7 research outputs found

    Abelian-Square-Rich Words

    Full text link
    An abelian square is the concatenation of two words that are anagrams of one another. A word of length nn can contain at most Θ(n2)\Theta(n^2) distinct factors, and there exist words of length nn containing Θ(n2)\Theta(n^2) distinct abelian-square factors, that is, distinct factors that are abelian squares. This motivates us to study infinite words such that the number of distinct abelian-square factors of length nn grows quadratically with nn. More precisely, we say that an infinite word ww is {\it abelian-square-rich} if, for every nn, every factor of ww of length nn contains, on average, a number of distinct abelian-square factors that is quadratic in nn; and {\it uniformly abelian-square-rich} if every factor of ww contains a number of distinct abelian-square factors that is proportional to the square of its length. Of course, if a word is uniformly abelian-square-rich, then it is abelian-square-rich, but we show that the converse is not true in general. We prove that the Thue-Morse word is uniformly abelian-square-rich and that the function counting the number of distinct abelian-square factors of length 2n2n of the Thue-Morse word is 22-regular. As for Sturmian words, we prove that a Sturmian word sαs_{\alpha} of angle α\alpha is uniformly abelian-square-rich if and only if the irrational α\alpha has bounded partial quotients, that is, if and only if sαs_{\alpha} has bounded exponent.Comment: To appear in Theoretical Computer Science. Corrected a flaw in the proof of Proposition

    Words with the Maximum Number of Abelian Squares

    Full text link
    An abelian square is the concatenation of two words that are anagrams of one another. A word of length nn can contain Θ(n2)\Theta(n^2) distinct factors that are abelian squares. We study infinite words such that the number of abelian square factors of length nn grows quadratically with nn.Comment: To appear in the proceedings of WORDS 201

    Hardness of Detecting Abelian and Additive Square Factors in Strings

    Get PDF
    We prove 3SUM-hardness (no strongly subquadratic-time algorithm, assuming the 3SUM conjecture) of several problems related to finding Abelian square and additive square factors in a string. In particular, we conclude conditional optimality of the state-of-the-art algorithms for finding such factors. Overall, we show 3SUM-hardness of (a) detecting an Abelian square factor of an odd half-length, (b) computing centers of all Abelian square factors, (c) detecting an additive square factor in a length-nn string of integers of magnitude nO(1)n^{\mathcal{O}(1)}, and (d) a problem of computing a double 3-term arithmetic progression (i.e., finding indices i≠ji \ne j such that (xi+xj)/2=x(i+j)/2(x_i+x_j)/2=x_{(i+j)/2}) in a sequence of integers x1,
,xnx_1,\dots,x_n of magnitude nO(1)n^{\mathcal{O}(1)}. Problem (d) is essentially a convolution version of the AVERAGE problem that was proposed in a manuscript of Erickson. We obtain a conditional lower bound for it with the aid of techniques recently developed by Dudek et al. [STOC 2020]. Problem (d) immediately reduces to problem (c) and is a step in reductions to problems (a) and (b). In conditional lower bounds for problems (a) and (b) we apply an encoding of Amir et al. [ICALP 2014] and extend it using several string gadgets that include arbitrarily long Abelian-square-free strings. Our reductions also imply conditional lower bounds for detecting Abelian squares in strings over a constant-sized alphabet. We also show a subquadratic upper bound in this case, applying a result of Chan and Lewenstein [STOC 2015].Comment: Accepted to ESA 202

    On k-abelian equivalence and generalized Lagrange spectra

    Get PDF
    We study the set of kk-abelian critical exponents of all Sturmian words. It has been proven that in the case k=1k = 1 this set coincides with the Lagrange spectrum. Thus the sets obtained when k>1k > 1 can be viewed as generalized Lagrange spectra. We characterize these generalized spectra in terms of the usual Lagrange spectrum and prove that when k>1k > 1 the spectrum is a dense non-closed set. This is in contrast with the case k=1k = 1, where the spectrum is a closed set containing a discrete part and a half-line. We describe explicitly the least accumulation points of the generalized spectra. Our geometric approach allows the study of kk-abelian powers in Sturmian words by means of continued fractions.</p
    corecore