10 research outputs found

    Coherent Integration of Databases by Abductive Logic Programming

    Full text link
    We introduce an abductive method for a coherent integration of independent data-sources. The idea is to compute a list of data-facts that should be inserted to the amalgamated database or retracted from it in order to restore its consistency. This method is implemented by an abductive solver, called Asystem, that applies SLDNFA-resolution on a meta-theory that relates different, possibly contradicting, input databases. We also give a pure model-theoretic analysis of the possible ways to `recover' consistent data from an inconsistent database in terms of those models of the database that exhibit as minimal inconsistent information as reasonably possible. This allows us to characterize the `recovered databases' in terms of the `preferred' (i.e., most consistent) models of the theory. The outcome is an abductive-based application that is sound and complete with respect to a corresponding model-based, preferential semantics, and -- to the best of our knowledge -- is more expressive (thus more general) than any other implementation of coherent integration of databases

    State-of-the-art on evolution and reactivity

    Get PDF
    This report starts by, in Chapter 1, outlining aspects of querying and updating resources on the Web and on the Semantic Web, including the development of query and update languages to be carried out within the Rewerse project. From this outline, it becomes clear that several existing research areas and topics are of interest for this work in Rewerse. In the remainder of this report we further present state of the art surveys in a selection of such areas and topics. More precisely: in Chapter 2 we give an overview of logics for reasoning about state change and updates; Chapter 3 is devoted to briefly describing existing update languages for the Web, and also for updating logic programs; in Chapter 4 event-condition-action rules, both in the context of active database systems and in the context of semistructured data, are surveyed; in Chapter 5 we give an overview of some relevant rule-based agents frameworks

    Finding similar or diverse solutions in answer set programming: theory and applications

    Get PDF
    For many computational problems, the main concern is to find a best solution (e.g., a most preferred product configuration, a shortest plan, a most parsimonious phylogeny) with respect to some well-described criteria. On the other hand, in many real-world applications, computing a subset of good solutions that are similar/diverse may be desirable for better decision-making. For one reason, the given computational problem may have too many good solutions, and the user may want to examine only a few of them to pick one; in such cases, finding a few similar/diverse good solutions may be useful. Also, in many real-world applications the users usually take into account further criteria that are not included in the formulation of the optimization problem; in such cases, finding a few good solutions that are close to or distant from a particular set of solutions may be useful. With this motivation, we have studied various computational problems related to finding similar/diverse (resp. close/distant) solutions with respect to a given distance function, in the context of Answer Set Programming (ASP). We have introduced novel offline/online computational methods in ASP to solve such computational problems. We have modified an ASP solver according to one of our online methods, providing a useful tool (CLASP-NK) for various ASP applications. We have showed the applicability and effectiveness of our methods/tools in three domains: phylogeny reconstruction, AI planning, and biomedical query answering. Motivated by the promising results, we have developed computational tools to be used by the experts in these areas

    Understanding Inconsistency -- A Contribution to the Field of Non-monotonic Reasoning

    Get PDF
    Conflicting information in an agent's knowledge base may lead to a semantical defect, that is, a situation where it is impossible to draw any plausible conclusion. Finding out the reasons for the observed inconsistency and restoring consistency in a certain minimal way are frequently occurring issues in the research area of knowledge representation and reasoning. In a seminal paper Raymond Reiter proves a duality between maximal consistent subsets of a propositional knowledge base and minimal hitting sets of each minimal conflict -- the famous hitting set duality. We extend Reiter's result to arbitrary non-monotonic logics. To this end, we develop a refined notion of inconsistency, called strong inconsistency. We show that minimal strongly inconsistent subsets play a similar role as minimal inconsistent subsets in propositional logic. In particular, the duality between hitting sets of minimal inconsistent subsets and maximal consistent subsets generalizes to arbitrary logics if the stronger notion of inconsistency is used. We cover various notions of repairs and characterize them using analogous hitting set dualities. Our analysis also includes an investigation of structural properties of knowledge bases with respect to our notions. Minimal inconsistent subsets of knowledge bases in monotonic logics play an important role when investigating the reasons for conflicts and trying to handle them, but also for inconsistency measurement. Our notion of strong inconsistency thus allows us to extend existing results to non-monotonic logics. While measuring inconsistency in propositional logic has been investigated for some time now, taking the non-monotony into account poses new challenges. In order to tackle them, we focus on the structure of minimal strongly inconsistent subsets of a knowledge base. We propose measures based on this notion and investigate their behavior in a non-monotonic setting by revisiting existing rationality postulates, and analyzing the compliance of the proposed measures with these postulates. We provide a series of first results in the context of inconsistency in abstract argumentation theory regarding the two most important reasoning modes, namely credulous as well as skeptical acceptance. Our analysis includes the following problems regarding minimal repairs: existence, verification, computation of one and characterization of all solutions. The latter will be tackled with our previously obtained duality results. Finally, we investigate the complexity of various related reasoning problems and compare our results to existing ones for monotonic logics

    Logics for AI and Law: Joint Proceedings of the Third International Workshop on Logics for New-Generation Artificial Intelligence and the International Workshop on Logic, AI and Law, September 8-9 and 11-12, 2023, Hangzhou

    Get PDF
    This comprehensive volume features the proceedings of the Third International Workshop on Logics for New-Generation Artificial Intelligence and the International Workshop on Logic, AI and Law, held in Hangzhou, China on September 8-9 and 11-12, 2023. The collection offers a diverse range of papers that explore the intersection of logic, artificial intelligence, and law. With contributions from some of the leading experts in the field, this volume provides insights into the latest research and developments in the applications of logic in these areas. It is an essential resource for researchers, practitioners, and students interested in the latest advancements in logic and its applications to artificial intelligence and law
    corecore