17 research outputs found

    Efficient Generation and Execution of DAG-Structured Query Graphs

    Get PDF
    Traditional database management systems use tree-structured query evaluation plans. While easy to implement, a tree-structured query evaluation plan is not expressive enough for some optimizations like factoring common algebraic subexpressions or magic sets. These require directed acyclic graphs (DAGs), i.e. shared subplans. This work covers the different aspects of DAG-structured query graphs. First, it introduces a novel framework to reason about sharing of subplans and thus DAG-structured query evaluation plans. Second, it describes the first plan generator capable of generating optimal DAG-structured query evaluation plans. Third, an efficient framework for reasoning about orderings and groupings used by the plan generator is presented. And fourth, a runtime system capable of executing DAG-structured query evaluation plans with minimal overhead is discussed. The experimental results show that with no or only a modest increase of plan generation time, a major reduction of query execution time can be achieved for common queries. This shows that DAG-structured query evaluation plans are serviceable and should be preferred over tree-structured query plans

    Kiel Declarative Programming Days 2013

    Get PDF
    This report contains the papers presented at the Kiel Declarative Programming Days 2013, held in Kiel (Germany) during September 11-13, 2013. The Kiel Declarative Programming Days 2013 unified the following events: * 20th International Conference on Applications of Declarative Programming and Knowledge Management (INAP 2013) * 22nd International Workshop on Functional and (Constraint) Logic Programming (WFLP 2013) * 27th Workshop on Logic Programming (WLP 2013) All these events are centered around declarative programming, an advanced paradigm for the modeling and solving of complex problems. These specification and implementation methods attracted increasing attention over the last decades, e.g., in the domains of databases and natural language processing, for modeling and processing combinatorial problems, and for high-level programming of complex, in particular, knowledge-based systems

    Towards flexible goal-oriented logic programming

    Get PDF

    Design, application and implementation of a paralled logic programming language

    Get PDF
    Imperial Users onl

    Improving Model-Based Software Synthesis: A Focus on Mathematical Structures

    Get PDF
    Computer hardware keeps increasing in complexity. Software design needs to keep up with this. The right models and abstractions empower developers to leverage the novelties of modern hardware. This thesis deals primarily with Models of Computation, as a basis for software design, in a family of methods called software synthesis. We focus on Kahn Process Networks and dataflow applications as abstractions, both for programming and for deriving an efficient execution on heterogeneous multicores. The latter we accomplish by exploring the design space of possible mappings of computation and data to hardware resources. Mapping algorithms are not at the center of this thesis, however. Instead, we examine the mathematical structure of the mapping space, leveraging its inherent symmetries or geometric properties to improve mapping methods in general. This thesis thoroughly explores the process of model-based design, aiming to go beyond the more established software synthesis on dataflow applications. We starting with the problem of assessing these methods through benchmarking, and go on to formally examine the general goals of benchmarks. In this context, we also consider the role modern machine learning methods play in benchmarking. We explore different established semantics, stretching the limits of Kahn Process Networks. We also discuss novel models, like Reactors, which are designed to be a deterministic, adaptive model with time as a first-class citizen. By investigating abstractions and transformations in the Ohua language for implicit dataflow programming, we also focus on programmability. The focus of the thesis is in the models and methods, but we evaluate them in diverse use-cases, generally centered around Cyber-Physical Systems. These include the 5G telecommunication standard, automotive and signal processing domains. We even go beyond embedded systems and discuss use-cases in GPU programming and microservice-based architectures

    Computer Science Logic 2018: CSL 2018, September 4-8, 2018, Birmingham, United Kingdom

    Get PDF

    Programming Languages and Systems

    Get PDF
    This open access book constitutes the proceedings of the 29th European Symposium on Programming, ESOP 2020, which was planned to take place in Dublin, Ireland, in April 2020, as Part of the European Joint Conferences on Theory and Practice of Software, ETAPS 2020. The actual ETAPS 2020 meeting was postponed due to the Corona pandemic. The papers deal with fundamental issues in the specification, design, analysis, and implementation of programming languages and systems

    Colloquium capita datastructuren

    Get PDF
    corecore