988 research outputs found

    Dirichlet sigma models and mean curvature flow

    Full text link
    The mean curvature flow describes the parabolic deformation of embedded branes in Riemannian geometry driven by their extrinsic mean curvature vector, which is typically associated to surface tension forces. It is the gradient flow of the area functional, and, as such, it is naturally identified with the boundary renormalization group equation of Dirichlet sigma models away from conformality, to lowest order in perturbation theory. D-branes appear as fixed points of this flow having conformally invariant boundary conditions. Simple running solutions include the paper-clip and the hair-pin (or grim-reaper) models on the plane, as well as scaling solutions associated to rational (p, q) closed curves and the decay of two intersecting lines. Stability analysis is performed in several cases while searching for transitions among different brane configurations. The combination of Ricci with the mean curvature flow is examined in detail together with several explicit examples of deforming curves on curved backgrounds. Some general aspects of the mean curvature flow in higher dimensional ambient spaces are also discussed and obtain consistent truncations to lower dimensional systems. Selected physical applications are mentioned in the text, including tachyon condensation in open string theory and the resistive diffusion of force-free fields in magneto-hydrodynamics.Comment: 77 pages, 21 figure

    The calculus of multivectors on noncommutative jet spaces

    Get PDF
    The Leibniz rule for derivations is invariant under cyclic permutations of co-multiples within the arguments of derivations. We explore the implications of this principle: in effect, we construct a class of noncommutative bundles in which the sheaves of algebras of walks along a tesselated affine manifold form the base, whereas the fibres are free associative algebras or, at a later stage, such algebras quotients over the linear relation of equivalence under cyclic shifts. The calculus of variations is developed on the infinite jet spaces over such noncommutative bundles. In the frames of such field-theoretic extension of the Kontsevich formal noncommutative symplectic (super)geometry, we prove the main properties of the Batalin--Vilkovisky Laplacian and Schouten bracket. We show as by-product that the structures which arise in the classical variational Poisson geometry of infinite-dimensional integrable systems do actually not refer to the graded commutativity assumption.Comment: Talks given at Mathematics seminar (IHES, 25.11.2016) and Oberseminar (MPIM Bonn, 2.02.2017), 23 figures, 60 page

    Four out-of-equilibrium lectures

    Get PDF
    A collection of published papers on the subject of classical nonequilibrium statistical mechanics. Mainly stochastic systems are considered, with special regard to applications in soft matter physic

    Computer Architectures Using Nanotechnology

    Get PDF

    Dynamics of a vortex ring in a rotating fluid

    Get PDF

    Anonymous Point Collection - Improved Models and Security Definitions

    Get PDF
    This work is a comprehensive, formal treatment of anonymous point collection. The proposed definition does not only provide a strong notion of security and privacy, but also covers features which are important for practical use. An efficient realization is presented and proven to fulfill the proposed definition. The resulting building block is the first one that allows for anonymous two-way transactions, has semi-offline capabilities, yields constant storage size, and is provably secure

    Multicoloured Random Graphs: Constructions and Symmetry

    Full text link
    This is a research monograph on constructions of and group actions on countable homogeneous graphs, concentrating particularly on the simple random graph and its edge-coloured variants. We study various aspects of the graphs, but the emphasis is on understanding those groups that are supported by these graphs together with links with other structures such as lattices, topologies and filters, rings and algebras, metric spaces, sets and models, Moufang loops and monoids. The large amount of background material included serves as an introduction to the theories that are used to produce the new results. The large number of references should help in making this a resource for anyone interested in beginning research in this or allied fields.Comment: Index added in v2. This is the first of 3 documents; the other 2 will appear in physic
    corecore