
HAL Id: hal-01952911
https://hal.archives-ouvertes.fr/hal-01952911

Submitted on 12 Dec 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Conflict-Driven Conditional Termination
Vijay D'silva, Caterina Urban

To cite this version:
Vijay D'silva, Caterina Urban. Conflict-Driven Conditional Termination. 25th International
Conference on Computer Aided Verification (CAV 2015), 2015, San Francisco, United States. �hal-
01952911�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by INRIA a CCSD electronic archive server

https://core.ac.uk/display/162948592?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.archives-ouvertes.fr/hal-01952911
https://hal.archives-ouvertes.fr

Conflict-Driven Conditional Termination

Vijay D’Silva1 and Caterina Urban2

1 Google Inc., San Francisco
2 École Normale Supérieure, Paris

Abstract. Conflict-driven learning, which is essential to the perfor-
mance of sat and smt solvers, consists of a procedure that searches
for a model of a formula, and refutation procedure for proving that no
model exists. This paper shows that conflict-driven learning can improve
the precision of a termination analysis based on abstract interpretation.
We encode non-termination as satisfiability in a monadic second-order
logic and use abstract interpreters to reason about the satisfiability of
this formula. Our search procedure combines decisions with reachability
analysis to find potentially non-terminating executions and our refuta-
tion procedure uses a conditional termination analysis. Our implemen-
tation extends the set of conditional termination arguments discovered
by an existing termination analyzer.

1 Conflict-Driven Learning for Termination

Conflict-driven learning procedures are integral to the performance of sat and
smt solvers. Such procedures combine search and refutation to determine if a
formula is satisfiable. Conflicts discovered by search drive refutation, and search
learns from refutation to avoid regions of the search space without solutions.

Our work is driven by the observation that discovering a small number of
disjunctive termination arguments is crucial to the performance of certain ter-
mination analyzers [?]. Fig. ?? summarizes our lifting of conflict-driven learning
to termination analysis. We use reachability analysis to find a set of states that
constitute potentially non-terminating execution. We apply a conditional termi-
nation analysis to this set to eliminate states from which all executions termi-
nate. Unlike termination analysis, which solves a decision problem and returns
a yes or no answer, conditional termination analysis is concerned with discov-
ering sufficient conditions for termination. Sufficient conditions for termination
play the role of learned clauses in our analysis. They prevent subsequent runs of
reachability analysis from revisiting states from which termination is guaranteed.

Our conflict driven conditional termination procedure (cdct) can be viewed
as a sound but incomplete solver for a family of monadic, second-order formulae.
Büchi’s theorem shows that the language of a Büchi automaton is non-empty
exactly if a formula in the monadic second-order theory of one successor (s1s)
is satisfiable [?]. This theorem can be viewed encoding non-termination of a
finite-state program as satisfiability in s1s. We introduce s1s(t), an extension
of s1s to sequences of first-order structures, and encode non-termination in a

2

Search Refutation

Propagate

Decide

Analyze

Generalize

sat unsat

Conflict

Lemma sat/smt Termination

Satisfiability Non-Termination

Model Infinite execution

Countermodel Finite or infeasible trace

Constraint Propagation Reachability Analysis

Conflict Analysis Termination Analysis

Fig. 1: Conflict Driven Learning as applied to Termination

control-flow graph (cfg) as satisfiability in s1s(t). A model of a formula is an
infinite execution that respects the transition constraints in the cfg.

Formulating non-termination as satisfiability provides a clear route for lift-
ing cdcl to non-termination. We combine decisions with reachability in an ab-
stract domain to construct and refine assignments to second-order variables in
the same way that sat solvers construct and refine partial assignments. A no-
table difference to standard abstract interpretation is that our assignments are
neither over- nor under-approximations of the set of reachable states. Our con-
flict analysis uses backwards abstract interpretation to enlarge the set of states
from which termination is guaranteed. We present a generalized unit rule for
combining ranking functions with reachability analysis. These components are
combined in our new analysis, which we have implemented and evaluated against
state-of-the-art termination provers.

2 Non-Termination as Second-Order Satisfiability

The two contributions of this section are the logic s1s(t), which extends the
monadic second-order logic of one successor (s1s) with a theory and an encoding
of program non-termination as satisfiability in this theory.

2.1 Monadic Second-Order Theories of One Successor

We use =̂ for definition. Let P(S) be the powerset of S. For f : A → B, the
function f [a 7→ b] maps a to b and c distinct from a to f(c). The symbols
x, y, z range over first-order variables in Vars, f, g, h over functions in Fun, and
P,Q,R over predicates in Pred . We use a set Pos of first-order position variables
whose elements are i, j, k, a set SVar of monadic second-order variables denoted
X,Y, Z, a unary successor function suc and a binary successor predicate Suc.

Our logic consists of three families of formulae called state, transition and
trace formulae, which are interpreted over first-order structures, pairs of first-
order structures and infinte sequences of first-order structures respectively. The

3

formulae are named after how they are interpreted over programs.

t ::= x | f(t0, . . . , tn) Term

ϕ ::= P (t0, . . . , tn) | ϕ ∧ ϕ | ¬ϕ State Formula

ψ ::= suc(x) = t | ψ ∧ ψ | ¬ψ Transition Formula

Φ ::= X(i) | Suc(i, j) | ϕ(i) | ψ(i)

| Φ ∧ Φ | ¬Φ | ∃i : Pos.Φ Trace formula

A first-order interpretation (Val , I) defines functions I(f) and relations I(P)
over values in Val . The value JtKs of a term t in a state s : Vars → Val , is s(x) if
t is x, and I(f)(Jt0Ks, . . . , JtnKs) if t is f(t0, . . . , tn). The interpretation of a state
formula is the standard first-order semantics. A transition formula is interpreted
at a transition, that is, a pair of states (r, s). A formula ϕ in which the symbol
suc does not occur is interpreted at the state r, while suc(x) = t compares the
value of the term t in r with the value of x in the successor state s.

(r, s) |= P (t0, . . . , tn) if (Jt0Kr, . . . , JtnKr) ∈ I(P)

(r, s) |= ϕ ∧ ψ if (r, s) |= ϕ and (r, s) |= ψ

(r, s) |= ¬ϕ if (r, s) 6|= ϕ (r, s) |= suc(x) = t if JxKs = JtKr

A trace τ : N → (Vars → Val) is an infinite sequence of states and τ(m) is
the state at position m. A position assignment σ : (Pos → N) ·∪ (SVar → P(N))
maps position variables to N and second-order variables to subsets of N such that
{σ(X) | X ∈ SVar} partitions N. We explain this partition condition shortly. A
trace formula is interpreted with respect to an s1s(t) structure (τ, σ).

Note that there are first-order variables of two sorts in a trace formula. A
trace formula Φ asserting that the transition formula ψ(x, y) =̂ suc(x) = y + 1
is true at the trace position denoted by i has the form ψ(x, y)(i). The predicate
Suc(i, j) asserts that the position j occurs immediately after i.

(τ, σ) |= Suc(i, j) if σ(i) + 1 = σ(j) (τ, σ) |= ϕ(i) if τ(σ(i)) |= ϕ

(τ, σ) |= ψ(i) if (τ(σ(i)), τ(σ(i) + 1)) |= ψ (τ, σ) |= X(i) if σ(i) ∈ σ(X)

(τ, σ) |= Φ ∧ Ψ if (τ, σ) |= Φ and (τ, σ) |= Ψ (τ, σ) |= ¬Φ if (τ, σ) 6|= Φ

(τ, σ) |= ∃i : Pos.Φ if (τ, σ[i 7→ n]) |= Φ for some n in N

An s1s(t) structure (τ, σ) is a model of Φ if (τ, σ) |= Φ, and is a countermodel
otherwise. A trace formula is satisfiable if it has a model. An s1s(t) structure
is defined using an infinite trace, so finite traces cannot be models of a formula.

2.2 Encoding Non-Termination in S1S(T)

We now recall control flow graphs (cfgs) and encode non-termination as satis-
fiability. A command in Cmd is an assignment x := t of a term t to a first-
order variable x, or is a condition [ϕ], where ϕ is a state formula. A cfg
G = (Loc, E, in, ex, stmt) consists of a finite set of locations Loc including an

4

(∀i.First(i)⇒ Xin(i)) ∧ (∀i.Xex(i)⇒ Last(i))
∧ ∀i.∀j.Xin(j) ∧ Suc(i, j) ⇒ (suc(x) = x− 1)(i) ∧Xa(i)
∧ ∀i.∀j.Xa(j) ∧ Suc(i, j) ⇒ (x 6= 0⇒ suc(x) = x)(i) ∧Xin(i)
∧ ∀i.∀j.Xex(j) ∧ Suc(i, j) ⇒ (x = 0⇒ suc(x) = x)(i) ∧Xin(i)

in

a

ex

[x 6= 0]

[x = 0]

x := x− 1

Fig. 2: A formula encoding non-termination of the program shown in the monadic
second-order theory of one successor over integer arithmetic.

initial location in, an exit location ex, edges E ⊆ Loc × Loc, and a labelling
stmt : E → Cmd of edges with commands. To assist the presentation, we as-
sume that the exit location ex has no successors.

The formula Transc below defines the semantics of commands using the con-
dition SameV =̂

∧
x∈V suc(x) = x, that variables in V are not modified. The

set of models of Transc is the transition relation Relc. We write Transe and
Rele for the transition formula and relation of the command stmt(e). The for-
mula InfG extends the translation of Büchi automata to s1s to encode cfgs in
s1s(t). We write First(i) =̂ ∀j.¬Suc(j, i) for the first position on a trace and
Last(i) =̂ ∀j.¬Suc(i, j) for a position that cannot be on an infinite trace.

Transc =̂

{
b =⇒ SameVars if c = [b]

suc(x) = t ∧ SameVars\{x} if c = x := t

InfG =̂ (∀i.First(i) =⇒ Xin(i)) ∧ (∀j.Xex(j) =⇒ Last(j))

∧
∧

v∈Loc

∀i.∀j.Xv(j) ∧ Suc(i, j) =⇒
∨

(u,v)∈E

Trans(u,v)(i) ∧Xu(i)

The formula InfG encodes program behaviour as follows. Consider an s1s(t)
structure (τ, σ). The interpretation σ(X`) of a second-order variable X` repre-
sents positions on the trace when execution is at location `. Such an interpre-
tation partitions N because each position on a trace corresponds to a unique
location. The entry constraint on First(i) ensures execution begins at in. The
exit constraint implying Last(j) enforces that an infinite execution does not visit
ex. The conditions involving Suc(i, j) are called transition constraints and ex-
press that consecutive states on a trace must respect the transition relation of
G. Theorem ?? expresses non-termination as satisfiability.

Theorem 1. A cfg G has a non-terminating execution iff InfG is satisfiable.

We believe this is a simple yet novel encoding of non-termination that allows
the duality between search and refutation to be exploited for termination analy-
sis. In contrast, the second-order encoding of termination in [?] uses a predicate
for disjunctive well-foundedness and is solved in a different manner.

Example 1. A cfg G and the formula InfG for a program with a variable x of
type Z are shown in Fig. ??. We write a trace as a sequence of values of x. Let τ

5

be the trace −1,−1,−2,−2, . . . and σ the assignment mapping Xex to the empty
set, and Xin and Xa to even and odd positions, respectively. The structure (τ, σ)
is a model of InfG. Every structure (τ, δ), with τ as before, in which δ(Xex) is
not empty is a countermodel of InfG because ex is not reachable if x is initially
−1, so some transition in τ must violate a transition constraint in InfG. Every
structure (τ ′, δ′) with x non-negative in τ ′(0) is also a countermodel of InfG
because executions with x initially non-negative terminate. Since τ ′ is infinite
by definition, some transition in τ ′ must be infeasible. Terminating executions
cannot be models of InfG because traces in s1s(t) structures are infinite. �

The formula InfG is a conjunction of formulae in which second-order variables
and first-order program variables are free but first-order position variables are
bound. We exploit this structure in our analysis.

3 Conflict-Driven Conditional Termination

The conflict-driven conditional termination procedure (cdct) in Alg. ?? gener-
alizes cdcl from sat to termination analysis. The input is the formula InfG.
The output (result, ∆,Θ) is a result concerning a set of structures ∆ and a set
Θ of piecewise-defined ranking functions (pdrfs).

The value of result is one of divergent, terminates, or unknown. cdct returns
divergent if the traces represented by ∆ do not reach the exit location, which
could be due to non-termination or undefined behaviour; It returns terminates
if ∆ is empty and Θ guarantees termination for all states. It returns unknown
if cdct cannot prove termination and cannot progress. This happens if the
abstract domain cannot accurately represent non-terminating executions, if the
ranking functions used cannot express a termination argument, or a bound on
the number of decisions has been exceeded.

cdct maintains four global data structures. The trail tr is a sequence of
assignments to second-order variables. The explanation array exp contains in
each element exp[i], the decision or constraint used by propagation to add tr [i] to
the trail. The set of pdrfs Θ, generated by conditional termination analysis, are
our analogue of learned clauses. The blocking constraints Ψ contain constraints
representing two types of states, which need not be revisited. One is states from
which all executions terminate. The other is states for which cdct could neither
prove termination nor demonstrate non-termination.

Each execution of the cdct loop begins with a call to Search(), which at-
tempts to find a non-terminating execution. If Search() returns divergent, cdct
returns. If Search() returns unknown, the trail represents a potential conflict be-
cause it has discovered a set of states from which some execution terminates.
The conflict is potential because the trail may also contain models of InfG. This
is a difference to sat and smt solvers where a conflict contradicts a formula.

The conflict analysis procedure Analyze() extracts from a potential conflict
a definite conflict θ, expressed as a ranking function. The domain of θ represents
states from which all executions terminate. The learning step Learn() generates a
blocking constraint to drive subsequent search away from these states. Learning

6

Algorithm 1: CDCT(InfG)

Trail: tr ← ε
Explanations: exp ← ε
Blocking constraints: Ψ ← ∅
pdrfs: Θ ← ∅
while true do

result← Search()
if result = divergent or
(result = unknown and exceeded()) then

return (result, [tr], Θ)

θ ← Analyze()
Θ ← Θ ∪ {θ}
Ψ ← Ψ ∪ Learn([tr], θ)
if Backtrack() = false then

return (terminates, [ε], Θ)

Z s tep (Z x) {
i f (x>20)

return 3 ;
else i f (x>10)

return 2 ;
else

return 1 ;
}
void main () {

y , i : Z
[a] i f (y>0)

i = −s tep (y) ;
else

i = step(−y) ;
[b] while (y<−3||y>3)

y = y+i ;
[ex]}

also generates a blocking constraint if cdct cannot make progress analyzing
[tr]. This happens if no more decisions can be made and no ranking function can
be extracted. cdct then backtracks if possible.

An Example Run. A program is shown in C-like syntax alongside Alg. ??. The
location a is reached after the variables are initialized, b is the loop head, and
ex is the exit location. The program terminates but the abstract interpretation-
based tool FuncTion [?] cannot prove termination. cdct enables FuncTion
to prove termination while also avoiding case explosion. Even though other tools
may be able to prove termination, we believe cdct is interesting because similar
ideas could be used to expand the programs handled by those tools.

In this example, we use an interval abstract domain and affine ranking func-
tions. Search() uses reachability analysis to derive the intervals y:[−3, 3], i:[−3, 3]
at ex but termination analysis fails. Decisions restrict the range of a vari-
able at a location: for example, Search() heuristically uses conditions from the
code to make the decisions y:[1,∞] and y:[−∞, 10] at location a. Reachabil-
ity derives the range y:[1, 3], i:[−1,−1] at ex, which is a conflict, because no
trace with these states at ex satisfies InfG. Analyze() represents this conflict
as Xex 7→ {y:[1, 3], i:[−1,−1]→ 0}, which assigns a pdrf to the second-order
variable Xex and expresses that the program terminates in 0 steps for the states
shown. The pdrf is propagated backwards through the program by an abstract
interpreter [?] to derive the second-order assignments below. We omit the inter-
val on i, which is unchanged.

Xex 7→ y:[1, 3]→ 0, Xb 7→ y:[1, 3]→ 1, Xb 7→ y:[4, 4]→ 3, Xb 7→ y:[5, 5]→ 5

If these assignments are propagated to location b, we could only prove that the
program terminates for y:[1, 5] at a. Instead, we apply widening to the pdrfs
to derive Xb 7→ {y:[1, 3]→ 1, y:[4, 10]→ 2x+ 5}, which bounds the number of

7

steps to termination at the loop head for y in the ranges shown. We heuristically
expand the piece y:[4, 10] of the pdrf to y:[1,∞] and check if the 2x+ 5 is still
a ranking function. Since it is, we have proved termination for executions with
y:[1,∞], i:[−1,−1] at b, despite having explicitly only analyzed the range y:[0, 5].

The learning step complements the decision y:[1,∞] and uses Xa 7→ y:[−∞, 0]
to restrict future search. Learnt constraints typically have more structure. A
similar run of cdct can show termination when y is initially non-positive.

Consider the program with the loop condition changed to (y > −3). Now, the
program does not always terminate. Decisions and learning can infer a ranking
function for positive y as before. Decisions can also discover that for Xa 7→
y:[−1,−1], ex is unreachable, indicating non-termination (as all locations lead
to ex). In this way, cdct proves conditional termination using disjunctions of
ranking functions and also identifies non-terminating executions.

4 Search for a Conflict

We now show how a trail, a data structure used by sat solvers, can be used to
make explicit the incremental progress made by an abstract interpreter.

Abstract Domains. A bounded lattice (L,v,u,t) is a partially ordered set with
a meet u, a join t, a greatest element > (top), and a least element ⊥ (bottom).
A concrete domain for forward analysis (P(State),⊆, F) is a lattice of states
with a set F = {postc | c ∈ Cmd} of monotone functions called transformers,
where postc(S) is the image of S under the transition relation for c. An abstract
domain is a bounded lattice (A,v, G,5) with a set of abstract transformers
G =

{
postAc | c ∈ Cmd

}
and a widening operator 5 : A × A → A. There is a

monotone concretization function γ : A→ P(State) satisfying that γ(>) = State
and γ(⊥) = ∅. The transformers satisfy the soundness condition postc(γ(a)) ⊆
γ(postAc (a)) that abstract transformers overapproximate concrete transformers.

Literals are essential for propagation and conflict analysis in sat. The ana-
logue of literals in abstract domains are complementable meet-irreducibles [?]. A
lattice element c is a meet-irreducible if au b = c implies that a = c or b = c. Let
MA be the meet-irreducibles of A. An abstract element a has a concrete com-
plement if there exists an a in A such that γ(a) = ¬γ(a). A meet decomposition
of an element a is a finite set mdc(a) ⊆ MA satisfying that

d
mdc(a) = a and

that there is no strict subset S ⊂ mdc(a) with
d
S = a. A has complementable

meet irreducibles if every m ∈MA has a concrete complement m ∈MA.

Example 2. The interval lattice has elements [a, b], where a ≤ b ∈ Z∪{−∞,∞}.
The intervals [−∞, k], [k,∞] are meet-irreducibles, unlike [0, 2]. The set S =
{[−∞, 2], [0,∞], [−5,∞]} satisfies

d
S = [0, 2] but is not a meet decomposition

because {[−∞, 2], [0,∞]} ⊂ S. The concrete complements of [−∞, k] and [k,∞]
are [k + 1,∞] and [−∞, k − 1], while [0, 2] has no concrete complement. �

Abstract Assignments. sat solvers use partial assignments to incrementally con-
struct a model. We introduce abstract assignments, which use abstract domains

8

Algorithm 2: Search()

while true do
Propagate()
if tr(Xex) = ⊥ then

return divergent

d← dec(InfG, Ψ, tr)
if [tr] v [tr ·d] then

return unknown

Trail tr exp Modification

1 ε Initial state
2 Xex:[−∞, 0], Xex:[0,∞] {in, a, ex} Propagation

3a ↪→ Xin:[9,∞] Xin:[0,∞] dec Decision
4a Xa:[1,∞] {a, in} Propagation
5a Xin:[−∞, 0] dec Decision
6a Xa:⊥ {a, in} Propagation

3b Xin:[−∞,−7] dec Decision
4b Xa:[−∞,−7], Xex:⊥ {a, in} Propagation

to represent s1s(t) structures. Let Struct be the set of s1s(t) structures. The lat-
tice of abstract assignments (AsgA,v) contains the set AsgA =̂ SVar → A with
the pointwise order : asg v asg ′ if asg(X) v asg ′(X) for all X in SVar . The meet
and join are also defined pointwise. An abstract assignment asg represents a set
of s1s(t) structures as defined by the concretization conc : AsgA → P(Struct).

conc(asg) =̂ {(τ, σ) | for all X ∈ SVar . {τ(i) | i ∈ σ(X)} ⊆ γ(asg(X))}

An abstract assignment asg is a definite conflict for Φ if no model of Φ is in
conc(asg) and is a potential conflict if conc(asg) contains a countermodel of Φ.

Trail. We introduce a trail, which contains meet-irreducibles as in [?,?] and in
which a second-order variable can appear multiple times. A trail over A is the
empty sequence ε or the concatenation tr ·(X:m), where X is a second-order
variable and m is a complementable meet-irreducible. A trail tr defines the
assignment [tr] where [ε] =̂ λY.> and [tr ·(X:m)] maps X to [tr](X)um and all
other Y to [tr](Y). A trail tr is in potential/definite conflict with Φ if [tr] is. We
write tr(X) for [tr](X). An explanation exp for a trail of length n is a function
from [0, n− 1] to constraints in InfG or learnt clauses.

Search(). Alg. ?? extends a trail tr by propagating constraints from the cfg,
making decisions, or applying a generalized unit rule. It returns divergent if
tr(Xex) is ⊥, meaning that ex is unreachable. It returns unknown if tr(Xex) is
not ⊥ and no decisions can be made. This trail is a potential conflict because
every structure in conc([tr]) with a non-empty assignment to Xex violates the
constraint Xex(i) =⇒ Last(i), hence is a countermodel of InfG.

Example 3. The table alongside Alg. ?? illustrates the construction of tr and
exp during interval analysis of the program in Fig. ??. The exp column shows
the locations of the propagated constraints. The rows 1, 2, 3a, 4a, 5a, 6a represent
a run of Search(). The trail is initially empty and the result of standard interval
analysis is the trail Xex:[−∞, 0], Xex:[0,∞] in step 2, representing the assignment
{Xin 7→ >, Xa 7→ >, Xex 7→ [0, 0]}. An arbitrary decision Xin:[9,∞] in step 3a is
not sound (see Ex. ??) and the smallest sound decision containing it is [0,∞].
Propagation yields Xa:[1,∞] in step 4a. The decision Xin:[−∞, 0] in step 5a
is sound, and when propagated, yields a conflict in step 6a, so search returns
unknown. An alternative run is 1, 2, 3b, 4b. A decision Xin:[−∞,−7] is sound,
and propagation yields Xa:[−∞,−7] and Xex:⊥, so search returns divergent. �

9

Algorithm 3: Propagate()

asg ← [tr]
foreach S ∈ scc(InfG) do

asg ′ ← Reach(S, asg)
foreach Xv:m ∈ mdiff (asg ′, asg)
do

tr ← tr ·(Xv:m)

foreach ψ ∈ Ψ do
tr ← gunit(tr , ψ)

Algorithm 4: Analyze()

dc ← {j 7→ > | 0 ≤ j ≤ |tr |}
dc[|tr |]← {|tr | 7→ [tr](Xex)→ 0}
i← |tr |
repeat

if dc[i] = > or exp[i] = nil then
continue
rk ← Term(exp[i], dc[i])
dc[i]← >
i← i− 1
Update(dc, tr , rk)

until Unique Implication Point
return [dc]

Propagate(). Alg. ?? calls an abstract interpreter and stores the results in
the trail in a form amenable to conflict analysis and learning. The notion of
meet-difference makes explicit the incremental change between two calls to the
abstract interpreter. Formally, the meet-difference of a, b ∈ A mdiff (a, b) =
mdc(a) \mdc(b). The meet-difference of two abstract assignments is the point-
wise lift mdiff (asg , asg ′) = {Xv:m | m ∈ mdiff (asg(Xv), asg ′(Xv)), Xv ∈ SVar}.

In a transition constraint ψ =̂ ∀i.∀j.Xv(j)∧Suc(i, j)⇒ . . ., we write sink(ψ)
for Xv. A strongly connected component (scc) of InfG is a set of transition
constraints T such that the set of locations {v | ψ ∈ T,Xv = sink(ψ)} is an scc
of G. The set of sccs of InfG is scc(InfG). Propagate() calls a standard abstract
interpreter on each scc and uses a meet-difference calculation to extend the trail
with new information. Propagate() also applies a generalized unit rule gunit ,
explained in § ??. Propagation is sound in the sense that it does not eliminate
models of the constraints involved.

Lemma 1. If (τ, σ) satisfies InfG and Ψ and is in conc([tr]), it is also in
conc([tr]) after invoking Propagate().

Decisions. The abstract assignment computed by (the abstract interpreter used
by) Propagate() can be refined using decisions. Boolean decisions make variables
true or false and first-order decisions use values [?,?] but our decisions, like those
in [?], use abstract domain elements.

A decision is an element X:m that can be on a trail. A decision is sound if
conc(X:m)∪ conc(X:m) = Struct . That is, considering the structures in m and
m amounts to considering all possible structures.

Example 4. Recall the unsound decision Xin:[9,∞] from Ex. ??. The structure
(τ, σ) with τ = 9, 9, 8, 8, . . . and σ partitioning Xin and Xa into even and odd
values is not in conc(Xin:[9,∞]) as x cannot be 8 at in. Similarly, it is not in
conc(Xin:[−∞, 8]) so conc(Xin:[9,∞]) ∪ conc(Xin:[−∞, 8]) 6= Struct . �

The unsoundness arises because pointwise lifting does not preserve concrete
complements. Though m is the concrete complement of m in A, [Xv:m] need not

10

be the concrete complement of [Xv:m] in AsgA. Unsound decisions can be ex-
tended by propagation to a post-fixed point to cover all structures. All decisions
on variables Xv in singleton sccs with no self-loops are sound.

A decision rule dec(InfG, Ψ, tr) returns an abstract domain element d such
that [tr ·(Xv:d)] v [tr]. The decision rule makes progress if this order is strict.
Unlike in sat the decision rule can cause divergence of cdct because an infinite
series of decisions like [0,∞], [1,∞], . . . may not change the result of propagation.

5 Conflict Analysis

Unlike sat and smt solvers, which generate definite conflicts, Search() generates
potential conflicts. We apply backwards abstract interpretation with ranking
functions to extract definite conflicts, and use widening to generalize them.

Ranking Function Domains. Due to space limitations, we only briefly recall the
concrete domain of ranking functions, which provides the intuition for conflict
analysis, and discuss the abstract domain informally. See [?,?] for details.

We write f : A 9 B for a partial function whose domain is dom(f). A
ranking function f : State 9 O for a relation R is a map from states to ordinals
satisfying that for all s in dom(f) and (s, t) in R, t is in dom(f) and f(t) < f(s).
A concrete domain for termination analysis (Rank ,4, B) is a lattice of ranking
functions with backwards transformers B = {bkw c | c ∈ Cmd} defined below.
Informally f 4 g if f is defined on a state when g is and yields a lower rank: f 4
g =̂ dom(f) ⊇ dom(g) and for all x in dom(g), f(x) < g(x). The transformer
bkw c maps a ranking function f to one defined on states with all their successors
in dom(f). Recall that Relc is the transition relation for a command c.

bkw c(f) =̂ λs.

0 if Relc(s) = ∅
sup {f(r) | r ∈ Relc(s)}+ 1 if Relc(s) ⊆ dom(f)

undefined otherwise

A subset P ⊆ A of a domain A is an abstract partition if {γ(a) | a ∈ P} partitions
State. Let Fun ⊆ Rank be a lattice of functions, for example, affine functions.

A piecewise defined ranking function (pdrf) over Fun and A is a set ρ =̂
{a1 7→ f1, . . . , ak 7→ fk} such that {a1, . . . , ak} is an abstract partition, and each
fi is in Fun. The abstract domain of pdrfs (aRank ,4,Abd) is a lattice aRank
with abduction transformers Abd . The concretization γr : aRank → Rank of
a ρ as above maps states to ranking functions: γr(ρ) =̂ {s 7→ fi | s ∈ γ(ai)}.
The order and lattice operations are defined in terms of partition refinement
and unification [?]. To compare ρ1 and ρ2, we consider the coarsest abstract
partition that refines the abstract partitions of both and compare the ranking
functions in each block pointwise.

Conflict analysis starts with a precondition for termination and finds a weaker
precondition for termination, hence performs abduction. The abduction trans-
formers satisfy the soundness condition: γr(abdc(ρ)) 4 bkw c(γ

r(ρ)), which states
that the termination bounds obtained with pdrfs are weaker than those that

11

could be obtained in the concrete domain. A sound abduction transformer is
underapproximating. A ranking assignment rk : SVar → aRank associates a
pdrf with each second-order variable. Ranking assignments form a lattice with
point-wise meet and join and have a special order 6 for fixed point checks [?].
To exchange information between Analyze() and Search() we extract a meet-
irreducible representation of the domains of pdrfs. The meet-projection of a
pdrf ρ =̂ {ai 7→ fi} is the set of sets of meet-irreducibles mpr(ρ) =̂ {mdc(ai)}
and provides a dnf-like representation of the abstract partition in ρ.

Analyze(). Alg. ?? uses an array dc to construct and generalize a definite con-
flict. Each dc[i] represents termination conditions for states in the trail. Exe-
cutions from states at ex terminate immediately so the last element of dc is
{Xex 7→ {[tr](Xex) 7→ 0}} and all other elements are >. The conflict analysis
loop walks backwards through the trail and extends dc[i]. Forward propagation
through the scc exp[i] added tr [i] to the trail, so dc[i] is propagated backwards
through exp[i] to generalize the conflict to a ranking assignment rk . New pdrfs
are added to dc by the procedure Update(). Specifically, for each Xv modified by
Term(), and m ∈ mpr(rk(Xv)), Update() finds trail indices with tr [j] v Xv:m
and sets dc[j] to the appropriate pdrf. Analyze() continues until a unique im-
plication point is reached, which is typically a dominator in the cfg at which a
decision was made. Analyze() returns [dc], a representation of the pdrfs in dc.

Learn() and the Generalized Unit Rule. Information computed by Search()
is communicated to Analyze() using the trail, while information from Analyze()
is represented within Search() by a blocking constraint and is incorporated in
search using generalized unit rule. We describe these very briefly.

A set C = {X1:m1, . . . , Xk:mk} of elements can be complemented element-
wise to obtain C = {X1:m1, . . . , Xk:mk}. If C is viewed as a conjunction of
literals representing a conflict, C is a clause the procedure can learn. Learn()
applies meet-projection to a pdrf and complements this projection to obtain a
blocking constraint. In practice, we simplify the partitions of the pdrf to avoid
an explosion of blocking constraints, analogous to subsumption in sat.

The generalized unit rule [?] extends a trail using a blocking constraint.
Assume that Ψ has the form {X0:m0, . . . , Xk:mk}. The trail gunit(tr , Ψ) is tr ·
(Xk:mk) if [tr](Xi) umi = ⊥ for 0 ≤ i < k and is tr otherwise. The generalized
unit rule refines a trail in the sense that [gunit(tr , Ψ)] v [tr]. If tr is inconsistent
with Ψ , [tr] will represent ⊥. Having presented all components of the procedure,
we now investigate how it works in practice.

6 Implementation

We have incorporated cdct in our prototype static analyzer FuncTion (http:
//www.di.ens.fr/~urban/FuncTion.html), which is based on piecewise-defined
ranking functions [?]. A version without cdct [?] participated in the 4th Inter-
national Competition on Software Verification (SV-COMP 2015).

FuncTion+cdct accepts (non-deterministic) programs in a C-like syntax.
It is implemented in OCaml and uses the APRON library [?]. The pieces of a

12

(a)

Tot Time Timeouts

FuncTion+cdct 200 1.5s 15

AProVE [?] 256 15.9s 24

FuncTion [?] 175 0.7s 5

HIPTnT+ [?] 246 1.2s 4

Ultimate [?] 226 15.3s 35

(b)

FuncTion+cdct

� N × #

AProVE [?] 15 71 185 17

FuncTion [?] 25 0 175 88

HIPTnT+ [?] 22 68 178 20

Ultimate [?] 41 67 159 21

Fig. 3: Overview of the experimental evaluation.

pdrf can be represented with intervals, octagons or convex polyhedra, and rank-
ing functions within the pieces are represented by affine functions. The precision
of the analysis can also be controlled by adjusting the widening delay.

Experimental Evaluation. We evaluated our tool against 288 terminating C pro-
grams from the termination category of SV-COMP 2015. In particular, we com-
pared FuncTion+cdct with other tools from the termination category of SV-
COMP 2015 : AProVE [?], FuncTion without cdct [?], HIPTnT+ [?], and
Ultimate Automizer [?]. The experiments were performed on a system with
a 1.30GHz 64-bit Dual-Core CPU (Intel i5-4250U) and 4GB of RAM. For the
other tools, since we did not have access to their competition version, we used
the SV-COMP 2015 results obtained on more powerful systems with a 3.40GHz
64-bit Quad-Core CPU (Intel i7-4770) and 33GB of RAM.

Fig. ?? summarizes our evaluation. The first column is the number of pro-
grams each tool could prove terminating. The second column reports the average
running time in seconds, and the last column reports the number of time outs,
which was set to 180 seconds. In Fig. ??, the first column (�) lists the number
of programs that FuncTion+cdct proved terminating and the tool could not,
the second column (N) reports the number of programs that the tool proved
terminating and FuncTion+cdct could not, and the last two columns report
the number of programs that the tool and FuncTion+cdct were both able
(×) or unable (#) to prove terminating. The same symbols are used in Fig. ??.

Fig. ?? shows that cdct causes a 9% improvement in FuncTion+cdct
compared to FuncTion without cdct. The increase in runtime is not evenly
distributed, and about 2% of the test cases require more than 20 seconds to be
analyzed by FuncTion+cdct (cf. Fig. ??). In these cases the decision heuris-
tics do not quickly isolate sets of states on which the abstract interpreter makes
progress. Fig. ?? shows that, as expected, FuncTion without cdct termi-
nates with an unknown result earlier. Fig. ?? and Fig. ?? show that though
AProVE and Ultimate Automizer were run on more powerful machines,
FuncTion+cdct is generally faster but proves termination of respectively 19%
and 9% fewer programs (cf. Fig. ??). HIPTnT+ proves termination of 16% more
programs than FuncTion+cdct (cf. Fig. ??), but FuncTion+cdct proves
termination of 52% of the program that HIPTnT+ is not able to prove termi-
nating (8% of the total test cases, cf. Fig. ??). When comparing with FuncTion

13

0.01 0.1 1 10 100
0.01

0.1

1

10

100

FuncTion

F
u
n
c
T
io
n
[?
]

(a)

0.01 0.1 1 10 100
0.01

0.1

1

10

100

FuncTion

A
P
r
o
V
E

[?
]

(b)

0.01 0.1 1 10 100
0.01

0.1

1

10

100

FuncTion

H
IP

T
n
T
+

[?
]

(c)

0.01 0.1 1 10 100
0.01

0.1

1

10

100

FuncTion

U
lt

im
a
t
e
A
u
t
o
m
iz
e
r
[?
]

(d)

Fig. 4: Detailed comparison of FuncTion against its previous version [?] (a),
AProVe [?] (b), HIPTnT+ [?] (c), and Ultimate Automizer [?] (d).

without cdct [?], we observed a 2x speedup in the SV-COMP 2015 machines,
so the runtime comparison of FuncTion+cdct and HIPTnT+ is inconclu-
sive. Finally, thanks to the support for piecewise-defined ranking functions, 1%
of the programs could be proved terminating only by FuncTion+cdct (2.7%
by AProVE, 1% by HIPTnT+, and 1.7% by Ultimate Automizer). No tool
could prove termination for 0.7% of the programs.

7 Related Work and Conclusion

Büchi’s work relating automata and logic [?] is the basis for automata-based ver-
ification and synthesis. We depart from most work in this tradition in two ways.
One is the use of sequences of first-order structures as in first-order temporal
logics [?] and the other is to go from a graph-based representation to a formula,
which is opposite of the translation used in automata-theoretic approaches. The
use of s1s for pointer analysis [?], and termination [?] is restricted to decid-
able cases, as is [?]. Program analysis questions have been formulated with set-
constraints [?] and second-order Horn clauses [?], but solutions to these formulae

14

are typically invariants and ranking functions, not errors, and the methods used
to solve them differ from cdct.

A key intuition behind our work is to lift algorithmic ideas from sat solvers
to program analysis. The same intuition underlies smpp [?], which lifts dpll(t)
to programs, acdcl [?,?], which lifts cdcl to lattices, the lifting of St̊almarck’s
method [?], and lazy annotation, which uses interpolants for learning [?]. The
idea of guiding an abstract interpreter away from certain regions appears in
dagger [?] and Vinta [?], from which cdct differs in the use of a trail in search
and a unit rule in learning. Our generalized unit rule is from acdcl, but the use
of s1s(t), potential conflicts and the combination with pdrfs is all new. The
widening used in cdct preserves a termination guarantee and we believe that
algorithms for generating small interpolants [?] can help design better widening
operators.

Finally, termination analysis is a thriving area with more approaches than
we can discuss. A fundamental problem is the efficient discovery of disjunctions
of ranking functions [?]. We use backward analysis, as in [?,?], and our combi-
nation of conditional termination [?] with non-termination [?,?] is crucial. The
approach of [?] is similar ours with a different refutation step and information
exchange mechanism. At a high level, cdct is the dual of [?], which underap-
proximates non-terminating executions and overapproximates terminating ones,
while we overapproximate non-termination and underapproximate termination.
We believe cdct can be extended to transition-based approaches [?], but the
challenge is to develop search and learning.

References

1. A. Aiken. Introduction to set constraint-based program analysis. Science of Com-
puter Programming, 35:79–111, November 1999.

2. A. Albarghouthi, A. Gurfinkel, and M. Chechik. Craig interpretation. In SAS,
pages 300–316, 2012.

3. A. Albarghouthi and K. L. McMillan. Beautiful interpolants. In CAV, pages
313–329, 2013.

4. M. Brain, V. D’silva, A. Griggio, L. Haller, and D. Kroening. Deciding floating-
point logic with abstract conflict driven clause learning. Formal Methods in Systems
Design, 45(2):213–245, Oct. 2014.

5. J. R. Büchi. On a decision method in restricted second order arithmetic. In Logic,
Methodology and Philosophy of Science, pages 1–11. 1960.

6. B. Cook, S. Gulwani, T. Lev-Ami, A. Rybalchenko, and M. Sagiv. Proving Con-
ditional Termination. In CAV, pages 328–340, 2008.

7. S. Cotton. Natural domain SMT: A preliminary assessment. In FORMATS, pages
77–91, 2010.

8. P. Cousot and R. Cousot. An Abstract Interpretation Framework for Termination.
In POPL, pages 245–258, 2012.

9. C. David, D. Kroening, and M. Lewis. Unrestricted termination and non-
termination arguments for bit-vector programs. In ESOP, pages 183–204, 2015.

10. V. D’Silva, L. Haller, and D. Kroening. Abstract conflict driven learning. In POPL,
pages 143–154, 2013.

15

11. V. D’Silva, L. Haller, D. Kroening, and M. Tautschnig. Numeric bounds analysis
with conflict-driven learning. In TACAS, pages 48–63, 2012.

12. P. Ganty and S. Genaim. Proving Termination Starting from the End. In CAV,
pages 397–412, 2013.

13. S. Grebenshchikov, N. P. Lopes, C. Popeea, and A. Rybalchenko. Synthesizing
software verifiers from proof rules. In PLDI, pages 405–416, 2012.

14. B. S. Gulavani, S. Chakraborty, A. V. Nori, and S. K. Rajamani. Automatically
refining abstract interpretations. In TACAS, pages 443–458, 2008.

15. A. Gupta, T. A. Henzinger, R. Majumdar, A. Rybalchenko, and R.-G. Xu. Proving
non-termination. In POPL, pages 147–158, 2008.

16. W. R. Harris, A. Lal, A. V. Nori, and S. K. Rajamani. Alternation for termination.
In SAS, pages 304–319, 2010.

17. W. R. Harris, S. Sankaranarayanan, F. Ivančić, and A. Gupta. Program analysis
via satisfiability modulo path programs. In POPL, pages 71–82, 2010.

18. M. Heizmann, D. Dietsch, J. Leike, B. Musa, and A. Podelski. Ultimate Automizer
with Array Interpolation (Competition Contribution). In TACAS, 2015.

19. I. M. Hodkinson, F. Wolter, and M. Zakharyaschev. Decidable and undecidable
fragments of first-order branching temporal logics. In LICS, pages 393–402, 2002.

20. B. Jeannet and A. Miné. Apron: A Library of Numerical Abstract Domains for
Static Analysis. In CAV, pages 661–667, 2009.

21. D. Larraz, K. Nimkar, A. Oliveras, E. Rodŕıguez-Carbonell, and A. Rubio. Proving
Non-Termination Using Max-Smt. In CAV, pages 779–796, 2014.

22. T.-C. Le, S. Qin, and W.-N. Chin. Termination and Non-Termination Specification
Inference. In PLDI, 2015.

23. K. L. McMillan. Lazy annotation for program testing and verification. In CAV,
pages 104–118, 2010.

24. K. L. McMillan, A. Kuehlmann, and M. Sagiv. Generalizing DPLL to richer logics.
In CAV, pages 462–476, 2009.

25. F. Mesnard and É. Payet. A second-order formulation of non-termination. CoRR,
2014.

26. A. Møller and M. I. Schwartzbach. The pointer assertion logic engine. In PLDI,
pages 221–231, 2001.

27. A. Podelski and A. Rybalchenko. Transition Invariants. In LICS, pages 32–41,
2004.

28. A. Podelski and A. Rybalchenko. Transition Invariants and Transition Predicate
Abstraction for Program Termination. In TACAS, pages 3–10, 2011.

29. T. Ströder, C. Aschermann, F. Frohn, J. Hensel, and J. Giesl. AProVE: Termina-
tion and Memory Safety of C Programs (Competition Contribution). In TACAS,
2015.

30. A. Thakur and T. Reps. A generalization of St̊almarck’s method. In SAS, 2012.
31. C. Urban. The Abstract Domain of Segmented Ranking Functions. In SAS, pages

43–62, 2013.
32. C. Urban. FuncTion: An Abstract Domain Functor for Termination (Competition

Contribution). In TACAS, 2015.

