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Abstract We consider the problem of automatically and efficiently computing models of
constraints, in the presence of complex background theories such as floating-point arithmetic.
Constructing models, or proving that a constraint is unsatisfiable, has various applications,
for instance for automatic generation of test inputs. It is well-known that a naïve encoding of
constraints into simpler theories (for instance, bit-vectors or propositional logic) often leads
to a drastic increase in size, or that it is unsatisfactory in terms of the resulting space and
runtime demands. We define a framework for systematic application of approximations in
order to improve performance. Our method is more general than previous techniques in the
sense that approximations that are neither under- nor over-approximations can be used, and
it shows promising performance on practically relevant benchmark problems.

1 Introduction

The construction of satisfying assignments (or, more generally, models) for a set of given
constraints, or showing that no such assignments exist, is one of the most central problems
in automated reasoning. Although the problem has been addressed extensively in research
fields including constraint programming and more recently in satisfiability modulo theories
(SMT), there are still constraint languages and background theories where effective model
construction is challenging. Such theories are, in particular, arithmetic domains such as bit-
vectors, nonlinear real arithmetic (or real-closed fields), and floating-point arithmetic (FPA);
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even when decidable, the high computational complexity of such languages turns model
construction into a bottleneck in applications such as bounded model checking, white-box
test case generation, analysis of hybrid systems, and mathematical reasoning in general.

We follow a recent line of research that applies the concept of abstraction to model con-
struction (e.g., [3,5,10,19]). In this setting, constraints are usually simplified prior to solving
to obtain over- or under-approximations, or some combination thereof (mixed abstractions);
experiments have shown that this concept can speed up model construction significantly.
However, previous work in this area suffers from the fact that the definition of good over- and
under-approximations is difficult and limiting, for instance in the context of floating-point
arithmetic. We argue that the focus on over- and under-approximations is neither necessary
nor optimal: as a more flexible alternative, we present a general algorithm that is able to
incorporate any form of approximation in the solving process, including approximations that
cannot naturally be represented as a combination of over- and under-approximations. Our
method preserves essential properties like soundness, completeness, and termination.

For the purpose of empirical evaluation, we instantiate our procedure for the domain of
floating-point arithmetic, and present an evaluation based on an implementation thereof
within the Z3 theorem prover [22]. Experiments on practically relevant and satisfiable
floating-point benchmark problems (SMT-LIBQF_FP) show an average speed-up of roughly
one order of magnitude when compared to the naïve bit-blasting-based default decision pro-
cedure that comes with Z3. Further experiments show that the performance of our prototype
implementation is also competitive with other state-of-the-art solvers for floating-point arith-
metic.

While mainly intended for model generation, our method can also show unsatisfiability of
constraints, and thanks to a new technique for refinement of unsatisfiable (sub-)problems, only
a small performance penalty is incurred on them. However, we believe that further research is
necessary to improve reasoning for unsatisfiable problems, even though our current prototype
implementation exhibits satisfactory performance on unsatisfiable benchmark problems.

The contributions of this article are as follows:

1. a general method for model construction that can make use of arbitrary approximations
of constraints,

2. an instantiation of our method for the theory of floating-point arithmetic,
3. refinement techniques for approximate models and unsatisfiable problems, as well as
4. an experimental evaluation of a prototype implementation of all proposed methods.

1.1 Motivating Example

To illustrate our motivation and the resulting techniques, consider a heavily simplified
software proportional-integral (PI) controller operating on floating-point data, as shown in
Algorithm 1.

All variables in this example range over double precision (64-bit) IEEE-754 floating-
point numbers. The controller is initialized with the set_point value and the constants Kp
and Ki, it reads input values (in; e.g., from a sensor) via function read_input, and it computes
output values (out) which control the system through the function set_output. The controller
computes the control values in such a way, that the input values are as close to set_point as
possible. For simplicity, we assume that there is a bounded number N of control iterations.

Suppose we want to prove that if the input values stay within the range 18.0 ≤ in ≤ 22.0,
then the control values will stay within a range that we consider safe, for instance −3.0 ≤
out ≤ +3.0. This property is true of our controller only for two control iterations, but it can
be violated within three.
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An Approximation Framework for Solvers and Decision Procedures 129

Algorithm 1: Software PI controller

1 const double Kp=1.0;
2 const double Ki=0.25;
3 const double set_point=20.0;
4 double integral = 0.0;
5 double error ;
6
7 for ( int i = 0; i < N; ++i ) {
8 in = read_input ( ) ;
9 error = set_point − in ;

10 integral = integral + error ;
11 out = Kp∗error + Ki∗integral ;
12 set_output (out ) ;
13 }

Table 1 Behavior of Z3 on the PI controller example

Bound N 1 2 5 10 20 30 40 50 100

Clauses (×103) 96 230 630 1298 2633 3969 5304 6639 13316

Variables (×103) 12 28 78 161 326 492 657 822 1649

Z3 time (s) 1 5 19 27 288 1190 1962 3297 >1h

A bounded model checking approach to this problem produces a series of formulas, one
for each N and it then checks the satisfiability of those formulas (usually in sequence).
Today, most (precise) solvers for floating-point formulas implement this satisfiability check
bymeans of bit-blasting, i.e., using a bit-precise encoding of FPA semantics as a propositional
formula. Due to the complexity of FPA, the resulting formulas grow very quickly, and tend to
overwhelm even the fastest SAT/SMT solvers. For example, an unrolling of the PI controller
example to N=100 steps cannot be solved by Z3 within an hour of runtime (see Table 1).

However, this example has the property that the full range of floating-point numbers is not
required to find suitable program inputs; essentially a prover just needs to find a sequence of
inputs such that the errors add up to a sum that is greater than 3.0. There is no need to consider
numbers with large magnitude, or a large number of significant digits/bits. We postulate that
this situation is typical formany practical applications. Since bit-precise treatment of floating-
point numbers is clearly wasteful in this setting, we might consider some of the following
alternatives:

– all operations in the program can be evaluated in real instead of floating-point arithmetic.
For problems with only linear operations, such as the program at hand, this enables the
use of highly efficient solvers based on linear programming (LP). However, the straight-
forward encoding into LP would ignore the possibility of overflows or rounding errors.
A bounded model checking approach based thereupon will therefore be neither sound
nor complete. Further, little is gained in terms of computational complexity for nonlinear
constraints.

– operations can be evaluated in fixed-point arithmetic. Again, this encoding does not
preserve the overflow- and rounding-semantics of FPA, but it enables solving using more
efficient bit-vector encodings and solvers.
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– operations can be evaluated in FPA with reduced precision: we can use single precision
numbers, or other formats even smaller than that.

Strictly speaking, soundness and completeness are lost in all three cases, since the precise
nature of overflows and rounding in FPA is ignored. All three methods enable, however,
the efficient computation of approximate models, which are likely to be “close” to genuine
double-precision FPAmodels, for some notion of closeness. In this paper, we define a general
framework for model construction with approximations. In order to establish soundness
and completeness of our model construction algorithm, the framework contains a model
reconstruction phase, in which approximate models are translated into precise models. This
reconstructionmay fail, inwhich case approximation refinement is used to iteratively increase
the precision of approximate models.

2 Related Work

Related work to our contribution falls into two categories: general abstraction and approxi-
mation frameworks, and specific decision procedures for floating-point arithmetic.

The concept of abstraction (and approximation) is central to software engineering and
program verification, and it is increasingly employed in general mathematical reasoning
and in decision procedures. Usually, and in contrast to our work, only under- and over-
approximations are considered, i.e., the formula that is solved either implies or is implied by
an approximate formula (or abstraction). Counter-example guided abstraction refinement [7]
is a general concept that is applied in many verification tools and decision procedures (e.g.,
even on a relatively low level like in QBF [18] or in model based quantifier instantiation for
SMT [13]).

Ageneral framework for abstracting decision procedures isAbstractCDCL, recently intro-
duced by D’Silva et al. [10], which was also instantiated with great success for FPA [2,11].
This approach relies on the definition of suitable abstract domains for constraint propagation
and learning. In our experimental evaluation, we compare to the FPA decision procedure
in MathSAT, which is an instance of ACDCL. ACDCL can also be integrated with our
framework, e.g., to solve approximations. A further framework for abstraction in theorem
proving was proposed by Giunchiglia et al. [14]. Again, this work focuses on under- and
over-approximations, not on other forms of approximation.

Specific instantiations of abstraction schemes in related areas include the bit-vector
abstractions by Bryant et al. [5] and Brummayer and Biere [4], as well as the (mixed)
floating-point abstractions by Brillout et al. [3]. Van Khanh and Ogawa present over- and
under-approximations for solving polynomials over reals [19]. Gao et al. [12] present a
δ-complete decision procedure for nonlinear reals, considering over-approximations of con-
straints by means of δ-weakening.

There is a longhistory of formalization and analysis ofFPAconcerns usingproof assistants,
among others in Coq by Melquiond [21] and in HOL Light by Harrison [15]. Coq has also
been integrated with a dedicated floating-point prover called Gappa by Boldo et al. [1],
which is based on interval reasoning and forward error propagation to determine bounds on
arithmetic expressions in programs [9]. The ASTRÉE static analyzer [8] features abstract
interpretation-based analyses for FPA overflow and division-by-zero problems in ANSI-C
programs. The SMT solvers MathSAT [6], Z3 [22], and Sonolar [20], all feature (bit-precise)
conversions from FPA to bit-vector constraints.
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An Approximation Framework for Solvers and Decision Procedures 131

3 Preliminaries

We establish a formal basis in the context of multi-sorted first-order logic (e.g., [16]). A
signature Σ = (S, P, F, α) consists of a set of sort symbols S, a set of sorted predicate
symbols P , a set of sorted function symbols F , and a sort mapping α. Each predicate and
function symbol g ∈ P ∪ F is assigned a (k + 1)-tuple α(g) of argument sorts (with k ≥ 0),
where k is the arity of the symbol. Constants are considered to be nullary function symbols.
Also, the Boolean sort symbol is included in the set of sorts, i.e. sb ∈ S. We assume a
countably infinite set X of variables, and (by abuse of notation) overload α to assign sorts
also to variables. Given amulti-sorted signatureΣ and variables X , the notions of well-sorted
terms, atoms, literals, clauses, and formulas are defined as usual. The function fv(φ) denotes
the set of free variables in a formula φ. In what follows, we assume that all formulas are
quantifier-free.

AΣ-structurem = (U, I )with underlying universeU and interpretation function I maps
each sort s ∈ S to a non-empty set I (s) ⊆ U , each predicate p ∈ P of sorts (s1, s2, . . . , sk)
to a relation I (p) ⊆ I (s1) × I (s2) × . . . × I (sk), and each function f ∈ F of sort
(s1, s2, . . . , sk, sk+1) to a set-theoretic function I ( f ) : I (s1)×I (s2)×. . .×I (sk) → I (sk+1).
A variable assignment β under a Σ-structure m maps each variable x ∈ X to an element
β(x) ∈ I (α(x)). The valuation function valm,β(·) is defined for terms and formulas in the
usual way. A theory T is a pair (Σ, M) of a multi-sorted signature Σ and a class of Σ-
structures M . A formula φ is T -satisfiable if there is a structure m ∈ M and a variable
assignment β such that φ evaluates to true; we denote this by m, β |	T φ, and call β a
T -solution of φ.

4 The Approximation Framework

We describe a model construction procedure for formulas φ over a set of variables X in a
theory T . The goal is to obtain a T -solution of φ. The main idea underlying our method
is to replace the theory T with an approximation theory T̂ , which enables explicit control
over the precision used to evaluate theory operations. In our method, the T -problem φ is first
lifted to a T̂ -problem φ̂, then solved in the theory T̂ , and finally, if a solution is found, it
is translated back to a T -solution. The benefit of using the theory T̂ is that different levels
of approximation may be used during computation. We will use the theory of floating-point
arithmetic as a running example for instantiation of this framework (Fig. 1).

4.1 Approximation Theories

In order to formalize the approach of findingmodels bymeans of approximation,we construct
the approximation theory T̂ = (Σ̂, M̂) from T , by extending all function and predicate

φ|=Tm, β

φ̂

lifting

m̂, β̂ |=T̂

model reconstruction

Fig. 1 Commutativity graph showing how the model m, β can be obtained via approximation theory T̂
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132 A. Zeljić et al.

symbols with a new argument representing the precision to which the function or predicate
should be computed.
Syntax We introduce a new sort for the precision sp , and a new predicate symbol 
 which
orders precision values. The signature Σ̂ = (Ŝ, P̂, F̂, α̂) is obtained fromΣ in the following
manner: Ŝ = S ∪ {sp}; the set of predicate symbols is extended with the new predicate
symbol 
, P̂ = P ∪ {
}; the set of function symbols is extended with the new constant ω,
representing the maximum precision value, F̂ = F ∪ {ω}; the sort function α̂ is defined as

α̂(g) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

(sp, s1, s2, . . . , sn) if g ∈ P ∪ F and α(g) = (s1, s2, . . . , sn)

(sp, sp, sb) if g = 

(sp) if g = ω

α(g) otherwise

Note that constant symbols become unary function symbols instead.

Semantics Σ̂-structures (Û , Î ) enrich the original Σ-structures by providing approximate
versions of function and predicate symbols. The resulting operations may be under- or over-
approximations, but theymay also be approximations that are close to the original operations’
semantics by some other metric. The degree of approximation is controlled with the help of
the precision argument. We assume that the set M̂ of Σ̂-structures satisfies the following
properties:

– for every structure (Û , Î ) ∈ M̂ , the relation Î (
) is a partial order on Î (sp) that satisfies
the ascending chain condition (every ascending chain is finite), and that has the unique
greatest element Î (ω) ∈ Î (sp);

– for every structure (U, I ) ∈ M , an approximation structure (Û , Î ) ∈ M̂ extending
(U, I ) exists, together with an embedding h : U �→ Û such that, for every sort s ∈ S,
function f ∈ F , and predicate p ∈ P:

h(I (s)) ⊆ Î (s)

(a1, . . . , an) ∈ I (p) ⇐⇒ ( Î (ω), h(a1), . . . , h(an)) ∈ Î (p) (ai ∈ I (α(p)i ))

h(I ( f )(a1, . . . , an)) = Î ( f )( Î (ω), h(a1), . . . , h(an)) (ai ∈ I (α( f )i ))

– vice versa; for every approximation structure (Û , Î ) ∈ M̂ there is a structure (U, I ) ∈ M
that is similarly embedded in (Û , Î ).

These properties ensure that every T -model has a corresponding T̂ -model, i.e. that no
models are lost. Interpretations of function and predicate symbols under Î with maximal
precision are isomorphic to their original interpretation under I . The interpretation Î should
interpret the function and predicate symbols in such away that their interpretations for a given
value of the precision argument approximate the interpretations of the corresponding function
and predicate symbols under I . And finally, that it is possible to translate every T̂ -model into
some T -model, using a mapping h−1 that reverses the embedding h (not necessarily its
mathematical inverse, since h is rarely going to be bijective, but an inverse in spirit).
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An Approximation Framework for Solvers and Decision Procedures 133

4.2 Application to Floating-Point Arithmetic

The IEEE-754 standard for floating-point numbers [17] defines floating-point numbers, their
representation in bit-vectors, and the corresponding operations. Most crucially, bit-vectors of
various sizes are used to represent the significant and the exponent of numbers; e.g., double-
precision floating-point numbers are represented by using 11 bits for the exponent and 53 bits
for the significant. denote the subset of reals that can be represented as floating-point numbers
s significant bits and e exponent bits by FPs,e:

FPs,e =
⎧
⎨

⎩

sgn ∈ {0, 1},
(−1)sgn · sig · 2exp−s | sig ∈ {0, . . . , 2s − 1},

exp ∈ {−2e−1 + 3, . . . , 2e−1}

⎫
⎬

⎭
∪

{
NaN, +∞,

−∞, −0

}

The set consists of: 1. normalized numbers (in practice encoded with an implicit leading
bit set to 1), 2. subnormal numbers, and 3. special values. The definition does not discriminate
between normal and subnormal numbers and any value with multiple representations loses
the multiplicity in the set. Since the reals do not contain a signed zero value it is included
explicitly with the other special values.

Proposition 1 (Inclusion property) FP domains grow monotonically when increasing e or
s, i.e., FPs′,e′ ⊆ FPs,e provided that s′ ≤ s and e′ ≤ e; we call this the inclusion property.

For fixed values e of exponent bits and s of significant bits, FPA can bemodeled as a theory
in our sense. We denote this theory by TFs,e, and write s f for the sort of FP numbers, and sr
for the sort of rounding modes. The various FP operations are represented as functions and
predicates of the theory; for instance, floating-point addition turns into the function symbol
⊕ with signature α(⊕) = (sr , s f , s f , s f ). Additional constants of sort sr are provided for
the five rounding modes in the IEEE-754 standard, namely

– RoundTowardZero,
– RoundNearestTiesToEven,
– RoundNearestTiesToAway,
– RoundTowardPositive, and
– RoundTowardNegative.

The semantics of TFs,e is defined by a single structure (Us,e, Is,e) with Is,e(s f ) = FPs,e.
The semantics of floating-point operations is derived from the corresponding operations
over reals, except in cases where the resulting values are not representable as floating-point
numbers; then rounding takes place in accordance with the chosen rounding mode.

FPA approximation theories We construct the approximation theory T̂Fs,e, by introducing
the precision sort sp , predicate symbol 
, and a constant symbol ω. The function and predi-
cate symbols have their signature changed to include the precision argument. For example,
the signature of the floating-point addition symbol ⊕ is α̂(⊕) = (sp, sr , s f , s f , s f ) in the
approximation theory.

The semantics of the approximation theory T̂Fs,e is again defined through a singleton
set M̂s,e = {(Ûs,e, Îs,e)} of structures. The universe of the approximation theory extends
the original universe with a set of integers which are the domain of the precision sort, i.e.,
Ûs,e = Us,e ∪ {0, 1, . . . , n}, Îs,e(sp) = {0, 1, . . . , n}, and Îs,e(ω) = n. The embedding h is
the identity mapping. In order to use precision to regulate the semantics of FP operations,
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134 A. Zeljić et al.

we introduce the notation (s, e) ↓ p to denote the number of bits in reduced precision p ∈
{0, 1, . . . , n}; more specifically we define

(s, e) ↓ p =
(
3+

⌈
(s − 3) · p

n

⌉
, 3+

⌈
(e − 3) · p

n

⌉)
,

which scales the floating-point sort, however the smallest sort it scales to is FP3,3 since
smaller well-defined domains contain mostly special values. The approximate semantics of
functions is derived from the FP semantics for the reduced bit-widths. For example, ⊕ in
approximation theory T̂Fs,e is defined as

Îs,e(⊕)(p, r, a, b) = casts,e(I(s,e)↓p(⊕)(r, cast(s,e)↓p(a), cast(s,e)↓p(b)))

This definition uses the function casts,e to map any FP number to a number with s
significant bits and e exponent bits, i.e., casts,e(a) ∈ FPs,e for any a ∈ FPs′,e′ . If s ≥ s′
and e ≥ e′ then the casting function does not change the value of the argument, only its sort,
i.e., casts,e(a) = a. Otherwise, the cast function performs rounding (if necessary) using a
fixed rounding mode. Note that many occurrences of casts,e can be eliminated in practice, if
they only concern intermediate results. For example, consider ⊕(c1,⊗(c2, a1, a2), a3). The
result of ⊗(c2, a1, a2) can be directly cast to precision c1 without the need of casting up to
full precision when calculating the value of the expression.

4.3 Lifting Constraints to Approximate Constraints

In order to solve a constraint φ using an approximation theory T̂ , it is first necessary to lift
φ to an extended constraint φ̂ that includes explicit variables cl for the precision of each
operation. This is done by means of a simple traversal of φ, using a recursive function L that
receives a formula (or term) φ and a position l ∈ N

∗ as argument. For every position l, the
symbol cl denotes a fresh variable of the precision sort α(cl) = sp and we define

L(l,¬φ) = ¬L(l.1, φ)

L(l, φ ◦ ψ) = L(l.1, φ) ◦ L(l.2, ψ) (◦ ∈ {∨,∧})
L(l, x) = x (x ∈ X)

L(l, g(t1, . . . , tn)) = g(cl , L(l.1, t1), . . . , L(l.n, tn)) (g ∈ F ∪ P)

Then we obtain the lifted formula φ̂ = L(ε, φ), where ε denotes an empty word. Since
T -structures can be embedded into T̂ -structures, it is clear that no models are lost as a result
of lifting:

Lemma 1 (Completeness) If a T -constraint φ is T -satisfiable, then the lifted constraint φ̂ =
L(ε, φ) is T̂ -satisfiable as well.

In practice, the lifting can make use of expression sharing and cache lifted terms to avoid
introduction of unnecessary precision variables or redundant sub-terms.

An approximate model that chooses full precision for all operations induces a model for
the original constraint:

Lemma 2 (Fully precise operations) Let m̂ = (Û , Î ) be a T̂ -structure, and β̂ a variable
assignment. If m̂, β̂ |	T̂ φ̂ for an approximate constraint φ̂ = L(ε, φ), then m, β |	T φ,
provided that: 1. there is a T -structure m embedded in m̂ via h, and a variable assignment β
such that h(β(x)) = β̂(x) for all variables x ∈ fv(φ), and 2. β̂(cl) = Î (ω) for all precision
variables cl introduced by L.

123



An Approximation Framework for Solvers and Decision Procedures 135

The fully precise case however, is not the only case inwhich an approximatemodel is easily
translated to a precise model. For instance, approximate operations might still yield a precise
result for some arguments. Examples of this are constraints in floating-point arithmetic with
small integer or fixed-point arithmetic solutions.

A variation of Lemma 2 is obtained by not requiring that all operations are at maximum
precision, but that each operation is at a sufficiently high precision, such that it evaluates to
the same value as the maximally precise operation in all relevant cases:

Lemma 3 (Locally precise operations) Suppose m̂, β̂ |	T̂ φ̂ for an approximate constraint

φ̂ = L(ε, φ), such that: 1. there is a T -structure m embedded in m̂ via h and a variable
assignment β such that h(β(x)) = β̂(x) for all variables x ∈ fv(φ), and 2. for every sub-
expression g(cl , t̄) with g ∈ F ∪ P, it holds that valm̂,β̂

(g(cl , t̄)) = valm̂,β̂
(g(ω, t̄)). Then

m, β |	T φ.

Applied to FPA Because floating-point numbers of varying bit-widths enjoy the inclusion
property, it is easy to see that an approximate model m̂, β̂ for an approximate φ̂ which, during
model evaluation (validation) does not trigger any rounding decisions, must equally entail
the original, precise constraint φ.

Theorem 1 (Exact evaluation) Let m̂ be the unique element of the singleton set of structures
m̂s,e of theory ˆT Fs,e. Suppose m̂, β̂ |	 ˆT Fs,e

φ̂ for an approximate constraint φ̂ = L(ε, φ),

such that: 1. m is the T -structure of theory T Fs,e embedded in m̂ via h (which is the identity
function) and β a variable assignment such that h(β(x)) = β̂(x) for all variables x ∈
fv(φ), and 2. it is possible to evaluate all operations φ̂ exactly, i.e. without rounding. Then
m, β |	T Fs,e φ.

Proof By Lemma 3 and the inclusion property. ��
Example 1 Lifting the constraints. Consider again the PI controller example given in
Sect. 1.1. Suppose that the program loop is unrolled N times and translated into single
static assignment form, resulting in a set of equations that can be checked for satisfiability.
Variables corresponding to the values of program variables at the end of each loop iteration
are used as inputs for the next iteration. For the first loop iteration, this leads to the following
constraint:

...

∧ integral0 = 0.0 (initialization)

∧ 18.0 ≤ in0 ≤ 22.0 (assumption)

∧ error1 = set_point �rm in0 (line 5)

∧ integral1 = integral0 ⊕rm error1 (line 6)

∧ out1 = (Kp�rm error1) ⊕rm (Ki�rm integral1) (line 7)

...

∧ (out1 < −3.0 ∨ out1 > 3.0 ∨ · · · ∨ outN > 3.0) (violation)

where Kp,Ki, and set_point are constant (set to the values given in the PI program, in
equations not shown here), and the constant rm stores the rounding mode. The negated
output condition encodes the fact that we search for a violation of the property in any loop
iteration.
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After lifting those constraints, we obtain the following formula:

...

∧ integral0 = 0.0 (initialization)

∧ 18.0 ≤p0 in0 ≤p1 22.0 (assumption)

∧ error1 = set_point �p2
rm in0 (line 5)

∧ integral1 = integral0 ⊕p3
rm error1 (line 6)

∧ out1 = (Kp�p4
rm error1) ⊕p6

rm (Ki�p5
rm integral1) (line 7)

...

∧ (out1 <p7 −3.0 ∨ out1 >p8 3.0 ∨ · · · ) (violation)

The variables p0, p1, . . . , p8, . . . are freshly introduced precision variables of the sort sp .
We use the notation⊕p

rm to express that⊕ is an operatorwith four arguments: the precision p2,
the roundingmode rm, and the two numbers to be added; and similarly for the other operators.

5 Model Refinement Scheme

In the following sections, we will use the approximation framework to successively construct
more andmore precise solutions of given constraints, until eventually either a genuine solution
is found, or the constraints are determined to be unsatisfiable. We fix a partially ordered
precision domain (Dp,
p) (where, as before,
p satisfies the ascending chain condition, and
has a greatest element), and consider approximation structures (Û , Î ) such that Î (sp) = Dp

and Î (
) = 
p .
Given a lifted constraint φ̂ = L(ε, φ), let X p ⊆ X be the set of precision variables

introduced by the function L . A precision assignment γ : X p → Dp maps the precision
variables to precision values.Wewrite γ 
p γ ′ if for all variables cl ∈ X p we have γ (cl) 
p

γ ′(cl). Precision assignments are partially ordered by 
p . There is a greatest precision
assignment γω, which maps each precision variable to ω. The precision assignment can be
obtained from the variable assignment β̂ after the solving, but due to its role in controlling the
search through the space of approximations (by fixing its values before solving) we separate
it from β.

The proposed procedure is outlined in Fig. 2. First, an initial precision assignment γ is
chosen, depending on the theory T . In Approximate Model Construction, the procedure tries
to find (m̂, β̂), a model of the approximated constraint φ̂. If (m̂, β̂) is found, Precise Model
Reconstruction tries to translate it to (m, β), a model of the original constraint φ. If this suc-
ceeds, the procedure stops and returns the model. Otherwise, Model-guided Approximation
Refinement uses (m, β) and (m̂, β̂) to increase the precision assignment γ . If Approxi-
mate Model Construction cannot find any model (m̂, β̂), then Proof-guided Approximation
Refinement decides how to modify the precision assignment γ . If the precision assignment
is maximal and cannot be further increased, the procedure has determined unsatisfiability.
In the following sections we provide additional details for each of the components of our
procedure.

General properties Since 
p has the ascending chain property, our procedure is guaranteed
to terminate and either produce a genuine precise model, or detect unsatisfiability of the
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Approximate
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Reconstruction No
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Fig. 2 The model construction process

constraints. The potential benefits of this approach are that it often takes less time to solve
multiple smaller (approximate) problems than to solve the full problem straight away. The
candidate models provide useful hints for the following iterations. The downside is that it
might be necessary to solve the whole problem eventually anyway, which can be the case
for unsatisfiable problems. Whether that is the case depends on the strategy used in the
proof-guided approximation refinement, e.g., maximizing the precision of terms involved
in an unsatisfiable core can cut down the overhead significantly compared to even increase
in precision of all terms. Therefore, our approach is definitely useful when the goal is to
obtain a model, e.g., when searching for counter-examples, but it can also perform well on
unsatisfiable formulas, e.g., when a small unsatisfiable core can be discovered quickly.

5.1 Approximate Model Construction

Once a precision assignment γ has been fixed, existing solvers for the operations in the
approximation theory can be used to construct a model m̂ and a variable assignment β̂ s.t.
m̂, β̂ |	T̂ φ̂. It is necessary that β̂ and γ agree on X p . As an optimization, the model
search can be formulated in various theory-dependent ways that provide a heuristic benefit to
Precise Model Reconstruction. For example, the search can prefer models with small values
of some error criterion, or to attempt to find models that are similar to models found in earlier
iterations. This can be done by encoding the problem as an optimization query, assuming one
can encode the desired criteria as part of the formula.

Applied to FPA Since our FP approximations are again formulated using FP semantics,
any solver for FPA can be used for Approximate Model Construction. In our implemen-
tation, the lifted constraints φ̂ of ˆT Fs,e are encoded in bit-vector arithmetic, and then
bit-blasted and solved using a SAT solver. The encoding of a particular function or predicate
symbol uses the precision argument to determine the floating-point domain of the inter-
pretation. This kind of approximation reduces the size of the encoding of each operation,
and results in smaller problems handed over to the SAT solver. An example of theory-
specific optimization of themodel search is to prefermodels where no rounding occurs during
evaluation.

5.2 Reconstructing Precise Models

Algorithm 2 provides a high-level sketch for the model reconstruction phase. This algorithm
attempts to produce a model (m, β) for the original formula φ from an approximate model
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Algorithm 2: Model reconstruction
1 β := ∅;
2 (m, h) := extract_Tstructure(m̂);

3 lits := extract_asserted_literals(m̂, β̂, φ̂);
4 for l ∈ lits do
5 (m, β) := extend_model(l, β, h, β̂, m̂) ;
6 end
7 complete(β, β̂);
8 return (m, β);

(m̂, β̂) obtained by solving φ̂. Since we consider arbitrary approximations (which might be
neither over- nor under-), this translation is non-trivial; for instance, approximate and precise
operations might exhibit different rounding behavior. In practice, it might still be possible
to ‘patch’ approximate models that are close to real models, avoiding further refinement
iterations.

Note that by definition it is possible to embed a T -structure m in m̂. It is retrieved,
together with the embedding h, by extract_Tstructure in Algorithm 2. The
structure m and h will be used to evaluate φ using values from β̂. The function
extract_asserted_literals determines a set lits of literals in φ̂ that are true under
(m̂, β̂), such that the conjunction

∧
lits implies φ̂. For instance, if φ̂ is in CNF, one literal

per clause can be selected that is true under (m̂, β̂). Any pair (m, β) that satisfies the literals
in lits will be a T -model of φ.

The procedure then iterates over lits, and successively constructs a valuation β :
X → U such that (m, β) satisfies all selected literals, and therefore is a model of φ

(extend_model). During this loop, we assume that β is a partial valuation defined only
for some of the variables in X . We use the notation β ↑ h to lift β from m to m̂, setting all
precision variables to greatest precision; formally defined as

(β ↑ h)(x) =
{
Î (ω) if x ∈ X p

h(β(x)) otherwise.

The precise implementation of extend_model is theory-specific. In general, the func-
tion first attempts to evaluate a literal l as valm̂,β↑h(l). If this fails, the valuation β has to be

extended, for instance by including values β̂(x) for variables x not yet assigned in β.
After all literals have been successfully asserted, β may be incomplete, so we complete it

(either randomly or bymapping value assignments from β̂) and return themodel (m, β). Note
that, if all the asserted literals already have maximum precision assigned then, by Lemma 2,
model reconstruction cannot fail.

Applied to FPA The function extract_Tstructure is trivial for our FPA approxima-
tions, since m and m̂ coincide for the sort s f of FP numbers. Further, by approximating FPA
using smaller domains of FP numbers, all of which are subsets of the original domain, recon-
struction of models is easy in some cases and boils down to padding the obtained values with
zero bits. The more difficult cases concern literals with rounding in approximate FP seman-
tics, since a significant error emerges when the literal is re-interpreted using higher-precision
FP numbers. A useful optimization is special treatment of equalities x = t in which one side
is a variable x not assigned in β, and all right-hand side variables are assigned. In this case,
the choice β(x) := valm̂,β↑h(t)will satisfy the equation. Use of this heuristic partly mitigates
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Table 2 Model reconstruction
from FP3,3 to FP53,11

Variable Defining term β̂(x) β(x)

Kp 1.25 1.25 1.25

Ki 0.125 0.125 0.125

set_point 3.0 3.0 3.0

in0 4.0 4.0

error1 set_point �rm in0 1.0 1.0

integral1 integralinit ⊕rm error1 1.0 1.0

auxa Kp�rm error1 1.25 1.25

auxb Ki�rm error1 0.125 0.125

out1 auxa ⊕rm auxb 1.25 1.375

the negative impact of rounding in approximate FP semantics, since the errors originating
in the (m̂, β̂) will not be present in (m, β). The heuristic is not specific to the floating-point
theory, and can be carried over to other theories as well.

Example 2 —Model reconstruction. In order to illustrate how precise model reconstruction
works, recall the formula obtained in Example 1. We fix the number of PI controller loop
iterations to N = 1, but for reasons of presentation slightly change the values of the constants
toKi = 0.125,Kp = 1.25, and set_point = 3.0. Suppose further that the roundingmode is set
to RoundTowardZero, and that the property to be checked is the following: if 2.0 ≤ ino ≤ 4.0
then −1.0 ≤ out1 ≤ 1.0. Approximate model construction is performed with the precision
assignment γ that maps all precision variables p0, p1, . . . , p8 to 0, i.e., all computations are
performed in the smallest floating-point domain FP3,3.

The columns in Table 2 represent, respectively, the variables in the formula, the terms
those variables are assigned, their value in the model of the approximation β̂ and their value
in the reconstructed model β . The variables in the table are topologically sorted, i.e., their
order corresponds to the order of computation in the program, which allows propagation of
the rounding error through the formula by interpreting equality as assignment when possible.
Before proceeding to model reconstruction, the reader should note that evaluation under the
given model β̂ occurs without rounding, except for the value of out1, almost meeting the
conditions of Lemma 3 and Theorem 1. The exact value of out1 cannot be represented in
FP3,3 because 1.375 = 1.011 × 20 which requires 4 significant bits. Since there are only
3 significant bits available, the value is rounded according to the rounding mode rm (bold
in Table 2). The given model indeed violates the desired property under I3,3. The procedure
constructs the model β, by evaluating the expressions using the interpretation function I53,11.
Initially, there are no values in β, so it is populated with values of variables that depend only
on constants, cast up to the sortFP53,11. Next it proceeds to variables whose value depends on
other variables. Since the order is topological, when there are no cycles (like in this example)
all the values needed for evaluation are already available in β. The missing values in β are
computed by reevaluating the terms assigned to each variable using values of variables already
inβ. Since all the variables except out1 are exact (in the sense that no rounding occurred), then
by Lemma 3, their values in β and β̂ are (numerically) equal. In the case of out1, however,
there is a discrepancy between the two values. As there are no cyclic dependencies we can
use the more precise value obtained using I53,11. In general, the constructed model β has to
be checked against the constraints, because reconstruction is not guaranteed to succeed. In
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this example however, the reconstructed β is indeed a satisfying assignment for the formula
in question.

5.3 Approximation Refinement

The overall goal of the refinement scheme outlined in Fig. 2 is to find a model of the original
constraints using a series of approximations defined by precision assignments γ . We usually
want γ to be as small as possible in the partial order of precision assignments, since approxi-
mations with lower precision can be solvedmore efficiently. During refinement, the precision
assignment is adjusted so that the approximation of the problem in the next iteration is closer
to full semantics. Intuitively, this increase in precision should be kept as small as possible, but
as large as necessary. Note that two different refinement procedures are required, depending
on whether an approximation is satisfiable or not. We refer to these procedures as Model-
and Proof-guided Approximation Refinement, respectively.

5.3.1 Model-guided Approximation Refinement

If a model (m̂, β̂) of φ̂ is obtained together with a reconstructed model (m, β) that does not
satisfy φ, we use the procedure described in Algorithm 3 for adjusting γ . Since the model
reconstruction failed, there are literals in φ̂ which are critical for (m̂, β̂), in the sense that they
are satisfied by (m̂, β̂) and required to satisfy φ̂, but are not satisfied by (m, β). Such literals
can be identified through evaluation with both (m̂, β̂) and (m, β) (as part of Algorithm 3 via
extract_critical_literals), and can then be traversed, evaluating each sub-term
under both structures. If a term g(cl , t̄) is assigned different values in the two models, it
witnesses discrepancies between precise and approximate semantics; in this case, an error is
computed using the error function, mapping to some suitably defined error domain (e.g.,
the real numbers R for errors represented numerically). The computed errors are then used
to select those operations whose precision argument cl should be assigned a higher value.

Depending on refinement criteria, the rank_terms function can be implemented in
different ways. For example, terms can be ordered according to the absolute error which was
calculated earlier; if there are too many terms to refine, only a certain number of them will
be selected for refinement. An example of a more complex criterion follows:

Error-based selection aims at refining the terms introducing the greatest imprecision first.
The absolute error of an expression is determined by the errors of its sub-terms, and the error
introduced by approximation of the operation itself. By calculating the ratio between output
and input error, refinement tries to select those operations that cause the biggest increase in
error. If we assume that theory T is some numerical theory (i.e., it can be mapped to reals
in a straightforward manner), then we can define the error function (in Algorithm 3) as
absolute difference between its arguments. Then Δ(cl) represents the absolute error of the
term g(cl , t̄). This allows us to define the relative error δ(cl) of the term g(cl , t̄) as

δ(cl) = Δ(cl)

|valm̂,β↑h(g(ω, t̄))| .

Similar measures can be defined for non-numeric theories.
Since a term can have multiple sub-terms, we calculate the average relative input error;

alternatively, minimum or maximum input errors could be used. We obtain a function char-
acterizing the increase in error caused by an operation by defining
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Algorithm 3: Model-guided Approximation Refinement

1 lits := extract_critical_literals(m̂, β̂, β, φ̂);
2 for l ∈ lits do
3 for g(cl , t̄) ∈ ordered_subterms(l) do
4 if valm̂,β̂

(g(cl , t̄)) �= valm̂,β↑h(g(ω, t̄)) then
5 Δ(cl ) := error(valm̂,β̂

(g(cl , t̄)), valm̂,β↑h(g(ω, t̄));

6 end
7 end
8 end
9 chosenTerms := rank_terms(Δ);

10 γ := refine(γ, chosenTerms);

errInc(cl) = δ(cl)

1+ 1
kΣ

k
i=1δ(cl.i )

,

where g(cl , t̄) represents the term being ranked. The function rank_terms then selects
terms g(cl , t̄) with maximum error increase errInc(cl).

Applied to FPA The only difference to the general case is that we define relative error δ(cl)
to be+∞ if a special value (±∞, NaN) from (m̂, β̂) turns into a normal value under (m, β).
Our rank_terms function ignores terms which have an infinite average relative error of
sub-terms. The refinement strategy will prioritize the terms which introduce the largest error,
but in the case of special values it will refine the first imprecise terms that are encountered
(in bottom up evaluation), because once the special values occur as input error to a term we
have no way to estimate its actual error. After ranking the terms using the described criteria,
rank_terms returns the top 30% highest ranked terms. The precision of chosen terms is
increased by a constant value.

5.3.2 Proof-Guided Approximation Refinement

When no approximate model can be found, some theory solvers may still provide valuable
information why the problem could not be satisfied; for instance, proofs of unsatisfiability
or unsatisfiable cores. While it may be (computationally) hard to determine which variables
absolutely need to be refined in this case (and by how much), in many cases a loose estimate
is easy to compute. For instance, a simple solution is to increase the precision of all variables
appearing in the literals of an unsatisfiable core.

Given an unsatisfiable formula φ in conjunctive normal form (CNF), any unsatisfiable for-
mulaψ that is a conjunction of a subset of clauses in φ is called an unsatisfiable core. If a core
ψ has no proper subformula that is unsatisfiable, it is said to be a minimal unsatisfiable core.
Given an unsatisfiable formulaψ any formula φ that containsψ is also unsatisfiable, sinceψ

is an unsatisfiable core of φ in that case. Generalizing this observation to our approximation
theory T̂ we get the following lemma:

Lemma 4 If ψ is the unsatisfiable core of the lifted formula φ̂ under precision assignment
γ and all precision variables occurring in ψ have maximal precision, i.e., γ (x) = ω for all
x ∈ X ∩ vars(ψ), then formula φ is unsatisfiable.

The proof-guided refinement is shown inAlgorithm 4. Lemma 4 provides a cheap stopping
condition for proof-guided refinement. If the found core is at full precision (i.e., was obtained

123



142 A. Zeljić et al.

Algorithm 4: Proof-guided Approximation Refinement

1 ψ := extract_unsat_core(φ̂, γ );
2 if ∀x ∈ X ∩ vars(ψ) : γ (x) = ω then
3 return UNSAT;
4 else if φ ∈ seen_cores then
5 γ ′ := refine_everything(φ, γ );
6 return γ ′;
7 else if ∃(m, β) : m, β, γω |	 ˆT F ψ then
8 seen_cores := seen_cores ∪ {ψ};
9 γ ′ := refine_everything(φ, γ );

10 return γ ′;
11 else
12 return UNSAT
13 end

under the exact semantics), then regardless of precision of other constraints the original
formula φ is guaranteed to be unsatisfiable. However, this is rarely the case (a number of
refinement steps is necessary for precision variables to reach value ω). Ideally the procedure
would get a minimal coreψ and it would be considerably smaller than the original constraint
φ. In that case, a satisfiability check of ψ with all the terms at full precision (i.e., ω) is likely
to be easier than a satisfiability check of φ. In the case theψ is an unsatisfiable core of φ, this
is discovered by solving a considerably smaller formula. If ψ is not an unsatisfiable core of
φ, then its discovery is due to encoding at small precision, and once encoded at full precision,
the search space is going to be expanded enough that the satisfiability check of ψ is likely to
be quick.

In the case that ψ at full precision is an unsatisfiable core of φ, proof-guided refinement
returns UNSAT (by Lemma 4). Otherwise, we store the formula ψ in seen_cores, to be
able to skip the satisfiability check if we encounter it (or any of its subsets) in future iterations.
All the precision variables are refined, since no useful information is hidden in the core.

If the approximation theory uses a domain with the inclusion property and multiple iter-
ations yield unsatisfiable approximations of the formula φ then the same solution space is
explored repeatedly. Subsequent unsatisfiable iterations are undesirable due to the fact that
every previous call is subsumed by the latest one, increasing the solving time unnecessarily.
In the case when the approximation theory is FPA, this can be easily avoided by introducing
blocking clauses. Between any two iterations, at least one variable had its precision increased,
which means that after bit-blasting its encoding will contain additional variables. Since the
domain satisfies the inclusion property, that means that all the newly introduced variables
implicitly had value false in the previous iterations. If the approximation of the previous
iteration was unsatisfiable, a single clause can be added to prevent revisiting that subspace.
The blocking clause expresses that at least one of the newly introduced variables has to be
true (i.e., non-zero).

Example of blocking clauses. Consider the following unsatisfiable formula:

x > y ∧ x/y < 1

Suppose that in the previous iteration x and y were approximated with fixed-point numbers
with m = 3 integral and f = 3 fractional bits and that the approximation was unsatisfiable.
After refinement, the next iteration will use m = 5 and f = 5 bits. Below the alignment of
the two encodings by the decimal point is shown:
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m2m1m0. f0 f1 f2

m4m3m2m1m0. f0 f1 f2 f3 f4

where mi denotes integral bits and fi fractional bits, for i ∈ {0, 1, 2, 3, 4, 5}. In the previous
iteration, the newly added bits f4, f3,m3,m4 implicitly had the value false (zero). Since the
previous satisfiability check returned UNSAT, we can safely exclude those value combina-
tions from the current search. In this example the blocking clause that should be added is

x f4 ∨ x f3 ∨ xm3 ∨ xm4 ∨ y f4 ∨ y f3 ∨ ym3 ∨ ym4 .

It evaluates to false when all the newly introduced bits have the values they implicitly had
in the previous iteration, preventing further exploration of that part of the search subspace.
This technique can be applied to any approximation theory with a domain that exhibits the
inclusion property.

6 Experimental Evaluation

Toassess the efficacy of ourmethod,we present results of an experimental evaluation obtained
through an implementation of the approximation using smaller floating-point numbers (the
‘Smallfloat’ approximation) . We implemented this approach as a custom tactic [23] within
the Z3 theoremprover [22]. All experimentswere performed on Intel Xeon 2.5GHzmachines
with a time limit of 1200 sec and amemory limit of 2 GB. The symbols T/O and M/O indicate
that the time or the memory limit were exceeded.

Implementation details. For the sake of reproducibility of our experiments, we note that our
implementation starts with an initial precision mapping γ that limits the precision of all
floating-point operations to s = 3 significant and e = 3 exponent bits. Upon refinement,
operations receive an increase in precision that represents 20% of the width of the full
precision. We do not currently implement any sophisticated proof-guided approximation
refinement, but our prototype does feature core-based refinement as described in Sect. 5.3.2
and Algorithm 4.

Evaluation. Our benchmarks are taken from a recent evaluation of the ACDCL-based Math-
SAT, by Brain et al. [2]. This benchmark set contains 214 benchmarks, both satisfiable
and unsatisfiable ones. The benchmarks originate from verification problems of C programs
performing numerical computations, where ranges and error bounds of variables and expres-
sions are verified; other benchmarks are randomly generated systems of inequalities over
bounded floating-point variables. We evaluate two versions of our implementation of Small-
float approximation, onewith a simple proof-guided refinement denoted Smallfloat (no cores)
and the other featuring core-based proof-guided refinement denoted Smallfloat. We compare
against Z3 [22] and MathSAT [6].

The results we obtain are briefly summarized in Table 3, which shows that our method
solves more (satisfiable and unsatisfiable) instances than the ordinary bit-blasting-based
decision procedure in Z3. Our method solves roughly the same number of satisfiable and
unsatisfiable problems as the default procedure based on bit-blasting in MathSAT, and
can handle significantly more satisfiable problems (but fewer unsatisfiable ones) than the
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Table 3 Evaluation statistics

Z3
(Default)

MathSAT
(Default)

MathSAT
(ACDCL)

Smallfloat
(no cores)

Smallfloat
(Default)

Satisfiable 86 95 77 91 92

Unsatisfiable 59 67 76 53 64

Total 145 162 153 144 159

Bold values denote the solver with most instances solved
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Fig. 3 Comparisons of our method with the bit-blasting-based decision procedure in Z3. a Satisfiable. b
Unsatisfiable
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Fig. 4 Comparison of our approximation method with the bit-blasting-based decision procedure inMathSAT.
a Satisfiable. b Unsatisfiable

ACDCL-based procedure in MathSAT. Few benchmarks are solved by only one solver and
they are solved by the best performing solver in their respective category.

Figures 3, 4, 5 provides more detailed results, which show that on satisfiable formulas, our
approach (with core-based refinement) is about one order of magnitude faster than Z3, and
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Fig. 5 Comparison of our approximation method with the ACDCL-based decision procedure in MathSAT.
a Satisfiable. b Unsatisfiable

Table 4 Comparison of solver performance on unsatisfiable benchmarks; each entry indicates the number of
benchmarks which the approach in the row solves faster than the approach in the column

Z3
(default)

MathSAT
(default)

MathSAT
(ACDCL)

Smallfloat
(no cores)

Smallfloat

Z3 (default) – 14 15 59 29

MathSAT (default) 56 – 18 64 52

MathSAT (ACDCL) 73 71 – 75 74

Smallfloat (no cores) 0 5 12 – 2

Smallfloat 35 18 12 62 –

close to one order of magnitude faster than the default method in MathSAT. In comparison to
the ACDCL procedure inMathSAT, the picture is less clear (Fig. 5): while our approximation
solves a number of satisfiable problems that are hard for MathSAT, it requires more time
than MathSAT on other problems. In addition, the ACDCL procedure outperforms all other
methods on unsatisfiable problems.

To evaluate the performance of the proof-guided approximation refinement using unsat-
isfiable cores, we the compare all techniques on the unsatisfiable subset of the benchmarks.
Table 4 indicates the numbers of benchmarks on which one approach (the row) performs
better (solves vs did not solve, or solves faster) than another approach (the column). Both
versions of MathSAT perform much better than the other solvers, which is expected. Of par-
ticular interest are the two versions of Smallfloat approximation, since they show the impact
of core-based refinement on solving. We can see that Smallfloat, featuring core-based refine-
ment, solves 62 benchmarks faster than Smallfloat (no cores), while it is slower on only two
instances. This indicates that core-based refinement offers a substantial improvement over
the basic proof-guided refinement. Furthermore, by comparing Smallfloat approximation to
Z3 (Default), which is the underlying procedure used by both versions of Smallfloat, we can
see that it is faster on 37 instances, whereas Smallfloat (no cores) did not outperform Z3
(Default) on any of the benchmarks. We can conclude that, at least on this benchmark set, the
core based refinement offers significant improvement to performance of the approximation
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framework. It not only improves runtime performance on almost all the benchmarks, it also
bridges the gap in performance that is incurred by the approximation framework on more
than half of the solved benchmarks.

Overall, it can be observed that our approximation method leads to significant improve-
ments in solver performance, especially where satisfiable formulas are concerned. Our
method exhibits complementary performance to the ACDCL procedure in MathSAT; one
of the aspects to be investigated in future work is a possible combination of the two methods,
using an ACDCL solver to solve the constraints obtained through approximation with our
procedure.

7 Conclusion

We present a general method for efficient model construction through the use of approxima-
tions. By computing a model of a formula interpreted in suitably approximated semantics,
followed by reconstruction of a genuine model in the original semantics, scalability of exist-
ing decision procedures is improved for complex background theories. Our method uses a
refinement procedure to increase the precision of the approximation on demand. Finally, we
show that an instantiation of our framework for floating-point arithmetic shows promising
results in practice and often outperforms state-of-the-art solvers.

While our prototype exhibits satisfactory performance on unsatisfiable problems, we
believe that more work is needed in this area, and that further speed-ups are possible. Fur-
thermore, other background theories need to be investigated, and custom approximation
schemes for them be defined. It is also possible to solve approximations with different pre-
cision assignments or background theories in parallel, and to use the refinement information
frommultiple models (or proofs) simultaneously. Increases in precisionmay then be adjusted
based on differences in precision between models, or depending on the runtime required to
solve each of the approximations.
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