17 research outputs found

    Abstract conflict driven learning

    Full text link

    Lifting CDCL to template-based abstract domains for program verification

    Get PDF
    The success of Conflict Driven Clause Learning (CDCL) for Boolean satisfiability has inspired adoption in other domains. We present a novel lifting of CDCL to program analysis called Abstract Conflict Driven Learning for Programs (ACDLP). ACDLP alternates between model search, which performs over-approximate deduction with constraint propagation, and conflict analysis, which performs under-approximate abduction with heuristic choice. We instantiate the model search and conflict analysis algorithms with an abstract domain of template polyhedra, strictly generalizing CDCL from the Boolean lattice to a richer lattice structure. Our template polyhedra can express intervals, octagons and restricted polyhedral constraints over program variables. We have implemented ACDLP for automatic bounded safety verification of C programs. We evaluate the performance of our analyser by comparing with CBMC, which uses Boolean CDCL, and Astrée, a commercial abstract interpretation tool. We observe two orders of magnitude reduction in the number of decisions, propagations, and conflicts as well as a 1.5x speedup in runtime compared to CBMC. Compared to Astrée, ACDLP solves twice as many benchmarks and has much higher precision. This is the first instantiation of CDCL with a template polyhedra abstract domain

    Understanding and Extending Incremental Determinization for 2QBF

    Full text link
    Incremental determinization is a recently proposed algorithm for solving quantified Boolean formulas with one quantifier alternation. In this paper, we formalize incremental determinization as a set of inference rules to help understand the design space of similar algorithms. We then present additional inference rules that extend incremental determinization in two ways. The first extension integrates the popular CEGAR principle and the second extension allows us to analyze different cases in isolation. The experimental evaluation demonstrates that the extensions significantly improve the performance

    Propositional Reasoning about Safety and Termination of Heap-Manipulating Programs

    Full text link
    This paper shows that it is possible to reason about the safety and termination of programs handling potentially cyclic, singly-linked lists using propositional reasoning even when the safety invariants and termination arguments depend on constraints over the lengths of lists. For this purpose, we propose the theory SLH of singly-linked lists with length, which is able to capture non-trivial interactions between shape and arithmetic. When using the theory of bit-vector arithmetic as a background, SLH is efficiently decidable via a reduction to SAT. We show the utility of SLH for software verification by using it to express safety invariants and termination arguments for programs manipulating potentially cyclic, singly-linked lists with unrestricted, unspecified sharing. We also provide an implementation of the decision procedure and use it to check safety and termination proofs for several heap-manipulating programs

    Building Better Bit-Blasting for Floating-Point Problems

    Get PDF
    An effective approach to handling the theory of floating-point is to reduce it to the theory of bit-vectors. Implementing the required encodings is complex, error prone and requires a deep understanding of floating-point hardware. This paper presents SymFPU, a library of encodings that can be included in solvers. It also includes a verification argument for its correctness, and experimental results showing that its use in CVC4 out-performs all previous tools. As well as a significantly improved performance and correctness, it is hoped this will give a simple route to add support for the theory of floating-point

    On Abstract Modular Inference Systems and Solvers

    Get PDF
    Integrating diverse formalisms into modular knowledge representation systems offers increased expressivity, modeling convenience, and computational benefits. We introduce the concepts of abstract inference modules and abstract modular inference systems to study general principles behind the design and analysis of model generating programs, or solvers, for integrated multi-logic systems. We show how modules and modular systems give rise to transition graphs, which are a natural and convenient representation of solvers, an idea pioneered by the SAT community. These graphs lend themselves well to extensions that capture such important solver design features as learning. In the paper, we consider two flavors of learning for modular formalisms, local and global. We illustrate our approach by showing how it applies to answer set programming, propositional logic, multi-logic systems based on these two formalisms and, more generally, to satisfiability modulo theories

    Conflict-Driven Conditional Termination

    Get PDF
    International audienceConflict-driven learning, which is essential to the performance of SAT and SMT solvers, consists of a procedure that searches for a model of a formula, and refutation procedure for proving that no model exists. This paper shows that conflict-driven learning can improve the precision of a termination analysis based on abstract interpretation. We encode non-termination as satisfiability in a monadic second-order logic and use abstract interpreters to reason about the satisfiability of this formula. Our search procedure combines decisions with reachability analysis to find potentially non-terminating executions and our refutation procedure uses a conditional termination analysis. Our implementation extends the set of conditional termination arguments discovered by an existing termination analyzer
    corecore