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a b s t r a c t

The Leibniz rule for derivations is invariant under cyclic permutations of co-multiples
within the arguments of derivations.We explore the implications of this principle: in effect,
we construct a class of noncommutative bundles in which the sheaves of algebras of walks
along a tessellated affine manifold form the base, whereas the fibres are free associative
algebras or, at a later stage, such algebras quotients over the linear relation of equivalence
under cyclic shifts. The calculus of variations is developed on the infinite jet spaces over
such noncommutative bundles.

In the frames of such field-theoretic extension of the Kontsevich formal noncommuta-
tive symplectic (super)geometry, we prove the main properties of the Batalin–Vilkovisky
Laplacian and Schouten bracket. We show as by-product that the structures which arise
in the classical variational Poisson geometry of infinite-dimensional integrable systems do
actually not refer to the graded commutativity assumption.

© 2018 Elsevier B.V. All rights reserved.

0. Introduction

Let F be a free algebra over k := R and suppose a1, . . . , ak ∈ F. Denote by ◦ the associative multiplication in F and by t
the counterclockwise cyclic shift of co-multiples in the product a1 ◦ . . . ◦ ak,

t (a1 ◦ . . . ◦ ak−1 ◦ ak)
def
= ak ◦ a1 ◦ . . . ak−1.

For the sake of definition, now assume that a given derivation ∂ : F → F is such that its values at a1, . . . , ak do not leave
that set. By the Leibniz rule, the derivation is cyclic-shift invariant:

∂
(
t (a1 ◦ . . . ◦ ak)

)
= t

(
∂(a1 ◦ . . . ◦ ak)

)
. (1)

Indeed, both sides of the above equality are given by the sum

∂(ak) ◦ a1 ◦ . . . ◦ ak−1 + ak ◦ ∂(a1) ◦ . . . ◦ ak + ak ◦ a1 ◦ . . . ◦ ∂(ak−1),

up to a sequential order in which these k summands follow each other (see Fig. 1). This observation is generalised in an
obvious way to the case where the elements of algebra F are graded by some Abelian group, each element a1, . . . , ak is
homogeneous with respect to the grading, and ∂ : F → F is a graded derivation (i.e. not necessarily preserving the
set {a1, . . . , ak} at hand).
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Fig. 1. The cyclic-shift invariance of derivations.

Howmuch (graded-) commutativity is really needed tomake the calculus of variations in the Lagrangian andHamiltonian
formalisms work, thus allowing for the Batalin–Vilkovisky technique for quantisation of gauge systems — and creating a
cohomological approach to the complete integrability of infinite-dimensional KdV-type systems?1

We claim that it is not the restrictive assumption of commutativity that shows through arbitrary permutations — but it
is the linear equivalence a ∼ t(a) of words a, written in a given alphabet, with respect to the cyclic permutations t that is
sufficient for the structures of the calculus of iterated variations to be well defined. Introduced in this cyclic-invariant setup,
the Batalin–Vilkovisky Laplacian ∆ and variational Schouten bracket [[ , ]] are proven to satisfy the main identities such as
the cocycle condition ∆2

= 0, see (2a)–(2d). Both the definitions and assertions are then literally valid in the sub-class of
graded-commutative geometries; the reason why is that the latter can be obtained from the former by using the postulated
commutativity reduction at the end of the day when the proof is over.

The idea to establish the formal noncommutative symplectic geometry on the cyclic invariance, generalising the geometry
of commutative symplectic manifolds, was introduced by Kontsevich in [20], cf. [21] and references therein. The quotient
spaces of cyclicwordswere employed as target sets formaps fromusualmanifolds in [17] by Olver and Sokolov (cf. Model 1);
several integrable equations of KdV-type were recovered in such noncommutative set-up.2 Variations arise in the Poisson or
Schouten brackets for integral functionals, their calculus was then pursued along the lines of [16]. The paper [17] initiated
a classification and study of evolutionary ODE and PDE systems on associative algebras, which required the calculation of
standard geometric structures for such models in jet spaces (e.g., see [22] in this context).

In this paper we further that approach to noncommutative jet spaces.3 Continuing the line of reasoning from [9,26,27]
where the intrinsic regularisation of Batalin–Vilkovisky formalism is revealed, we verify the main identities for ∆ and [[ , ]]
in the variational noncommutative set-up of (homogeneous) local functionals F , G, H:

∆(F × G) = ∆F × G+ (−)|F |[[F ,G]] + (−)|F |F ×∆G, (2a)

[[F ,G× H]] = [[F ,G]] × H + (−)(|F |−1)·|G|G× [[F ,H]], (2b)

∆
(
[[F ,G]]

)
= [[∆F ,G]] + (−)|F |−1[[F , ∆G]], (2c)

Jacobi
(
[[ , ]]

)
= 0 ⇐⇒ ∆2

= 0. (2d)

It is quite paradoxical that for a long time, these identitieswere proclaimed to be valid just formally [5,28]; for it was believed
that the Batalin–Vilkovisky technique would necessarily contain some divergencies or ‘‘infinite constants’’, whereas their
manual regularisation appealed to surreal principles like ‘‘δ(0) := 0’’ for the Dirac δ-function (see [9] and references therein
for discussion on the history of the problem).

The notion of associative algebra structures itself has deserved much attention in the mathematical physics literature,
e.g., in relation to the Yang–Baxter equation. Such structures arise naturally in the topological context; the calculus of cyclic

1 We refer to [1–8] or [9] and to [10–17] respectively (see also [18,19] in both contexts).
2 Noncommutative extensions of classical infinite-dimensional systems can acquire new components that are invisible in the commutative world:

e.g., there appear – often, through nonlocalities – the terms that contain the commutants ai ◦ aj − aj ◦ ai .
3 We note that the positive differential order calculus on infinite jet spaces lies far beyond the bare tensor calculus on usual commutative manifolds;

for instance, compare [23] with [19] or contrast [24] vs [25] and [6] vs [9].
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words serves the alphabet of homotopy group generators. Likewise, themultiplication in homology gives rise to theGromov–
Witten potential solving the WDVV equations, see [12] and [29,30], cf. [31]. Another construction, which will be discussed
in Remark 2.10, stems from the calculation of matrix integrals in the Batalin–Vilkovisky framework [32,33]. Furthermore,
associative but not necessarily commutative ⋆-products are obtained – on finite-dimensional affinemanifolds – by using the
deformation quantisation procedure [34], cf. [35,36] andModel 2. Nowwe study the extent towhich the differential calculus
can be developed on the basis of associative algebra structures as input data.4

This paper consists of three parts. In Section 1 we introduce the static set-up of noncommutative infinite jet (super-)
spaces. Based on the algorithmic construction of parity-odd Laplacian ∆ and variational Schouten bracket [[ , ]], the calculus
of iterated variations of local functionals – i.e., kinematics – is developed in Section 2. Such BV-geometry of local functionals
is then contrasted in Section 3with the noncommutative Poisson formalism, that is, the dynamics determined by variational
multi-vectors.

The text is structured as follows. The commutative but not associative algebraAof cyclicwordswritten in the alphabet ⟨ai⟩
of a free associative algebra is introduced in Section 1.1. The generators ai themselves are viewed in Section 1.3 as words
written in the alphabet ⟨x⃗±1i ⟩ of edges in the adjacency graph for a cell-complex tiling of the substrate manifoldMn, which is
introduced in Section 1.2. The alphabets ⟨x⃗±1i ⟩ and ⟨a

i
⟩ provide the respective noncommutative analogues of base and fibre in

the bundle πNC: the base is the sheaf of [unital extensions of] free associative algebras generated by ⟨x⃗±1i ⟩ for a crystal tiling
of Mn, whereas the fibres of πNC are [the unital extension of] the algebra A of cyclic words written in the alphabet ⟨ai⟩ (see
the figure in Section 1.3). The jet space J∞(πNC) of sections is built in Section 1.4; various elements of the jet-space language
are then recovered. In particular, as soon as the notion of variational (co)vectors is available, we show why the Substitution
Principle works for (non)commutative identities in total derivatives.

The second part begins with the definition of noncommutative analogue for the variational cotangent bundle over
the infinite jet space J∞(πNC), see Section 2.1. The sections target algebra alphabet ⟨ai⟩ is doubled by using the canonical
pairs ⟨ai, a†

i ⟩; sign convention (14) for the two ordered couplings of the virtual variations δa and δa† ensures the matching
of signs in all the structures that are defined in what follows. In the meantime (see Section 2.3), the Z2-parity reversion
Π : a†

i ⇄ bi acts on the dual symbols a†, producing the parity-odd slots b. Now, the geometric approach of [9] to iterated
variations works in the noncommutative set-up of evaluation maps a = s(x, x⃗±1) and antimaps a†

= s†(x, x⃗±1) using the
sheaf over Mn (see Fig. 4). Therefore, while giving the operational definition of BV-Laplacian ∆ in Section 2.6, we focus on
the unlock-and-join reconfigurations of cyclic words. The variational Schouten bracket [[ , ]] is a derivative structure, that is,
it is determined by the parity-odd operator ∆ via its action on products, as in (2a).5 Then we confirm that the variational
Schouten bracket [[ , ]] is shifted-graded skew-symmetric and satisfies the Jacobi identity. The two structures ∆ and [[ , ]]
endow the ring of local functionals with the structure of differential graded Lie algebra.

The third part of this text narrates the noncommutative variational Poisson formalism. The notion of noncommutative
variational multi-vectors is introduced in Section 3.1. We recall that not every grading-homogeneous integral functional
over the infinite jet superspace J∞(π(0|1)

NC ), canonically extended in Section 2, would be a well defined variational multi-
vector containing the respective number of parity-odd slots b. Remark 2.5 is a key to that concept. Specifically, by viewing
the variational multi-vectors as maps that take the respective tuples of – possibly, exact – variational covectors to the top-
degree horizontal cohomology space of cyclic word-valued integral functionals, we analyse in Section 3.2 the geometry of
iterated variations that arise in the derived brackets encoding such maps. We discover that the calculus of noncommutative
variational multivectors is the paradigm of steps and stops. Finally, we arrive at the definition of Poisson brackets. In
Section 3.3 we study the geometry of differential forms that stands behind the criterion under which the variational
noncommutative bi-vectors are Poisson, i.e. endow the space of noncommutative Hamiltonians with the variational Poisson
brackets. (In particular, the Helmholtz lemma is proved in the setting of cyclic words.)

1. The nature of associative symbols

1.1. The algebra A of cyclic words

In this section we introduce the main object to consider in the future reasoning. Namely, by starting with a non-
commutative free associative algebra, we define the commutative but not associative unital algebraA of cyclicwordswritten

4 An alternative approach to noncommutativity suggests thatmanifolds – and derivative objects such as the fibre bundles – are determined as the spectra
of associative noncommutative algebras. Provided that the algebras are ‘smooth’, they are viewed as the algebras of smooth functions on the objects which
they determine. Nowadays, noncommutative geometry à la Connes [37] is a well-established domain. However, we keep the framework closer to the needs
which one encounters in a class of path- and loop-based QFT models [38–40]. Let us therefore study the language of closed strings of symbols – written
around the circles and encoding paths in the granulated spaceMn (see Model 3).

5 In geometric terms, the bracket [[ , ]] of cyclic word-valued functionals is encoded by the standard topological pair of pants S1 × S1 → S1 that
links the cycles. In fact, this topological procedure also underlies each of the following structures and operations in the differential calculus under study:
• multiplication × of cyclic words and word-valued function(al)s, • termwise action of derivations (e.g., in (10)), including • the commutation of vector
fields, — and also • evaluation of multi-vectors at the tuples of covectors (see (39)): in particular, • the Poisson bracket of Hamiltonian functionals. Indeed,
all of the above amounts to the detach-and-join picture S1 × S1 → S1 .
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in the free algebra’s alphabet. Note that for the sake of clarity, neither of these two algebras is graded; however, in what
follows we shall extend the alphabet by using symbols of Z2-valued parity. Throughout this text, the ground field k is the
field R of real numbers.

Consider the free associative algebra Free (a1, . . . , am) with m generators a1, . . . , am; let m < ∞ for definition. (One
may presently think that the free algebra at hand is not necessarily unital.) Denote by ◦ the multiplication in that algebra.
By definition, put

t(ai) = ai, t (ai1 ◦ . . . ◦ aiλ ) := aiλ ◦ ai1 ◦ . . . ◦ aiλ−1 , λ > 1; (3)

otherwise speaking, the operator t is the counterclockwise cyclic permutation of symbols in a homogeneous word of
length λ > 0.

Introduce the linear equivalence relation∼ on Free (a1, . . . , am) by setting6

a ∼ t(a),

where a is a homogeneous word as in (3), and then extending ∼ onto the algebra by linearity: a ∼ a′ and b ∼ b′ imply
a+ b ∼ a′ + b′. For instance, one has that7

a1 + a2 ◦ a3 + a1 ◦ a2 ◦ a3 ∼ a1 + a3 ◦ a2 + a3 ◦ a1 ◦ a2.

Notice also that

a ∼ t(a) ∼ . . . ∼ tλ(a)−1(a) ∼
1

λ(a)

λ(a)∑
i=1

ti−1(a)

for any word a of length λ(a) > 0; by convention, a word of zero length is an element of the ground field k, see (6).
We denote byA the quotient Free (a1, . . . , am)/∼, that is,A is the vector space of (formal sums of) cyclic words such that

each homogeneous component ai1 ◦ . . . ◦ aiλ can be read starting from any letter aiα for 1 ⩽ α ⩽ λ. Let us denote by (a) ∈ A

the equivalence class of an element a ∈ Free (a1, . . . , am) under cyclic permutations of symbols in all its homogeneous
components (i.e. in all its ‘‘words’’ in proper sense).

Now we endow the vector space A of cyclic words with the algebra structure ×. Consider the equivalence classes (a1)
and (a2) of two homogeneous elements a1, a2 ∈ Free (a1, . . . , am) of positive lengths λ(a1) and λ(a2), respectively. Let their
product be

(a1)× (a2)
def
=

1
λ(a1) · λ(a2)

(λ(a1)∑
i=1

λ(a2)∑
j=1

ti−1 (a1) ◦ tj−1 (a2)
)
, (4)

where the equivalence class on the right-hand side is normalised in such a way that the definition correlates with the
commutative set-up (should it be recovered postfactum); now extend the product onto A by (bi-)linearity. The definition
of operation × says that, each homogeneous string of symbols in the first co-multiple read, time after time starting from
every next letter, it is then pasted – time after time in its turn – in between every two consecutive letters occurring in each
homogeneous string contained in the second co-multiple. Sure, this is the classical topological pair of pants S1 × S1 → S1
in which every symbol in either of the factors has the right to be read first, see the figure.

� ⊵�� ⊵��� ⊵�

�� ⊵�

Proposition 1. Multiplication (4) on A is commutative.

Proof. Notice that not only the necklace (a1) is unlocked at all possible multiplication signs ◦ and joined to (a2) in between
each pair of adjacent symbols in that word but, as one shifts the symbols in (a2) around the circle, exactly the same is done
with respect to the insertion of tj−1 (a2) into (a1). □

However, it is readily seen that the symbols in homogeneous strings in (a1) and (a2) always stay next to each other in
the nested product

(
(a1) × (a2)

)
× (a3), whereas they are separated by the symbols from (a3) in at least one homogeneous

6 It is readily seen that ai1 ◦ . . . ◦ aiλ = tλ−1 (t (ai1 ◦ . . . ◦ aiλ )) so that a ∼ a and t(a) ∼ a, whence the transitive relation ∼ is reflexive and symmetric
indeed.

7 Weemphasise that the cyclic invariance itself doesnot imply the commutativity: even though ai ∼ ai and ai◦aj ∼ aj◦ai onehas that ai◦aj◦ak ≁ ai◦ak◦aj
unless some of the indexes coincide.
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Fig. 2. The letters a1 are (not) separated by the letters a2 .

term in (a1)×
(
(a2)× (a3)

)
, provided that the alphabet contains at least two different letters and the length of the word a3

is greater than one.8

Proposition 2. If m ⩾ 2 so that the letters a1 and a2 are distinct in the alphabet, multiplication (4) on A is not associative:(
(a1)× (a2)

)
× (a3) ≁ (a1)×

(
(a2)× (a3)

)
, (5)

see the figure below.9

▷ �▷⊴ �◁▷⊴ �◁

▷⊴ �◁

▷⊴ �◁ ̸= ▷ �▷⊴ �◁▷⊴ �◁

▷⊴ �◁

▷⊴ �◁
Counterexample 1.1 (‘‘abba’’). Let a1 := a1, a2 := a1, and a3 := a2a2. Then (a1)× (a2) = (a1 ◦ a1) so that these two copies of
the letter a1 always stay next to each other in any product of (a1)× (a2) with any other word. On the other hand (see Fig. 2),
the word (a2)× (a3) is equal to (a2a1a2), whence the nested product (a1)×

(
(a2)× (a3)

)
contains the term 1

3a
1a2a1a2, which

is absent on the left-hand side of (5) for these a1, a2, a3.

Convention. By interpreting the ground field k as the linear span of the zero-length word 1 and its equivalence class (1),
we extend the commutative algebra of cyclic words to A ⊕ k · (1), now endowed with the multiplication × such that, in
agreement with the vector space structure of A, formula (4) is extended by

(k)× (a) def
= k · (a) (6)

for any k ∈ k and all cyclic words (a). Allowing for the slightest abuse of notation, we continue denoting by A the unital
algebra of cyclic words that contains such zero-length but non-empty strings of symbols.

Open problem 1 (Prime Decomposition). Is there a way to detect that a given sum (a) ∈ A of several cyclic words is the
product (b)× (c) of two shorter cyclic words (b), (c) ∈ A of positive length?

Let us give several examples of natural constructions of the algebra A that contains nonnegative-length cyclic words
written in an alphabet a1, . . . , am. By realising every such algebra as fibre in a bundle πNC over a given manifold Mn (e.g., in
the trivial bundle over a finite-dimensional affine real manifold, cf. Section 1.2), we shall proceed in Section 1.4 with the
construction of the space J∞(πNC) of infinite jets of sections for such bundles πNC.

Model 1. Consider the algebra Mat(n,R) of square matrices of size n× n with real entries. Roughly speaking, as n→ +∞,
thematrixmultiplication ◦will never become commutative (yet it always stays associative). For definition, letm := n2 be the

8 Obviously, the associativity equation for× can be satisfied incidentally, for a special choice of the three co-multiples.
9 Let us recall that in Nature, not all processes are associative. For example, take a proton p+ , another proton, and a neutron n0 . Letting their strong

interaction events be arranged using(
(· × ·)× ·

)
: p+ ⊔ p+ ⊔ n0

↦−→ (p+ × p+)× n0
= p+ ⊔ p+ ⊔ n0

↦−→ p+ ⊔ D1
2,

one obtains the input objects intact after the first interaction event. But the arrangement(
· × (· × ·)

)
: p+ ⊔ p+ ⊔ n0

↦−→ p+ × (p+ × n0) = p+ × D1
2 = He23

produces helium-3 via deuterium. This fusion process is not associative.
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dimension of entire matrix algebra and choose a basis a1, . . . , am in it. Although this R-algebra is not free, we still introduce
the linear equivalence relation ∼ on the vector space of words written in the alphabet a = ⟨a1, . . . , am⟩, which yields the
cyclic word algebra A.

Because thematrixmultiplication is not commutative, the content of every cyclicword (a) = (ai1◦· · ·◦aiλ ) of lengthλ > 0,
viewed as the actual product of λ matrices going in a specified sequential order, can take up to λ different values, namely,

ai1 ◦ · · · ◦ aiλ , t
(
ai1 ◦ · · · ◦ aiλ

)
, . . . , tλ−1

(
ai1 ◦ · · · ◦ aiλ

)
. (7)

The value depends on the place where the multiplication is started along the orientation of the cycle (see the figure).

s
λ = 1 s

s
λ = 2 s

ss
λ = 3 s

s
ss
λ = 4

etc.

This effect – the value of a word (a) of length λ > 0 can co-exist in s ⩽ λ realisations – will be natural to the other two
models which we consider below. Reproduced verbatim by the star-product ⋆ in Model 2, such value multiplicity can be
suppressed (1 ⩽ s ⩽ λ so that the first equality is attained and the last inequality is strict if λ > 1) in the model of walks,
e.g., along closed contours ai from a point to itself within a given manifold (see Section 1.2).

Now let Mn be a real manifold and πNC : Mn
× A→ Mn be the trivial bundle. By construction, sections of πNC viewed as

noncommutative bundle are obtained as follows. First, let s =
(
s1(x), . . . , sm(x)

)
be a tuple of functions from C∞(Mn

→ R)
(e.g., compact-supported over Mn). A tuple s chosen, over every x ∈ Mn the ith generator ai of the matrix algebra Mat(n,R)
is taken with the real coefficient si(x). Likewise, every product ai1 ◦ . . . ◦ aiλ acquires the coefficient si1 · . . . · siλ . Finally, such
coefficient is passed through∼ to the quotient Amodulo the linear equivalence, pointwise over x ∈ Mn. So, all cyclic words
in A are weighted by smooth real coefficients, depending on points of Mn, in such a way that the multiplication of cyclic
words is respected by those weights.

Model 2. Likewise, let Mn be a finite-dimensional affine real Poisson manifold and ⋆ = · + h̄ { , }P + ō(h̄) be the arising
associative non-commutative star-product in the unital algebra C∞(Mn

→ R)[[h̄]] of formal power series (see [34]; an
expansion ⋆ mod ō(h̄4) is given in [35]). Keeping in mind the linearity of ⋆ over h̄, suppose a1, . . . , am ∈ C∞(Mn

→ R)[[h̄]].
Using the addition and ⋆-product, generate from this (in)finite alphabet and h̄ a unital subalgebra of nonnegative-length
words 1, h̄, . . . , ai, . . . , ai1 ⋆ · · · ⋆ aiλ , . . . , and pass to the quotient algebra A of cyclic words. (Our earlier remark that every
such homogeneous word

(
ai1 ⋆ · · · ⋆ aiλ

)
can co-exist in up to λ different values is still in order.) Now, the construction of

the noncommutative bundle πNC of cyclic-word algebras A over the affine manifold Mn at hand is immediate; its section is
a choice which function from C∞(Mn

→ R)[[h̄]] each element ai of the alphabet is equal to. Whenever all the elements of
the alphabet are compact-supported over the base manifoldMn, so are all the cyclic words.

An outline of the third model is stretched over several sections; it will be concluded on Model 3 by comparing the result
with the standard graded-commutative geometry of the Batalin–Vilkovisky (BV) superbundle ζ(0|1). Let us specify at once that
the sheaf Mn

NC of algebras of walks (introduced in Section 1.2) and realisation of sections in πNC as the (cyclic) word algebra
mappings in Section 1.3 are pertinent to this model. At the same time, the construction of the symplectic-dual variables a†

i
in Section 2.1 and of their parity-odd neighbours bi (see Section 2.3) is common to all the models.10

1.2. The sheaves of algebras of walks

In this section we motivate the construction of the algebra A that contains nonnegative-length cyclic words written in
the alphabet a1, . . . , am. By introducing several new elements into the picture now, in Section 1.4we shall recover the notion
of space of infinite jets J∞(πNC) of sections of the noncommutative bundle πNC in which the algebra A provides the fibres.

LetMn be an oriented affine real manifold of positive dimension n. Suppose that a tiling of the manifoldMn is given, that
is, Mn is realised by Mn

= ∪α∈I∆α via11 the complex of cells ∆α of dimension n, see Fig. 3(a). (Of course, the manifold Mn

10 This is why from Section 2.4 onwards, we shall assume that densities of integral functionals over the jet superspace J∞(π(0|1)
NC ) do not depend explicitly

on the edge alphabet x⃗±1 of a tiling of the base manifold Mn underlying the noncommutative superbundle π
(0|1)
NC . Indeed, the availability of such edge

alphabet is a feature of the third model, which we presently discuss.
11 The closure ∆α of each cell ∆α is taken with respect to the Euclidean topology on the manifoldMn under study.
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Fig. 3. A fragment of cell-complex tiling (a) and its adjacency graph (b).

can be topologically nontrivial: e.g., roll the plane to a cylinder, respecting – in one of the many possible ways – a given
regular crystal structure on E2.) We remark also that the choice of a tiling can be not unique for a given manifold Mn. Next,
construct the tiling adjacency graph: each cell ∆α represented by the vertex in the dual picture (see Fig. 3(b)), two vertices
are connected by the edge iff the respective cells in the tiling are adjacent through a common face of lower dimension12 (that
of n− 1).

Definition 1. Two binary operations are defined for paths along the edges between adjacent cells in a tiling: namely, the
formal addition + and multiplication ◦. Whenever a(connected component of a) path b continues a (connected part of a)
path a, we write a −→ b. Suppose onward that a, b, and c are connected paths. If a −→ b, then a ◦ b is the connected path
obtained by using the concatenation; otherwise, we set a ◦ b = a+ b.

The respective neutral elements for+and ◦ are 0 and the null path • = 1.

The addition+is commutative and associative; clearly, the multiplication of paths is not always commutative.

Lemma 3. At the same time, the multiplication of (sums of) paths is not associative.

(Of course, if a −→ b and b −→ c , then (a ◦ b) ◦ c = a ◦ (b ◦ c).)

Proof. Namely, if a −→ b and a −→ c but b ↛ c , then (a ◦ b) ◦ c = a ◦ b + c , yet the associator right-hand side is different:
a ◦ (b ◦ c) = a ◦ (b+ c) = a ◦ b+ a ◦ c. □

Finally, let us inspect the distributivity law.

• If a −→ c and b −→ c , then (a+ b) ◦ c = a ◦ c + b ◦ c .
• If a −→ c but b ↛ c , then (a+ b) ◦ c = a ◦ c + b+ c = a ◦ c + b ◦ c as well.
• If a ↛ c nor b ↛ c , then (a+ b) ◦ c = a+ c + b+ c = a ◦ c + b ◦ c .

And now, the other way round:

• If a −→ b and a −→ c , then a ◦ (b+ c) = a ◦ c + a ◦ c .
• If a −→ b but a ↛ c , then a ◦ (b+ c) = a ◦ b+ a+ c = a ◦ b+ a ◦ c as well.
• If a ↛ b nor a ↛ c , then a ◦ (b+ c) = a+ b+ a+ c = a ◦ b+ a ◦ c .

The unital algebra of walks is the vector space of formal sums (with respect to the addition+) of paths that are multiplied
by using the concatenation ◦; both the operations are proclaimed k-linear.

Without any extra assumptionsmade about the tiling, the cells adjacency table and the portrait of edges in the dual graph
are local. Indeed, a quasi crystal structure of the cell complex realisation ofMn could contain defects. Consequently, the larger
an open domain U ⊆ Mn is, the larger can be the alphabet of edges which are used to encode paths within U as words.

12 The discrete adjacency table, finite for every vertex ∆α in the dual complex, is the main profit that one gains by taking the tiling of space, however tiny
be the diameter of each cell with respect to a given distance function onMn . The property of base manifoldMm to be affine, that is, to admit a flat structure
(consisting of an atlas of charts with affine transition maps) is natural in this context. Namely, affine reparametrisations within a tiling domain amount to
a change of frame’s reference to a point which marks that domain.



A.V. Kiselev / Journal of Geometry and Physics 130 (2018) 130–167 137

For the sake of definition, we assume that the substrate manifold’s tiling is globally regular, so that the crystal structure
{∆α} is formed by (in)finite replication of a finite union of cells.

Definition 2. The edge alphabet is any minimal (i.e. without repetitions) subset of the set of edges such that every walk
between cells in a given tiling of Mn can be expressed using that subset. Up to a permutation of edges and up to a choice –
which direction of an ith edge is denoted by the symbol x⃗+1i and the other by x⃗−1i , – every alphabet x⃗±1 consists of

(1) all the edges connecting the cells in their finite union which is replicated so that the tiling is made, and
(2) the edges which interconnect that generating union of cells with all those replicas which are adjacent to that union

(cf. [38,41]).

Example 1.2. Consider the honeycomb tiling of the plane, see the figure. The regularity assumption makes the alphabet x⃗±1
finite even if the tiling of the (non)compact manifoldMn is infinite. We denote by N the cardinality of the set of generators,
so that the chosen alphabet is x⃗±1 = ⟨x⃗±11 , . . . , x⃗±1N ⟩. Let us remember that the number N of elementary displacements x⃗i
depends on the choice of a tiling for the affine manifoldMn of dimension n. Now, the price that one pays is that the coding of
edges can no longer be referred to any specific cell, hence a presence of irregular, non-periodic defects is no longer possible.

6
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From now on, let an alphabet x⃗±1 = ⟨x⃗±1i ⟩ be fixed for a given crystal tiling of the affine manifold Mn under study. For
every value of the index i, the symbols x⃗+1i and x⃗−1i denote the edges passed in the adjacency graph in either of the two
directions.13

Over the substrate manifold Mn let us construct the almost constant sheaf (see [42,43]) of unital extensions k · 1 ⊕
Free k

(
x⃗±11 , . . . , x⃗±1N

)
of free algebras generated by x⃗+1i and x⃗−1i . The sheaf is glued – from such unital algebras of walks –

over open subsets U ⊆ Mn. For all pairs Uj ⊆ Ui of non-empty open subsets of the set Mn with a chosen topology (e.g., the
Euclidean one), the restriction homomorphisms are the identity mapping unless Uj ⊆ ∆α for some cell, marked by α ∈ I
in the tiling; in that case, the sheaf structure over Uj is the null path component k · 1 and the restriction mapping is the
canonical projection. Over the empty subset ofMn, the sheaf structure is empty by definition.

Notation. This sheaf over Mn will be denoted by Mn
NC; it remembers the topology on the substrate manifold and it carries

the finite alphabet x⃗±1 of the N edges that interconnect cells in (the replicas of) a fundamental domain in the tiling.

1.3. The formal fibre A of πNC

We start building a noncommutative analogue πNC of the variational cotangent bundle over Mn and then, using that
noncommutative object, the analogue π

(0|1)
NC of the Batalin–Vilkovisky superbundle over the space–time. Recalling from

Section 1.1 the construction of the algebra A of cyclic words, we notice that whenever such algebra is realised as a fibre,
it suffices to evaluate the generators ai of the free algebra. Such ‘‘sections’’ (that is, the generator evaluation mappings) are
then extended onto (the quotient of) the target space Free (a1, . . . , am) by using both the multiplication ◦ and addition +.
Indeed, consider the evaluation map s

⏐⏐
U : Free (a

1, . . . , am)→ Mn
NC

⏐⏐
U which, at every point x in a chart U ⊆ Mn within the

substrate manifold Mn, takes each generator ai to a word of positive proper length14 – or to a formal sum of such words –
written in the alphabet x⃗±1 = {x⃗±1j , 1 ⩽ j ⩽ N}:

ai = si(x, x⃗±1), 1 ⩽ i ⩽ m, (8)

13 A possibility to walk every edge, hence every path backwards – along the respective reverses x⃗∓1i , reading the words right to left, – is a forerunner of
the introduction of canonical conjugate symbols a†j , which are responsible for the dual, parity-odd part of the picture. This will be discussed in Sections 2.1
and 2.3, see Fig. 4 in particular.
14 Obviously, the case where ai = si(x) for some i would be somewhat special: the algebra A of nonnegative-length cyclic words was unital by

construction, but the above assignment would convert the generator ai to the multiple of the neutral element at every x in a chart. To exclude this situation
from the study, let us technically assume that the lexicographic length of all the word(s) in each component si is strictly positive. Moreover, one should
even require that thewalk si along the edges x⃗±1i of the graph bemore than a null path 1, for it could be that the walk is contractable: e. g., si = x⃗j ◦ x⃗

−1
j = 1.
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each word taken with a smooth coefficient from C∞(Mn). Actually, formula (8) is a compact notation: its right-hand side
evaluates at x ∈ Mn the infinitely many coefficients of x⃗±1i , x⃗±1i ◦ x⃗

±1
j , x⃗±1i ◦ x⃗

±1
j ◦ x⃗

±1
k , etc.
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Free k(a),

then

/∼ =: A
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By construction, the value a
⏐⏐
s of a homogeneous word a written in the alphabet a = {ai, 1 ⩽ i ⩽ m} is the product of the

map values at the consecutive letters of that word. For instance, we postulate that

(ai ◦ aj)
⏐⏐
s (x, x⃗

±1) = si(x, x⃗±1) ◦ sj(x, x⃗±1);

themultiplication ◦ on the right-hand side is themultiplication in the sheaf of free associative algebras, so that one proceeds
recursively.

Convention (Irreducibility). Let the mapping in (8) be such that no positive-length word a ∈ Free (a1, . . . , am) is evaluated
to a zero proper length word a

⏐⏐
s in the algebra of walks (i.e., the null path 1 with a nonzero coefficient from C∞(Mn)). (For

example, we exclude the case where a1 := x⃗1 ◦ x⃗
−1
2 and a2 := x⃗2 ◦ x⃗

−1
1 , so that a1 ◦ a2

⏐⏐
s = 1 at all x ∈ Mn.)

The construction of sections (8) is furthered to the quotient A = Free (a1, . . . , am)/∼, which yields the evaluation
mapping s from the sheaf of algebras A over the commutative manifold Mn to the sheaf of unital algebras X(x⃗±1) of cyclic
words written in the edge alphabet for a given tiling of Mn. (The restriction maps rUV in that sheaf, for V ⊆ U open in Mn,
are the identity mapping of X(x⃗±1), except for the constant mapping to the null word (1) over V ⊆ ∆α at some α ∈ I;
over ∅ ⊂ Mn, the sheaf structure is empty.)

Remark 1.1. Let us remember that this evaluation mapping s is not a homomorphism of the cyclic word algebras A

and X(x⃗±1), respectively. The inequality,(
(a1)

A

× (a2)
)⏐⏐

s(x) ̸= (a1)
⏐⏐
s

X(x⃗±1)
× (a2)

⏐⏐
s(x),

can occur for some words (a1), (a2) ∈ A and at some point x ∈ Mn. Indeed, the multiplication × in A unlocks the cyclic
words in between the letters a that will later be evaluated using (8), whereas the multiplication × in X(x⃗±1) unlocks the
cyclic words between every two consecutive symbols from the edge alphabet x⃗±1 (see also Remark 2.8).

Remark 1.2. Evaluation (8) of a word a from Free (a) paves the way (weighted by elements of C∞(Mn)) along the edges x⃗±1i
of the graph which we started with. If the path a

⏐⏐
s is closed, then it does not matter where one starts reading that cyclic

word (now written in the alphabet x⃗±1); hence the value (a)
⏐⏐
s(x⃗
±1) is uniquely defined. However, the cyclic invariance of

theword (a) does not imply that the path a
⏐⏐
s is closed.

15 Strictly speaking, not everywordwritten in the alphabet x⃗±1i encodes
some path connecting cells in the tiling. (Still the converse is true: every path is encoded by the respective word and every
closed path – written by using the alphabet a and map (8) – is described by the equivalence class of cyclic words.)

It is readily seen that for aword a of length λ > 0, the evaluation of (a) by using (8) can produce up to λ different elements
in the space of cyclic words X(x⃗±1). Such co-existence of the value (a)

⏐⏐
s of a given cyclic word (a) in several states occurs

due to the noncommutativity of the concatenation ◦ of words in the edge alphabet x⃗±1.

15 Alternatively, it could require some effort to make a given value a cyclic word indeed by contracting the graph between the path loose ends.
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Let us remember that the same multiple-value effect can also be produced (moreover, regardless of the availability of
an edge alphabet) whenever the multiplication · of coefficients in (8) – or in (11b) in what follows – is replaced by using a
noncommutative associative star-product ⋆ on the affine manifold Mn (see Model 2 and Remark 2.7).

Remark 1.3. The cyclic shift operation (3) on Free (a1, . . . , am) descends to the identity mapping (a) ↦→ (a) on the
algebra A of cyclic words (a). In what follows – in particular, starting from the moment when the alphabet is Z2-graded,
t(γ1 ◦ . . . ◦ γλ) = (−)|γ1◦...◦γλ−1|·|γλ|γλ ◦ γ1 ◦ . . . ◦ γλ−1 for λ ⩾ 2, so that the restriction of t on A(0|1) is not just the identity –
we shall not attempt viewing the mapping t as conjugation γλ ◦ (γ1 ◦ . . . ◦ γλ) ◦ γ−1λ whenever the rightmost comultiple is
well defined. In terms of the algebra of walks on a lattice such conjugations would mean that the entire contour γ1 ◦ . . . ◦ γλ

is first displaced by γλ, then read in full, and followed by a step back. This is what one should avoid, especially on irregular
lattices. Conversely, we shall always view the shift t as a replacement of the marker ∞ at which one begins reading a given
cyclic word.

Remark 1.4 (1(x) ∈ C∞(Mn)). As soon as the unital algebra A of cyclic words is placed over the ‘‘points’’ ofMn
NC – in earnest,

over usual points x ∈ Mn of the substratemanifold – the zero-lengthwords inA areweighted pointwise overMn by elements
of the ring C∞(Mn) that now plays the rôle of the ground field k. This blow-up k ↪→ C∞(Mn) is standard in the differential
calculus on (jet) bundles in the commutative case (cf. [16,19,25,44]).

1.4. The geometry of jet space J∞(πNC)

Now we recall the standard construction of infinite jet space J∞(πNC) towered over the substrate manifold Mn and the
sheafMn

NC. We emphasise that this construction (local with respect to x ∈ U ⊆ Mn) refers only to the affine structure on the
domain set Mn and to the vector space organisation of objects over it.

Expansion (8) yields the infinite jet alphabet which consists of ai ≡ ai∅ and ai
xj
, ai

xjxk
, . . . , aσ for |σ | ⩾ 0 over a chart

U ⊆ Mn with local coordinates x = (x1, . . . , xn); here σ is amultiindex. The evaluationmappings a = s(x, x⃗±1) are extended
for all |σ | ⩾ 0 by aσ =

(
∂ |σ |

∂xσ s
)
(x, x⃗±1) using the jets jet∞(s). Under the assumption that the base manifold Mn be affine, the

jet letters aσ are well behaved under a change x = x(̃x) of local coordinates. Let us denote by [a] the differential dependence
on letters ai, ai

xj
, . . . , aσ up to some arbitrarily high but always finite order |σ | <∞. The construction of the algebra F(πNC)

of cyclic-word valued functions on J∞(πNC) is standard: namely, it is the inductive limit of filtered algebras [16,44]. Likewise,
the total derivatives d

dxi
, which we denote synonymically by Dxi for 1 ⩽ i ⩽ n making no further distinction between

( d
dx

)σ
and Dσ

x , are introduced by using the restrictions of elements f ∈ F(πNC) to ‘graphs’ of (8), i.e.

d
dxi

(f )
⏐⏐⏐⏐
jet∞(a=s( · ,x⃗±1))

(x0)
def
=

∂

∂xi

⏐⏐⏐⏐
x0

(
f |jet∞(a=s( · ,x⃗±1))

)
. (9)

This determines the usual coordinate expressions for 1 ⩽ i ⩽ n,
−→
d
dxi
=

∂

∂xi
+

m∑
j=1

∑
|σ |⩾0

ajσ∪{i}

−→
∂

∂ajσ

which starts at ∞ and acts along the orientation of every cyclic word, and
←−
d
dxi
=

∂

∂xi
+

m∑
j=1

∑
|σ |⩾0

←−
∂

∂ajσ
ajσ∪{i},

which acts from ∞ clockwise. Both the operators
←−
D xi and

−→
D xi show up, first, through the substrate part 1 · ∂/∂xi plus the

m sums – formally, infinite – of cyclic words such that the derivations ∂/∂ajσ sit in their locks.

Remark 1.5. We have that

d
dxi
= 1��

��r r⟲
∂

∂xi
+

∑
j,σ

ajσ∪{i}��
��r r⟲

∂

∂ajσ
,

whence all the terms which are produced from the counterclockwise action of
−→
d /dxi via the Leibniz rule on a given cyclic

word f ∈ F(πNC) have the shape16

· · · +

� �
� �

� �
� �

r∞rxi∂⃗/∂xi- 6
r1 + · · ·+

� �
� �

� �
� �

r∞rajσ∂⃗/∂ajσ
-

6
rajσ∪{i} + · · ·. (10)

16 If the base coordinates xk are not considered as symbols of any alphabet at hand, then the entire coefficient ∈ C∞(Mn) of the cyclic word f ∈ F(πNC)
can be placed at the lock ∞.
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(The derivations proceed along the orientation of the argument f , acting on the symbols in front of which the cyclic word f
is disrupted.) This shows that the operation d/dxi ⊗ f ↦→ d/dxi(f ) is again a topological pair of pants S1 × S1 → S1.

2. Differential graded Lie algebra of noncommutative local functionals

2.1. The variational symplectic dual

We shall presently extend the alphabet a1, . . . , am of the associative algebra Free k(a1, . . . , am) which we started with.
Namely, we introduce the new symbols a†

1, . . . , a†
m that ought to be the canonical conjugates of the respective variables

a1, . . . , am; let us explain what this means.
First, let us consider the free associative algebra standing alone, that is, before the evaluation of generators by (8) under a

givenmap s. In this set-up, there still remain twoways to understand the nature of new generators a†
i , namely, the coarse and

fine. The former is to proclaim that the vector space V †
:= spank(a

†
1, . . . , a

†
m) is dual to the linear span V := spank(a1, . . . , am)

under the k-valued coupling; by construction, the elements a†
i specify the basis dual to that of a

i in V . The new letters are then
incorporated into the set of generators of (the unital extension of) the associative algebra k·1⊕Free k(a1, . . . , am; a

†
1, . . . , a

†
m).

This definition is sufficient (which is explained in Section 3) to make the noncommutative variational Poisson formalism
work.

The fine approach is as follows; although less is required, it is still enough to construct the (non)commutative Batalin–
Vilkovisky geometry. Suppose that the generators ai of the free associative algebra undergo a shift by δa = δai · e⃗i, where
the m vectors e⃗i constitute the adapted17 basis in TaV , each of them pointing along the respective generator in the vector
space V = spank(a1, . . . , am). Likewise, consider the adapted basis e⃗ †,i in the tangent space Ta†V † at the point a† of the
vector space V †

= spank(a
†
1, . . . , a†

m). We require that the frame e⃗ †,i be k-dual to the frame e⃗i, 1 ⩽ i ⩽ m, so that the
variation δa†

= δa†
i · e⃗

†,i is the canonical conjugate of the diagonal deformation δa = δai · e⃗i, see (13) and (14).

Remark 2.1. In the second approach, we do not proclaim that the new symbols a†
i are the duals of the old generators

ai (or their inverses, or reverses, cf. (12)). In other words, we do not use the isomorphism between the vector space
V †
= spank(a

†
1, . . . , a

†
m) and the vector space Ta†V † tangent to it at a point. Note that the left-hand side of the isomorphism

V †
≃ Ta†V † exploits the global vector-space organisation of V † whereas the right-hand side refers to its local portrait near

the point a†. This is what the Batalin–Vilkovisky and Poisson formalisms really need.

So, we extend the set a1, . . . , am of generators by the symbols a†
1, . . . , a

†
m: at every i, the new symbol a†

i matches the
respective generator ai in the above sense. As before, we take the quotient of the free algebra Free k

(
a1, . . . , am; a†

1, . . . , a
†
m
)

over the linear relation∼ of equivalence under cyclic shifts. Thus we obtain the unital commutative non-associative algebra(
k · 1 ⊕ Free k(a1, . . . , am; a

†
1, . . . , a

†
m)
)
/∼ of cyclic words (written now in the double alphabet).18 We postulate that the

resulting algebra of cyclic words becomes the fibre in the noncommutative bundle πNC over the sheaf Mn
NC of algebras of

walks along a given tiling of the substrate affine manifoldMn.

Remark 2.2. Let us examine how the noncommutative sections (8), which evaluate ai to si(x, x⃗±1) over x ∈ Mn, can be
extended to the double alphabet evaluation using sections (s, s†) of πNC. The guiding principle that one must keep in mind
is that in the Batalin–Vilkovisky (BV) formalism, the quantum action functional is constrained by the natural postulate
⟨1⟩ = 1 for the averaging over sections of the BV superbundle. This condition implies that the objects in that formalism
are effectively independent of a choice of sections by using which the new, dual variables could be evaluated at x ∈ Mn.
Hence the generators a†

i could acquire whatever values; indeed, no physics depends on them at the end of the day. (If so,
leaving the respective components of the sections unspecified would be another option.)

However, we are also free to assign the values a = s(x, x⃗±1) and a†
= s†(x, x⃗±1) in a way we choose.19

Convention. For a given section s of πNC,

ai = si(x, x⃗±1) =
∑
J

f i,J (x) x⃗α(1)
j1
◦ . . . ◦ x⃗α(λ)

jλ
, f i,J ̸≡ 0, (11a)

17 In other words, only the diagonal deformations of the associative algebra generators are now allowed. This should be expected; for in the commutative
BV-geometry, the variables ai and bi = Π (a†i ), see below, describe the conjugate field–antifield or ghost–antighost pairs that stem from the different
generations of Noether’s identities between the Euler–Lagrange equations of motion. Hence by construction, the variables ai or bi at different values of the
index i are fibre coordinates in different vector bundles, merged later to their Whitney sum (see [44, §2, 6, 11] or [18] and references therein).
18 The space of free algebra generators is, strictly speaking, not the direct sum spank⟨a⟩ ⊕ spank⟨a†

⟩ because under a rescaling of the generators a, the
dual letters a† can be rescaled inverse proportionally.
19 The fourth scenario is specific to the (non)commutative variational Poisson formalism, in the frames of which the symbols a† play the rôles of

placeholders for the variational covectors that are not exact; but still, the isomorphism V †
≃ Ta†V

† is explicitly used in the assignment a†
:= p (we

shall discuss this in Section 3).
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we set the respective components of s† equal to the sum of formal reverses for each nonzero, homogeneous word in s,

a†
i := s†i (x, x⃗

±1) =
∑
J

1
f i,J (x)

x⃗−α(λ)
jλ

◦ . . . ◦ x⃗−α(1)
j1

, (11b)

where, at every point x ∈ U ⊆ Mn, the sum is taken over the indexes J such that the coefficients f i,J do not vanish.20

Example 2.1. If

ai =
∑
k∈Z

(loop)k, then a†
i =

∑
k∈Z

(loop)−k, (12)

that is, all the reiterations of a closed path are walked backwards.

Remark 2.3. Convention (11b) means that, whenever each component si of the map s is just a single word, the respective
dual a†

i becomes the weighted reverse – and true inverse – of the path ai(x, x⃗±1).

Remark 2.4. When cyclic words (a) are evaluated using (11) at points x ∈ Mn, each resulting cyclic word from the
algebra X(x⃗±1) acquires an overall coefficient (which is supposed to be a smooth function on Mn). The associativity of
multiplication · of the coefficients fJ (x) is used here. Note however that the commutativity of · can be relaxed, yet if so,
the result of evaluation (a)

⏐⏐
(s,s†)(x) ∈ X(x⃗±1) would depend on a position of the lock∞ between letters of the word a, see (7)

and Remark 2.7.

2.2. Elementary (non)commutative variations

The precedence e⃗1 ≺ . . . ≺ e⃗m ≺ e⃗ †,1
≺ . . . ≺ e⃗ †,m of the basic vectors for virtual shifts endows the Cartesian sum

Ta span(a1, . . . , am) ⊕ Ta† span(a
†
1, . . . , a

†
m) of the dual spaces with an orientation; it fixes the signs in all the structures of

(non)commutative symplectic geometry. The signs showup through the two couplings TaV×Ta†V †
→ k and Ta†V †

×TaV →
k (which we denote by ⟨ , ⟩ in both cases, making no confusion; for the sequential order is essential). Namely, we have that⟨

e⃗i, e⃗ †,j

−−−→

⟩
= δi

j and
⟨
e⃗ †,j, e⃗i
−−−→

⟩
= −δi

j, (13)

where δi
j is the Kronecker symbol that equals unit iff i = j and which is set equal to zero otherwise, see [9, §2.2].

Note that the virtual deformations δa = δai(x) · e⃗i(x) and δa†
= δa†

j (x) · e⃗
†,j(x) can be dependent on x ∈ Mn — and

they should be such. By construction, each pair (δa, δa†) of virtual shifts for the generators ai and a†
i is a map belonging to

the space Map
(
Mn
→ T(a,a†)spank(a; a†)

)
. We let the shifts be normalised at all internal points x ∈ supp(δai) ⊆ Mn by the

constraint

δai(x) · δa†
i (x) ≡ 1. (no summation!)

This is why the couplings of virtual deformations are invisible in the ready-to-use formulae. Indeed, it is enough to know the
signs

⟨δai(x) ·
first
e⃗i(x),

second

e⃗ †,i(y)
−−−−−−−−→

· δa†
i (y)⟩

⏐⏐⏐⏐⏐
x=y

= +1 (14a)

and

⟨δa†
i (y) ·

first

e⃗ †,i(y),
second
e⃗i(x)

−−−−−−−−→
· δai(x)⟩

⏐⏐⏐⏐⏐
x=y

= −1, (14b)

at all the internal points x of the support supp(δai), see [9,26,36] for illustrations.21

2.3. Parity-odd neighbours b = Π (a†)

From now on, let the set-up be Z2-graded by the function | · | that takes values in Z and determines the parity (−)| · |.
All the objects which have been considered in the preceding sections were parity-even, of proper grading 0. Let us relay
the parity of symbols a†

i by postulating that the new parity-odd variables carry the grading +1 (or minus one, or any

20 In view of Remark 2.2, the fact that the extension s† remains undefined at the zero locus of all these coefficients makes no harm.
21 The usefulness of carrying the coefficients δa( · ) and δa†( · ) all way long is revealed in the geometry of iterated variations; let us also remember that

we shall not always indicate the reference of frames e⃗i( · ) and e⃗†,i( · ) to points of the substrate manifold Mn . However, the fact that such reference is not
impossible is crucial for the consistency of the formalism.
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Fig. 4. The elementary displacements x⃗±1 in a tiling ofMn versus the gauge connection fields φ over the space–timeMn; the canonical duality of diagonal
variations for the opposite-parity halves of the alphabet versus the opposite-parity field–antifield and ghost–antighost pairs.

other (un)conventional odd integer number). To keep track of the reversed parity, let us denote these generators by
b = (b1, . . . , bm) so that Π : a†

i ⇄ bi.
In the cyclic world, the concept of Z2-grading works as follows:22

t (γ1 ◦ . . . ◦ γλ) = (−)|γ1◦...◦γλ−1|·|γλ|γλ ◦ γ1 ◦ . . . ◦ γλ−1. (15)

We denote by A(0|1) the graded commutative unital non-associative algebra of cyclic words written in the alphabet
1, a1, . . . , am, b1, . . . , bm. By introducing the notation A(0|1) we stress that the superdimension, equal to (m|m), is positive in
both the parity-even and odd components of the generators space spank(a; b).

Remark 2.5 (‘‘(abab) = 0?’’). The idea that cyclicwords acquire and accumulate the extra sign factors,whenever a parity-odd
symbol overtakes the rest of the word, creates the following subtlety.

Set m = 1 for definition and, omitting the symbols ◦ of associative multiplication, first consider the cyclic word (abaab).
The identical, parity-odd letters b contained in it can be distinguished nevertheless: one of them is followed by aa but
preceded only by a, whereas the other is preceded by aa and followed by just a single copy of letter a; we have that
(abaab) ∼ −(aabab).

On the other hand, the cyclic word (abab) does not contain any mechanism to distinguish between the two parity-odd
entries b, yet (abab) ∼ −(abab) by construction. In fact, this word is synonymic to zero in the algebra of cyclic words which
arewritten in the parity-extended alphabet.23 Let us be aware of the existence of this class of synonyms for zero; the calculus
of iterated variations which we presently develop is indifferent to these synonyms existence.

Model 3 (The BV-geometry). We take the algebra A(0|1) as fibre24 in the noncommutative superbundle π
(0|1)
NC over the

sheaf Mn
NC. This picture is summarised in Fig. 4(a), in which one easily recognises the noncommutative generalisation of

the classical Batalin–Vilkovisky geometry (see Fig. 4(b)). The rôle of physical fields φ as sections of their bundle π is now
played by the primitive displacements x⃗±1 in granulated space. The fibre algebra generated by the symbols ai and bi was
known to us before as the Whitney sum of parity-even and odd components in the Batalin–Vilkovisky superbundle ζ(0|1),
pulled back – by the projection π – over the total space of the bundle of physical fields. The symbols a and b = Π (a†) of
opposite parities form the noncommutative analogue of the BV-zoo q, q† inhabited by the (anti)fields and (anti)ghosts. The
rôle of the BV-bundle sections is granted to the two maps s and s†.25

22 Let F be a homogeneous word of grading |F |, written by using the Z2-graded alphabet. A full turn F ↦→ tλ(F ) (F ) along the orientation on the circle
that carries the cyclic word F of length λ(F ) yields the sign factor (−)|F |·(|F |−1) = (+); the equality is valid because the product of two consecutive integers
standing in the exponent is always even. This argument shows also that, for a cyclic word to be rotated from a given configuration (determined by the
position of the lock ∞ in between the word’s letters) to another one, a choice to direct that rotation (counter)clockwise does not matter. Indeed, every
clockwise rotation can be realised via one full turn clockwise (that would leave no effect by the above) followed by the appropriate shift backwards, in the
counterclockwise direction.
23 Analogous notions of zero non-oriented graphs equipped with edge ordering and of zero oriented graphs with an ordering of outgoing edges at every

vertex are known from [45] and [34,45], respectively (cf. [35,46,47] for illustrations).
24 Note that the parity reversion Π does not modify the topology of spaces, whence conventions (14) remain valid for the virtual variations δb =

δbi(x) · e⃗†,i(x). Note also that the presence of grading does not modify our earlier convention (11b) for the evaluation of symbols — as soon as a calculation
governed by such graded arithmetic rule is over.
25 We recall from [9] that the normalised variations δs and δs† were the dual components in sections of the tangent bundle Tζ(0|1); the vectors

δs (x, φ(x), s(x, φ(x))) and δs†
(
x, φ(x), s†(x, φ(x))

)
were attached at points of graphs of sections for the BV-superbundle induced over π . The construction

of these test shifts was laborious indeed in the graded-commutative world. On the other hand, the noncommutative target spaces contain nothing else but
the basic letters a and b that undergo the virtual deformations, so that the picture is simplified considerably.
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Remark 2.6. It will readily be seen that both the Batalin–Vilkovisky Laplacian of the integral functionals given by zerowords
– or the Schouten bracket taken for zero word functionals with any other cyclic-word functional – vanish identically.

Remark 2.7. Models 1 and 2, as well as Models 3 and 2 can be combined. For instance (for the latter pair), the (quasi)crystal
tiling of an affine manifold Mn yields the alphabet x⃗±1 and concatenation ◦ in the algebra of formal paths that show up
in (11), whereas a given Poisson structure on that manifold Mn yields the associative ⋆-product which is used to multiply
the coefficients fJ (x; h̄) ∈ C∞(Mn)((h̄)) occurring in (11).

However, it is the graded-commutative model over the sheaves Mn
NC of algebras of walks along a tiling of Mn which will

be the default set-up in the further study.

2.4. The ring of noncommutative local functionals

Let us proceed from functions on the space J∞
(
π

(0|1)
NC

)
of jets of sections (11) to the notion of functionals that take the

evaluation mappings (s, s†) to formal cyclic words26 written in the alphabet x⃗±1 of edges in the adjacency graph for a given
crystal tiling of the substrate manifoldMn.

Convention. On the infinite jet space J∞
(
π

(0|1)
NC

)
, every cyclic word (f ) is a sum of its homogeneous components, each

weighted by the coefficients that (can) depend on points x of the substrate manifold Mn. For the sake of definition, let us
assume that every such coefficient is C∞-smooth onMn; their asymptotic behaviourmust also be specified in advance so that
the integration by parts makes sense. Specifically, if the manifold Mn is closed, then there is nothing to discuss: the empty
boundary carries no boundary terms. However, should there be one, ∂Mn

̸= ∅, or should the manifold Mn be non-compact
(e.g., let Mn

= Rn with the standard Euclidean topology), then we postulate that the coefficients decay rapidly towards the
boundary ∂Mn or spatial infinity, respectively.

Likewise, we suppose that the supports supp δai of the C∞(Mn)-smooth infinitesimal variations δai(·) · e⃗i(·) : Mn
→

Ta span(a1, . . ., am) are compact and supp δai ∩ ∂Mn
= ∅.

The volume element dvol(x) onMn in the construction of integral functionals over the jet space J∞
(
π

(0|1)
NC

)
is another piece

of external data.

Convention. We suppose that a volume element dvol(x) is given at all points x ∈ Mn (possibly, in a way that depends on
the tiling at hand). Also, we technically assume in this text that the volume element dvol(x) may not depend on a choice
of the mappings (s, s†) — that is, in a sense, on a configuration of noncommutative ‘‘fields’’ over the granulation Mn

NC of the
physical spaceMn.

One could think that the volume element dvol(·) is placed in the locks of cyclic words; this idea is practical because,
whenever any such word is unlocked, it is converted at once into a singular linear integral operator supported on the
diagonal; the volume element then disappears, giving way to the attachment points’ congruence mechanism through the
locality of couplings (13) in (14).

Convention. From now on we restrict the study to the class of functionals such that densities of the integral functionals
F =

∫
f
(
x, [a], [b]

)
◦dvol(x) do not depend explicitly on the edge alphabet x⃗±1 (but can do so implicitly through a differential

dependence of densities on a or b, which are evaluated at the jets j∞x (s, s†) of sections (11) for π
(0|1)
NC . (We recall that such

vertical subtheory makes the full theory in Models 1 and 2, cf. footnote 10.)

Notation. The vector space of such integral functionals will be denoted by H̄n
(
π

(0|1)
NC

)
.

Integral functionals F1, . . . , Fℓ ∈ H̄n
(
π

(0|1)
NC

)
are the building blocks in the local functionals such as F1 × · · · × Fℓ ∈

H̄n⊗ℓ(
π

(0|1)
NC

)
.

Definition 3. Let F1 =
∫
f1
(
x1, [a], [b]

)
◦dvol(x1) and F2 =

∫
f2
(
x2, [a], [b]

)
◦dvol(x2) be two linear integral functionals the

densities of which do not depend explicitly on any letters from the edge alphabet x⃗±1. The product

F1 × F2 =
∫∫

(f1)
⏐⏐
(x1,[a],[b]) × (f2)

⏐⏐
(x2,[a],[b]) ◦ dvol(x1) · dvol(x2) ∈ H̄n⊗2(π(0|1)

NC

)
is the horizontal cohomology class of linear integral functionals over

(
Mn⊗2, dvol( · )⊗2

)
such that their densities are

equivalent to the product (f1)× (f2) in A(0|1).
Setting H̄n⊗0

(
π

(0|1)
NC

)
equal to k · (1) by definition, we extend the bi-linear operation × recursively from pairs of integral

functionals to the multiplication of products of any nonnegative number of functionals. Because the operation × is not

26 Such cyclic words are formal because (i) they could encode no realisable paths along the edges of the graph and (ii), although ‘‘cyclic’’ by construction,
each homogeneous component of such words could not encode a closedwalk, even if it did specify some walk along the edges.
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associative, there are the respective Catalan number ways to arrange the multiplications in F1 × · · · × Fℓ by inserting the
ℓ− 1 balanced pairs of parentheses. We let the default ordering be lexicographic: (· · · (F1 × F2)× · · · × Fℓ−1)× Fℓ.

Corollary 4. The multiplication× of local functionals over J∞
(
π

(0|1)
NC

)
is graded-commutative: F×G = (−)|F |·|G|G×F for F and G

homogeneous.

Notation. Denote by

M
n(

π
(0|1)
NC

)
=

⨁
ℓ⩾0

H̄n⊗ℓ(
π

(0|1)
NC

)
(16)

the Z2-graded commutative non-associative unital ring of local functionals in the noncommutative set-up under study.

To define the value of a local functional F at a section (s, s†), first let us consider the class of integral functionals such as
F =

∫
f
(
x, [a], [b]

)
◦ dvol(x), where the cyclic word (f ◦ dvol(x)) marks an equivalence class modulo integrations by parts

(no boundary terms! ).

Definition 4. The value of such integral functional at a given mapping (s, s†) is

F (s, s†) def
=

∫
Mn

f
(
x, jet∞x (s), jet∞x (s

†)
)
◦ dvol(x) ∈ X(x⃗±1); (17)

the integral makes sense due to our earlier assumptions on the global choice of alphabet x⃗±1 on the entire Mn (that is, the
tiling Mn

=
⋃

α∆α is not quasi crystal) and on the class of functional coefficients depending on x, so that the (im)proper
integral converges.

The evaluation of products F1×· · ·×Fℓ of functionals at a givenmapping (s, s†) goes as follows; without loss of generality
suppose ℓ = 2. First, double (s, s†) ↦→ (s, s†)⊗2 for the ℓ = 2 copies of the substrate manifold Mn, and then integrate over
Mn⊗2 in the element of H̄n⊗2

(
π

(0|1)
NC

)
.

Remark 2.8. Through the evaluation procedure, local functionals keep track of the fibre algebra A(0|1) of cyclic words (even
though neither the letters ai nor bj show up in the functionals’ values that belong to the functionals value space X(x⃗±1) of
cyclic words written in the edge alphabet x⃗±1).

Indeed, we recall from Remark 1.1 that generally speaking,(
F1

A(0|1)

× F2
)
(s, s†) ̸= F1(s, s†)

X(x⃗±1)
× F2(s, s†).

Moreover, although the multiplication× inA(0|1) is Z2-graded commutative, that grading is lost in the course of functionals’
evaluation at the mappings (s, s†); the multiplication× in the non-graded algebra X(x⃗±1) is just commutative.

In the remaining part of this paper we reveal the structure of differential (shifted-) graded Lie algebra –more specifically,
the BV algebra – on theZ2-graded commutative non-associative unital ringMn(

π
(0|1)
NC

)
of local functionals. First we introduce

some notation. Let us recall that the generators ai and bi are evaluated at sections (s, s†), whereas the generator virtual
shifts (δa, δb) are taken from the space Map

(
Mn
→ T(a,b)spank(a; b)

)
. To permit the iteration of variations, one has to deal

with the space of local functionals such that densities of their integral building blocks can contain not only the generators
but also their shifts (see footnote 28).

Notation. In order to avoid an agglomeration of formulae, let us denote by

N
n(Tπ

(0|1)
NC

)
=

⨁
ℓ⩾0

H̄n⊗ℓ(
Tπ

(0|1)
NC

)
the vector space of such local functionals over the jet space J∞

(
π

(0|1)
NC

)
.

Remark 2.9. The multiplication of functionals, as part of the construction of space M
n(

π
(0|1)
NC

)
, is provided by Definition 3.

The BV Laplacian ∆ (see Definition 5 and Definition 6) is a local variational operator on the space of local functionals, hence
every argument of ∆ is encoded by a cyclic word. This means that first such argument is formed (if necessary, by using
the structure× of algebra A(0|1) whenever that input object is a product of several integral functionals; parentheses would
specify the consecutive order of non-associativemultiplications). Secondly, the BV algebra’s differential operations∆ or [[ , ]]
rework the input into an element of Mn(

π
(0|1)
NC

)
. In particular, at no moment are any intermediate objects from N

n(Tπ
(0|1)
NC

)
multiplied anew by using the structure× for (16).

For example, identity (24) frames an application of the differential structure [[ , ]] to the functional F × (G × H) ∈
M

n(
π

(0|1)
NC

)
, referred to at least three copies of the underlyingmanifoldMn. The same ordering –multiplication, then variation

over Mn – applies to both sides of identity (28) where the BV Laplacian ∆ works on the product F × G twice (in particular,
via [[ , ]] to which the operator ∆ is parent).
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Therefore, let us remember that it is the ring M
n(

π
(0|1)
NC

)
but not the larger vector space N

n(Tπ
(0|1)
NC

)
on which the

BV algebra structure is well defined. The reduction from N
n(Tπ

(0|1)
NC

)
to M

n(
π

(0|1)
NC

)
amounts to a perfect matching and then

coupling of the (co)vectors e⃗i and e⃗ †,i in all pairs of canonically dual components δa and δb of the variations. In the next
section we recall the geometric mechanism of integration by parts; the way how the couplings are reconfigured itself is the
algorithmic definition of the BV algebra structure (see Section 2.6).

2.5. Elements of the geometric theory of variations

The Gel’fand framework of singular integral distributions is known, e.g., from [48]. In our case, the space N
n(Tπ

(0|1)
NC

)
of

local functionals over the tangent superbundle Tπ
(0|1)
NC is the space of basic objects on which the variations act by singular

linear integral operators.
For consistency, let us outline key ideas in the geometry of iterated variations (introduced in [9,26] and illustrated

in [27,36]); they are as follows.

• The unlinking of a cyclic word, together with an intention to paste the open string of symbols contained in it into
another word as an uninterrupted fragment, converts the (procedure of) insertion of that string into a singular linear
integral operator supported on the diagonal.
• Such operators are singular because the restriction to the diagonal over points in copies of the substrate manifoldMn

is ensured by ordered couplings (13) which are not defined off the diagonal x = y in (14).
• The definitions of the Batalin–Vilkovisky Laplacian ∆ and variational Schouten bracket [[ , ]] are operational, that is,

every such definition is an algorithm for the on-the-diagonal reconfiguration of the couplings.
• The objects that are usually viewed in the calculus of variations as differential forms are either the volume element

dvol(x) on the substrate manifoldMn or the dual bases e⃗i, e⃗ †,i in the tangent spaces attached at the point (a, b) of the
fibre algebra (this iswhat its alphabetwas doubled for). The orientationuniquely determines the signs of couplings (13)
by ordering the tangent vectors. This explains why such differential 1-forms anticommute.

Convention. In the course of virtual variation of the symbols aiσ and bj,τ by using27

(δai)
(←−∂

∂x

)σ

(x) · e⃗i(x) and (δbj)
(←−∂

∂x

)τ

(x) · e⃗ †,j(x), (18)

the responses of integral functionals are always expanded with respect to the dual bases e⃗ †,i and e⃗i. For instance, we obtain
the singular linear integral operators

−→
δa(·) =

∫
Mn

dy
m∑
i=1

∑
|σ |⩾0

(δai)
(←−∂

∂y

)σ

(y) ·
⟨ first
e⃗i(y),

second

e⃗ †,i(·)
−−−−−−−→

⟩ −→∂
∂aiσ

(19a)

and

−→
δb(·) =

∫
Mn

dz
m∑
j=1

∑
|τ |⩾0

(δbj)
(←−∂

∂z

)τ

(z) ·
⟨ first

(−e⃗ †,j) (z),
second
e⃗i(·)

−−−−−−−−−−→

⟩ −→∂
∂bj,τ

. (19b)

This convention will be illustrated in the sequel.

• Given by its own singular integral operator, each variation brings a new copy of the integration domain Mn into the
picture. In consequence, all the intermediate objects Obj ∈ N

n(Tπ
(0|1)
NC

)
that emerge in the course of calculations do

retain a kind of memory of the way how they were obtained from the input data.28 That is, no calculation can be
interrupted along the way.

Lemma 5 (Integration by Parts). From the powers of partial derivatives
(←−

∂ /∂y
)σ that act on the test shifts in (19) one obtains,

due to the locality of couplings ⟨·, ·⟩, the powers of minus total derivatives
(
−
−→
d /dx

)σ that act on densities of integral functionals.

Explanation (See [9]). Consider a point y of the affine manifold Mn and denote by y + δy ∈ Mn a near-by point with
coordinates yi + δyi, here and immediately below 1 ⩽ i, α ⩽ n; the notation limδy→0 makes obvious sense. For the sake of

27 It is readily seen that the congruence of multi-indexes σ in (∂/∂x)σ and aiσ (as well as in the partial derivative ∂⃗/∂aiσ , see (19a)) refers to the definition
of vector as an equivalence class of curves passing through a point.
28 In the (graded-)commutative language of bundles this means that their products ζ(0|1)

× Tζ(0|1)
× · · · × Tζ(0|1) , standing over Mn

× Mn
× · · · × Mn ,

are taken, but not their Whitney sums ζ(0|1)
×MnTζ(0|1)

×Mn . . .×MnTζ(0|1) are fibred over a single copy of the base manifoldMn .
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brevity, put σ := {xα
}. We have that, due to the absence of boundary terms and then by definition (by Newton–Leibniz and

in the last line, by S. Lie),∫
dy
⟨
(δai)
←−
∂

∂yα
(y) · e⃗i(y), e⃗ †,i(x)
−−−−−−−→

( −→∂
∂aixα

f (x, [a], [b])
)⏐⏐⏐

jet∞x (s,s†)

⟩
=

=

∫
dy δai(y)

(
−

−→
∂

∂yα

)⟨
e⃗i(y), e⃗ †,i(x)
−−−−−−−→

( −→∂
∂aixα

f (x, [a], [b])
)⏐⏐⏐

jet∞x (s,s†)

⟩

def
= −

∫
dy δai(y) lim

δyα→+0

1
δyα

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

⟨
e⃗i(y + δyα), e⃗ †,i(x)  
+1 if x=y+δyα

−→
∂

∂aixα
f (x, [a], [b])

⏐⏐
jet∞x (s,s†)

⟩
−
⟨
e⃗i(y), e⃗ †,i(x)  
+1 if x=y

−→
∂

∂aixα
f (x, [a], [b])

⏐⏐
jet∞x (s,s†)

⟩

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
def
=

∫
dy δai(y)

⟨
e⃗i(y), e⃗ †,i(x)
−−−−−−−→

(
−

−→
∂

∂xα

)( −→∂
∂aixα

f (x, [a], [b])
⏐⏐
jet∞x (s,s†)

)⟩
def
=

∫
dy δai(y)⟨e⃗i(y), e⃗ †,i(x)

−−−−−−−→
⟩ ·

((
−

−→
d

dxα

) −→∂
∂aixα

f (x, [a], [b])
)⏐⏐⏐

jet∞x (s,s†)
.

For multi-indexes σ longer than {xα
} the powers of partial derivatives (

←−
∂ /∂y)σ are processed by repeated integrations by

parts; this yields the powers of minus total derivatives (−
−→
d /dx)σ . In the course of derivation of densities with respect to

not aiσ but bj,τ and so, in the course of using the other of two (co)vectors couplings, all reasonings are still performed in
exactly the same way. □

Convention. In every calculation, the integrations by parts are performed last, prior only to the reconfigurations of couplings
and their evaluation by using (14). For instance, the derivative (

←−
∂ /∂y)σ in formula (19a) channels through e⃗i(y) and e⃗ †,i(x)

on the diagonal y = x (which is the locus where the coupling is defined); the derivative thus becomes (−d⃗/dx)σ that falls
on (a derivative of) the argument’s density at x ∈ Mn.

This principle makes the variations (graded-)permutable.

Notation. To keep track where the total derivatives would come from after integration by parts and to emphasise that such
integrations are performed at the end of a calculation, we embrace the (powers of) minus the total derivatives by using
the delimiters ⌈. . .⌉. Likewise, in the notation for those total derivatives we preserve the base variables from singular linear
integral operators. (We remember that couplings (14) wright the diagonal, hence the above convention refers to notation
only.) In these terms, operators (19) can be realised by using the formulas

−→
δa(·) =

∫
Mn

dy
m∑
i=1

∑
|σ |⩾0

δai(y) ·
⟨ first
e⃗i(y),

second

e⃗ †,i(·)
−−−−−−−→

⟩
⌈

(
−

−→
d
dy

)
σ ⌉

−→
∂

∂aiσ

and

−→
δb(·) =

∫
Mn

dz
m∑
j=1

∑
|τ |⩾0

δbj(z) ·
⟨ first

(−e⃗ †,j) (z),
second
e⃗i(·)

−−−−−−−−−−→

⟩
⌈

(
−

−→
d
dz

)
τ ⌉

−→
∂

∂bj,τ
,

respectively.

• By construction, iterated variations of a functional over a copy of Mn never spread from it to the fragments of other
functionals in any composite object during multiple integrations by parts overMn (e.g., see [26,27]).

Summarising, the BV calculus of iterated variations relies heavily on a reference of each object to the copy of manifoldMn

over which that object was defined; the locality of couplings (14) provides a restriction to the diagonal over all such copies
at the end of the day. The association with own bases is the mechanism that discriminates between the fibre letters from
different words in the input. Indeed, integrations by parts over the words’ substratesMn act by total derivatives only on the
letters from the respective words.

We refer to [9,26,27,36] for more details and illustrations of these guiding principles.

2.6. How the Batalin–Vilkovisky Laplacian determines the Schouten bracket

Nowwe are ready to outline the construction of parity-odd BV Laplacian ∆. On the space of local functionals over the jet
space J∞(π(0|1)

NC ), it is the parent structure for the noncommutative variational Schouten bracket [[ , ]]. We establish the main
properties of these structures, recalling further the relations between them.
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Fig. 5. The on-the-diagonal reconfiguration of couplings is the operational definition of BV Laplacian ∆; the variations are normalised by (14).

Definition 5. The Batalin–Vilkovisky Laplacian is the reconfiguration – shown in Fig. 5 – of (co)vector couplings in the second
variation

−→
δa(
−→
δb(·)) of a local functional on the jet space J∞(π(0|1)

NC ).

The analytic construction of BV Laplacian ∆. First, let us consider an integral functional F =
∫
f
(
x, [a], [b]

)
◦ dvol(x) ∈

H̄n(π(0|1)
NC ). Let δai1 (y1) · e⃗i1 (y1) and δbi2 (y2) · e⃗ †,i2 (y2) be a pair of test shifts of the parity-even and odd letters in the fibre

alphabet; assume normalisation (14). Construct the second variation29

−→
δa(
−→
δb(F )) =

∫∫
Mn

dy1 dy2

∫ {
(δai1 )

(←−∂
∂y1

)σ1
(y1) ·

⟨
e⃗i1 (y1)

⏐⏐⏐e⃗ †,i1 (x)
⟩ −→∂
∂ai1σ1

◦

◦ (δbi2 )
(←−∂

∂y2

)σ2
(y2) ·

⟨
(−e⃗†,i2 )(y2)

⏐⏐⏐e⃗i2 (x)⟩ −→∂∂bi2,σ2

f (x, [a], [b])
}

dvol(x).

At the end of a reasoning (of which the object ∆F could be only a small piece), the integrations by parts carry the derivatives
off the virtual test shifts, which yields∫∫

Mn
dy1 dy2

∫ {
δai1 (y1) ·

⟨
e⃗i1 (y1)

⏐⏐e⃗ †.i1 (x)
⟩
·

· δbi2 (y2) ·
⟨
(−e⃗ †,i2 )(y2)

⏐⏐e⃗i2 (x)⟩⌈ (− d
dx

)
σ1∪σ2 ⌉

−→
∂

2

∂ai1σ1∂bi2,σ2

f (x, [a], [b])
}

dvol(x).

Finally, the two pairs of couplings are reconfigured according to the scenario in Fig. 5, which gives the action of operator∫∫
Mn

dy1 dy2

{
⟨δai1 (y1)e⃗i1 (y1)| |δbi2 (y2) · (−e⃗

†,i2 )(y2)⟩
⟨e⃗ †.i1 (x)| |e⃗i2 (x)⟩

}
on the basic (co)vectors over x ∈ Mn. The couplings wright the diagonal i1 = i2 in the summation over the indexes.
Normalisation (14) and the couplings values (13) make each line in the formula above equal to −1; their product equals
unit. □

Corollary 6. In particular, this gives us the integrand of ∆F whenever this object is the endpoint of a reasoning; namely, we
obtain

m∑
i=1

∑
|σ1 |⩾0
|σ2 |⩾0

(
−

−→
d
dx

)σ1∪σ2
⎛⎝ −→

∂
2

∂aiσ1∂bi,σ2
f

⎞⎠ (x, [a], [b]).

We emphasise that, should the object ∆F itself be a constituent element of a larger expression, other partial derivatives
−→
∂ /∂aj1τ1

or
−→
∂ /∂bj2,τ2 could accumulate at the given density f of the functional F , whereas all the powers of minus the total derivatives

would still gather outside those higher-order partial derivatives.

Lemma 7. The linear operator

∆ : H̄n(1+k)(Tπ
(0|1)
NC

)
−→ H̄n(2+k)(Tπ

(0|1)
NC

)
is a differential for every k ⩾ 0.

Proof. The idea is as follows: if two normalised variations are interchanged in an integral functional within the image of∆2,
this yields an indistinguishable result of opposite sign.30

29 Summation over the (multi)indices iα , σ , τ or the like is implicit in this formula and in what follows.
30 It is readily seen that this mechanism establishes the property ∆2

= 0 of the BV Laplacian to be a differential whenever acting on any local, i.e. not
only integral functional. Indeed, within the definition of ∆, both the derivations with respect to the generators work by the graded Leibniz rule along the
argument’s cyclic word; it is the integrations by parts over the manifold Mn which keep track of a possible composite structure H = F1 × · · · × Fℓ of that
cyclic word, should it be made from integral functionals F1 , . . . , Fℓ ∈ H̄n(1+k)

(
Tπ

(0|1)
NC

)
.
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Fig. 6. There remains only one cyclic word within the minimal scheme )( yet there appears a product of two cyclic (sub)words if the scheme≍ is adopted.

Namely, let δs1 = (δai1, δb1,i) and δs2 = (δaj2, δb2,j) be two normalised shifts of the generators a and b, and let H =∫
h(x, [a], [b]) dvol(x) be an integral functional over J∞

(
π

(0|1)
NC

)
. (It suffices to consider the minimal picture H ∈ H̄n

(
π

(0|1)
NC

)
without any variations already built into H .) By definition, we have that

∆(∆H)(s, s†) =
∫
M
dz1

∫
M
dz2

∫
M
dy1

∫
M
dy2

∫
M
dvol(x) ·

·

{⟨
(δaα

1 )
( ←−

∂
∂z1

)σ1
(z1)

−1  
e⃗α(z1), (−e⃗ †α)(z2) (δb1,α)

( ←−
∂

∂z2

)σ2
(z2)

⟩ ⟨
e⃗ †α(x), e⃗α(x)

⟩  
−1⟨

(δaβ

2 )
( ←−

∂
∂y1

)τ1
(y1)

−1  
e⃗β (y1), (−e⃗

†β )(y2) (δb2,β )
( ←−

∂
∂y2

)τ2
(y2)

⟩ ⟨
e⃗ †β (x), e⃗β (x)

⟩  
−1

−→
∂

∂aα
σ1

−→
∂

∂bα,σ2

−→
∂

∂aβ
τ1

−→
∂

∂bβ,τ2

h(x, [a], [b])

}⏐⏐⏐⏐⏐
jet∞x (s,s†)

.

By exchanging the integrand’s upper two lines and then relabelling α ⇄ β , σ ⇄ τ so that δaα
1 ⇄ δaβ

2 and δb1,α ⇄ δb2,β , and
by swapping the reference y ⇄ z to copies of the base manifoldMn, we almost recover the initial expression (which should
be the case), yet the order in which the parity-odd partial derivatives follow is inverse,

−→
∂

∂bα,σ2

◦

−→
∂

∂bβ,τ2

↦−→

−→
∂

∂bβ,τ2

◦

−→
∂

∂bα,σ2

= −

−→
∂

∂bα,σ2

◦

−→
∂

∂bβ,τ2

.

Therefore the integrand of functional ∆2(H) vanishes, which proves the assertion. □

Remark 2.10 (The Geometric Realisations of∆). There are at least two schemes to algorithmically define the BV Laplacian∆ in
the noncommutative set-up: on the basis of a minimal model, which we denote by )( in Fig. 6, a larger construction≍ can be
built. Still both options reproduce the same structure∆whenever the alphabet ai, bi is proclaimed graded-commutative. The
minimal option )( suggests an orientation-preserving attachment ↓↑ of the respective pairs of loose ends in the argument
F =

∫
f (x, [a], [b]) ◦ dvol(x) of ∆. Specifically, for a cyclic word (f ) = w(x) · (c1 ◦ . . . ◦ cλ) written using letters cα from the

alphabet aiσ , bj,τ (and weighted by a smooth coefficient w depending on x ∈ Mn), the BV Laplacian yields the sum (in a term
portrayed here, without loss of generality w.r.t. the sequential order of the letters a and b), ∆(F ) =

m∑
i=1

∑
|σ |⩾0
|τ |⩾0

∫ (
−

d
dx
)σ∪τ ∂⃗2

∂aiσ ∂bi,τ
w(x) ·

(
c1 . . . cµ−1ai0σ0cµ+1 . . . cν−1bi0,τ0cν+1 . . . cλ

)
· dvol(x)

)(
=

m∑
i0=1

∑
|σ0 |⩾0
|τ0 |⩾0

±

∫ (
−

d
dx
)σ∪τ

w(x) ·
(
c1 . . . cµ−1 ◦ cµ+1 . . . cν−1 ◦ cν+1 . . . cλ

)
· dvol(x).

The sign ± in front of each integral is (−)|∂/∂b|·|c1...cν−1|. The two pairs of adjacent loose ends, namely, cµ−1 ◦ â
i0
σ0 ◦ cµ+1 and

cν−1 ◦ b̂i0,τ0 ◦ cν+1, link to cµ−1 ◦ cµ+1 and cν−1 ◦ cν+1 respectively, so that the integrand of every term in ∆(F ) is a cyclic word
in which two letters were erased but the cyclic ordering of all the remaining letters is preserved.

Conversely, according to the second scheme, whichwe denote by≍, the cyclic word (f ) is disrupted at both ai0σ0 and bi0,τ0 ;
next, either of the strings of adjacent symbols cµ+1 . . . cν−1 and cν+1 . . . cλc1 . . . cµ−1 is rolled into a cyclic word. In this way,
the integrand of every term in such realisation of ∆(F ) is the word which itself is the product of two cyclic words: ∆(F ) ≍=

m∑
i=1

∑
|σ |⩾0
|τ |⩾0

±

∫ (
−

d
dx
)σ∪τ

w(x) · ⟨sign⟩ ·
(
cν+1 . . . cλc1 . . . cµ−1

)
×
(
cµ+1 . . . cν−1

)
· dvol(x).
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In this formula, the overall sign ± = (−)|∂/∂b|·|c1...cν−1| in front of the integral is the same as before. Yet now there are three
ways to define the sign from the linking:

(1) ⟨sign⟩ := (−)|cν+1...cλ|·(|c1...cν−1|+1), i.e. bi,τ is involved,
(2) ⟨sign⟩ := (−)|cν+1...cλ|·|c1...cν−1|, or
(3) ⟨sign⟩ := (−)|cν+1...cλ|·|c1...cµ−1| regardless of the other subword.

It is the second variant for which a unique term
(
c1 . . . cµ−1 ◦ cµ+1 . . . cν−1 ◦ cν+1 . . . cλ

)
from the scheme )( is reproduced

– with proper sign – when the product
(
cν+1 . . . cλc1 . . . cµ−1

)
×
(
cµ+1 . . . cν−1

)
of two cyclic words is expanded. Let us

remember however that for any choice of that sign within the scheme ≍, other cyclic words can appear. Obviously, such
would be the terms in which the original consecutive order of letters along (f ) is broken by the graded extension of
formula (4). Indeed, under the multiplication× the content of the first co-multiple is pasted in between every pair of letters
in the other co-multiple (and vice versa).

We use the minimal scheme )( throughout this text in the realisations of Definition 5. This choice is motivated in
Remark 2.3: whenever a pair of mutually inverse paths si and s†i is skipped out from a given closed contour (f )

⏐⏐
s,s† , the

remaining disjoint parts are linked, orientation preserved, to a new closed contour.
On the other hand, the larger scheme ≍ is reminiscent of the matrix integral methods from string theory [32,33]. Let

n≫ 1 and consider the algebra Mat(n× n, k) of square matrices with k-valued entries. Recall that the k-valued trace tr of a
product of suchmatrices is insensitive to cyclic permutations of comultiples. Let ȧ = Q be a polynomial (in a) vector field on
the space of generators a of thematrix algebra. The divergence divQ is quadraticwith respect to the traces of cyclic subwords
that are formed by sub-strings of letters in the polynomial coefficients of Q : it is readily seen that divQ =

∑
tr(⟲)

k
· tr(⟲).

Now in a larger setting, suppose that the vector field Q = Q f
= {f , ·} itself is obtained using the parity-odd symplectic

form da ∧ db for the double alphabet a, b, that is, Q f is produced by applying the skew gradient to a given Hamiltonian f .
Then the calculation of div (grad f ) goes in parallel with the construction of BV Laplacian ∆ within the scheme≍. Still let us
remember that in such framework of [33], it is the k-valued traces which are multiplied using the operation · in the ground
field k, but not the cyclic words themselves (which can be multiplied using × in the k-algebra A(0|1)). In this respect the
matrix integral formalism differs from our present study.

Definition 6 (∆(F×G)). Let F and G be integral functionals on J∞(π(0|1)
NC ) and assume F homogeneous. Applied to the product

F×G of two integral functionals (seeDefinitions 3 and5), the BV Laplacian∆ is the parent structure for the (non)commutative
variational Schouten bracket [[ , ]], or antibracket,

∆(F × G) def
= ∆(F )× G+ (−)|F |[[F ,G]] + (−)|F |F ×∆G. (20)

In other words, the bracket [[ , ]]measures the deviation for ∆ from being a graded derivation.
The definition of ∆ acting on products F × G of (homogeneous) local functionals F and G over J∞

(
π

(0|1)
NC

)
is recursive; it

extends by linearity to the entire space of local functionals.

Corollary 8. The (non)commutative variational Schouten bracket is shifted-graded skew-symmetric:

[[F ,G]] = −(−)(|F |−1)·(|G|−1)[[G, F ]] (21)

for any homogeneous local functionals F and G over J∞
(
π

(0|1)
NC

)
.

The analytic construction of the Schouten bracket [[ , ]]. By the graded Leibniz rule, we have that(−→
δa ◦
−→
δb
)
(F × G) =

−→
δa
(
−→
δb(F )× G+ (−)|F |F ×

−→
δb(G)

)
=

=
(−→
δa ◦
−→
δb
)
(F )× G+ (−)|F |

−→
δa(F )×

−→
δb(G)+

−→
δb(F )×

−→
δa(G)+ (−)|F |F ×

(−→
δa ◦
−→
δb
)
(G).

Using the lemma
−→
∂ /∂b(F ) = (−)|F |−1(F )

←−
∂ /∂b, let us reverse the direction in which the operators

−→
δa and

−→
δb act on F in

the second and third terms of the formula above; this yields31

=
(−→
δa ◦
−→
δb
)
(F )× G+ (−)|F |

(
(F )
←−
δa ×

−→
δb(G)− (F )

←−
δb ×

−→
δa(G)

)
+ (−)|F |F ×

(−→
δa ◦
−→
δb
)
(G).

31 Further processing of the first and last terms in the formula at hand – that is, the on-the-diagonal reconfigurations of couplings and integrations by
parts – is analogous to the algorithm for dealing with the second and third terms, see Definition 5. The result is (20).
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Let us have a closer look at the difference of the second and third terms: for integral functionals F and G it is∫∫
dy1 dvol(x1)

(
f (x1, [a], [b])

) ←−∂
∂ai1σ1

⟨ second

e⃗ †,i1 (x1),
first

e⃗i1 (y1)
←−−−−−−−−−−

·

( −→∂
∂y1

)σ1
(δai1 )(y1)

⟩
×

×

∫∫
dy2

⟨
(δbi2 )

(←−∂
∂y2

)σ2
(y2) ·

first

(−e⃗ †,i2 )(y2),
second
e⃗i2 (x2)

−−−−−−−−−−−−→

⟩ −→∂
∂bi2,σ2

(
g(x2, [a], [b])

)
dvol(x2)−

−

∫∫
dy1 dvol(x1)

(
f (x1, [a], [b])

) ←−∂
∂bi1,σ1

⟨ second
e⃗i1 (x1),

first

(−e⃗ †,i1 )(y1)
←−−−−−−−−−−−−

·

( −→∂
∂y1

)σ1
(δbi1 )(y1)

⟩
×

×

∫∫
dy2

⟨
(δai2 )

(←−∂
∂y2

)σ2
(y2) ·

first
e⃗i2 (y2),

second

e⃗ †,i2 (x2)
−−−−−−−−−−→

⟩ −→∂
∂ai2σ2

(
g(x2, [q], [q†

])
)
dvol(x2),

where the (co)vectors marked ‘second’ replace the respective letters in the already-built product of cyclic words f and g; let
us remember that in the construction of ∆(F × G), the multiplication × is performed ab initio and let us bear in mind that
the (co)vectors belonging to shifts (18), here marked ‘first’, do not become parts of that cyclic word. The conversion of two
pairs of variations in (F )

←−
δa ×

−→
δb(G) − (F )

←−
δb ×

−→
δa(G) into one integral object – via integrations by parts on the diagonal

x1 = y1 = y2 = x2 through many consecutive reconfigurations of the couplings – determines the functional32∫∫∫∫
dx1dy1dy2 dvol(x2)

⟨
δai1 (y1) ·

first
e⃗i1 (y1),

second

(−e⃗ †,i2 ) (y2) · δbi2 (y2)
⟩
·

(
f (x1, [a], [b])

) ←−∂
∂ai1σ1

⌈

(
−

←−
d

dy1

)σ1
⌉
◦

⟨ first

e⃗ †,i1 (x1)
⏐⏐⏐  ×

⏐⏐⏐ second
e⃗i2 (x2)

⟩
◦
⌈

(
−

−→
d

dy2

)σ2
⌉

−→
∂

∂bi2,σ2  
(
g(x2, [a], [b])

)
−

−

∫∫∫∫
dx1dy1dy2 dvol(x2)

⟨
δbi1 (y1)

first

(−e⃗ †,i1 ) (y1),
second
e⃗i2 (y2) · δa

i2 (y2)
⟩
·

(
f (x1, [a], [b])

) ←−∂
∂bi1,σ1

⌈

(
−

←−
d

dy1

)σ1
⌉
◦

⟨ first
e⃗i1 (x1)

⏐⏐⏐  ×
⏐⏐⏐ second

e⃗ †,i2 (x2)
⟩
◦
⌈

(
−

−→
d

dy2

)σ2
⌉

−→
∂

∂ai2σ2  
(
g(x2, [a], [b])

)
. (22)

Evaluating both couplings in the minuend, we obtain (−1) · (−1) = +1; likewise, in the subtrahend we have that
(+1) · (+1) = +1; at every value of the indexes, the respective shift components contribute with δa• · δa†

•
= 1. We

emphasise that the expression [[F ,G]], which has been constructed by following the couplings’ re-attachment mechanism,
itself can serve as a constituent part of a larger object. Because the reconfigurations of couplings and integrations by parts
occur prior only to the restriction of output to the jet jet∞x (s, s†) at the diagonal x1 = x2 = y1 = y2 =: x ∈ Mn for the section
(s, s†), this means that other partial derivatives can freely overtake the horizontal derivatives along the baseMn. This is why
the total derivatives were embraced by using ⌈. . .⌉ and why the shifts’ own base variables y i were used in (22) instead of the
variables xi from the functionals’ densities. □

Remark 2.11. In effect, the only minus sign making the difference of two terms is determined by the precedence a ≺ b
versus succedence b ≻ a, that is, by the sequential order in which the parity-even and odd partial derivatives are distributed
between the ordered pair F ≺ G of input objects.

Corollary 9. Suppose that the Schouten bracket of integral functionals F andG is the endpoint of a calculation, that is, the reasoning
stops there and the object [[F ,G]] : Γ (π(0|1)

NC )→ X(x⃗±1) is used only for its evaluation at mappings (s, s†) but it is not contained
in any larger formula. Should this be known in advance, then one re-derives the familiar expression,

[[F ,G]] =
∫ {(

(f )
←−
∂

∂aiσ
⌈

(
−

←−
d
dx

)σ
⌉  × ⌈

(
−

−→
d
dx

)τ
⌉

−→
∂

∂bi,τ  (g)
− (f )

←−
∂

∂bi,σ
⌈

(
−

←−
d
dx

)σ
⌉  × ⌈

(
−

−→
d
dx

)τ
⌉

−→
∂

∂aiτ  (g)
)(

x, [a], [b]
)}

dvol(x), (23)

where, we remember, the multiplication f ×g is performed ab initio to construct the object F ×G over Mn
×Mn; the underbraced

operators then proceed by the four Leibniz rules along the two comultiples, either of which is built into the product but exists over
the respective copy of underlying manifold Mn.

32 The remaining volume element can be either dvol(x1) or dvol(x2); its final location is prescribed by either the right-to-left or left-to-right (which is the
case here) direction of couplings in the output. From (13) it is clear that a simultaneous swap ‘‘first ⇄ second’’ in a pair of couplings would give the extra
factor (−1) · (−1) = +1, so that expression’s overall sign does not change.
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Remark 2.12 (The Geometric Realisation of [[ , ]]). The geometric construction of every term in the noncommutative
variational Schouten bracket of integral functionals goes as follows. Without loss of generality suppose that either of the
arguments F and G consists of just one cyclic word (otherwise, proceed by linearity).

For consistency let us first recall the geometric mechanism of left multiplication (F×)G.

&%
'$

⟲

s∞∞∞F

F =
r·
·
· ↦→&%

'$
⟲

∞∞∞F
r
·
·
·
s

&%
'$

⟲

s p
∞∞∞G�- -�
+
+

+← &%
'$

⟲

s∞∞∞G

= G

p
+

+
+

Namely, by using tra+rb rotate the necklace F counterclockwise until ra ⩾ 0 parity-even and rb ⩾ 0 parity-odd symbols would
have passed through the lock ∞F ; when the (ra + rb + 1)th symbol approaches ∞F , open that lock. Likewise, using t−(pa+pb)

rotate the ringG clockwise and, as soon as pa ⩾ 0 parity-even and pb ⩾ 0 parity-odd symbolswould have passed through∞G,
unlock G just before its (pa+pb+1)th symbol. Place the loose ends of the two openwords next to each other, preserving the
orientation of two strings of symbols, and join the facing ends of the two strings, forming the new cyclic word that inherits

-�s sδa or δb δb or δa+ or−, respectively

s
-

-

s

�

�

⟲ ⟲

∞∞∞F ∞∞∞G

r p

⟨ , ⟩
F G

s∞∞∞·
·
· +

+
+

the orientation.33

From the old markers ∞F and ∞G where the reading of cyclic words F and G started, in opposite directions issue the
derivations ∂/∂aiσ and ∂/∂bi,τ of opposite parities. Let one of them work against the orientation ⟲, i.e. clockwise over F and
let the other act counterclockwise, i.e. along the orientation on G. (Each obeying the Leibniz rule, either of those derivations
of course also reworks the ra + rb – resp., pa + pb – symbols which are found in the string of F – resp., in G with its ∞G
– behind the lock ∞F with respect to the orientation of cyclic words. The calculation of grading and parity then involves
negative integer numbers.) The antecedence ∂/∂aiσ

⏐⏐
F ≺ ∂/∂bi,τ

⏐⏐
G yields the plus sign, whereas the opposite sequential

order of F vs G yields the minus sign in front of the corresponding term in the Leibniz rule expansions.34 In every such term
we integrate by parts in order to shake |σ | and |τ | derivatives off the arguments aiσ and bi,τ of two derivations. Recall that
the emerging powers of minus the total derivatives now act in F ×G overMn

×Mn only on the sub-strings from the words F
or Gwhere the symbols aiσ and bi,τ initially belonged to, see (22).

Finally, rotate the letters around the new word counterclockwise so that the old location of ∞G in between the symbols
of G or after to the last symbol of G reaches the new linking ∞[[F ,G]] of strings, nearest to ∞G in the positive direction. The
terminal configuration is displayed here; it carries |F | + |G| − 1 parity-odd symbols, it preserves the orientation of both the

s
s
R

�
+
+
+

·
·
·

⟲∞∞∞F

∞∞∞[[F ,G]] =∞∞∞G

G

G

G

p

r

F

F

G

input words F and G, and it carries the sign factor determined by the ordered coupling of (co)vectors.

Corollary 10. For a given homogeneous integral functional F ∈ H̄n(π(0|1)
NC ) of grading |F |, the operator [[F , · ]] proceeds over letters

of its cyclic-word(s) argument by the graded Leibniz rule (and by linearity); this operator’s proper grading |[[F , · ]]| is |F | − 1.

33 Note that by the above construction, the symbols from F preserve their consecutive order when forming a sub-string in the cyclic word F × G, as well
as the symbols from G do.
34 One easily recognises the sign convention from (13) in the antecedence of derivations.
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Corollary 11. The bi-linear (non)commutative variational Schouten bracket [[ , ]] itself is a shifted-graded derivation of the
product × in the algebra of local functionals:

[[F ,G× H]] = [[F ,G]] × H + (−)(|F |−1)·|G|G× [[F ,H]], (24)

where F and G are assumed homogeneous and where both terms on the right-hand side are understood as applications of [[F , ·]]

to the cyclic word G× H within the BV Laplacian action ∆
(
F × (G× H)

)
on the non-associative product of three comultiples.

Proof. It is clear that the terms in [[F ,G×H]] are grouped in two parts: those inwhich the parity-odd derivations
−→
∂ /∂bi,τ act

onG and those forH; the former donot contributewith any extra sign factorswhereas the latter do— in awaywhich depends
on the parity |G|. Thismeans that [[F ,G×H]] = [[F ,G]]×H+· · · in terms of [[F , ·]] acting on the product G×H . Proceeding by
linearity if necessary, suppose also thatH is also homogeneous. To grasp the sign in front of the termwhich has been omitted,
let us swap the gradedmultiplesG andH .Wehave thatG×H = (−)|G|·|H|H×G, whence [[F ,G×H]] = (−)|G|·|H|[[F ,H]]×G+· · ·
in terms of [[F , ·]] acting on the product H × G. By recalling that the grading |[[F ,H]]| of the respective class of substrings
in [[F ,G× H]] equals |F | + |H| − 1, we conclude that

[[F ,G× H]] = [[F ,G]] × H + (−)|G|·|H|(−)(|F |+|H|−1)·|G|G× [[F ,H]],

which yields formula (24). □

Remark 2.13. Shifted-graded skew-symmetry (21) of the noncommutative variational Schouten bracket for homogeneous
local functionals F ,G ∈M

n(
π

(0|1)
NC

)
can now be re-derived, from Corollaries 8 and 11, by induction on the respective numbers

ℓ′, ℓ′′ of building blocks in the arguments F and G.

Theorem 12. Let F , G, and H be homogeneous integral functionals on J∞(π(0|1)
NC ) so that their gradings are |F |, |G|, and |H|

respectively. Then each of the following three tautologically equivalent statements is valid:

(i) The noncommutative variational Schouten bracket satisfies the shifted-graded Jacobi identity

(−)(|F |−1)·(|H|−1)[[F , [[G,H]]]] + (−)(|F |−1)·(|G|−1)[[G, [[H, F ]]]] +
+ (−)(|G|−1)·(|H|−1)[[H, [[F ,G]]]] = 0.

(ii) The Jacobi identity for the bracket [[ , ]] is the graded Leibniz rule for the operator [[F , · ]] acting on [[G,H]], namely,

[[F , [[G,H]]]] = [[[[F ,G]],H]] + (−)(|F |−1)·(|G|−1)[[G, [[F ,H]]]]. (25)

(iii) The graded commutator of operators [[F , · ]] and [[G, · ]] is equal to the operator [[[[F ,G]] · ]], that is,

[[F , [[G, · ]]]](H)− (−)(|F |−1)·(|G|−1)[[G, [[F , · ]]]](H) = [[[[F ,G]], · ]](H). (26)

The arrangement of parentheses in (26) is (F×G)×H; both the other variants (i–ii) are obtained from (26) usingmultiplication
by sign factors.35

Proven immediately below for the case of integral building blocks from H̄n(π(0|1)
NC ), assertion (iii) of Theorem 12 is then

extended by induction to the spaceM
n(

π
(0|1)
NC

)
of noncommutative local functionals.

Proof. Consider the consecutive action of operators [[F · ]] and [[G · ]] of gradings |F | − 1 and |G| − 1, respectively, on an
integral functional H . Each operator proceeds over letters in every cyclic word of H by the graded Leibniz rule. It is readily
seen that by taking the graded difference of the two applications, as it stands on the left-hand side of (26), we cancel all the
terms in which the strings of symbols from F and G are pasted into H not hitting each other (that is, rather staying next to
each other or becoming separated by the argument’s own letters). Therefore, both sides of (26) contain the second variation
of F or G but only the first variation of H .

Note further that all the integrals by parts always involve only the letters that belong to (what remains of) the functional
which is varied, see Section 2.5. Consequently, both sides of (26) contain the same configurations of powers of total
derivatives that fall on the letters from the second or first, first or second, and first variations of F , G, and H , respectively.
This shows that it is sufficient to inspect the matching of signs – as they occur on the left- and right-hand sides of (26) – in
front of the insertions of symbols from F into G, and vice versa. Without loss of generality, let us suppose that each of the
functionals F and G consists of just a single cyclic word.

35 Each reading of the Jacobi identity for [[ , ]] is valid regardless of the sequential order of multiplications in F × G× H after a reduction to the graded-
commutative set-up. From the first paragraph in the proof below it is seen why the parentheses configuration is (F ×G)×H in the non-associative setting.
In the meantime, we conclude that the Jacobi identity for [[ , ]] renders the fact that the commutator of adjoint actions is the adjoint action by the bracket,
cf. [19].
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Every term in [[G, · ]](H) is obtained from the cyclic words

&%
'$s∞∞∞G

⟲G = and H = &%
'$s∞∞∞H

⟲

qp+

+
+

as follows (see Remark 2.12). First, the ring G is rotated counterclockwise, transporting p odd symbols through ∞G, which
gives the sign (−)p·(|G|−1), and then G is unlocked at ∞G. At the same time, H is rotated clockwise and unlocked as soon as
q odd letters would have passed the lock ∞H . The word obtained from G is pasted, orientation preserved, into the similarly
obtained fragments of H; the loose ends of the two strings are joined, making a new circle. Contracting one pair of variations
(δa, δb) destroys one parity-odd symbol in either G orH . Finally, the q parity-odd letters ofH are pushed counterclockwise —
so many of them that the old ∞H coincides with ∞[[G,H]], placed at the moment of linking at the concatenation of strings’
loose ends nearest to ∞H in positive direction. The sign factor which is gained when the lock of H is restored on its proper
place equals (−)q·(|G|−1); theminus one in the exponent counts the parity-odd letter destroyed by the coupling. The resulting
necklace – a term in [[G,H]] – looks like this:

u
u

Ri

⟲∞∞∞G

∞∞∞[[G,H]]

�
H

H

q

p +

+

G

G
H

The total sign accumulated up to this moment is (−)p·(|G|−1) · (−)q·(|G|−1). Now the operator [[F , · ]] approaches that ring from
the left. Arguing as above, we rotate the cyclic word

&%
'$r

⟲

∞∞∞F
·
·
·
r

F =

counterclockwise, letting r parity-odd symbols pass through ∞F (this yields (−)r·(|F |−1)). Having unlocked that ring at ∞F ,
we carry this term in [[F , · ]] of grading |F | − 1 along the p+ q parity-odd symbols in the pre-fabricated linking of G and H .
By the time the loose ends of [[F , · ]] reach the former location of ∞G in G, the sign factor (−)(p+q)·(|F |−1) is accumulated, and
the configuration is this:

s
ss

R
-

�

⟲∞∞∞F

∞∞∞G

∞∞∞[[F ,[[G,H]]]] =∞∞∞H

�

H H

H

G
F H

p
q

r ··
·

+
+
+

F

G

H

By having realised the scenario which the first term on the left-hand side of (26) provides, we obtain the overall sign

(−)r·(|F |−1) · (−)p·(|G|−1) · (−)q·(|G|−1) · (−)(p+q)·(|F |−1) = (−)r·(|F |−1) · (−)(p+q)·(|F |+|G|−2). (27)

Moreover, now it is clear what the extra sign contribution to the formula above would be, should the insertion of the
unlocked F start later – with respect to the cyclic order – than the starting point ∞G of the turned-and-unlocked cyclic
word G.
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On the other hand, let us calculate the overall sign factor of the very same geometric configuration on the right-hand side
of (26). So, we first produce the respective term in [[F ,G]]. Let us recall from the above that the word

&%
'$r

⟲

∞∞∞G
+
+
+

p

G =

is unlocked straight after ∞G, but

&%
'$r

⟲

∞∞∞F
·
·
·

r

F =

is first rotated counterclockwise by r parity-odd slots; this yields the sign (−)r·(|F |−1) and gives the word

s s

R

-

·
· ·

⟲

∞∞∞F

∞∞∞[[F ,G]] =∞∞∞G

F

G

G

r p+ +
+

F

G G

It contains |F | + |G| − 1 parity-odd letters; let us use it in the action of [[[[F ,G]], · ]] on H . By rotating the word to-paste
counterclockwise by p parity-odd symbols, we gain the sign (−)p·(|F |+|G|−2); proceeding by the Leibniz rule over q parity-odd
letters in H , we obtain another sign factor (−)q·(|F |+|G|−2). In total, the overall sign that occurs on the right-hand side of (26)
for the configuration that we knew before is

(−)r·(|F |−1) · (−)p·(|F |+|G|−2) · (−)q·(|F |+|G|−2).

This is exactly (27).
To process – in both sides of (26) – the configurations in which the symbols from G are pasted in between the letters of F ,

and those are already installed in H , let us first swap F and G. By Corollary 8, the right-hand side of (26) becomes

− (−)(|F |−1)·(|G|−1)[[[[G, F ]], · ]](H).

Second, multiply both sides of (26) by the sign factor−(−)(|F |−1)·(|G|−1); this gives

− (−)(|F |−1)·(|G|−1)[[F , [[G, · ]]]](H)+ [[G, [[F , · ]]]](H) versus [[[[G, F ]], · ]](H).

Finally, relabel F ⇄ G back; by having thus recovered both sides of (26) in its authentic form, we convert the configurations
to-consider into those which we did cope with. The proof is complete. □

Lemma 13. Let F ∈ H̄n(1+k)
(
Tπ

(0|1)
NC

)
and G ∈ H̄n(1+ℓ)

(
Tπ

(0|1)
NC

)
be two integral functionals (here k, ℓ ⩾ 0), and assume F is

homogeneous. Then

∆
(
[[F ,G]]

)
= [[∆F ,G]] + (−)|F |−1[[F , ∆G]]. (28)

This claim will be extended to all elements of the algebra of local functionals over J∞
(
π

(0|1)
NC

)
; the inductive proof of

Theorem 14 is based on this lemma.

Proof. The key idea is that the structures∆ and [[ , ]] yield equivalence classes of integral functionalswhich, after integration
by parts at the end of the day, are independent of a choice of the built-in test shifts normalised by (14). Consequently, the
composite structure ∆([[·, ·]]) does not change under swapping δaα

1 ⇄ δaβ

2 , δb1,α ⇄ δb2,β of the respective variations δs1
and δs2 in ∆ and in [[ , ]]. Hence the terms which are skew-symmetric under such exchange necessarily vanish (cf. the proof
of Lemma 7).

For the sake of clarity, let us assume that F =
∫
f
(
x1, [a], [b]

)
dvol(x1) and G =

∫
g
(
x2, [a], [b]

)
dvol(x2) are building

blocks from the cohomology group H̄n(π(0|1)
NC ); this simplification is legitimate because new variations which come from ∆



A.V. Kiselev / Journal of Geometry and Physics 130 (2018) 130–167 155

and [[ , ]] do not interfere with any other test shifts if those are already absorbed by the densities f and g . Suppose that δs1
and δs2 are two normalised variations of the generators ai and bi. By definition, we have that36

−→
δa
−→
δb ([[F ,G]]) =

∫
M
dz1

∫
M
dz2

∫
M
dy1

∫
M
dy2

∫
M
dx1

∫
M
dvol(x2){⟨

(δaj12 )
( ←−

∂
∂z1

)τ1
(z1) · e⃗j1 (z1), e⃗

†,j1 (·)
−−−−−−−−−→

⟩ −→∂
∂aj1τ1
◦
⟨
(δb2,j2 )

( ←−
∂

∂z2

)τ2
(z2) · (−e⃗ †,j2 )(z2), e⃗j2 (·)

−−−−−−−−−−−→

⟩ −→∂
∂bj2,τ2

}
[⟨

δai11 (y1) e⃗i1 (y1), (−e⃗
†,i2 )(y2)

−−−−−−−−−−−−−→
δb1,i2 (y2)

⟩
·

(
f (x1, [a], [b])

) ←−∂
∂ai1σ1

⌈

(
−
←−
d

dy1

)σ1
⌉
⟨e⃗ †,i1 (x1)| × |e⃗i2 (x2)⟩

⌈

(
−
−→
d

dy2

)σ2
⌉

−→
∂

∂bi2,σ2

(
g(x2, [a], [b])

)
−

−
⟨
δb1,i1 (y1) (−e⃗

†,i1 )(y1), e⃗i2 (y2)
−−−−−−−−−−−−→

δai21 (y2)
⟩
·

(
f (x1, [a], [b])

) ←−∂
∂bi1,σ1

⌈

(
−
←−
d

dy1

)σ1
⌉
⟨e⃗i1 (x1)| × |e⃗

†,i2 (x2)⟩ ⌈
(
−
−→
d

dy2

)σ2
⌉

−→
∂

∂ai2σ2

(
g(x2, [a], [b])

)]

The partial derivatives
−→
∂ /∂aj1τ1 ◦

−→
∂ /∂bj2,τ2 are distributed between the arguments f and g by the graded Leibniz rule.

Whenever none of the two operators overtakes the density of F , the reconfiguration yields [[∆F ,G]]. Likewise, if both
derivatives indexed by j overtake F and then also overtake an old derivative that fell on g , we obtain (−)|F |−1[[F , ∆G]], which
is the second term on the right-hand side of (28).

We claim that the remaining four terms cancel out by virtue of independence – of both ∆ and [[ , ]] – of a choice of
normalised virtual shifts.

The two mixed terms can informally be visualised using
−→
δ

δb
(f )
←−
δ

δa
×

−→
δ

δa

−→
δ

δb
(g)±

−→
δ

δa
(f )
←−
δ

δb
×

−→
δ

δb

−→
δ

δa
(g).

They contribute to the integrand with the difference of equal terms,⟨
δai11 (y1) e⃗i1 (y1), (−e⃗

†,i2 )(y2)
−−−−−−−−−−−−−→

δb1,i2 (y2)
⟩
·
⟨
δb2,j2 (z2) (−e⃗

†,j2 )(z2), e⃗j1 (z1)
−−−−−−−−−−−−→

δaj12 (z1)
⟩
·

(
f (x1, [a], [b])

)
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

←−
∂

∂ai1σ1

⌈

(
−

←−
d
dy1

)σ1
⌉
⟨e⃗ †,i1 (x1)| × |e⃗i2 (x2)⟩

⌈

(
−

−→
d
dy2

)σ2
⌉

−→
∂

∂bi2,σ2

(−)|F |−1
←−
∂

∂bj2,τ2

⌈

(
−

←−
d

dz2

)τ2
⌉
⟨e⃗j2 (x1)| × |e⃗

†,j1 (x2)⟩ ⌈
(
−

−→
d
dz1

)τ1
⌉

−→
∂

∂aj1τ1

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭
(
g(x2, [a], [b])

)

−
⟨
δb1,i1 (y1) (−e⃗

†,i1 )(y1), e⃗i2 (y2)
−−−−−−−−−−−−−→

δai21 (y2)
⟩
·
⟨
δaj12 (z1) e⃗j1 (z1), (−e⃗

†,j2 )(z2)
−−−−−−−−−−−−→

δb2,j2 (z2)
⟩
·

(
f (x1, [a], [b])

)
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

←−
∂

∂bi1,σ1

⌈

(
−

←−
d

dy1

)σ1
⌉
⟨e⃗i1 (x1)| × |e⃗

†,i2 (x2)⟩ ⌈
(
−

−→
d
dy2

)σ2
⌉

−→
∂

∂ai2σ2
←−
∂

∂aj1τ1

⌈

(
−

←−
d

dz1

)τ1
⌉
⟨e⃗ †,j1 (x1)| × |e⃗j2 (x2)⟩

⌈

(
−

−→
d
dz2

)τ2
⌉(−)|F |−1

−→
∂

∂bj2,τ2

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭
(
g(x2, [a], [b])

)
,

which yields zero after summation over all the (multi)indices.
To prove that each of the remaining two terms,37

−→
δ

δb
(f )
←−
δ

δb
×

−→
δ

δa

−→
δ

δa
(g) and

−→
δ

δa
(f )
←−
δ

δa
×

−→
δ

δb

−→
δ

δb
(g),

cancels by itself, let us inspect its behaviour under a swap δs1 ⇄ δs2 of coefficients in the normalised test shifts.38

36 To keep track of their origin, we preserve the notation for base variables yµ and zν in the minus total derivatives acting at the end of the day on
densities of the functionals F and G.
37 Note that

−→
δ /δb

(
(f )
←−
δ /δb

)
=
(−→

δ /δb(f )
)←−

δ /δb.
38 This mechanism has already been implemented in the short proof of Lemma 7.
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Namely, the integrand of the third term is (−)|F |−1 times⟨
δb2,j2 (z2) (−e⃗

†,j2 )(z2), e⃗j1 (z1)
−−−−−−−−−−−−→

δaj12 (z1)
⟩
·
⟨
δb1,i2 (y2) (−e⃗

†,i2 )(y2), e⃗i1 (y1)
−−−−−−−−−−−−−→

δai11 (y1)
⟩
·

(
f (x1, [a], [b])

)
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

←−
∂

∂bj2,τ2

⌈

(
−

←−
d

dz2

)
τ2 ⌉ ⟨e⃗j2 (x1)| × |e⃗

†,j1 (x2)⟩ ⌈
(
−

−→
d
dz1

)
τ1 ⌉

−→
∂

∂aj1τ1
←−
∂

∂bi2,σ2

⌈

(
−

←−
d

dy2

)
σ2 ⌉ ⟨e⃗i2 (x1)| × |e⃗

†,i1 (x2)⟩ ⌈
(
−

−→
d
dy1

)
σ1 ⌉

−→
∂

∂ai1σ1

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭
(
g(x2, [a], [b])

)
.

By construction, the lower-line derivations – from [[ , ]] – act first on f and g , and then the (graded-)derivations from the
upper line – from ∆ – work on the respective arguments. Now let the (multi)indexes be relabelled as above: i ⇄ j, σ ⇄ τ ,
and δai1 ⇄ δaj2, δb1,i ⇄ δb2,i on top of y ⇄ z . On the one hand, no relabelling of summation indices would affect any sum. On
the other hand, such relabelling swaps the two lines between f and g , producing theminus sign factor due to the interchange
of two parity-odd derivatives that fall on the first argument f . Consequently, the entire sum vanishes.

The only remaining term is processed analogously; the same relabelling of (multi)indices swaps the parity-odd deriva-
tions that act on the second argument g . Equal to minus itself, the fourth term vanishes. This concludes the proof. □

Theorem 14. Let F and G be two noncommutative local functionals over the infinite jet space J∞
(
π

(0|1)
NC

)
; suppose F is

homogeneous. The Batalin–Vilkovisky Laplacian ∆ satisfies the relation

∆
(
[[F ,G]]

)
= [[∆F ,G]] + (−)|F |−1[[F , ∆G]]. (28)

In other words, the operator ∆ is a graded derivation of the noncommutative variational Schouten bracket [[ , ]].

Proof. We prove this by induction over the number of building blocks in each argument of the Schouten bracket on the left
hand side of (28). To assert the claim in full, one reduces the set-up to integral functionals F , swaps the arguments F ⇄ G of
the Schouten bracket [[ , ]] by using formula (21), and repeats the reasoning.39

If F and G both belong to H̄∗
(
Tπ

(0|1)
NC

)
, then Lemma 13 states the assertion, which is the base of induction. To make an

inductive step, without loss of generality let us assume that the first argument of [[ , ]] in (28) is a product of two elements
from N̄n

(
Tπ

(0|1)
NC

)
, each of them containing fewermultiples from H̄∗

(
Tπ

(0|1)
NC

)
than the product. Denote such factors by F andG

and suppose for definition that either of them, as well as the second argument H of the Schouten bracket, is homogeneous.
Using Corollaries 8 and 11, we expand (F × G)

←−−−
[[·,H]] and deduce that

[[F × G,H]] = F × [[G,H]] + (−)|G|·(|H|−1)[[F ,H]] × G. (29)

Therefore, recalling Definition 6 of the Schouten bracket, we have that

∆([[F × G,H]]) = ∆F × [[G,H]] + (−)|F |[[F , [[G,H]]]] + (−)|F |F ×∆
(
[[G,H]]

)
+(−)|G|·(|H|−1)

{
∆
(
[[F ,H]]

)
× G+ (−)|F |+|H|−1[[[[F ,H]],G]] + (−)|F |+|H|−1[[F ,H]] ×∆G

}
.

Using the inductive hypothesis in the third and fourth terms of the right-hand side in the above formula, we continue the
equality and obtain

∆F × [[G,H]] + (−)|F |[[F , [[G,H]]]] + (−)|F |
{
F × [[∆G,H]] + (−)|G|−1F × [[G, ∆H]]

}
+ (−)|G|·(|H|−1)

{
[[∆F ,H]] × G+ (−)|F |−1[[F , ∆H]] × G

+ (−)|F |+|H|−1
[
[[[[F ,H]],G]] + [[F ,H]] ×∆G

]}
. (30)

On the other hand, let us expand the right-hand side of (28), which now is

[[∆(F × G),H]] + (−)|F |+|G|−1[[F × G, ∆H]];

we recall the definition of [[ , ]] and we then use (29). We obtain

[[∆F × G+ (−)|F |[[F ,G]] + (−)|F |F ×∆G,H]] + (−)|F |+|G|−1[[F × G, ∆H]]
= (−)|G|·(|H|−1)[[∆F ,H]] × G+∆F × [[G,H]] + (−)|F |[[[[F ,G]],H]]

+ (−)|F |
{
(−)(|G|−1)·(|H|−1)[[F ,H]] ×∆G+ F × [[∆G,H]]

}
+ (−)|F |+|G|−1

{
(−)|G|·|H|[[F , ∆H]] × G+ F × [[G, ∆H]]

}
. (31)

39 This is essential because Jacobi identity (26), which will be used explicitly in the proof below, requires the arrangement of parentheses ((· × ·)× ·) but
not (· × (· × ·)) in the course of multiplication of the three functionals F , G, and H in (29).
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Comparing (31) with (30), which was derived from the inductive hypothesis, we see that all the terms match except for

(−)|F |
{
[[F , [[G,H]]]] − (−)(|F |−1)·(|G|−1)[[G, [[F ,H]]]]

}
from (30) versus

(−)|F | [[[[F ,G]],H]]

from (31). These three terms constitute (−)|F | times the left- vs right-hand sides of Jacobi identity (26) for the noncommu-
tative variational Schouten bracket. The balance of (30) and (31) completes the inductive step and concludes the proof. □

Theorem 15. The Batalin–Vilkovisky Laplacian ∆ is a differential on the space of local functionals over J∞(π(0|1)
NC ),

∆2
= 0.

Summarising, the space M
n(

π
(0|1)
NC

)
of cyclic word-valued local functionals is a (non)associative graded-commutative

BV algebra.

Proof. We prove Theorem 15 by induction over the number of building blocks from H̄∗
(
Tπ

(0|1)
NC

)
in the argument H ∈

N
n(Tπ

(0|1)
NC

)
of∆2. IfH ∈ H

∗(
π

(0|1)
NC

)
itself is an integral functional, then by Lemma 7 there remains nothing to prove. Suppose

now that H = F ×G for some F ,G ∈ N
n(Tπ

(0|1)
NC

)
and assume that the functional F is homogeneous. Then Definition 6 yields

that

∆2(F × G) = ∆
(
∆F × G+ (−)|F |[[F ,G]] + (−)|F |F ×∆G

)
.

Using Definition 6 again and also Theorem 14, we continue the equality:

=∆2F × G+ (−)|∆F |
[[∆F ,G]] + (−)|∆F |∆F ×∆G

+ (−)|F |[[∆F ,G]] + (−)|F |(−)|F |−1[[F , ∆G]]

+ (−)|F |∆F ×∆G+ (−)|F |(−)|F |[[F , ∆G]] + (−)|F |(−)|F |F ×∆2G.

By the inductive hypothesis, the first and last terms in the above formula vanish; taking into account that |∆F | = |F | − 1
in Z2, the terms with ∆F × ∆G cancel against each other, as do the terms containing [[∆F ,G]] and [[F , ∆G]]. The proof is
complete. □

Remark 2.14. In the BV context, the non-associativity of the algebra of cyclic words is a property still not a burden. To
establish that the BV Laplacian∆ is a differential on the algebra of local functionals, we de facto proved that for any three such
functionals F ,G, andH one has that∆2(F×G×H) = 0. In viewof the non-associativity of the product×, the parentheseswere
arranged in the lexicographic order (F × G)× H . This was essential for a verification of Jacobi identity (25), see footnote 35.
Yet because the multiplication× is graded-commutative so that F × (G× H) = (−)|F |·(|G|+|H|)(G× H)× F , the arrangement
(· × (· × ·)) is transformed into ((· × ·) × ·), which was considered before. Now relabelling the arbitrary functionals via
F ← G← H ← F , we deduce that the non-associativity of operation× in the argument of∆2(F×G×H) is not restrictive.40

Remark 2.15. We conclude that the proof of all these assertions about the Batalin–Vilkovisky Laplacian and variational
Schouten bracket remains literally valid in the graded-commutative set-up. Indeed, when the proof is over, it suffices to let
N := 0 (so that there are no generators x⃗±1i ) and proclaim that the letters aiσ and bj,τ are graded-permutable; the proof itself
does not require that assumption.

Likewise, the formalism developed in Section 2 survives arbitrary changes of cell decomposition for manifolds(
Mn, dvol(·)

)
, even though the tilings of newly produced spaces, whenever irregular, would make the alphabet x⃗±1 point-

dependent.
We also conclude that by shrinking the substratemanifoldMn to a point, so that n = 0 andN = 0,we recover the standard

properties of the parity-odd differential ∆0 =
−→
∂

2
/∂ai∂bi and parity-odd Poisson bracket in the (formal non)commutative

geometry of symplectic supermanifolds of superdimension (m|m). The locality of couplings (13) still in force, our reasoning
explains why the differentials of twoHamiltonians and the Poisson bi-vector are referred to the same point when the Poisson
bracket is constructed.

3. Noncommutative variational Poisson formalism

The noncommutative variational cotangent superspace, whichwe built in Section 2 for the bundleπNC from Section 1, and
the calculus of local functionals on jet spaces J∞(π(0|1)

NC ), see Section 2, refer to the canonical symplectic structure encoded
by (13). Let us now introduce a more narrow (sic!) class of variational noncommutative geometries in which the Poisson
structures are defined.

40 In the weight factor exp
( i
h̄ S

h̄
)
of the Feynman path integral, the comultiples are copies of the (quantum BV-)action functional S h̄ , whence the nominal

non-associativity of structure× is all the more negligible.
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3.1. Noncommutative variational multivectors

Let us recall that the notion of space of integral functionals H̄n(π(0|1)
NC ) was based in Section 2 on an obvious analytic

idea to integrate the sections s ∈ Γ (πNC) over dvol(x) on the substrate manifold Mn; the integrals take every such
evaluation mapping to the cyclic word(s) written in the edge alphabet x⃗±1 (see (17)). When the Z2-valued parity function
was introduced, the parity-odd symbols b and extension s† of s to maps defined on A(0|1) were felt as the objects that make
everything go much better as soon as one gets rid of them; we refer to Remark 2.5 in particular.

Taking this into account, let us describe a very different geometric approach to the use of Z2-parity graded noncom-
mutative integral functionals. Namely, we shall view the parity-odd symbols b and their derivatives as placeholders for
(non)commutative variational covectors; such placeholders appear in the fully skew-symmetric poly-linear maps on the
space H̄n(π(0|1)

NC ) of purely even Hamiltonian functionals. By making this construction precise, which forces us to narrow the
class of graded-homogeneous functionals under study, we resolve the difficulty which is known from Remark 2.5.

The key idea is that – unlike it is the case for cyclic-word integral functionals of generic nature – the (non)commutative
variationalmultivectors are organised in precisely the sameway with respect to each parity-odd entry b, as long as the shifts
t around the circle and integrations by parts are allowed.

Let P ∈ H̄n(π(0|1)
NC ) be a homogeneous functional of grading |P|=:k ⩾ 0. If k = 0, none of the cyclic words in P contains any

parity-odd symbols bi,τ . If k = 1, then there is the noncommutative linear total differential operator A (that is, an operator
which is polynomial in the total derivatives and the coefficients of which are operators of left and right multiplication by
functions of x or by parity-even symbols x⃗±1 or aiσ from the alphabet on J∞(π(0|1)

NC )) such that

P =
(
A(b)

)
.

Clearly, there remains nothing more to do; for the above key idea is already realised.
Suppose now k = 2; pick one parity-odd letter in every cyclic word of P and throw all the derivations off every such letter

by using a suitable number of integrations by parts; then, if necessary, transport the letters around the circle so that those
bi,∅ stand immediately after the lock ∞ in the positive, counterclockwise direction. This brings P to the normal shape

P ∼= 1
2

(
b ◦ A(b)

)
; (32)

by construction, A is the arising (m×m)-size matrix linear noncommutative total differential operator of one argument.
Arguing as above and picking some parity-odd letter in every word of a given integral functional P of grading k, we

transform it to the sum of cyclic words, each starting with bj,∅ for 1 ⩽ j ⩽ m,

P ∼=
1
k!

(
b ◦ A(b, . . . , b  

k−1 slots

)
)
, (33)

where the noncommutative total differential operator A is poly-linear in its k− 1 arguments.41
To make the construction of operator A independent of our initial choice of some parity-odd entries, let us analyse the

properties such an operator must have. We consider the case k = 2 because it will be essential in what follows. Through the
chain of integrations by parts and by carrying the parity-odd letters around the circle,

P = 1
2 (b ◦ A(b)) ∼=

1
2

(
(b)
←−
A

†
◦ b
)
∼ −

1
2

(
b ◦ (b)

←−
A

†) def
= −

1
2

(
b ◦ A†(b)

)
, (34)

one defines the adjoint operator A† that acts on its argument in the left-to-right direction.42 The starting objects P and the
resulting functional are identically the same if we require that

A = −A†. (35)

For example, let n = 1,m = 1 and consider P = 1
2 (b ◦ bx) with A = d⃗/dx, see [22].

The requirements which the poly-linear operator A of k− 1 arguments must satisfy are imposed for all k ⩾ 3 in the same
way as in (34).

In what follows, we shall consider only the grading-homogeneous functionals on J∞(π(0|1)
NC ) for which the poly-linear

operators A are well defined, so that normalisation (33) can be attained by starting from any parity-odd entry in every cyclic
word of the functional at hand.

41 Of course, the notation for A acting on them-tuples b is symbolic; in reality, every cyclic word of P carries k parity-odd entries bi1,∅ , bi2,σ
i2
2
, . . . , b

ik,σ
ik
k
,

where 1 ⩽ iα ⩽ m and the multi-indexes are word-dependent. It is often the case that |σ i
α | ̸= |σ

j
α | for i ̸= j at some α; for instance, recall the differential

order of entries in the matrix operator for the second Poisson structure of the renowned Boussinesq hierarchy.
42 Note that the left multiplications in A become the right multiplications in

←−
A

†
, and vice versa. At the same time, the total derivative operators are

reshaped by (
−→
d /dx)σ ◦ ↦→ ◦(−

←−
d /dx)σ ↦→ (−

−→
d /dx)σ ◦, e.g., the adjoint to (aa◦)

−→
D x( · )(◦a) is (−

−→
D x) ◦ ((a◦)( · )(◦aa)). Thirdly, the operator’s matrix is

transposed: (A†)ij = (Aji)† , where the rightmost symbol † denotes the adjoint of a scalar differential operator.
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Definition 7. Homogeneous integral functionals P ∈ H̄n(π(0|1)
NC ) of grading k ⩾ 0 and such that either k ⩽ 1 or

normalisation (33) is well defined are called noncommutative variational k-vectors.
Let us denote by H̄n

k (π
(0|1)
NC ) ⊊ H̄n(π(0|1)

NC ) the vector space of noncommutative variational k-vectors on J∞(π(0|1)
NC ).

Note that by Remark 2.5, the subspaces H̄n
k (π

(0|1)
NC ) do not exhaust the homogeneous components of grading k in H̄n(π(0|1)

NC )
for k ⩾ 2.

Remark 3.1. We claim that the vector space
⨁

k⩾0H̄
n
k (π

(0|1)
NC ) of all noncommutative variational multivectors is closed under

[[ , ]], which endows it with the structure of Gerstenhaber algebra with respect to the noncommutative variational Schouten
bracket.

Definition 7 is constructive but implicit. It is instructive to see why the Schouten bracket [[F ,G]] of a k-vector F and
ℓ-vector G is a (k + ℓ − 1)-vector: this fact relies on a very distinguished structure – of the local variational differential
operators [[F , · ]] or [[ · ,G]] – whose normalisation (33) provides for the geometric model of [[ , ]] in Remark 2.12.

Remark 3.2. The price that one pays for the (non)commutative variational multivectors’ realisation – uniform with respect
to every parity-odd entry b under integration by parts and cyclic shifts – is precisely having that legal possibility to integrate
by parts. Yet we remember from Section 2.5 that all of such integration is postponed until the ultimate end of every object’s
construction in the frames of the geometry of iterated variations. Therefore, the variational calculus of (non)commutative
variational multivectors is step-by-step indeed; every intermediate object is let to exist as a well-defined notion.

For instance, Poisson bi-vectors P first take the Hamiltonians F to the respective one-vectors XF , which are also known
to us under the name of Hamiltonian evolution equations (e. g., of (non)commutative Korteweg–de Vries type). In turn, the
well-defined one-vector XF acts by the Schouten bracket [[XF , · ]] on a given 0-vector H , which defines the Poisson bracket
{F ,G}P , see Section 3.3.

Notice that no multiplication of copies of the substrate manifold Mn can be seen from this way of reasoning; in fact, the
on-the-diagonal restriction in the last phase of construction of the Schouten bracket becomes the immediate next to the
first step. This is why the Poisson framework of (non)commutative variational multivectors was not capable of providing
the intrinsic self-regularisation of the Batalin–Vilkovisky formalism with generic local functionals.

3.2. Derived brackets

Let P ∈ H̄n
k (π

(0|1)
NC ) be a noncommutative variational k-vector. Consider k integral functionals H1, . . . ,Hk ∈ H̄n

0 (π
(0|1)
NC ) of

grading zero (that is, a k-tuple of 0-vectors).

Definition 8. The k-linear bracket { · , . . . , · }P : (H̄n
0 × · · · × H̄n

0 )(π
(0|1)
NC ) → H̄n

0 (π
(0|1)
NC ) is defined by the noncommutative

variational k-vector P as the derived bracket,43

{H1, . . . ,Hk}P
def
= (−)k [[. . . [[P,H1]], . . . ,Hk]]. (36)

The nested Schouten brackets are underlined in order to emphasise that each of them produces an object, i.e. the noncom-
mutative variational multivector with one parity-odd entry less than the two arguments had together. In consequence, the
integrations by parts are legitimate at every such step. This makes the Poisson formalism on jet spaces a science of steps and
stops.

Example 3.1. If k = 1 and the noncommutative variational one-vector is the cyclicword P = (A(b)) for some total differential
operator A (i.e. for a linear operator that is polynomial in the total derivatives), then

{H1}P = −[[P,H1]] = (A(δH1/δa)).

Likewise, if k = 2 and, after a suitable number of integrations by parts, the noncommutative variational bi-vector is
represented by the cyclic word(s) P = 1

2 (b ◦ A(b)), then it is readily seen that44

{H1,H2}P = [[[[H1, P]],H2]] ∼=

(
A
(

δH1

δa

)
◦

δH2

δa

)
∼

(
δH2

δai
◦ Aij

(
δH1

δaj

))
. (37)

Let us comment on every step in this construction. First, the variational one-vector XH1 is produced from P and H1; consider

[[H1,
1
2 (b ◦ A(b))]] =

⎛⎝δH1

δa
◦
1
2

∑
|τ |

(
−

−→
d
dx

)τ −→
∂

∂bτ

(b ◦ A(b))

⎞⎠ .

43 We refer to [49] for a review of the concept of derived brackets in the geometry of usual manifolds. An algebraic classification of N-ary brackets is
obtained in [50]; by analysing the jet-bundle geometry in this context, in the paper [51] we developed the notion of Wronskian determinants for functions
in many variables. In particular, we proved that every such structureW encodes a differential d2

W = 0.
44 The first equality tells us that the bracket { · , · }P which the bi-vector P determines is a bracket between its arguments indeed.
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When P = 1
2

(
b ◦ A(b)

)
is varied with respect to b, the partial derivatives

−→
∂ /∂bj,τ reach the first occurrence b∅ with τ = ∅

at once; before they reach the argument b of skew-adjoint operator A, let us integrate by parts: 1
2 (b◦A(b)) ∼=

1
2 (−A(b)◦b) ∼

1
2 (b ◦ A(b)). This shows that due to the particular structure of bi-vectors – if compared with generic functionals of grading
two, – the second term doubles and absorbs 1

2 . We get the one-vector (δH1/δa ◦ A(b)); integrating by parts once again and
using (35), we obtain the object

XH1 =

(
−A

(
δH1

δa

)
◦ b
)

.

Now the construction of the outer Schouten bracket in (37) is elementary.

Lemma 16. Derived bracket (36) is totally antisymmetric under permutations of its arguments:

{Hω(1), . . . ,Hω(k)}P = (−)ω {H1, . . . ,Hk}P

for any ω ∈ Sk and any H1, . . . ,Hk ∈ H̄n
0 (π

(0|1)
NC ).

Remark 3.3. The total skew-symmetry of object (36) produced in k separate steps – with integration by parts and full
stop after each step – does not follow from the Jacobi identity for [[ , ]], which was established in Section 2. Rather, this is
a manifestation of the noncommutative variational k-vectors’ intrinsic property to be structurally identical with respect to
every two graded entries b.

Sketch of the proof. It suffices to show that the derived bracket { · , . . . , · }P changes its sign under a swap of two
consecutive arguments Hi and Hi+1:

. . . [[[[Q ,Hi]],Hi+1]] . . . ∼= − · · · [[[[Q ,Hi+1]],Hi]] . . . .

Consider the noncommutative variational multivector’s necklace Q and mark, by using ⊗ and ⊕, two parity-odd entries b
(e. g., the two consecutive ones for the sake of clarity), see the figure on the facing page.

&%
'$

⟲

s∞∞∞ss s s
⊗

⊕

This object’s inner Schouten bracketwithHi does basically the following: normalisation (33) throws all the derivatives off the
entry⊗ and implants δHi/δa in its stead (the normalisation does exactly the samewith every other entry b by the definition
of multivector, but let us focus on the term such that the variation δHi/δa hits ⊗). Now reshape this output by making ⊕
free of derivatives falling on it. Note that this session of integrations by parts again amounts to bringing the multivector to
normalised shape (33), — only the neighbouring entry⊗ is occupied now by δHi/δa, not by b. The outer Schouten bracket
installs δHi+1/δa at⊕ (or at any other parity-odd entry; we consider just one term, for definition).

On the other hand, consider the very same scenario of putting δHi/δa for ⊗ and δHi+1/δa for ⊕, done in the reverse
order. To reach⊕ first in the construction of (now, inner) Schouten bracket, the derivation

←−
∂ /∂b has to overtake⊗ currently

occupied by the parity-odd placeholder b; this overtaking yields the sought-forminus sign. The variation δHi+1/δa pasted for
⊕, we cast all the derivatives off the still-unused slot⊗, leave δHi/δa there, and integrate by parts back, to isolate δHi+1/δa
in the socket⊕. It is readily seen that the two algorithms produce the identical portraits of letters and derivatives, yet those
two differ by the sign factor. □

Remark 3.4. Continuing this line of reasoning, we conclude that for a given noncommutative variational k-vector P , the
value {H1, . . . ,Hk}P of derived bracket (36) at k argumentsH1, . . . ,Hk ∈ H̄n

0 (π
(0|1)
NC ) is equivalent, up to integration by parts,

to the 0-vector

(−)
k(k−1)

2 ·
1
k!

∑
ω∈Sk

(−)ω
(

δHω(1)

δa
◦ A

(
δHω(2)

δa
, . . . ,

δHω(k)

δa

))
∼= {H1, . . . ,Hk}P , (38)

where the alternating sum runs through the entire permutation group Sk; note that it is the parity-even arguments Hi but
not the slots for them which are shuffled.

Observation (38) allows us to extend themapping P from the geometry of exact (non)commutative variational covectors
δHi/δa,

P (δH1/δa, . . . , δHk/δa)
def
= {H1, . . . ,Hk}P ,
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to k-tuples of arbitrary variational covectors pi = (pi,α ◦ δaα). (Let us think of the variational covectors (p ◦ δa) =(
pα

(
x, x⃗±1, [a]

)
◦ δaα

)
on J∞(πNC) as of (the formal sums of) necklaces equipped with the extra earrings δaα , by which

those cyclic words are handled.) The case k = 1 with P(p1) := (A(p1)) is elementary; for k ⩾ 2, we put45

P(p1, . . . , pk) := (−)
k(k−1)

2 ·
1
k!

∑
ω∈Sk

(−)ω
(
pω(1) ◦ A(pω(2), . . . , pω(k))

)
. (39)

However, generic variational covectors, not necessarily exact, will not be studied in particular in what follows — rather, the
converse can be assumed in view of the Substitution Principle.

Theorem 17 (The Substitution Principle). Suppose that a tuple of identities

I
(
(x, x⃗±1), [a],

[
p1(x, x⃗±1)

]
, . . . ,

[
pk(x, x⃗±1)

])
≡ 0

holds on J∞(πNC ) for every k-tuple of noncommutative variational (co)vectors the coefficients pi,α(x, x⃗±1) of which depend only
on points x ∈ Mn and letters from the edge alphabet x⃗±1. Then the identities in total derivatives,

I
(
(x, x⃗±1), [a],

[
p1
(
x, x⃗±1, [a]

)]
, . . . ,

[
pk
(
x, x⃗±1, [a]

)])
≡ 0,

viewed as identitieswith respect to pi, are valid on J∞(πNC ) for all (co)vectors pi depending not only on x and x⃗±1 but also admitting
arbitrary, finite differential order dependence on the jet letters aσ , |σ | <∞.

Remark 3.5. At this moment it is legitimate to view the variational (co)vectors pi = (pi,α ◦ δaα) as bare collections of their
indexed open-word components pi,α that are already built into the identities I . We emphasise that, unlike it is the case
studied in Section 1.1 – the cyclic words in A do not carry any marked point, – the earrings ∂/∂aσ and δa are the only places
where the (co)vectors can be unlocked.

Corollary 18. If, under the assumptions of Theorem 17, the identities in total derivatives I
(
x, x⃗±1, [a], [pi]

)
≡ 0 with respect

to p1, . . . , pk hold on J∞(πNC ) for every k-tuple of exact variational covectors pi = (δHi/δa◦δa)which are obtained by variation
of arbitrary linear integral functionals H ∈ H̄n(πNC ), then these identities hold for all covectors pi, i.e. not necessarily exact.

Indeed, it is always possible to represent locally an (x, x⃗±1)-dependent cyclic word
∑m

α=1

(
pi,α(x, x⃗±1) ◦ δaα

)
as the

variation δH of the functional
∑m

j=1

∫ (
pi,α(x, x⃗±1) ◦ aα dvol(x)

)
and then apply Theorem 17.

Proof of Theorem 17. For the sake of brevity, let each variational noncommutative covector pi consist of just one word
written in the alphabet of J∞(πNC). The crucial idea is that the position of the locks δa is fixed on the circles which carry
the words pi. This means that, whenever one declares an arbitrary differential dependence of pi on a, the words I in
principle lengthen but still, in the course of multiplications × within the identities, each pi is never torn in between any
consecutive pair of letters a. Namely, during the evaluation of I at the words pi those are unlocked, the letters and the
words’ overall coefficients depending on x are then stretched to open strings (ordered counterclockwise). These strings of
symbols are pasted into I without splitting, i.e., the adjacent letters of pi never become separated by any other symbols.46
Total derivatives (9) then work according to their definition: under a restriction of I (hence of all pi) to the jet of a
mapping a = s(x, x⃗±), each symbol aj is replaced with the respective sum of open strings sj(x, x⃗±1) so that derivations (9)
which act on aσ occurring anywhere (either in pi or in I if the identities explicitly depend on [a]) then reduce to the
derivations ∂/∂xi of real-valued functions defined at x ∈ U ⊆ Mn. By the initial assumption of the theorem, its assertion
is valid for all strings written in the basic alphabet (x, x⃗±1) that replace the entries pi in I . We conclude that the identities
I ≡ 0 hold on J∞(πNC) for the full set of arguments of the (co)vectors.47 □

Remark 3.6. The proof remains literally valid in the case of (evolutionary) vector fields instead of variational covectors.
This would be important for the description of variational noncommutative symplectic structures. At the same time, the
proof reveals why this noncommutative phrasing of the Substitution Principle does not hold for arbitrary cyclic words
pi
(
x, x⃗±1, [a]

)
of unspecified nature.

Remark 3.7. Attempts to define the (non)commutative variational Schouten bracket of multivectors via a recursive
procedure that involves the use of the two arguments’ values at test covectors are sometimes practised in the literature
(see discussion in [52] and references therein).

Open problem 2. Is there a way to detect that a given (non)commutative variational 0-vector H ∈ H̄n
0

(
π

(0|1)
NC

)
is the value of

a (non)commutative variational k-vector at k zero-vectors?

45 The isomorphism V †
≃ Ta†V

† is used here to convert the placeholders b for pi into the virtual offsets
∑m

α=11 · e⃗
†,α . The absorption of each argument

pi then goes closely to the lines of geometric construction of the Schouten bracket, see Remark 2.12.
46 This scenario is realised irrespectively of presence or absence of letters a’s on the necklaces pi , which is in contrast with formula (4).
47 One does not even have to postulate that the mappings a = s(x, x⃗±1) inserted in the explicit dependence of I on [a] coincide with the mappings now

standing for a in the implicit dependence
[
pi
(
x, x⃗±1, [a]

)]
.
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3.3. Noncommutative variational Poisson structures

Now we analyse the construction of noncommutative variational Poisson brackets, recalling and re-proving several
important facts — here, under the coarse assumption of cyclic invariance (e.g., the Helmholtz lemma reveals yet another
mechanism for the differentials to anticommute).

Remark 3.8. Although the formalism is based on the noncommutative variational symplectic geometry from Section 2, the
presence of differential operators A in the definition of the Poisson bracket { , }P as derived with respect to a given Poisson
bi-vectorP , see (36), usuallymakes such brackets degenerate. Their Casimirs, forming the zeroth Poisson cohomology group
with respect to ∂P1 = [[P1, · ]], start the Magri scheme for systems possessing the bi-Hamiltonian structures (P1, P2), see
Section 3.3.4 and [10,11].

3.3.1. The definition of Poisson bracket
Consider a noncommutative variational bi-vector P and let H1, H2, H3 ∈ H̄n

0

(
π

(0|1)
NC

)
be any three noncommutative

variational 0-vectors.

Definition 9. Bi-linear, skew-symmetric derived bracket (37),

{Hi,Hj}P = [[[[Hi,P]],Hj]], 1 ⩽ i < j ⩽ 3,

is called the noncommutative variational Poisson bracket if it satisfies Jacobi identity,

{{H1,H2}P ,H3}P + {{H2,H3}P ,H1}P + {{H3,H1}P ,H2}P ∼= 0 (40)

for all H1, H2, H3 ∈ H̄n
0

(
π

(0|1)
NC

)
, which are then called the Hamiltonians.

If identity (40) holds, the noncommutative variational bi-vector P = 1
2

(
b ◦ A(b)

)
is called Poisson; the skew-adjoint

noncommutative linear operator A in total derivatives is then called a Hamiltonian operator, and the noncommutative
variational one-vectorsXHi

def
= [[P,Hi]] are theHamiltonian one-vectors (or one-vector fields) specified by theirHamiltoniansHi

and the Poisson bi-vector P .

Criterion 19. A noncommutative variational bi-vector P is Poisson (i.e. the derived bracket { , }P satisfies Jacobi identity (40))
if the bi-vector P satisfies the classical master-equation

[[P,P]] ∼= 0 ∈ H̄n
3

(
π

(0|1)
NC

)
. (41)

The bi-vector P is Poisson only if the value of [[P,P]] at any triple H1, H2, H3 of Hamiltonians is cohomologically trivial:

[[P,P]](H1,H2,H3) ∼= 0 ∈ H̄n
0

(
π

(0|1)
NC

)
.

The assertion is aimed to emphasise that the Poisson bi-vectors are the primary objects, whereas the Poisson brackets are
the derived structures.

Lemma 20. If a noncommutative variational k-vector Q represents the class of zero in H̄n
k

(
π

(0|1)
NC

)
, then, Q viewed as the map(

H̄n
0 × · · · × H̄n

0

)(
π

(0|1)
NC

)
→ H̄n

0

(
π

(0|1)
NC

)
, its value Q

(
δH1/δa, . . . , δHk/δa

)
= {H1, . . . ,Hk}Q is cohomologically trivial for every

k-tuple of the arguments H1, . . . , Hk ∈ H̄n
0

(
π

(0|1)
NC

)
.

Sketch of the proof. Indeed, whenever the cyclic word Q = dhR(b, . . . , b) carrying k parity-odd entries b is exact with
respect to the lift dh of the de Rham differential forMn onto J∞

(
π

(0|1)
NC

)
, so is every term – in the sum over the |Sk| = k!ways

to permute the arguments H1, . . . , Hk by using ω ∈ Sk – obtained by pasting whatever open string δHω(i)/δaj of parity-even
symbols instead of the ith copy of the symbol bj. □

Remark 3.9. The gap between necessity,

• a variational bi-vector P is Poisson only if all the values of the variational tri-vector [[P,P]] are trivial in H̄n
0

(
π

(0|1)
NC

)
,

and sufficience,

• a variational bi-vector P is Poisson if the variational tri-vector [[P,P]] itself is trivial in the respective horizontal
cohomology group H̄n

3

(
π

(0|1)
NC

)
̸= H̄n

0

(
π

(0|1)
NC

)
,

is the statement that, whenever the value Q(δH1/δa, . . . , δHk/δa) of a (non)commutative variational k-vector Q at every
k-tuple of exact variational covectors δHi/δa is cohomologically trivial in H̄n

0

(
π

(0|1)
NC

)
, the k-vectorQ itself is cohomologically

trivial in H̄n
k

(
π

(0|1)
NC

)
. This claim proven, Criterion 19 (and Lemma 20) would convert into an equivalence.
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Lemma 21. In fact, this is true,

P Poisson ⇐⇒ [[P,P]] ∼= 0,

over topologically trivial, star-shaped domains⊆ Mn.
Indeed, under the trivial topology assumption, the homotopy procedure (e.g., see [16] or [44]) in the constructive proof

of the Poincaré lemma works both on the base, which we denote still by Mn, and in the topologically trivial fibres of the
Whitney sum of the (non)commutative bundle πNC and k copies of its dual π̂NC.

Sketch of the proof. Consider not the bundle πNC such that Q
(
δH1/δa, . . . , δHk/δa

)
∈ H̄n(πNC) but introduce the Whitney

sum πNC ×Mn
NC

π̂NC ×Mn
NC
· · · ×Mn

NC
π̂NC with k copies of the dual bundle (with the respective fibre variables p1, . . . , pk

that imitate the variational covectors). Now we have that the nth degree horizontal cohomology classes Q(p1, . . . , pk) are
k-linear and totally skew-symmetric w.r.t. the new covector variables pα . All these classes are known to be trivial by our
initial assumption. The homotopy procedure then yields a k-linear w.r.t. p1, . . . , pk, totally skew-symmetric horizontal
(n − 1)-form R such that Q = dh(R) for all sections pα(x, x⃗±1) of π̂NC. The Substitution Principle now works. Finally,
replacing the k-linear skew terms over theWhitney sum by the variational k-vectors (with k copies of the parity-odd b) over
the superbundle π

(0|1)
NC is technical. □

3.3.2. Noncommutative differential forms
To approach the proof of Criterion 19, let us recall several classical structures that appear on the infinite jet spaces J∞(

πNC
)
: in particular, in the context of the Vinogradov C-spectral sequence [53].

By definition, put

∂⃗
(a)
ϕ(x,x⃗±1,[a]) =

m∑
i=1

∑
|σ |⩾0

(
(ϕi)

(←−d
dx

)σ)(
x, x⃗±1, [a]

)
◦

−→
∂

∂aiσ
.

It is readily seen that these evolutionary derivations commute with the total derivatives on J∞
(
πNC

)
:[

∂⃗ (a)
ϕ , d⃗/dxk

]
= 0 for all k = 1, . . . , n.

Consequently, for any operator A in total derivatives we have that

∂⃗ (a)
ϕ

(
A(p)

)
=
(
∂⃗ (a)
ϕ (A)

)
(p)+ A

(
∂⃗ (a)
ϕ (p)

)
.

Next, define the linearisation ℓ
(a)
p of an object p over J∞

(
πNC

)
by setting

(ϕ)
←−
ℓ

(a)
p =

−→
∂

(a)
ϕ (p)

whenever the right-hand side is well defined.
Thirdly, for each value of the index i running from 1 to m and for every multi-index σ let us introduce the symbol daiσ .

Now define the Cartan differential dC : aiσ ↦→ daiσ , da
i
σ ↦→ 0, also setting its action equal to zero on x and x⃗±1 and postulating

that dC is a graded derivation. By construction, let the differential dC be correlated with other structures on J∞
(
πNC

)
in the

standard way: e.g., set D⃗xk (daiσ ) = daiσ∪{k}.
Let us explain what it means that the symbols daiσ and dajτ ‘‘anticommute’’. The key idea is that the precedence–

succedence relation of such symbols in a given cyclic word manifests that circle’s orientation, which is provided by
construction.

Consider a cyclic word that carries one symbol daiσ ; the word thus acquires a marked point. The derivation dC acts on
(the rest of) the word by starting at daiσ and processing the letters ajτ by going in the positive direction. We say that all the
symbols dajτ , newly produced by dC from such ajτ are succedent with respect to the mark daiσ ; in turn, the old symbol daiσ
is precedent for each new object dajτ . To change this precedence–succedence relation daiσ ≺ dajτ but still let the circle’s
orientation stay intact, the object dajτ is proclaimed the newmarked point — so that daiσ now succeeds it with respect to the
positive order of letters written along the oriented circle. By definition, such involution of the relative order ≺ of the two
symbols, daiσ and dajτ , produces the factor−1 in front of the cyclic word that carries both of them. Clearly, d2

C = 0.

Lemma 22 (Helmholtz). The linearisation ℓ⃗
(a)
δH/δa of an element in the image of variational derivative δ/δa is self -adjoint:

ℓ⃗
(a)
δH/δa = ℓ⃗

(a) †
δH/δa. (42)

Note that this half of Helmholtz’ criterion does not refer to the topology of the set-up.

Proof. Let H be a noncommutative variational 0-vector. Up to an integration by parts, we have that dCH ∼=
(
da ◦ δH/δa

)
.

By the above,

0 = d2
C(H) ∼=

(
da ◦
−→
ℓ

(a)
δH/δa(da)

)
∼=
(
(da)
←−
ℓ

(a) †
δH/δa ◦ da

)
∼ −

(
da ◦
−→
ℓ

(a) †
δH/δa(da)

)
,

whence (42). □
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3.3.3. Proof of Criterion 19
First, let us recall the renowned cancellation mechanism on the left-hand side of Jacobi identity (40). By definition, put

pi = δHi/δa for the three Hamiltonians. Integrating by parts in the inner and outer Poisson brackets in (40) and using
formula (37), we get

∂⃗
(a)
A(p1)

(
p2 ◦ A(p3)

)
+ ∂⃗

(a)
A(p2)

(
p3 ◦ A(p1)

)
+ ∂⃗

(a)
A(p3)

(
p1 ◦ A(p2)

)
=
(
∂⃗

(a)
A(p1)

(p2) ◦ A(p3)
)
+
(
p2 ◦ ∂⃗

(a)
A(p1)

(A)(p3)
)
−
(
A(p2) ◦ ∂⃗

(a)
A(p1)

(p3)
)

+
(
∂⃗

(a)
A(p2)

(p3) ◦ A(p1)
)
+
(
p3 ◦ ∂⃗

(a)
A(p2)

(A)(p1)
)
−
(
A(p3) ◦ ∂⃗

(a)
A(p2)

(p1)
)

+
(
∂⃗

(a)
A(p3)

(p1) ◦ A(p2)
)
+
(
p1 ◦ ∂⃗

(a)
A(p3)

(A)(p2)
)
−
(
A(p1) ◦ ∂⃗

(a)
A(p3)

(p2)
)
. (43)

Applying Lemma 22 to the variational covectors pi = δHi/δa as follows,(
∂⃗

(a)
A(p1)

(p2) ◦ A(p3)
) def
=
(
ℓ⃗ (a)
p2 (A(p1)) ◦ A(p3)

)
=
(
ℓ⃗ (a) †
p2 (A(p1)) ◦ A(p3)

)
∼=
(
A(p1) ◦ ℓ⃗ (a)

p2

(
A(p3)

)) def
=
(
A(p1) ◦ ∂⃗

(a)
A(p3)

(p2)
)
,

we conclude that it is only the second column which survives the cancellation in (43). The left-hand side of Jacobi identity
thus equals(

δH1
δa ◦ ∂⃗

(a)
A(δH3/δa)(A)

(
δH2
δa

))
+ cyclic permutations. (44)

On the other hand, consider the bi-vector P = 1
2

(
b ◦ A(b)

)
and construct

[[P,P]] ∼=
((

b ◦ A(b)
)( ←−∂

∂aσ

◦

(−→d
dx

)σ (
A(b)

)))
;

the right-hand side contains, for every multi-index σ , the derivation that pastes its coefficient for each aiσ occurring in the
coefficients of operator A within

(
b ◦ A(b)

)
.

The only thing which the evaluation of [[P,P]] at H1, H2, and H3 does,

[[P,P]]
(
δH1/δa, δH2/δa, δH3/δa

)
= (−)3 [[[[[[[[P,P]],H1]],H2]],H3]],

is the spreading of variational derivatives δHi/δa over the three slots b in the tri-vector [[P,P]]. In view of evaluation’s total
skew-symmetry (see Lemma 16), it is enough to sum up over the cyclic (hence, even) permutations in the group S3, and then
double. This yields the three terms(

δH1
δa ◦

(
(A)
←−
∂

(a)
A(δH3/δa)

)(
δH2
δa

))
+ cyclic permutations. (45)

Uniting the two parts of the reasoning, we conclude that the left-hand side (44) of Jacobi identity (40) for the bracket { , }P
and the value of tri-vector [[P,P]] at the same Hamiltonians H1, H2, and H3 as in (40) are equal, hence simultaneously
(non)trivial, as elements of the cohomology group H̄n

0

(
π

(0|1)
NC

)
. □

Referring to Remark 3.9 and Lemma 21 and settingQ = [[P,P]] there, we conclude that over star-shaped domains⊆ Mn,
the bracket { , }P is Poisson if and only if the classical master-equation [[P,P]] ∼= 0 holds for P .

3.3.4. Complete integrability
In the final section we address the cohomological structures of (non)commutative variational Poisson theory. We recall

how the differential ∂P = [[P, ·]] specified by a given Poisson bi-vector P owes its property ∂2
P = 0 to a weak variant of

the Jacobi identity for the variational Schouten bracket [[·, ·]]. (We remember that the (non)commutative variational Poisson
formalism is a science of steps and stops, so that calculations involving [[·, ·]] can be interrupted at every moment, to make
legitimate the integrations by parts within every object. This makes the weak variant of Jacobi identity for [[·, ·]] different
from (26).)

Proposition 23. Let F ,G,H ∈ H̄n
∗

(
π

(0|1)
NC

)
be (non)commutative variational multivectors; suppose that F and G are homogeneous.

Then the weak variant of Jacobi identity,

[[F , [[G,H]]]] − (−)(|F |−1)·(|G|−1) [[G, [[F ,H]]]] ∼= [[[[F ,G]],H]], (46)

holds modulo integrations by parts in every Schouten bracket.
• Equivalently, for every homogeneous (non)commutative variational multivector Z define the shifted (by −1) graded

evolutionary vector field Q Z on the jet space J∞(π(0|1)
NC ): by definition, let [[Z,H]] ∼= Q⃗

Z
(H) for all H ∈ Hn

0 (π
(0|1)
NC ). In these

terms, Jacobi identity (46) is[
Q⃗

F
, Q⃗

G]
∼= Q⃗

[[F ,G]]
,
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that is, the graded commutator of adjoint actions [[F , ·]] and [[G, ·]] is equivalent, modulo integrations by parts, to the adjoint action
of the object [[F ,G]].

Corollary 24. By satisfying themaster-equation [[P,P]] ∼= 0, each (non)commutative variational Poisson bi-vector P determines
the Poisson differential ∂P = [[P, ·]].

Indeed, Jacobi identity (46) then reads ∂2
P (·) = [[P, [[P, ·]]]] ∼=

1
2 [[[[P,P]], ·]] = 0.

Sketch of the proof (of Proposition 23). The graded derivation
←−
Q

H
∼= [[·,H]] which acts clockwise (i.e. against the

orientation) along the cyclic word [[F ,G]] is permutablewith the graded derivations
−→
Q

F
and
−→
Q

G
which act counterclockwise

on G and, respectively, on −(−)(|F |−1)·(|G|−1)F in the object [[F ,G]]. Depending on the origin – from either G or F – of an
argument of

←−
Q

H
on the right-hand side of (46), the respective term in that Leibniz rule expansion is realised by using either(−→

Q
F
(G)
)←−
Q

H
=
−→
Q

F (
(G)
←−
Q

H)
or

− (−)(|F |−1)·(|G|−1)
(−→
Q

G
(F )
)←−
Q

H
= −(−)(|F |−1)·(|G|−1)

−→
Q

G (
(F )
←−
Q

H)
,

so that all terms (and only those terms) on the left-hand side of (46) are recovered. □

For every P , the Poisson differential ∂P gives rise to the Poisson(–Lichnerowicz) cohomology groups Hk
P , k ⩾ 0.

• The group H0
P is composed of the Casimirs H0 ∈ H̄n(π(0|1)

NC ) such that [[P,H0]] ∼= 0.
• The first Poisson cohomology groupH1

P consists of cocycle variational one-vectors X without Hamiltonians: [[P, X]] ∼=
0 but X ̸= [[P,H]] for any H ∈ H

n
(π(0|1)

NC ).
• The second groupH2

P contains nontrivial deformations of the Poisson bi-vectorP , i.e. those shiftsP ↦→ P+ε·Q+o(ε)
infinitesimally preserving the classicalmaster-equation [[P,P]] = 0which are not generated by the bi-vectorP itself:
Q ̸= [[P, X]] for any one-vector X .
• The third group H3

P contains obstructions to the integrability of infinitesimal shiftsP ↦→ P + ε ·Q+ o(ε) to genuine
deformations P ↦→ P(ε) at ε > 0.

These interpretations are standard [54]; we also refer to [46] for an illustration of classical Poisson deformation theory in
the commutative set-up (in this context, see Open problem 3 at the end of this paper).

Likewise, the vanishing of some extra cohomological obstructions implies the existence of infinitely many Hamiltonians
in involution and the presence of hierarchies of commuting flows. This is the renowned (Lenard–)Magri scheme [15].

Theorem 25 (The Magri Scheme). Let P1 and P2 be two (non)commutative variational Poisson bi-vectors on the jet space
J∞(π(0|1)

NC ). Suppose they are compatible: [[P1,P2]] ∼= 0, and assume that the first Poisson–Lichnerowicz cohomology group H1
P1

with respect to the differential ∂P1 = [[P1, · ]] vanishes. Let H0 ∈ H0
P1
⊆ H̄n(π(0|1)

NC ) be a Casimir of P1.
Then for any integer k > 0 there is a Hamiltonian functional Hk ∈ H̄n(π(0|1)

NC ) such that

[[P2,Hk−1]] = [[P1,Hk]]. (47)

Moreover, let H(α)
0 and H(β)

0 be any two distinct Casimirs for the bi-vector P1 and construct the two infinite sequences of the
functionals H(α)

i and H(β)
j by using (47), here i, j ⩾ 0. Let ϕ

(α)
i := [[P1,H

(α)
i ]] and similarly, ϕ(β)

j := [[P1,H
(β)
j ]]. Then for all i, j

and α, β ,

• the Hamiltonians H(α)
i and H(β)

j Poisson-commute with respect to either of the Poisson brackets, { , }P1 and { , }P2 ;
• the one-vectors ϕ

(α)
i and ϕ

(β)
j commute;

• the density of H(α)
i is conserved, [[H(α)

i , ϕ
(β)
j ]]
∼= 0, by virtue of each one-vector ϕ

(β)
j .

Existence Proof. Main homological equality (47) is established by induction on k. Consider the bi-vectorsP1 andP2 and a
Hamiltonian H0. The steps-and-stops variant of Jacobi identity, see (46), acquires the form

[[P1, [[P2,H0]]]] + [[P2, [[P1,H0]]]] ∼= [[[[P1,P2]],H0]]. (48)

Hence by starting with a Casimir for a given Poisson bi-vector P1, we obtain that

0 = [[P2, 0]] ∼= [[P2, [[P1,H0]]]] ∼= −[[P1, [[P2,H0]]]] mod [[P1,P2]] ∼= 0,

using Jacobi identity (48). The first Poisson cohomology H1
P1
= 0 is trivial by an assumption of the theorem, hence the closed

element [[P2,H0]] in the kernel of [[P1, ·]] is exact: [[P2,H0]] ∼= [[P1,H1]] for some H1. For k ⩾ 1 we have that

[[P1, [[P2,Hk]]]] ∼= −[[P2, [[P1,Hk]]]] ∼= −[[P2, [[P2,Hk−1]]]] ∼= 0
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using (48) and by [[P2,P2]] ∼= 0. Consequently, by H1
P1
= 0 we have that [[P2,Hk]] ∼= [[P1,Hk+1]], and we thus proceed

indefinitely. □

Definition 10. Bi-Hamiltonian evolutionary differential equations which satisfy the hypotheses of Theorem 25 and possess
as many non-extendable sequences of local Hamiltonians in involution as the number of the unknowns are called the
(infinite-dimensional) completely integrable systems.

The (non)commutative Korteweg–de Vries equation [15,17] is the best-known example of an infinite-dimensional
completely integrable system.

Remark 3.10. The inductive step, that is, the existence of the next, (k + 1)th Hamiltonian functional in involution with all
the preceding ones, is possible if and only if the seed H0 is a Casimir,48 and therefore the Hamiltonian operators Ai in the
bi-vectorsP i =

1
2 ⟨b, Ai(b)⟩ are restricted onto the linear subspace which is spanned in the space of variational covectors by

the Euler derivatives of the descendants ofH0, i.e. of the Hamiltonians of the hierarchy. We note that the image under A2 of
a generic element from the domain of operators A1 and A2 cannot be resolved w.r.t. A1 by (47).

For example, the image im AKdV
2 of the second Hamiltonian operator for the purely commutative Korteweg–de Vries

equation is not entirely contained in the image of the first structure for the generic values of the arguments. But on the
linear subspace of descendants Hk of the Casimir

∫
a dx for AKdV

1 , the inclusion im AKdV
2 ⊆ im AKdV

1 is attained.

Open problem 3 (The Kontsevich Tetrahedral Flows). Does the construction from [34,45] and [46] of the quartic-nonlinear
flow Ṗ = Q1: 62

([P]) on spaces of Poisson bi-vectors P over affine m-dimensional manifolds Nm extend – in the frames of
cyclic word calculus – to the finite-dimensional49 formal noncommutative Poisson geometry?

Is such cyclic-word generalisation also possible for the flow of nonlinearity degree six which is built in [55] from the
pentagon-wheel cocycle in the graph complex?
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