policy Monitoring and Enforcement for
Service-Oriented Architecture. In Cloud Computing (CLOUD), 2017 IEEE 10th International
Conference on (pp. 58-65). IEEE.

B. D. Win, R. Scandariato, K. Buyens, J. Grgoire, and W. Joosen. On the secure software
development process: Clasp, {SDL} and touchpoints compared. Information and Software
Technology, 51(7):1152 – 1171, 2009. Special Section: Software Engineering for Secure
Systems Software Engineering for Secure Systems.

B. Kitchenham and S. Charters, "Guidelines for Performing Systematic Literature Reviews in
Software Engineering," Tech. Rep. EBSE 2007- 001, Keele University and Durham University
Joint Report, 2007.

B. Kitchenham and S. Charters, "Guidelines for Performing Systematic Literature Reviews in
Software Engineering," Tech. Rep. EBSE 2007- 001, Keele University and Durham University
Joint Report, 2007.

Baca, D. and Carlsson, B., 2011, May. Agile development with security engineering activities. In
Proceedings of the 2011 International Conference on Software and Systems Process(pp. 149-
158). ACM.

Bajaj, S., Box, D., Chappell, D., Curbera, F., Daniels, G., Hallam-Baker, P., Hondo, M., Kaler,
C., Langworthy, D., Malhotra, A. and Nadalin, A., 2004. Web services policy framework (ws-
policy). Specification, IBM, BEA, Microsoft, SAP AG, Sonic Software, VeriSign.

212

Balalaie, A., Heydarnoori, A. and Jamshidi, P., 2015. Microservices migration patterns. Tech.
Rep. TR-SUTCE-ASE-2015-01, Automated Software Engineering Group, Sharif University of
Technology, Tehran, Iran.

Baldini, I., Castro, P., Chang, K., Cheng, P., Fink, S., Ishakian, V., Mitchell, N., Muthusamy, V.,
Rabbah, R., Slominski, A. and Suter, P., 2017. Serverless Computing: Current Trends and Open
Problems. arXiv preprint arXiv:1706.03178.

Baresi, L., 2017, December. Supporting the Decision of Migrating to Microservices Through
Multi-layer Fuzzy Cognitive Maps. In Service-Oriented Computing: 15th International
Conference, ICSOC 2017, Malaga, Spain, November 13–16, 2017, Proceedings (Vol. 10601, p.
471). Springer.

Baresi, L., Mendonça, D.F. and Garriga, M., 2017, September. Empowering Low-Latency
Applications Through a Serverless Edge Computing Architecture. In European Conference on
Service-Oriented and Cloud Computing (pp. 196-210). Springer, Cham.

Barnum, S. and Sethi, A., 2007. Attack patterns as a knowledge resource for building secure
software. In OMG Software Assurance Workshop: Cigital.

Bartolini, C., Bertolino, A., Elbaum, S. and Marchetti, E., 2011. Bringing white-box testing to
service oriented architectures through a service oriented approach. Journal of Systems and
Software, 84(4), pp.655-668.

Bass, L., Holz, R., Rimba, P., Tran, A.B. and Zhu, L., 2015, May. Securing a deployment
pipeline. In Release Engineering (RELENG), 2015 IEEE/ACM 3rd International Workshop on
(pp. 4-7). IEEE.

Bass, L., Weber, I. and Zhu, L., 2015. DevOps: A Software Architect's Perspective. Addison-
Wesley Professional.

Bean, James. SOA and web services interface design: principles, techniques, and standards.
Morgan Kaufmann, 2009.

Beck, K., Beedle, M., Van Bennekum, A., Cockburn, A., Cunningham, W., Fowler, M.,
Grenning, J., Highsmith, J., Hunt, A., Jeffries, R. and Kern, J., 2001. The agile manifesto.

Behrens, S., Heffner J. (2017) The Avalanche Application DoS In Microservice Architectures.
Available at: https://medium.com/signal-sciences-labs/starting-the-avalanche-application-dos-in-
microservice-architectures-4f5eb4730a60 (Accessed 20 January 2019).

Behringer, M., Bjarnason, S., Jiang, S., Carpenter, B., Pritikin, M., Ciavaglia, L. and Clemm, A.,
2015. Autonomic networking: Definitions and design goals.

213

Bell, M., 2008. Service-oriented modeling (SOA): Service analysis, design, and architecture.
John Wiley & Sons.

ben Othmane, L., Angin, P. and Bhargava, B., 2014, September. Using assurance cases to
develop iteratively security features using scrum. In Availability, Reliability and Security
(ARES), 2014 Ninth International Conference on (pp. 490-497). IEEE.

ben Othmane, L., Angin, P., Weffers, H. and Bhargava, B., 2014. Extending the agile
development process to develop acceptably secure software. IEEE Transactions on dependable
and secure computing, 11(6), pp.497-509.

ben Othmane, L., Angin, P., Weffers, H. and Bhargava, B., 2014. Extending the agile
development process to develop acceptably secure software. IEEE Transactions on dependable
and secure computing, 11(6), pp.497-509.

Berg, A., 2012. Jenkins Continuous Integration Cookbook. Packt Publishing Ltd.
Bernstein, D., 2015. Is Amazon Becoming the New Cool Software Company for Developers?
IEEE Cloud Computing, 2(1), pp.69-71.

Bertino, E., Martino, L.D., Paci, F. and Squicciarini, A.C., 2009. Web services threats,
vulnerabilities, and countermeasures. In Security for Web Services and Service-Oriented
Architectures (pp. 25-44). Springer, Berlin, Heidelberg.

Bertolino, A., Busch, M., Daoudagh, S., Lonetti, F. and Marchetti, E., 2014. A toolchain for
designing and testing access control policies. In Engineering Secure Future Internet Services and
Systems (pp. 266-286). Springer, Cham.

Bertolino, A., Busch, M., Daoudagh, S., Lonetti, F. and Marchetti, E., 2014. A toolchain for
designing and testing access control policies. In Engineering Secure Future Internet Services and
Systems (pp. 266-286). Springer, Cham.

Bhattacharya, K., Hull, R. and Su, J., 2009. A data-centric design methodology for business
processes. Handbook of Research on Business Process Modeling, pp.503-531.

Bhuyan, P., Prakash, C. and Mohapatra, D., 2012. A survey of regression testing in SOA.
International Journal of Computer Applications, 44(19), pp.0975-8887.

Bigdoli, H., 2006. Handbook of Information Security, Key Concepts, Infrastructure, Standards,
and Protocols.

Borazjani, P.N., 2017, May. Security Issues in Cloud Computing. In International Conference on
Green, Pervasive, and Cloud Computing (pp. 800-811). Springer, Cham.

214

Bossert, O., 2016. A Two-Speed Architecture for the Digital Enterprise. In Emerging Trends in
the Evolution of Service-Oriented and Enterprise Architectures (pp. 139-150). Springer
International Publishing.

Box, D., Ehnebuske, D., Kakivaya, G., Layman, A., Mendelsohn, N., Nielsen, H.F., Thatte, S.
and Winer, D., 2004. Simple Object Access Protocol (SOAP) 1.1. W3C Note, May 2000. W3C,
http://www. w3. org/TR/2000/NOTE-SOAP-20000508, pp.1-33.

Brewer, E.A., 2015, August. Kubernetes and the path to cloud native. In Proceedings of the Sixth
ACM Symposium on Cloud Computing (pp. 167-167). ACM.

Brodecki, B., Szychowiak, M. and Sasak, P., 2012. Security policy conflicts in service-oriented
systems. New Generation Computing, 30(2-3), pp.215-240.

Brook, J.M. and Brooks, R., 2015. A decade of lessons learned: Transforming the enterprise for
today's cloud architecture. In Proceedings of the ICCSM2015 3rd International Conference on
Cloud Security and Management: ICCSM (p. 16).

Brown, W.A., Holley, K.L., Moore, G.A. and Tegan, W.J., International Business Machines
Corporation, 2014. Defining service ownership for a service oriented architecture. U.S. Patent
8,660,885.

Buecker, A., Ashley, P., Borrett, M., Lu, M., Muppidi, S. and Readshaw, N., 2008.
Understanding SOA security design and implementation. IBM Redbooks.

Butzin, B., Golatowski, F. and Timmermann, D., 2016, September. Microservices approach for
the internet of things. In Emerging Technologies and Factory Automation (ETFA), 2016 IEEE
21st International Conference on (pp. 1-6). IEEE.

Calabrese, J., Muñoz, R., Pasini, A., Esponda, S., Boracchia, M. and Pesado, P., 2017, October.
Assistant for the Evaluation of Software Product Quality Characteristics Proposed by ISO/IEC
25010 Based on GQM-Defined Metrics. In Argentine Congress of Computer Science (pp. 164-
175). Springer, Cham.

Campbell, G. and Papapetrou, P.P., 2013. SonarQube in action. Manning Publications Co.

Candido, G., Sousa, C., Di Orio, G., Barata, J. and Colombo, A.W., 2013, May. Enhancing
device exchange agility in Service-oriented industrial automation. In Industrial Electronics
(ISIE), 2013 IEEE International Symposium on (pp. 1-6). IEEE.

Casteele, S.V., 2005. Threat modeling for web application using the STRIDE model.

215

Chan, G.Y., Chua, F.F. and Lee, C.S., 2016. Intrusion detection and prevention of web service
attacks for software as a service: Fuzzy association rules vs fuzzy associative patterns. Journal of
Intelligent & Fuzzy Systems, 31(2), pp.749-764.

Cherdantseva, Y. and Hilton, J., 2013, September. A reference model of information assurance &
security. In Availability, reliability, and security (ares), 2013 eighth international conference on
(pp. 546-555). IEEE.

Chinnici, R., Moreau, J.J., Ryman, A. and Weerawarana, S., 2007. Web services description
language (wsdl) version 2.0 part 1: Core language. W3C recommendation, 26, p.19.

Christensen, B., 2012. Introducing Hystrix for resilience engineering. Netflix Tech Blog.

Christensen, E., Curbera, F., Meredith, G. and Weerawarana, S., 2001. Web Services Description
Language (WSDL), W3C Note. World Wide Web Consortium. URL: http://www. w3.
org/TR/wsdl.

Christensen, J.H., 2009, October. Using RESTful web-services and cloud computing to create
next generation mobile applications. In Proceedings of the 24th ACM SIGPLAN conference
companion on Object oriented programming systems languages and applications (pp. 627-634).
ACM.

Chrysikos, A. and McGuire, S., 2018. A Predictive Model for Risk and Trust Assessment in
Cloud Computing: Taxonomy and Analysis for Attack Pattern Detection. In Guide to
Vulnerability Analysis for Computer Networks and Systems (pp. 81-99). Springer, Cham.

Chung, S.K., Yee, O.C., Singh, M.M., and Hassan, R., 2014, September. SQL injections attack
and session hijacking on e-learning systems. In Computer, Communications, and Control
Technology (I4CT), 2014 International Conference on (pp. 338-342). IEEE.

Cloudmonix. 2018. CloudMonix. Retrieved 9-May-2018 from http://www. cloudmonix.com/

CloudWatch, A., 2014. Amazon cloudwatch.

Common Vulnerabilities Exposures, online: https://cve.mitre.org acessed on March 27, 2017.
Cramer, J. and Krueger, A.B., 2016. Disruptive change in the taxi business: The case of Uber.
American Economic Review, 106(5), pp.177-82.

Cramer, J. and Krueger, A.B., 2016. Disruptive change in the taxi business: The case of Uber.
American Economic Review, 106(5), pp.177-82.

Cruzes, D.S., Felderer, M., Oyetoyan, T.D., Gander, M. and Pekaric, I., 2017, May. How is
Security Testing Done in Agile Teams? A Cross-Case Analysis of Four Software Teams. In
International Conference on Agile Software Development (pp. 201-216). Springer, Cham.

216

Da Xu, L., 2014. Enterprise integration and information architecture. CRC Press.

Daya, S., Van Duy, N., Eati, K., Ferreira, C.M., Glozic, D., Gucer, V., Gupta, M., Joshi, S.,
Lampkin, V., Martins, M. and Narain, S., 2016. Microservices from Theory to Practice: Creating
Applications in IBM Bluemix Using the Microservices Approach. IBM Redbooks.

de Andrade Gomes, P.H., Garcia, R.E., Spadon, G., Eler, D.M., Olivete, C., and Correia, R.C.M.,
2017, October. Teaching software quality via source code inspection tool. In 2017 IEEE
Frontiers in Education Conference (FIE) (pp. 1-8). IEEE.

de Andrade Gomes, P.H., Garcia, R.E., Spadon, G., Eler, D.M., Olivete, C., and Correia, R.C.M.,
2017, October. Teaching software quality via source code inspection tool. In 2017 IEEE Frontiers
in Education Conference (FIE) (pp. 1-8). IEEE.

De Giorgio, T., Ripa, G. and Zuccalà, M., 2010. An approach to enable replacement of SOAP
services and REST services in lightweight processes. Current Trends in Web Engineering,
pp.338-346

Della-Libera, G., Dixon, B., Farrell, J., Garg, P., Hondo, M., Kaler, C., Lampson, B., Lawrence,
K., Layman, A., Leach, P. and Manferdelli, J., 2002. Security in a web services world: A
proposed architecture and roadmap. White paper, IBM Corporation, and Microsoft Corporation.

Dell'Amico, M., Serme, G., Idrees, M.S., De Oliveira, A.S. and Roudier, Y., 2013. Hipolds: a
hierarchical security policy language for distributed systems. Information Security Technical
Report, 17(3), pp.81-92.

Dhara, K.M., Dharmala, M. and Sharma, C.K., 2015. A Survey Paper on Service Oriented
Architecture Approach and Modern Web Services.

Di Francesco, P., Malavolta, I. and Lago, P., 2017, April. Research on architecting
microservices: Trends, focus, and potential for industrial adoption. In Software Architecture
(ICSA), 2017 IEEE International Conference on (pp. 21-30). IEEE.

Dragoni, N., Giallorenzo, S., Lafuente, A.L., Mazzara, M., Montesi, F., Mustafin, R. and Safina,
L., 2016. Microservices: yesterday, today, and tomorrow. arXiv preprint arXiv:1606.04036.

Ebert, C., Gallardo, G., Hernantes, J. and Serrano, N., 2016. DevOps. IEEE Software, 33(3),
pp.94-100.

El Hassani, A.A., El Kalam, A.A., Bouhoula, A., Abassi, R. and Ouahman, A.A., 2015.
Integrity-OrBAC: a new model to preserve Critical Infrastructures integrity. International
journal of information security, 14(4), pp.367-385.

217

Elsen, R., Liem, I. and Akbar, S., 2016, October. Software versioning quality parameters:
Automated assessment tools based on the parameters. In Data and Software Engineering
(ICoDSE), 2016 International Conference on (pp. 1-6). IEEE.

Erl Thomas, Service-Oriented Architecture: Concepts, Technology, and Design. Upper Saddle
River, NJ, USA: Prentice Hall PTR, 2005.

Erl, T., 2008. Soa: principles of service design (Vol. 1). Upper Saddle River: Prentice Hall.

Erl, T., Gee, C., Kress, J., Maier, B., Normann, H., Raj, P., Shuster, L., Trops, B., Utschig-
Utschig, C., Wik, P. and Winterberg, T., 2014. Next Generation SOA.

Erl, T., Merson, P. and Stoffers, R., 2017. Service-oriented Architecture: Analysis and Design
for Services and Microservices. Prentice Hall PTR.

Estdale, J. and Georgiadou, E., 2018, September. Applying the ISO/IEC 25010 Quality Models
to Software Product. In European Conference on Software Process Improvement (pp. 492-503).
Springer, Cham.

Farrell, S., 2009. API Keys to the Kingdom. IEEE Internet Computing, 13(5).

Fatema, K., Emeakaroha, V.C., Healy, P.D., Morrison, J.P. and Lynn, T., 2014. A survey of
Cloud monitoring tools: Taxonomy, capabilities, and objectives. Journal of Parallel and
Distributed Computing, 74(10), pp.2918-2933.

Feitelson, D.G., Frachtenberg, E. and Beck, K.L., 2013. Development and deployment at
facebook. IEEE Internet Computing, 17(4), pp.8-17.

Feng, Q., Kazman, R., Cai, Y., Mo, R. and Xiao, L., 2016, April. Towards an architecture-centric
approach to security analysis. In 2016 13th Working IEEE/IFIP Conference on Software
Architecture (WICSA) (pp. 221-230). IEEE.

Fernandez, E.B., Astudillo, H. and Pedraza-García, G., 2015, September. Revisiting architectural
tactics for security. In European Conference on Software Architecture (pp. 55-69). Springer,
Cham.

Fernández, L., Hagenrud, H., Mudingay, R., Korhonen, T., Zupanc, B. and Andersson, R., 2016.
How to Build and Maintain a Development Environment for the Development of Controls
Software Applications: An Example of" Infrastructure as Code" within the Physics Accelerator
Community.

Fernandez-Buglioni, E., 2013. Security patterns in practice: designing secure architectures using
software patterns. John Wiley & Sons.

218

Fetzer, C., 2016. Building critical applications using microservices. IEEE Security & Privacy,
(6), pp.86-89.

Fielding, R., Gettys, J., Mogul, J., Frystyk, H., Masinter, L., Leach, P. and Berners-Lee, T., 1999.
Hypertext transfer protocol--HTTP/1.1 (No. RFC 2616).

Firesmith, D., 2004. Specifying reusable security requirements. Journal of Object Technology,
3(1), pp.61-75.

Fisher, J., Koning, D. and Ludwigsen, A.P., 2013, October. Utilizing atlassian jira for large-scale
software development management. In 14th International Conference on Accelerator & Large
Experimental Physics Control Systems (ICALEPCS).

Fontdevila, D., Genero, M. and Oliveros, A., 2017, November. Towards a usability model for
software development process and practice. In International Conference on Product-Focused
Software Process Improvement (pp. 137-145). Springer, Cham.

Forsgren Velasquez, N., Kim, G., Kersten, N. and Humble, J., 2017. State of DevOps report.
Puppet Labs and IT Revolution.

Fulton III, S.M., 2015. “What led amazon to its own microservices architecture.
G. McGraw, Software Security: Building Security, Addison Wesley, 2006

Geer, D., 2010. Are companies actually using secure development life cycles?. Computer, 43(6),
pp.12-16.

Giarratano, D., Guise, L., and Bodin, J.Y., 2017. Does cyber security moving towards risk
management leads to new grid organisation?. CIRED-Open Access Proceedings Journal,
2017(1), pp.2700-2702.

Giles, M. (2017) 'Uber Paid Off Hackers to Hide Massive Data Breach,' MIT Technology
Review, 22 November [Online]. Available at:
https://www.technologyreview.com/s/609539/uber-paid-off-hackers-to-hide-massive-data-
breach/(Accessed: 8 January 2018).

Gkioulos, V. and Wolthusen, S.D., 2017, August. Security Requirements for the Deployment of
Services Across Tactical SOA. In International Conference on Mathematical Methods, Models,
and Architectures for Computer Network Security (pp. 115-127). Springer, Cham.

Gogouvitis, S.V., Alexandrou, V., Mavrogeorgi, N., Koutsoutos, S., Kyriazis, D. and
Varvarigou, T., 2012, November. A monitoring mechanism for storage clouds. In Cloud and
Green Computing (CGC), 2012 Second International Conference on(pp. 153-159). IEEE.

Gressin, S., 2017. The Equifax Data Breach: What to Do.

219

Guide, D., 2010. Amazon Elastic Load Balancing.

Gummaraju, J., Desikan, T. and Turner, Y., 2015. Over 30% of official images in docker hub
contain high priority security vulnerabilities. Https://Banyanops. Com, pp.1-6.

Gutierrez, F., 2016. Pro Spring Boot. Apress.

Gutierrez, F., 2017. AMQP with Spring Boot. In Spring Boot Messaging (pp. 59-80). Apress.

Haley, C., Laney, R., Moffett, J. and Nuseibeh, B., 2008. Security requirements engineering: A
framework for representation and analysis. IEEE Transactions on Software Engineering, 34(1),
pp.133-153.

Hall, D., 2013. Ansible configuration management. Packt Publishing Ltd.

Hall, J., 2016. Mastering SaltStack. Packt Publishing Ltd.

Härlin, M., 2016. Testing and Gherkin in agile projects.

Hawanna, V., Kulkarni, V., Rane, R. and Joshi, P., 2016, December. Risk Evaluation of X. 509
Certificates–A Machine Learning Application. In International Conference on Information
Systems Security (pp. 372-389). Springer, Cham.

He, X. and Yang, X., 2017, October. Authentication and Authorization of End User in
Microservice Architecture. In Journal of Physics: Conference Series (Vol. 910, No. 1, p.
012060). IOP Publishing.

Heinrich, R., van Hoorn, A., Knoche, H., Li, F., Lwakatare, L.E., Pahl, C., Schulte, S. and
Wettinger, J., 2017, April. Performance engineering for microservices: research challenges and
directions. In Proceedings of the 8th ACM/SPEC on International Conference on Performance
Engineering Companion (pp. 223-226). ACM.

Heinrich, R., van Hoorn, A., Knoche, H., Li, F., Lwakatare, L.E., Pahl, C., Schulte, S. and
Wettinger, J., 2017, April. Performance engineering for microservices: research challenges and
directions. In Proceedings of the 8th ACM/SPEC on International Conference on Performance
Engineering Companion (pp. 223-226). ACM.

Highsmith, J., 2010. Beyond scope, schedule, and cost: The agile triangle. Dostupno na:
http://jimhighsmith. com/2010/11/14/beyond-scope-schedule-andcost-the-agile-triangle.

Hilton, M., Tunnell, T., Huang, K., Marinov, D. and Dig, D., 2016, August. Usage, costs, and
benefits of continuous integration in open-source projects. In Proceedings of the 31st IEEE/ACM
International Conference on Automated Software Engineering (pp. 426-437). ACM.

220

Hochstein, L. and Moser, R., 2017.Ansible: Up and Running: Automating Configuration
Management and Deployment the Easy Way. " O'Reilly Media, Inc.."

Hoffmann, J. and Weber, I., 2014. Web Service Composition. In Encyclopedia of Social Network
Analysis and Mining (pp. 2389-2399). Springer New York.

Hohpe, G. and Woolf, B., 2004. Enterprise integration patterns: Designing, building, and
deploying messaging solutions. Addison-Wesley Professional.

Howard, M. and LeBlanc, D., Writing Secure Code. 2003.

Howard, M. and Lipner, S., 2006. The Security Development Lifecycle: SDL: A Process for
Developing Demonstrably More Secure Software (Developer Best Practices).

Iacono, L.L. and Nguyen, H.V., 2015, June. Authentication scheme for REST. In International
Conference on Future Network Systems and Security (pp. 113-128). Springer, Cham.
IEC, I., 2013. 27002: 2013. Information technology Security techniques-Code of pract
ice for information security controls. Retrieved from http://www. iso. org/iso/catalogue_detail.
Inci, M.S., Gülmezoglu, B., Apecechea, G.I., Eisenbarth, T. and Sunar, B., 2015. Seriously, get
off my cloud! Cross-VM RSA Key Recovery in a Public Cloud. IACR Cryptology ePrint
Archive, 2015, p.898.

Infoholic Research LLP. Microservice Architecture Market: Global Drivers, Restraints,
Opportunities, Trends, and Forecasts up to 2023. Sept. 2017. url:
https://www.researchandmarkets.com/research/szk939/microservice (visited on May 21, 2018)

IntelliJ, I.D.E.A., 2011. the most intelligent Java IDE. JetBrains[online].[cit. 2016-02-23].

ISO, I., 1989. 7498-2. information processing systems open systems interconnection basic
reference model-part 2: Security architecture. ISO Geneva, Switzerland.

ISO, I., 7498-2: 1989. Information processing systems-Open Systems Interconnection, pp.7498-
2.

Jain, S. and Ingle, M., 2011. Software security requirements gathering instrument. International
Journal of Advanced Computer Science and Applications (IJACSA), 2(7), pp.116-129.

Jaramillo, D., Nguyen, D.V. and Smart, R., 2016, March. Leveraging microservices architecture
by using Docker technology. In SoutheastCon, 2016 (pp. 1-5). IEEE.

Jessani, V., Iyengar, A. and Chilanti, M., 2007. WebSphere business integration primer: Process
server, BPEL, SCA, and SOA. Pearson Education.

Johansson, P., 2017. Efficient Communication With Microservices.

221

Jones, M. and Hildebrand, J., 2015. Json web encryption (jwe)(No. RFC 7516).

Jones, M., Bradley, J., and Sakimura, N., 2015. JSON web token (jwt) (No. RFC 7519).

Jøsang, A., Ødegaard, M. and Oftedal, E., 2015, May. Cybersecurity Through Secure Software
Development. In IFIP World Conference on Information Security Education (pp. 53-63).
Springer, Cham.

Jose, A., and Shettar, R., 2017. Cloud deployments using micro-services for digital monetization
application for customers. IJITR, 5(3), pp.6492-6495.

Jurimae, S., 2015. A Literature Survey of the Development Processes for Secure Software
(Doctoral dissertation, Bachelor’s Thesis, Faculty of Mathematics and Computer Science,
University of Tartu).

Kadam, S.P. and Joshi, S., 2015, March. Secure by design approach to improve the security of
object-oriented software. In Computing for Sustainable Global Development (INDIACom), 2015
2nd International Conference on (pp. 24-30). IEEE.

Kakavand, M., Mustapha, N., Mustapha, A., Abdullah, M.T. and Ahmadi, B., 2016. Towards a
Defense Mechanism Against REST-Based Web Service Attacks. Advanced Science Letters,
22(10), pp.2827-2831.

Kanneganti, R. and Chodavarapu, P., 2008. SOA security. Dreamtech Press.
Kaur, H., 2017. Automating Static Code Analysis for Risk Assessment and Quality Assurance of
Medical Record Software

Kaur, H., 2017. Automating Static Code Analysis for Risk Assessment and Quality Assurance of
Medical Record Software.

Khaim, R., Naz, S., Abbas, F., Iqbal, N., Hamayun, M. and Pakistan, R., 2016. A review of
security integration technique in agile software development. International Journal of Software
Engineering & Applications, 7(3).

Killalea, T., 2016. The hidden dividends of microservices. Communications of the ACM, 59(8),
pp.42-45.

Kim, G., 2014. DevOps Patterns Distilled: A Fifteen Year Study of High Performing {IT}
Organizations.

Kissel, R., 2013. Glossary of key information security terms. NIST Interagency Reports NIST IR,
7298(3).

222

König, L. and Steffens, A., 2018. Towards a Quality Model for DevOps. Continuous Software
Engineering & Full-scale Software Engineering, p.37.

Krafzig D, Banke K, Slama D. Enterprise SOA: service-oriented architecture best practices.
Prentice Hall Professional; 2005.

Kravchuk, S., Minochkin, D., Omiotek, Z., Bainazarov, U., Weryńska-Bieniasz, R. and
Iskakova, A., 2017, August. Cloud-based mobility management in heterogeneous wireless
networks. In Photonics Applications in Astronomy, Communications, Industry, and High Energy
Physics Experiments 2017 (Vol. 10445, p. 104451W). International Society for Optics and
Photonics.

Krivic, P., Skocir, P., Kusek, M. and Jezic, G., 2017, June. Microservices as Agents in IoT
Systems. In KES International Symposium on Agent and Multi-Agent Systems: Technologies and
Applications (pp. 22-31). Springer, Cham.

Kuusela, J., 2017. Security testing in continuous integration processes.

Lalsing, V., Kishnah, S. and Pudaruth, S., 2012. People factors in agile software development
and project management. International Journal of Software Engineering & Applications, 3(1),
p.117.

Lawton, G., 2015. TechTarget How microservices bring agility to SOA.

Le Ru, Y., Aron, M., Gerval, J.P. and Napoleon, T., 2015. Tests generation oriented web-based
automatic assessment of programming assignments. Smart education and smart e-learning (pp.
117-127). Springer, Cham.

.
Le, V.D., Neff, M.M., Stewart, R.V., Kelley, R., Fritzinger, E., Dascalu, S.M. and Harris, F.C.,
2015, July. Microservice-based architecture for the NRDC. In Industrial Informatics (INDIN),
2015 IEEE 13th International Conference on (pp. 1659-1664). IEEE.

Lee, J.H., Shim, H.J. and Kim, K.K., 2010. Critical success factors in SOA implementation: an
exploratory study. Information systems management, 27(2), pp.123-145.

Lesser, E. and Ban, L., 2016. How leading companies practice software development and
delivery to achieve a competitive edge. Strategy & Leadership, 44(1), pp.41-47.

Lewis, G.A., Morris, E., Simanta, S. and Wrage, L., 2007, February. Common misconceptions
about service-oriented architecture. In Commercial-off-the-Shelf (COTS)-Based Software
Systems, 2007. ICCBSS'07. Sixth International IEEE Conference on (pp. 123-130). IEEE.

223

LightStep, Inc. The 2018 Global Microservice Trends report. Apr. 2018. url:
https://go.lightstep.com/global-microservices-trends-report-2018 (visited on May 21, 2018) (cit.
on p. 16).

Linthicum, D.S., 2003. Next generation application integration: from simple information to web
services. Addison-Wesley Longman Publishing Co., Inc.

Litwin, W., Mark, L. and Roussopoulos, N., 1990. Interoperability of multiple autonomous
databases. ACM Computing Surveys (CSUR), 22(3), pp.267-293.

Liu, J., Gu, N., Zong, Y., Ding, Z. and Zhang, Q., 2005, September. Service registration and
discovery in a domain-oriented UDDI registry. In Computer and Information Technology, 2005.
CIT 2005. The Fifth International Conference on (pp. 276-283). IEEE.

Long, F., Mohindra, D., Seacord, R.C., Sutherland, D.F. and Svoboda, D., 2011. The CERT
Oracle Secure Coding Standard for Java. Addison-Wesley Professional.

Long, S.J., 2015. Owasp dependency check.

Loope, J., 2011. Managing Infrastructure with Puppet: Configuration Management at Scale. "
O'Reilly Media, Inc.."

Loukides, M., 2012. What is DevOps?. " O'Reilly Media, Inc.".

M. Howard, S. Lipner, The Security Development Lifecycle (SDL): A Process for Developing
Demonstrably More Secure Software, Microsoft Press, 2006.

M. Richards, “Microservices vs. service-oriented architecture,” 2015. O’Reilly Media

Macero, M., 2017. The Microservices Journey Through Tools. In Learn Microservices with
Spring Boot (pp. 179-265). Apress, Berkeley, CA.

MacLennan, E. and Van Belle, J.P., 2014. Factors affecting the organizational adoption of
service-oriented architecture (SOA). Information Systems and e-Business Management, 12(1),
pp.71-100.

Mardjan, M.J. and Jahan, A., 2016. Open Reference Architecture for Security and Privacy.
Marks, Eric A., and Michael Bell. Service Oriented Architecture (SOA): a planning and
implementation guide for business and technology. John Wiley & Sons, 2008.

Markus, M.L. and Tanis, C., 2000. The enterprise systems experience-from adoption to success.
Framing the domains of IT research: Glimpsing the future through the past, 173, pp.207-173
Marschall, M., 2015. Chef infrastructure automation cookbook. Packt Publishing Ltd.

224

Martins, G., Bhatia, S., Koutsoukos, X., Stouffer, K., Tang, C. and Candell, R., 2015, August.
Towards a systematic threat modeling approach for cyberphysical systems. In Resilience Week
(RWS), 2015 (pp. 1-6). IEEE.

McGrath, G. and Brenner, P.R., 2017, June. Serverless computing: Design, implementation, and
performance. In Distributed Computing Systems Workshops (ICDCSW), 2017 IEEE 37th
International Conference on (pp. 405-410). IEEE.

Menasce, D.A., 2005. Mom vs. rpc: Communication models for distributed applications. IEEE
Internet Computing, 9(2), pp.90-93.

Merkel, D., 2014. Docker: lightweight linux containers for consistent development and
deployment. Linux Journal, 2014(239), p.2.

Moller and Schwartzbach 2006. An introduction to XML and Web technologies. Pearson
Education.

Montesi, F. and Weber, J., 2016. Circuit breakers, discovery, and API gateways in microservices.
arXiv preprint arXiv:1609.05830.

Morgan, S., 2018. Top 5 cybersecurity facts, figures and statistics for 2018 (2018).

Myagmar, S., Lee, A. J., and Yurcik, W., 2005. Threat modeling as a basis for security
requirements, in Symposium on requirements engineering for information security (SREIS), vol.
2005, 2005, pp. 1–8.

Myers, C., 2016. Learning saltstack. Packt Publishing Ltd.

Nacer, H., Djebari, N., Slimani, H., and Aissani, D., 2017. A distributed authentication model for
composite Web services. Computers & Security, 70, pp.144-178.

Nadalin, A., Kaler, C., Monzillo, R. and Hallam-Baker, P., 2006. Web services security: SOAP
message security 1.1 (WS-Security 2004). Oasis Standard, 200401.

Nadareishvili, I., Mitra, R., McLarty, M. and Amundsen, M., 2016. Microservice Architecture:
Aligning Principles, Practices, and Culture. " O'Reilly Media, Inc.".

Natis, Y. and Schulte, R., 2003. Introduction to service-oriented architecture. Gartner Group, 14.

Netflix (2012). The Netflix Tech Blog: Netflix Shares Cloud Load Balancing And Failover Tool:
Eureka!

Neumann, P.G., 2018. Fundamental trustworthiness principles. New Solutions for Cybersecurity.

.

225

Newcomer, E. (2017) 'Uber Paid Hackers to Delete Stolen Data on 57 Million People',

Newcomer, E. and Lomow, G., 2005. Understanding SOA with Web services. Addison-Wesley.

Newman, S., 2015. Building microservices: designing fine-grained systems. " O'Reilly Media,
Inc.".

Ni, C.Y. and Yuan, S.M., 1996. DITSE: an experimental distributed database system.
Information and Software Technology, 38(2), pp.103-110.

Obe, R.O. and Hsu, L.S., 2017. PostgreSQL: Up and Running: a Practical Guide to the
Advanced Open Source Database. " O'Reilly Media, Inc.".

Oberscheven, F.M., 2013. Software Quality Assessment in an Agile Environment. Faculty of
Science of Radboud University in Nijmegen.

O'Brien, S.A., 2017. Giant Equifax data breach: 143 million people could be affected. CNN
Tech.

Ochieng, D., Gichoya, D. and Odini, C., 2011, May. Proposed ICT-enabled services model for
local authorities in Kenya. In IST-Africa Conference Proceedings, 2011 (pp. 1-9). IEEE.

Oftedal, A.V.D.S.E. and Stock, A., 2014. REST Security Cheat Sheet.
Olivier, M.S., 2009. Information technology research: A practical guide for computer science
and informatics. Pretoria: Van Schaik.

Olsson, R.A. and Keen, A.W., 2004. Remote procedure call. The JR Programming Language:
Concurrent Programming in an Extended Java, pp.91-105.

Open Security Alliance (2017), "IT Security Requirements" [Online]. [Accessed 15 January
2018], available:
http://www.opensecurityarchitecture.org/cms/definitions/it_security_requirements

Open Web Application Security Project, “OWASP Threat Dragon,”
https://www.owasp.org/index.php/OWASP Threat Dragon, 2018.

Otterstad, C. and Yarygina, T., 2017, September. Low-level exploitation mitigation by diverse
microservices. In European Conference on Service-Oriented and Cloud Computing (pp. 49-56).
Springer, Cham.

OWASP Foundation: OWASP Secure Coding Practices Quick Reference Guide V2. [Online].
https://www.owasp.org/images/0/08/OWASP_SCP_Quick_Reference_Guide_v2.pdf (2010)

OWASP, Comprehensive, lightweight application security process, http://www.owasp.org, 2006.

226

Oyetoyan, T.D., Cruzes, D.S. and Jaatun, M.G., 2016, August. An empirical study on the
relationship between software security skills, usage and training needs in agile settings. In 2016
11th International Conference on Availability, Reliability and Security (ARES) (pp. 548-555).
IEEE.

Pahl, C. and Jamshidi, P., 2016, April. Microservices: A Systematic Mapping Study. In CLOSER
(1) (pp. 137-146).

Pant, K. and Juric, M.B., 2008. Business process driven SOA using BPMN and BPEL: From
business process modeling to orchestration and service oriented architecture. Packt Publishing
Ltd.

Paul, M., 2016. Official (ISC) 2 Guide to the CSSLP. CRC Press.

Pautasso, C., 2014. RESTful web services: principles, patterns, emerging technologies. In Web
Services Foundations (pp. 31-51). Springer New York.

Peischl, B., Felderer, M. and Beer, A., 2016, August. Testing security requirements with non-
experts: approaches and empirical investigations. In Software Quality, Reliability and Security
(QRS), 2016 IEEE International Conference on (pp. 254-261). IEEE.

Penzenstadler, B., Raturi, A., Richardson, D. and Tomlinson, B., 2014. Safety, security, now
sustainability: The nonfunctional requirement for the 21st century. IEEE Software, 31(3), pp.40-
47.

Petersen, K., Feldt, R., Mujtaba, S. and Mattsson, M., 2008, June. Systematic Mapping Studies
in Software Engineering. In EASE (Vol. 8, pp. 68-77).

Popa, C.E., 2015. Securing a REST Web Service. Journal of Mobile, Embedded and Distributed
Systems, 7(2), pp.95-99.

Porter, M.E. and Heppelmann, J.E., 2015. How smart, connected products are transforming
companies. Harvard Business Review, 93(10), pp.96-114.

Priya, S.S., and Arya, S.S., 2016. Threat Modeling for a Secured Software Development.
International Journal of Advanced Research in Computer Science, 7(1).

Rahman, M. and Gao, J., 2015, March. A reusable automated acceptance testing architecture for
microservices in behavior-driven development. In Service-Oriented System Engineering (SOSE),
2015 IEEE Symposium on (pp. 321-325). IEEE.

Raman, R.C. and Dewailly, L., 2018. Building RESTful Web Services with Spring 5: Leverage
the power of Spring 5.0, Java SE 9, and Spring Boot 2.0. Packt Publishing Ltd.

227

Rauter, T., Kajtazovic, N. and Kreiner, C., 2016. Asset-centric security risk assessment of
software components. In 2nd International Workshop on MILS: Architecture and Assurance for
Secure Systems.

Ravichandran, A., Taylor, K. and Waterhouse, P., 2016. DevOps foundations. In DevOps for
Digital Leaders (pp. 27-47). Apress.

Ray, K., 2010. Introduction to Service-Oriented Architectures. URL:
http://anengineersperspective. com/wp-content/uploads/2010/03/Introduction-to-SOA. Pdf.

Reddy, K.S.P., 2017. Testing Spring Boot Applications. In Beginning Spring Boot 2 (pp. 221-
246). Apress, Berkeley, CA.

Richardson, C., 2016. Building Microservices: Using an API Gateway.

Richter, D., Konrad, M., Utecht, K. and Polze, A., 2017, July. Highly-Available Applications on
Unreliable Infrastructure: Microservice Architectures in Practice. In Software Quality, Reliability
and Security Companion (QRS-C), 2017 IEEE International Conference on (pp. 130-137). IEEE.
Rogers, B., 2015. The social costs of Uber. U. Chi. L. Rev. Dialogue, 82, p.85.

Ross, R., McEvelley, M., and Oren, J.C., 2016. NIST special Publication 800-160 Systems
Security Engineering-Considerations for a Multidisciplinary Approach in the Engineering of
Trustworthy Secure Systems. Gaithersburg: National Institute of Standards and Technology.

Rotter, C., Illés, J., Nyíri, G., Farkas, L., Csatári, G. and Huszty, G., 2017, March. Telecom
strategies for service discovery in microservice environments. In Innovations in Clouds, Internet
and Networks (ICIN), 2017 20th Conference on (pp. 214-218). IEEE.

Sahu, D.R., and Tomar, D.S., 2017. Analysis of Web Application Code Vulnerabilities using
Secure Coding Standards. Arabian Journal for Science and Engineering, 42(2), pp.885-895.

Sandkuhl, K. and Söderström, E., 2016. PoEM Doctoral Consortium: Proceedings of the
Doctoral Consortium at the 9th IFIP WG 8.1 Working Conference on The Practice of Enterprise
Modeling (PoEM-DC 2016), Skövde, Sweden, November 8th, 2016. In The Practice of
Enterprise Modeling (PoEM). CEUR-WS. Org.

Santos, J.C., Tarrit, K. and Mirakhorli, M., 2017, April. A Catalog of Security Architecture
Weaknesses. In Software Architecture Workshops (ICSAW), 2017 IEEE International
Conference on (pp. 220-223). IEEE.

Santos, J.C., Tarrit, K., Sejfia, A., Mirakhorli, M. and Galster, M., 2019. An empirical study of
tactical vulnerabilities. Journal of Systems and Software, 149, pp.263-284.

228

Satoh, F. and Tokuda, T., 2011. Security policy composition for composite web services. IEEE
Transactions on Services Computing, 4(4), pp.314-327.

Satoh, F., Nakamura, Y., Mukhi, N.K., Tatsubori, M. and Ono, K., 2008, July. Methodology and
tools for end-to-end soa security configurations. In Services-Part I, 2008. IEEE Congress on (pp.
307-314). IEEE.

Sbarski, P. and Kroonenburg, S., 2017. Serverless Architectures on AWS: With examples using
AWS Lambda.

Scandariato, R., Wuyts, K., and Joosen, W., 2015. A descriptive study of Microsoft's threat
modeling technique. Requirements Engineering, 20(2), pp.163-180.

Schmidt, C., 2016. Agile Software Development. In Agile Software Development Teams (pp. 7-
35). Springer, Cham.

Scott, B., Xu, J., Zhang, J., Brown, A., Clark, E., Yuan, X., Yu, A. and Williams, K., 2017,
October. An interactive visualization tool for teaching ARP spoofing attack. In 2017 IEEE
Frontiers in Education Conference (FIE) (pp. 1-5). IEEE.

Seacord, R. and Sebor, M., 2010. Top 10 secure coding practices. CERT, February, 13.
Shah, D. and Patel, D., 2008, September. Dynamic and ubiquitous security architecture for
global SOA. In Mobile Ubiquitous Computing, Systems, Services and Technologies, 2008.
UBICOMM'08. The Second International Conference on(pp. 482-487). IEEE.

Shashwat, A., Kumar, D. and Chanana, L., 2017, December. An end to end security framework
for service oriented architecture. In Infocom Technologies and Unmanned Systems (Trends and
Future Directions)(ICTUS), 2017 International Conference on (pp. 475-480). IEEE.

Sheffer, Y., Holz, R. and Saint-Andre, P., 2015. Summarizing known attacks on transport layer
security (tls) and datagram tls (dtls) (No. RFC 7457).

Sheng, Q.Z., Qiao, X., Vasilakos, A.V., Szabo, C., Bourne, S. and Xu, X., 2014. Web services
composition: A decade’s overview. Information Sciences, 280, pp.218-238.

Shepperd, M. and Ince, D., 1993. Derivation and Validation of Software Metrics. International
Series of Monographs on Computer Science. Clarendon Press.

Shetty, R., Choo, K.K.R. and Kaufman, R., 2017, June. Shellshock Vulnerability Exploitation
and Mitigation: A Demonstration. In International Conference on Applications and Techniques
in Cyber Security and Intelligence (pp. 338-350). Edizioni della Normale, Cham.

Shostack, A., 2008, September. Experiences threat modeling at Microsoft. In Modeling Security
Workshop. Dept. of Computing, Lancaster University, UK.

229

Shostack, A., 2014. Threat modeling: Designing for security. John Wiley & Sons.

Shuaibu, B.M., Norwawi, N.M., Selamat, M.H. and Al-Alwani, A., 2015. Systematic review of
web application security development model. Artificial Intelligence Review, 43(2), pp.259-276.

Sittig, D.F. and Singh, H., 2016. A socio-technical approach to preventing, mitigating, and
recovering from ransomware attacks. Applied clinical informatics, 7(2), p.624.

Souag, A., Mazo, R., Salinesi, C. and Comyn-Wattiau, I., 2016. Reusable knowledge in security
requirements engineering: a systematic mapping study. Requirements Engineering, 21(2),
pp.251-283.

Stanek, M., 2017. Secure by default-the case of TLS. arXiv preprint arXiv:1708.07569.

Storms, A., 2015. How security can be the next force multiplier in devops. RSAConference,(San
Francisco, USA), pp.19-20.

Sun, Y., Nanda, S. and Jaeger, T., 2015, November. Security-as-a-service for microservices-
based cloud applications. In Cloud Computing Technology and Science (CloudCom), 2015 IEEE
7th International Conference on (pp. 50-57). IEEE.

Sun, Y., Nanda, S. and Jaeger, T., 2015, November. Security-as-a-service for microservices-
based cloud applications. In Cloud Computing Technology and Science (CloudCom), 2015 IEEE
7th International Conference on (pp. 50-57). IEEE.

Suzic, B., Prünster, B., Ziegler, D., Marsalek, A. and Reiter, A., 2016, October. Balancing utility
and security: Securing cloud federations of public entities. In OTM Confederated International
Conferences" On the Move to Meaningful Internet Systems" (pp. 943-961). Springer, Cham.

Tang, B., Sandhu, R., and Li, Q., 2015. Multi‐tenancy authorization models for collaborative
cloud services. Concurrency and Computation: Practice and Experience, 27(11), pp.2851-2868.

Taspolatoglu, E. and Heinrich, R., 2016, April. Context-based architectural security analysis. In
Software Architecture (WICSA), 2016 13th Working IEEE/IFIP Conference on (pp. 281-282).
IEEE.

Taylor, M. and Vargo, S., 2014. Learning Chef: A Guide to Configuration Management and
Automation. " O'Reilly Media, Inc.."

Thönes, J., 2015. Microservices. IEEE Software, 32(1), pp.116-116.

Tian-yang G, Yin-Sheng S, You-yuan F. Research on software security testing. World Academy
of science, engineering and Technology. 2010 Sep 21;70:647-51.

230

Toffetti, G., Brunner, S., Blöchlinger, M., Dudouet, F. and Edmonds, A., 2015, April. An
architecture for self-managing microservices. In Proceedings of the 1st International Workshop
on Automated Incident Management in Cloud (pp. 19-24). ACM.

Toffetti, G., Brunner, S., Blöchlinger, M., Dudouet, F. and Edmonds, A., 2015, April. An Top
Threats Working Group, 2017. The Treacherous 12: Cloud Computing Top Threats in 2016.
Cloud Security Alliance. online at https://downloads. cloudsecurityalliance.
org/assets/research/topthreats/Treacherous12_CloudComputing_TopThreats. pdf. Accessed, 1.

Tuma, K., Scandariato, R., Widman, M. and Sandberg, C., 2017. Towards Security Threats that
Matter. In Computer Security (pp. 47-62). Springer, Cham.

Ulltveit-Moe, N. and Oleshchuk, V., 2015. A novel policy-driven reversible anonymization
scheme for XML-based services. Information Systems, 48, pp.164-178.

Uzunov, A.V., Fernandez, E.B. and Falkner, K., 2012. Engineering Security into Distributed
Systems: A Survey of Methodologies. J. UCS, 18(20), pp.2920-3006.

Varanasi, B. and Belida, S., 2015. Restful spring. In Spring REST (pp. 31-46). Apress, Berkeley,
CA.

Vernadat, F.B., 2007. Interoperable enterprise systems: Principles, concepts, and methods.
Annual reviews in Control, 31(1), pp.137-145.

Videla, A. and Williams, J.J., 2012. RabbitMQ in action. Manning.

Viega, J., 2011. Ten Years of Trustworthy Computing: Lessons Learned. IEEE Security &
Privacy, 9(5), pp.3-4.

Wagner, B. and Sood, A., 2016, August. Economics of Resilient Cloud Services. In Software
Quality, Reliability and Security Companion (QRS-C), 2016 IEEE International Conference on
(pp. 368-374). IEEE.

White, G.K., 2015. Secure Coding Practices, Tools, and Processes (No. LLNL-CONF-671591).
Lawrence Livermore National Laboratory (LLNL), Livermore, CA.

White, S.A. and Bock, C., 2011. BPMN 2.0 Handbook Second Edition: Methods, Concepts,
Case Studies and Standards in Business Process Management Notation. Future Strategies Inc.

Williams, P.A., and McCauley, V., 2016, December. Always connected: The security challenges
of the healthcare Internet of Things. In Internet of Things (WF-IoT), 2016 IEEE 3rd World
Forum on (pp. 30-35). IEEE.

231

Willnecker, F., Brunnert, A., Gottesheim, W. and Krcmar, H., 2015, January. Using dynatrace
monitoring data for generating performance models of java ee applications. In Proceedings of the
6th ACM/SPEC International Conference on Performance Engineering (pp. 103-104). ACM.

Wolff, E., 2016. Microservices: Flexible Software Architecture. Addison-Wesley Professional.
World Wide Web Consortium, W3C: Universal Description, Discovery and Integration: UDDI
Spec Technical Committee Specification v. 3.0, (2003).

Woschek, M., 2015. OWASP Cheat Sheets.

Yamany, H.F.E., Capretz, M.A. and Allison, D.S., 2010. Intelligent security and access control
framework for service-oriented architecture. Information and Software Technology, 52(2),
pp.220-236.

Yarygina T, Bagge AH. Overcoming security challenges in microservice architectures.
InService-Oriented System Engineering (SOSE), 2018 IEEE Symposium on 2018 Mar 26 (pp.
11-20). IEEE.

Yarygina, T., 2018. Exploring Microservice Security.

Ye, W., 2013. Instant Cucumber BDD How-to. Packt Publishing Ltd.

Zabbix, S.I.A., 2014. Zabbix. The Enterprise-class Monitoring Solution for Everyone.

Zimmermann, O., 2015. Do microservices pass the same old architecture test? Or: Soa is not
dead-long live (micro-) services. In Microservices Workshop at SATURN Conference, SEI.
Zimmermann, O., 2017. Microservices tenets. Computer Science-Research and Development,
32(3-4), pp.301-310.

Zimmermann, O., 2017. Microservices tenets: agile approach to service development and
deployment. Computer Science-Research and Development, 32(3), pp.301-310.

Zúñiga-Prieto, M., Insfran, E., Abrahao, S. and Cano-Genoves, C., 2016. Incremental Integration
of Microservices in Cloud Applications.

232

Appendix A

Appendix A provides the security artefacts produced in the SAFEMicroservices preliminary phases.

(a) A.2.2 Microservice architecture common weakness enumeration

Table A.2.2 below is an artefact produced in the preliminary phase of SAFEMicroservices. The table contains a list of common vulnerabilities

associated with each microservices threat. Software engineers can use this artefact to quickly identify vulnerabilities associated with each

threat and the architectural concept that is the root cause of the vulnerabilities in microservices.

Table A.2.2 Microservices architecture common weakness enumeration

 Security threats

Architecture

category

Common vulnerabilities Insecure

API

Unauthorized
access

Insecure
microservices
discovery

Insecure
runtime
infrastructure

Insecure
message
broker

Validate Input Improper input validation (CWE-20) √ x √ x x

 Improper neutralization of request data (CWE-138,150,
643,74,76,77,78,943,95,96, 93)

√ x √ x x

 Acceptance of extraneous untrusted data with trusted data √ x √ x √

 Cross-site request forgery (CSRF) (CWE-352) √ x x x √

 Deserialization of untrusted data (CWE-502) √ x √ x √

 Failure to sanitize special elements in request data (CWE-75,) √ x √ x x

 Improper filtering of request data (CWE-790,791,792,
795,796,797)

√ x √ x x

 Argument injection mechanisms (CWE-88) √ x √ x x

233

Architecture

category

Common vulnerabilities Insecure
API

Unauthorized
access

Insecure
microservices

discovery

Insecure
runtime

infrastructure

Insecure
message
broker

 Validate input XML injection (CWE-91) √ x √ x √

Authorise
actors

 Improper handling of privileges and permissions (CWE-266,267,
268,269, 270 271, 272, 273,279,280,281, 732)

√ √ √ √ √

 Improper access control (CWE-284) √ √ √ √ √

 improper or missing authorization mechanisms (CWE-862, 863,
939)

√ √ √ √ √

 improper management of users (CWE-286) √ √ √ √ √

 Bypassing of authorization mechanisms (CWE-566, 639) √ √ √ √ √

 Insufficient compartmentalization (CWE-653) √ √ √ √ √

Authenticate
Actor

 Poor password management (CWE-258, 259,262,798,836,916,
640,620, 521)

√ x x √ √

 Bypassing of authentication mechanisms (CWE-288, 289,290,
294,302, 305)

√ x √ √ √

 Improper authentication mechanisms (CWE 287, 291, 293,304,
322)

√ x √ √ √

 Use of single-factor authentication (CWE 308) √ x √ x √

 Relying on client-side authentication (CWE-308) √ x √ x √

Encrypt data Poor management of credentials information (CWE-256,
257,260)

√ x √ x √

 Inadequate encryption of sensitive data (CWE-312,319,
326,327,328,331,)

√ x √ √ √

 Use of hard-coded cryptographic keys (CWE-319) √ x x √ √

234

Architecture

category

Common vulnerabilities Insecure
API

Unauthorized
access

Insecure
microservices

discovery

Insecure
runtime

infrastructure

Insecure
message
broker

 Encrypt data

(continued)
 Use of expire cryptographic keys √ x x √ √

 Use of weak algorithms (CWE-338, 337,339, 759, 780, 760) √ x x x √

 Insecure storage of sensitive information √ x √ √ √

Identify
Actors

 Improver validation of certificates (CWE-295, 296,298, 299,
370)

√ x √ √ √

 Insufficient verification of data authenticity (CWE-345) √ x √ √ √

 Insufficient verification of communication channel request
(CWE-940, 941)

√ x √ √ √

Limit access Execution with unnecessary privilege x x √ √ √

 Improper information exposure (CWE-201, 209, 212) √ x √

Limit
Exposure

 Information exposure through error message (CWE-210, 211,
214,550)

√ x √ √ √

 Inclusion of untrusted libraries (CWE-829) √ x √ √ √

Verify
message
Integrity

 Lack of proper checksum validation (CWE-353, 354, 649) √ x √ √ √

 Improper exception and error handling (CWE-390, 391, 755) x √ √ √

Audit Improper output neutralisation for logs (CWE-117) √ x x √ x

 Omission of security-related information (CWE-223) √ x √ √ √

 Sensitive information exposure through logs (CWE-532) √ x x √ √

 Insufficient logging (CWE-778) √ x x √ √

235

(b) A.3.1 Catalog of architecture-level secure coding guidelines

Table A.3.1 is an artefact produced in the preliminary phase of the SAFEMicroservices. The artefact provides a set of guidelines grouped by

architecture concept and software engineers can use the artefacts as a quick reference manual to identify which guidelines to apply when

dealing with part of the application where the concepts apply.

Table A.3.1 Catalog of architecture-level secure coding guidelines

Architecture
category

Common vulnerabilities Introduction phase Secure coding guidelines

Validate Input Improper input validation (CWE-20) Design and
implementation

 Validate all inputs and validation should consider
relevant properties such as length, input type, and
acceptable values

 Use and specify an output encoding that is
supported by a downstream component that
consumes its output

 Decoded and canonicalized inputs to the
microservices current internal representation
before validated

 Do not use user inputs to constructs all or part of
an SQL command without neutralizing special
elements

 Create a whitelist using regular expressions that
define valid input according to the requirements
specifications and strictly filter any input that
does not match against the whitelist.

 Properly encode microservices output and quote
any elements that have special meaning between
communicating component in the microservices
composition.

 Improper neutralization of request data (CWE-
138,150, 643,74,76,77,78,943,95,96, 93)

Implementation

 Acceptance of extraneous untrusted data with
trusted data

Design and
implementation

 Cross-site request forgery (CSRF) (CWE-352) Design

 Deserialization of untrusted data (CWE-502) Design and
implementation

 Failure to sanitize special elements in request
data (CWE-75)

Design and
implementation

 Improper filtering of request data (CWE-
790,791,792, 795,796,797)

Implementation

 Argument injection mechanisms (CWE-88) Design and
implementation

 XML injection (CWE-91) Design and
implementation

236

Architecture
category

 Common vulnerabilities Introduction phase Secure coding guidelines

Authorise actors Improper handling of privileges and permissions
(CWE-266,267, 268,269, 270 271, 272,
273,279,280,281, 732)

Design and
implementation

 Microservices should only use trusted libraries to
avoid execution of malicious commands

 microservices should run lowest privileges to
accomplish task

 Ensure appropriate compartmentalization of
microservices where trust boundaries are
unambiguous

 microservices should perform access control
validation in the business logic

 Ensure that roles are mapped with data and
functionality in a microservices

 Microservices should use role-based access
control to enforce the roles at the appropriate
boundaries.

 Microservices should not cache sensitive
information

 Improper access control (CWE-284) Design and
implementation,
operation

 improper or missing authorization mechanisms
(CWE-862, 863, 939)

Design and
implementation,
operation

 improper management of users (CWE-286) Design and
implementation,
operation

 Bypassing of authorization mechanisms (CWE-
566, 639)

Design and
implementation

 Insufficient compartmentalisation (CWE-653) Design and
implementation

Authenticate Actor Poor password management (CWE-258,
259,262,798,836,916, 640,620, 521)

Design and
implementation

 Microservices should not hard code credentials in
source code or properties files

 Password used in the microservices should expire
after a given time and be changed

 Use vetted authentication frameworks
 Microservices should use a multi-factor

authentication
 microservices should not delegate authentication

to clients
 Microservices should use strong passwords
 Password changes must be verified
 Microservices should not use password hash for

authentication

 Bypassing of authentication mechanisms (CWE-
288, 289,290, 294,302, 305)

Design and
implementation

 Improper authentication mechanisms (CWE 287,
291, 293,304, 322)

Design and
implementation

 Use of single-factor authentication (CWE 308) Design

 Relying on client-side authentication (CWE-308) Design and
implementation

237

Architecture
category

Common vulnerabilities Introduction phase Secure coding guidelines

Encrypt data Poor management of credentials information
(CWE-256, 257,260)

Design Passwords or cryptographic keys should not be
stored in property files or hard-coded but consider
storing hashes of passwords

 Use well vetted algorithm that is considered to be
strong

 Microservices should not store sensitive
information in cookies

 do not reuse nonce values
 validate for certificate expiry
 use approve random number generators that

conform to FIPS 140-2

 Inadequate encryption of sensitive data (CWE-
312,319, 326,327,328,331,)

Design and operation

 Use of hard-coded cryptographic keys (CWE-
319)

Design

 Use of expire cryptographic keys Design

 Use of weak algorithms (CWE-338, 337,339, 759,
780, 760)

Implementation

 Insecure storage of sensitive information Design and
implementation

Identify Actors Improver validation of certificates (CWE-295,
296,298, 299, 370)

Design and
implementation

 Always check that data is encrypted with the
intended owner's public key

 Validate the certificate full chain trust, host name,
expiry date, and revocation status

 Verify that the request for communication
channel is coming from the expected origin

 Insufficient verification of data authenticity
(CWE-345)

Design and
implementation

 Insufficient verification of communication
channel request (CWE-940, 941)

Design and
implementation

Limit access Execution with unnecessary privilege Design and
implementation,
configuration,
operation

 Use default error messages so that unexpected
errors do not disclose sensitive information.

 Compartmentalize the microservices into
unambiguous trust boundaries and ensure
sensitive information does not go over trust
boundaries

 Perform extensive input validation for any
privileged code

 Isolate the privileged code as much as possible
from other code

 Improper information exposure (CWE-201, 209,
212)

Implementation

238

Architecture
category

Common vulnerabilities Introduction phase Secure coding guidelines

Limit Exposure Information exposure through error message
(CWE-210, 211, 214,550)

Design and
implementation,
operation

 Ensure that microservices does not run in debug
mode in production

 Ensure that error message are handled internally
and do not display error message with sensitive
information.

 Error message from the runtime environment
should not be displayed to the users

 Inclusion of untrusted libraries (CWE-829) Implementation

Verify message
Integrity

 Lack of proper checksum validation (CWE-353,
354, 649)

Design and
implementation

 Ensure proper implementation of checksums in
the protocol design and ensure checksum is added
to each message before it is sent

 properly check the checksum before parsing the
message

 Improper exception and error handling (CWE-
390, 391, 755)

Implementation

Audit Improper output neutralisation for logs (CWE-
117)

Design and
implementation

 Log all information that may be useful to identify
the source and nature of attack.

 Protect log files against unauthorized read/write.
 Do not deploy microservices in debug mode
 do not log excessively

 Omission of security-related information (CWE-
223)

Design and
implementation,
operation

 Sensitive information exposure through logs
(CWE-532)

Design and
implementation,
operation

 Insufficient logging (CWE-778) Operation

239

Appendix B

(a) B.1.4 Microservices abuse cases and protection measures

The Table B.1.4 is a catalog of abuse cases and protection measures.

Table B.1.4. Catalog of microservices abuse cases and protection measures

Architecture
category

Common vulnerabilities Abuse or misuse cases Protection Measures (Including tools
and techniques)

Validate

Input

 Improper input validation
(CWE-20)

 As an attacker, I can manipulate request
parameters to compromise the operation of
microservices.

 As an attacker, I can supply values as parameters
to the API that a microservices implementation
uses to determine which class to instantiate and I
can then create control flow paths through the
microservices that were not intended.

 As an attacker, I can manipulate resource
identifiers passed on as parameters to
microservices API so that I gain control and
perform an action on the resource.

 As an attacker, I may either alter the path or
add/overwrite unexpected parameters in the
“query string" on the HTTP query string when
calling the microservice REST API.

 As an attacker, I may supply multiple HTTP
parameters with the same name to cause a
microservices to interpret values in unanticipated
ways.

 As an attacker, I can exploit a microservices
composition component by injecting additional,
malicious content during its processing of
serialized objects.

 Ensure all input content that is
delivered to by a microservices is
sanitized against an acceptable
content specification.

 Perform input validation for all
content.

 Use an input validation
framework such as OWASP
ESAPI Validation API.

 Use static analysis tools such as
FindBugs on IDE and continuous
integrations toolchains to detect
input-validation.

 Perform fuzz testing.
 Validate object before

deserialization process
 Limit which class types can be

deserialized.

 Improper neutralization of
request data (CWE-138,150,
643,74,76,77,78,943,95,96,
93)

 Acceptance of extraneous
untrusted data with trusted
data

 Cross-site request forgery
(CSRF) (CWE-352)

 Deserialization of untrusted
data (CWE-502)

 Failure to sanitize special
elements in request data
(CWE-75,)

 Improper filtering of request
data (CWE-790,791,792,
795,796,797)

 Argument injection
mechanisms (CWE-88)

 XML injection (CWE-91)

240

Architecture
category

Common vulnerabilities Introduction phase Secure coding guidelines

Authorise
actors

 Improper handling of
privileges and permissions
(CWE-266,267, 268,269, 270
271, 272, 273,279,280,281,
732)

 As an attacker I can bypass access restriction and
gain access to privileged functionality on
microservices.

 As an attacker I may elevate my privilege and gain
access to the privileged functionality on
microservices.

 As an attacker I may direct the microservice to
execute command on my behalf by loading
libraries.

 As an attacker I can use a privilege to perform an
unsafe action on a microservices.

 As an attacker I can use unprotected channels into
the microservice.

 Microservices should only use
trusted libraries to avoid
execution of malicious commands

 microservices should run lowest
privileges to accomplish task

 Ensure appropriate
compartmentalization of
microservices where trust
boundaries is unambiguous

 microservices should perform
access control validation in the
business logic

 Ensure that roles are mapped with
data and functionality in a
microservices

 Microservices should use role-
based access control to enforce
the roles at the appropriate
boundaries.
Microservices should not cache
sensitive information

 Improper access control
(CWE-284)

 improper or missing
authorization mechanisms
(CWE-862, 863, 939)

 improper management of
users (CWE-286)

 Bypassing of authorization
mechanisms (CWE-566, 639)

 Insufficient
compartmentalization (CWE-
653)

241

Architecture
category

Common vulnerabilities Introduction phase Secure coding guidelines

Authenticate
Actor

 Poor password management
(CWE-258,
259,262,798,836,916,
640,620, 521)

 As an attacker I can access credential on source
code repository to gain access to the system.

 As an attacker I can re-use an old password to gain
access to the system.

 As an attacker I can bypass authentication and
gain access to the system.

 As an attacker I can use a client session to gain
access to microservices.

 Microservices should not hard
code credentials in source code or
properties files

 Password used in the
microservices should expire after
a given time and be changed

 Use vetted authentication
frameworks

 Microservices should use a multi-
factor authentication

 microservices should not delegate
authentication to clients

 Microservices should use strong
passwords

 Password changes must be
verified

 Microservices should not use
password hash for authentication

 Bypassing of authentication
mechanisms (CWE-288,
289,290, 294,302, 305)

 Improper authentication
mechanisms (CWE 287, 291,
293,304, 322)

 Use of single-factor
authentication (CWE 308)

 Relying on client-side
authentication (CWE-308)

Encrypt data Poor management of
credentials information
(CWE-256, 257,260)

 As an attacker I can use credentials on file,
cookies or source code to access microservices

 As an attacker I can access information by
listening on the communication channel being
used by services

 As an attacker I can use expired certificates to
access microservices-based

 As an attacker I can use brute force to crack
encryption algorithms

 Passwords or cryptographic keys
should not be stored in property
files or hard-coded but consider
storing hashes of passwords

 Use well vetted algorithm that is
considered to be strong

 Do not store sensitive information
in cookies

 do not reuse nonce values
 validate for certificate expiry
 use approve random number

generators that conform to FIPS
140-2

 Inadequate encryption of
sensitive data (CWE-312,319,
326,327,328,331,)

 Use of hard-coded
cryptographic keys (CWE-
319)

 Use of expire cryptographic
keys

 Use of weak algorithms
(CWE-338, 337,339, 759,
780, 760)

242

Architecture
category

Common vulnerabilities Introduction phase Secure coding guidelines

Identify
Actors

 Improver validation of
certificates (CWE-295,
296,298, 299, 370)

 As an attacker I can use a corrupted certificate to
access microservices.

 As an attacker I can use another application to
gain access to a microservice.

 As an attacker I can use an expired certificate to
access microservices

 Always check that data is
encrypted with the intended
owner's public key

 Validate the certificate full chain
trust, host name, expiry date, and
revocation status

 Verify that the request for
communication channel is coming
from the expected origin

 Insufficient verification of
data authenticity (CWE-345)

 Insufficient verification of
communication channel
request (CWE-940, 941)

Limit access Execution with unnecessary
privilege

 As an attacker I can inject items to read error
messages returned by microservices

 As an attacker I can use the privileges of a
microservice to gain control of the whole system
or environment

 Use default error messages so that
unexpected errors do not disclose
sensitive information.

 Compartmentalize the
microservices into unambiguous
trust boundaries and ensure
sensitive information does not go
over trust boundaries

 Perform extensive input
validation for any privileged code

 Isolate the privileged code as
much as possible from other code

 Improper information
exposure (CWE-201, 209,
212)

Limit
Exposure

 Information exposure through
error message (CWE-210,
211, 214,550)

 As an attacker I can inject items to read error
messages returned by microservices

 As an attacker I can use known weaknesses in
software libraries to gain access to microservices

 Ensure that microservices does
not run in debug mode in
production

 Ensure that error messages are
handled internally and do not
display error message with
sensitive information.

 Error message from the runtime
environment should not be
displayed to the users

 Inclusion of untrusted
libraries (CWE-829)

243

Architecture
category

Common vulnerabilities Introduction phase Secure coding guidelines

Verify
message
Integrity

 Lack of proper checksum
validation (CWE-353, 354,
649)

 As an attacker I can corrupt or alter data or
messages in transit

 Ensure proper implementation of
checksums in the protocol design
and ensure checksum is added to
each message before it is sent

 Properly check the checksum
before parsing the message

 Ensure that microservices does
not ignore errors

 Improper exception and error
handling (CWE-390, 391,
755)

Audit

 Improper output
neutralisation for logs (CWE-
117)

 As an attacker I can read sensitive information on
logs

 As an attacker I can inject my information on logs
 As an attacker I can disguise my actions while

manipulating microservices

 Log all information that may be
useful to identify the source and
nature of attack.

 Protect log files against
unauthorized read/write.

 Do not deploy microservices in
 debug mode
 do not log excessively

 Omission of security-related
information (CWE-223)

 Sensitive information
exposure through logs (CWE-
532)

 Insufficient logging (CWE-
778)

244

(b) B.2.2 Secure design principles

Table 2.2.2 below provide design principles that software engineers should use when designing secure microservices

Table B.2.2. Microservices secure design principles

 Security designs
principles

Principle description Implementation Risk to designs principles

1 The principle of least
privilege

All components in a microservice
composition should be assigned
minimum necessary rights when
accessing any resource, and the
rights should be in effect for the
shortest duration necessary.

 Define an unambiguous trust boundary in a
microservices composition

 Components in a microservices composition
should allow sensitive data to go outside the
defined trust boundary

 Ensure microservice execute with minimum
required privileges

CWE-272: Least privilege
violation
CWE-250: Execution with
unnecessary privileges

2 The principle of failing
securely

In the event of a component in a
microservices composition failing, it
should do so securely.

 Ensure redundancy of each component in a
microservices compositions

 Ensure component in the microservices
composition do not propagate sensitive
information such as system configuration
and user data in the case of exception.

CWE-636: Not failing securely

3 The principle of
defense in depth

The components should use layering
of security defenses to reduce the
chance of a successful attack.

 User layered security mechanisms CWE-656: Reliance on security
through obscurity

4 The principle of
economy of
mechanism

 The components should ensure that
multiple conditions are met before
granting access permission.

 Avoid complex security mechanisms that
cannot easily be understood

 Avoid complex data models
 Adopt secure programming principles
 Microservices must avoid having multiple

subjects sharing access mechanisms

 CWE-637: Unnecessary
complexity in the protection
mechanism

245

 Security designs
principles

Principle description Implementation Risk to designs principles

 5 The principle of
separation of privilege

The design of each component
should be kept simple.

 Ensure that multiple conditions are met
before permitting access to a microservices
composition resource.

 Use isolated accounts with limited
privileges to use for a single task

 CWE-269: Improper privilege
management
CWE-268: Privilege chaining

6 The principle of open
design

The security of microservices
composition should not be based on
the secrecy of its design or
implementation

 Use publicly vetted algorithms and
procedures that have undergone more
extensive security analysis and testing

 CWE-656: Reliance on Security
Through Obscurity

7 Principle of complete
mediation

Every access to every resource must
be validated for authorization.

 Invalidate cached privileges whenever there
is update of user privileges.

 Do not access control decisions as much as
possible.

CWE-638: Not Using Complete
Mediation

(c) B.2.3 Security standards

This artefact is produced by the SAFEMicroservices planning phase. The artefact provides a list of standards that software engineer should

follow when designing and deploying microservices.

Table B.2.3. Microservices security standards

 Microservices security design and deployment standards Architecture
components

1 Any communication with a microservice must be done via API Gateway to provide load balancing, and a standard set of
security capabilities and communication to API gateway should be authenticated

Microservices

2 Each microservice must be protected using a defense in depth approach Microservices

3 The microservices composition must use a well-known and secure open standard protocol for centralized authentication
using tokens. The token must be generated using an algorithm that follows the cryptography standard and should have an
associated time to live

Microservices

246

 Microservices security design and deployment standards Architecture components

4 Authentication Tokens must be encrypted Microservices

5 Each microservices must have a unique API key for calling another microservice Microservices

6 API calls made by users and systems must be limited to only those necessary for those users or systems to perform their
functions

 Microservices

7 All API requests must be logged to a centralized logging and monitoring system API gateway

8 A tool to monitor and visualize inter-microservice communication must be deployed as part of the management
capabilities of the microservices architecture

 Microservices

9 All communication in the microservices composition must use Transport layer security Microservices, API gateway,
services registry, message
broker

10 All microservices composition components must run in an approved application container technology Microservices, API gateway,
services registry, message
broker

11 Containers must only provide capabilities required to support the microservices running it, and nothing more Runtime infrastructure

12 Container should not run network specific operations but network configuration should only be applied to the container
at startup and not be dynamically assigned or modified

 Runtime infrastructure

13 All the code or libraries required to execute within the container must be within the container image and never be loaded
dynamically

 Runtime infrastructure

14 Container should run with minimum set of privileges required to perform its function Runtime infrastructure

15 Inter-container communication should only be done via port binding, with ports explicitly opened in a container
configuration file

 Runtime infrastructure

16 The file system in containers should set to be read only to prevent malicious overwrites Runtime infrastructure

17 Containers hosting microservices should only expose a single port or the minimal number of ports required to support
the microservices

 Runtime infrastructure

12 Connectivity to microservices should be controlled through IP Filtering technologies Runtime infrastructure

13 Operation of microservices, their resource consumption and performance should be monitored and spikes in
consumption addressed through capacity management activities

Runtime infrastructure

247

(d) B.2.4 Monitoring guides

Table E.2.3 Provide monitoring guidelines that software engineers should use when design the monitoring components of microservices

Table B.2.4. Monitoring guidelines

 Microservices monitoring guidelines CWE Vulnerabilities

1 Log all information important for identifying the source or nature of an attack CWE-223: Omission of Security-relevant

Information

2 Do not log sensitivity information on the log files CWE-532: Information Exposure Through Log

Files

3 Log information on user events in much details so that attack behavior can be detected and ensure that

all login successes and failures are logged.

CWE-778: Insufficient Logging

4 Do not log the user input data into log files without neutralizing the input CWE:117 Improper output neutralization for

logs

5 Do not log unnecessary information that makes it hard to process log files or perform a forensic

analysis in the event of attack

CWE: 779: Logging of excessive data

6 Use a centralized logging approach that supports multiple levels of logging details CWE: 779: Logging of excessive data

CWE-778: Insufficient Logging

7 Always make sure that the level of logging is set appropriately in a production environment CWE-778: Insufficient Logging

8 Make sure the log level is not set to debug mode debug log files before deploying the application into

production.

CWE-532: Information Exposure Through Log

Files

9 The log files should be protected against unauthorized read/write. CWE-532: Information Exposure Through Log

Files

248

Appendix C

(a) C.1. Mapping security threats to CAPEC attack mechanisms

Table C.1. shows the list of attack mechanisms that can be used to exploit weakness in microservices. The table is meant to guide software

engineers understand the attacks associated with each threat

Table C.1 Mapping security threats to attack patterns

Security threats Applicable CAPEC mechanisms of attack

Insecure application programming interfaces CAPEC-152: Inject unexpected items
 CAPEC-210: Abuse existing functionality
 CAPEC-255-Manipulate data structures
 CAPEC-223: Employ probabilistic techniques
 CAPEC-118: Collect and analyze information
 CAPEC-225: Subvert access control
 CAPEC-156: Engage in deceptive interaction

Unauthorized access, CAPEC-225: Subvert access control

Insecure service discovery CAPEC-152: Inject unexpected items
 CAPEC-210: Abuse existing functionality
 CAPEC-255-Manipulate data structures
 CAPEC-223: Employ probabilistic techniques
 CAPEC-118: Collect and analyze information
 CAPEC-156: Engage in deceptive interaction

Insecure message broker CAPEC-210: Abuse existing functionality
 CAPEC-255-Manipulate data structures
 CAPEC-225: Subvert access control
 CAPEC-156: Engage in deceptive interaction
 CAPEC-118: Collect and analyze information

Insecure runtime infrastructure CAPEC-225: Subvert access control

