5,202 research outputs found

    Analysis of the possibility of analog detectors calibration by exploiting Stimulated Parametric Down Conversion

    Full text link
    Spontaneous parametric down conversion (SPDC) has been largely exploited as a tool for absolute calibration of photon-counting detectors, i.e detectors registering very small photon fluxes. In [J. Opt. Soc. Am. B 23, 2185 (2006)] we derived a method for absolute calibration of analog detectors using SPDC emission at higher photon fluxes, where the beam is seen as a continuum by the detector. Nevertheless intrinsic limitations appear when high-gain regime of SPDC is required to reach even larger photon fluxes. Here we show that stimulated parametric down conversion allow one to avoid this limitation, since stimulated photon fluxes are increased by the presence of the seed beam.Comment: 9 pages, 1 figur

    The possibility of absolute calibration of analog detectors by using parametric down-conversion: a systematical study

    Full text link
    Accurate calibration of photodetectors both in analog and in photon-counting regime is fundamental for various scientific applications, which range from "traditional" quantum optics to the studies on foundations of quantum mechanics, quantum cryptography, quantum computation, etc. In this paper we systematically study the possibility of the absolute calibration of analog photo-detectors based on the properties of parametric amplifiers. Our results show that such a method can be effectively developed with interesting possible metrological applications

    Absolute calibration of Analog Detectors using Stimulated Parametric Down Conversion

    Full text link
    Spontaneous parametric down conversion has been largely exploited as a tool for absolute calibration of photon counting detectors, photomultiplier tubes or avalanche photodiodes working in Geiger regime. In this work we investigate the extension of this technique from very low photon flux of photon counting regime to the absolute calibration of analog photodetectors at higher photon flux. Moving toward higher photon rate, i.e. at high gain regime, with the spontaneous parametric down conversion shows intrinsic limitations of the method, while the stimulated parametric down conversion process, where a seed beam properly injected into the crystal in order to increase the photon generation rate in the conjugate arm, allows us to work around this problem. A preliminary uncertainty budget is discussed

    Twin-photon techniques for photo-detector calibration

    Full text link
    The aim of this review paper is to enlighten some recent progresses in quantum optical metrology in the part of quantum efficiency measurements of photo-detectors performed with bi-photon states. The intrinsic correlated nature of entangled photons from Spontaneous Parametric Down Conversion phenomenon has opened wide horizons to a new approach for the absolute measurement of photo-detector quantum efficiency, outgoing the requirement for conventional standards of optical radiation; in particular the simultaneous feature of the creation of conjugated photons led to a well known technique of coincidence measurement, deeply understood and implemented for standard uses. On the other hand, based on manipulation of entanglement developed for Quantum Information protocols implementations, a new method has been proposed for quantum efficiency measurement, exploiting polarisation entanglement in addition to energy-momentum and time ones, that is based on conditioned polarisation state manipulation. In this review, after a general discussion on absolute photo-detector calibration, we compare these different methods, in order to give an accurate operational sketch of the absolute quantum efficiency measurement state of the art

    Detection of multimode spatial correlation in PDC and application to the absolute calibration of a CCD camera

    Full text link
    We propose and demonstrate experimentally a new method based on the spatial entanglement for the absolute calibration of analog detector. The idea consists on measuring the sub-shot-noise intensity correlation between two branches of parametric down conversion, containing many pairwise correlated spatial modes. We calibrate a scientific CCD camera and a preliminary evaluation of the statistical uncertainty indicates the metrological interest of the method

    Self consistent, absolute calibration technique for photon number resolving detectors

    Full text link
    Well characterized photon number resolving detectors are a requirement for many applications ranging from quantum information and quantum metrology to the foundations of quantum mechanics. This prompts the necessity for reliable calibration techniques at the single photon level. In this paper we propose an innovative absolute calibration technique for photon number resolving detectors, using a pulsed heralded photon source based on parametric down conversion. The technique, being absolute, does not require reference standards and is independent upon the performances of the heralding detector. The method provides the results of quantum efficiency for the heralded detector as a function of detected photon numbers. Furthermore, we prove its validity by performing the calibration of a Transition Edge Sensor based detector, a real photon number resolving detector that has recently demonstrated its effectiveness in various quantum information protocols.Comment: 9 pages, 2 figure

    Experimental realization of a measurement conditional unitary operation at single photon level and application to detector characterization

    Full text link
    Our last experimental results on the realization of a measurement-conditional unitary operation at single photon level are presented. This gate operates by rotating by 90o90^o the polarization of a photon produced by means of Type-II Parametric Down Conversion conditional to a polarization measurement on the correlated photon. We then propose a new scheme for measuring the quantum efficiency of a single photon detection apparatus by using this set-up. We present experimental results obtained with this scheme compared with {\it traditional} biphoton calibration. Our results show the interesting potentiality of the suggested scheme.Comment: to appear in Proc. of SPIE meeting, Denver august 200
    • …
    corecore