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Abstract

Conflicting information in an agent’s knowledge base may lead to a semantical defect, that
is, a situation where it is impossible to draw any plausible conclusion. Finding out the rea-
sons for the observed inconsistency and restoring consistency in a certain minimal way are
frequently occurring issues in the research area of knowledge representation and reasoning.
In a seminal paper Raymond Reiter proves a duality between maximal consistent subsets
of a propositional knowledge base and minimal hitting sets of each minimal conflict – the
famous hitting set duality. We extend Reiter’s result to arbitrary non-monotonic logics. To
this end, we develop a refined notion of inconsistency, called strong inconsistency. We
show that minimal strongly inconsistent subsets play a similar role as minimal inconsistent
subsets in propositional logic. In particular, the duality between hitting sets of minimal
inconsistent subsets and maximal consistent subsets generalizes to arbitrary logics if the
stronger notion of inconsistency is used. We cover various notions of repairs and character-
ize them using analogous hitting set dualities. Our analysis also includes an investigation
of structural properties of knowledge bases with respect to our notions.

Minimal inconsistent subsets of knowledge bases in monotonic logics play an impor-
tant role when investigating the reasons for conflicts and trying to handle them, but also for
inconsistency measurement. Our notion of strong inconsistency thus allows us to extend
existing results to non-monotonic logics. While measuring inconsistency in propositional
logic has been investigated for some time now, taking the non-monotony into account poses
new challenges. In order to tackle them, we focus on the structure of minimal strongly
inconsistent subsets of a knowledge base. We propose measures based on this notion and
investigate their behavior in a non-monotonic setting by revisiting existing rationality pos-
tulates, and analyzing the compliance of the proposed measures with these postulates.

We provide a series of first results in the context of inconsistency in abstract argumen-
tation theory regarding the two most important reasoning modes, namely credulous as well
as skeptical acceptance. Our analysis includes the following problems regarding minimal
repairs: existence, verification, computation of one and characterization of all solutions.
The latter will be tackled with our previously obtained duality results.

Finally, we investigate the complexity of various related reasoning problems and com-
pare our results to existing ones for monotonic logics.
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Chapter 1

Introduction

The research area of knowledge representation and reasoning (KR) (cf. [33]) gave birth to
various formalisms during the past decades. Among others, Reiter’s default logic [95], an-
swer set programming (ASP) [36; 57; 58], abstract argumentation frameworks (AFs) [49],
and description logics [7] were introduced and studied intensively. Many of them have
in common that they are non-monotonic. This means, in a nutshell, that learning new in-
formation might result in withdrawing conclusions one was able to make before. From a
mathematical point of view, a feature like this appears unnatural: Given a set of axioms
for an object under consideration and some properties we are able to infer, why would it
make sense to assume that introducing a novel axiom weakens the properties of our object?
The answer to this question lies within the application of our logic. Mathematical logics
such as first and second order logic are without any doubt the appropriate tool to investigate
the properties of algebraic structures, functions, and so on, but they lack features to model
commonsense reasoning.

The latter requires to draw conclusions with incomplete information which is only re-
alizable when making default assumptions: Typically, we assume that our world is as ex-
pected and whenever something unexpected happens, we seek for an explanation with the
least possible deviation from our normal state. An excellent example is visiting the doctor:
If we tell her we have a runny nose, a sore throat and cough, then our doctor will probably
assume we have a cold. Although these symptoms might occur in other diseases as well,
there is no reason to assume we have, e.g., the flu, except we also mention fever, headache,
or shivering. Hence, our doctor is making a default assumption and if we mention additional
symptoms after further inquiry, she might withdraw this conclusion. These considerations
led to the development of non-monotonic formalisms, see [34] for an excellent overview.

What most of the knowledge representation formalisms have in common is that a knowl-
edge base may be inconsistent, that is, contains conflicting information. In propositional
logics, for example, this happens when the given axioms allow to infer two complementary
literals “a” and “¬a”. Inconsistency in non-monotonic logics is typically more subtle: Due
to the use of default negation it may happen that some atom assumed to be false is again
derived. Classical logics usually suffer from the principle of explosion which renders rea-
soning meaningless, as everything can be derived from inconsistent theories. Again, this
is not an appropriate way to deal with inconsistency when trying to model commonsense
reasoning. Handling inconsistency is an important task we all need to achieve permanently:
The information contained in a news paper article is already likely to incorporate novel
conflicts into the knowledge we (believe to) have about the world.
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Chapter 1. Introduction

Inconsistency is thus an omnipresent phenomenon in logical accounts of KR [33; 41;
48; 59; 63]. Therefore, reasoning under inconsistency [25; 76; 77] is an important research
area in KR. In general, one can distinguish two paradigms in handling inconsistent infor-
mation. The first paradigm advocates living with inconsistency but providing non-classical
semantics that allow the derivation of non-trivial information, such as using paraconsistent
reasoning [29], reasoning with possibilistic logic [48], or formal argumentation [9]. The
second paradigm is about explicitly restoring consistency, thus changing the theory itself,
as it is done in, e. g., belief revision [63] or belief merging [75]. In a seminal paper belong-
ing to the latter category, Reiter [96] proves that consistency of a knowledge base can be
restored by resolving each minimal conflict of it. This result will be of utmost importance
in many parts of the present work. A quantitative approach for analyzing inconsistencies is
given by the field inconsistency measurement which investigates functions I that assign real
numbers to knowledge bases, with the intuitive meaning that larger values indicate more se-
vere inconsistency, see [105; 106; 108] for surveys and [5; 28; 62; 73; 86; 104] for some
recent approaches. Inconsistency measures are applied to assess inconsistencies in, e.g.,
news paper reports [65], multi-agent systems [69], or databases [84].

1.1 About this Work

This thesis is devoted to analyzing inconsistency, in particular in non-monotonic logics,
since a thorough understanding of inconsistency includes the handling of non-monotony.
Several results obtained in this thesis rely on identifying central features of monotonic log-
ics, which are not guaranteed in the general case. This oftentimes yields undesired prop-
erties of non-monotonic logics. The process of overcoming these issues in a reasonable
and concise way does not only lift results to non-monotonic logics, but also contributes to
gaining comprehension of the behavior of monotonic ones. In addition, inconsistency in the
non-monotonic case includes an important novel aspect: It is possible to resolve conflicts
by adding information to a knowledge base. Although this feature does not have a straight-
forward counterpart in monotonic reasoning, we will see that we can obtain similar results,
phrased for symmetric notions.

The research area of measuring inconsistency yields important contributions to under-
standing and analyzing inconsistency. The goal is to assess the severity of conflicts in a
knowledge bases. Inconsistencies are studied from a syntactical as well as semantical point
of view. Some approaches, for example, investigate conflicting subsets of knowledge bases
and assess their contribution to inconsistency. Other approaches focus specifically on the
role of single formulas and assess their “blame” for inconsistency of a knowledge base.
Extending these insights and results to non-monotonic reasoning is a promising research
direction when trying to gain a comprehensive understanding of inconsistency. The tools
we develop in this work are indeed capable of providing some steps in this direction. Al-
though our general approach allows us to phrase our results for arbitrary non-monotonic
logics, many aspects of measuring inconsistency rely on specific properties of particular
frameworks. This will be taken into account by a discussion on inconsistency in answer set
programming.

An important aspect of real world applications is of course the computational com-
plexity of the problems related to the notions we develop. If, for example, deciding in-
consistency of a propositional knowledge base was an undecidable problem, then handling
inconsistency based on minimal inconsistent subsets would remain a purely academical
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1.1. About this Work

challenge. We thus perform an investigation of the computational complexity of some nat-
urally arising decision and function problems. Thereby, we place value on a comparison
between monotonic and non-monotonic logics.

We are interested in the structural properties of knowledge bases, the connection be-
tween consistent and inconsistent subsets, approaches to turn a given inconsistent knowl-
edge base into a consistent one and tools to assess the severity of inconsistencies. Most of
the obtained results are general and hence apply to arbitrary, monotonic and non-monotonic
logics. We will thus give a general definition of an abstract logic, and demonstrate how to
obtain established monotonic and non-monotonic frameworks from the literature as special
cases. During our investigation, the actual challenge is covering non-monotonic logics. In
fact, some of the results we obtain are folklore when it comes to monotonic reasoning (al-
though rarely phrased in the setting of an abstract logic as we are going to do here). When
extending results to non-monotonic logics we always place value on natural adjustments to
the existing notions, a clear and accountable motivation, and ensure that our notions coin-
cide with the established ones when considering the special case of a monotonic logic.

Although the goal of this work is to cover arbitrary logics, some parts investigate con-
crete frameworks in order to discover deeper results. For example, we analyze the connec-
tion between different reasoning modes and semantics for abstract argumentation frame-
works (Chapter 5). Here, we are concerned about situations where a given framework
is inconsistent in the sense that no argument is accepted. In Section 4.5 we demonstrate
how to apply our observations about inconsistency measurement in non-monotonic logics
to answer set programming. We will see that tailoring our notions to a specific framework
provides us with powerful tools, despite being not as general.

The thesis is structured as follows:

In Chapter 2 we provide the preliminaries for this work. In particular, we stipulate some
basic notions and give the necessary background for propositional logic, answer set pro-
gramming and abstract argumentation frameworks. For the most part, propositional logic
will be our generic example of a monotonic logic, whereas ASP and AFs shall demonstrate
features of non-monotonic logics. We define formally what we mean by a logic. We build
on the abstract characterization of logics in [35], but extend this framework suitably to cap-
ture an equally abstract notion of consistency. Moreover, we introduce a new notion of
monotony which covers logics with multiple belief sets.

In Chapter 3 we investigate structural properties of knowledge bases (in monotonic as well
as non-monotonic logics), especially the connection between consistent and inconsistent
subsets. In particular we generalize Reiter’s famous hitting set theorem to arbitrary logics.
To achieve this generalization, we define strongly inconsistent subsets of a knowledge base,
a central notion of this work (Section 3.1). Motivated by the observation that a knowl-
edge base of a non-monotonic logic can also be repaired by adding formulas –whereas
Reiter’s duality is only concerned about removing–, we investigate situations where we are
given potential additional assumptions to repair a knowledge base. For this, we characterize
again the minimal modifications to a knowledge base in terms of a hitting set duality (Sec-
tion 3.2). Our general definition of a logic and consistency resp. inconsistency allows us
to satisfy more sophisticated requirements like not allowing for removal of certain parts of
the knowledge base. This can be achieved even without giving novel proofs, but applying
our main theorems to appropriate auxiliary logics. We demonstrate this in Section 3.3. We
conclude this chapter with a discussion on possibly infinite knowledge bases (Section 3.4).

11



Chapter 1. Introduction

We devote Chapter 4 to measuring inconsistency in non-monotonic logics. The results
from Chapter 3 suggest that our notion of strong inconsistency is the appropriate refinement
of inconsistency as it preserves important structural properties. Since many inconsistency
measures from the literature are based on (the number of) minimal inconsistent subsets of
a knowledge base, we may give natural generalizations of those measures (Section 4.1). In
order to assess the quality of inconsistency measures, many rationality postulates for their
behavior have been proposed in the literature. A few of them still make sense when consid-
ering non-monotonic logics, but in most cases adjustments are required in order to take the
special features of non-monotonic logics into account (Section 4.2). We analyze the com-
pliance of our generalized measures with the refined rationality postulates (Section 4.3).
The observation that conflicts may be resolved due to additional formulas gives rise to the
question how to assess inconsistencies of a knowledge base within the context of a larger
one. It might be the case that some conflicts turn out to be less severe when given the “big-
ger picture”. Situations like this are investigated in Section 4.4, with tools developed in
Section 3.2. We conclude this chapter with a discussion on measuring inconsistency in ASP
(Section 4.5).

In Chapter 5 we investigate AFs which do not allow to draw a meaningful conclusion in
the sense that no argument is accepted. We do so with respect to various semantics and
the two standard reasoning modes, credulous and skeptical. This chapter shall demonstrate
how to apply our techniques, in particular from Chapter 3, to a specific logic. We start by
introducing the semantics we are going to consider and formally define inconsistency in
this setting (Section 5.1). We investigate the existence of repairs wrt. different reasoning
modes and semantics, as well as the relations between them (Section 5.2). We demonstrate
how our previous results yield duality characterizations for repairs of AFs (Section 5.3). In
order to refine our analysis, we consider specific situations where we have some additional
knowledge about the AF under consideration, e.g., symmetry of the attack relation [43] or
splitting [12] (Section 5.4). We conclude this chapter with a short case study, illustrating
how to repair some given AFs (Section 5.5).

In Chapter 6 we provide an analysis of the computational complexity of related decision
and function problems to our notions, e.g., how difficult is it to verify that given subset of a
knowledge base is strongly inconsistent? This chapter requires some technical background
(Section 6.1). We start with decision problems about strong inconsistency. Since we cover
arbitrary logics, our results will be given in comparison to the complexity of the correspond-
ing satisfiability check. In order to assess these results appropriately, we compare them to
the same problems for monotonic logics. More precisely we consider quantified boolean
formulas as generic framework to capture the polynomial hierarchy. Most of the results are
general upper bounds. We demonstrate how to obtain lower bounds in ASP (Section 6.2).
In particular motivated by our discussion on inconsistency measurement we also investigate
the corresponding counting problem, i. e., how many strongly inconsistent subsets does a
knowledge base possess (Section 6.3)? In Section 6.4 we give complexity results for AFs,
focusing on consistent rather than inconsistent subsets. This is motivated by the analysis
provided in Chapter 5.

In Chapter 7 we conclude and discuss future work.
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1.2 Publications

Most of the result we present in this work have been published before. We name those
publications and indicate to which sections they contribute.

Conference papers:

• [Ulbricht et al., 2016]: Measuring Inconsistency in Answer Set Programs, in: Pro-
ceedings of the 15th European Conference on Logics in Artificial Intelligence (JELIA’
16) contains parts of the results from Section 4.5.

• [Brewka et al., 2017]: Strong Inconsistency in Non-monotonic Reasoning, in: Pro-
ceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence
(IJCAI’17) contributes to Chapter 3, in particular Section 3.1, lays foundations for
Chapter 4 and contains the results from Section 6.2.

• [Ulbricht et al., 2018]: Measuring Strong Inconsistency, in: Proceedings of the 32nd
AAAI Conference on Artificial Intelligence (AAAI’18) contains (most of) the results
from Chapter 4 and Section 6.3.

• [Baumann and Ulbricht, 2018]: If Nothing Is Accepted - Repairing Argumentation
Frameworks, in: In Proceedings of the 16th International Conference on Principles of
Knowledge Representation and Reasoning (KR’18) contains the results from Chap-
ter 5 and Section 6.4; the paper was nominated for the Ray Reiter Best Paper Award.

• [Ulbricht, 2019]: Repairing Non-monotonic Knowledge Bases, accepted for publica-
tion in: Proceedings of the 16th European Conference on Logics in Artificial Intelli-
gence (JELIA’19) contains the results from Section 3.2.

Journal paper:

• [Brewka et al., 2019]: Strong Inconsistency, in: Artificial Intelligence, is the extended
version of [Brewka et al., 2017].

Book contribution:

• [Ulbricht et al., 2018]: Inconsistency Measures for Disjunctive Logic Programs Un-
der Answer Set Semantics, in: Measuring Inconsistency in Information, is the ex-
tended version of [Ulbricht et al., 2016].

13



Chapter 1. Introduction

14



Chapter 2

Background

2.1 Basic Notations

In what follows, we establish some basic notions and notations we require.
Most of our results are concerned with sets and their relations. Given two sets X and Y

we denote the ordinary reflexive subset relation by ⊆, i. e., X ⊆ Y iff x ∈ X ⇒ x ∈ Y .
If X is a proper subset of Y , we write X ( Y , i. e., X ( Y iff X ⊆ Y and X 6= Y . We
avoid the symbol⊂. The terms minimality and maximality are always to be understood wrt.
to the ⊆-relation of sets. Thus, if X is minimal with a certain property E, then if Y possess
E as well, Y ⊆ X implies Y = X . Similarly, if X is the least set with a certain property
E, then if Y possess E as well, X ⊆ Y holds.

In particular in Section 3.2.2, consideration of tuples of sets will be crucial. So given
four sets X1, Y1, X2, Y2, we extend the basic set operations via (X1, Y1) ⊆ (X2, Y2) iff
⊆ holds component-wise, i. e., X1 ⊆ X2 and Y1 ⊆ Y2. In particular, “=” is extended
component-wise as well. This definition also induces minimality and maximality for tuples:
if (X1, Y1) is minimal with a certain property E, then if (X2, Y2) possesses E as well,
(X2, Y2) ⊆ (X1, Y2) implies X1 = X2 and Y1 = Y2. We also define the intersection
component-wise, i. e., (X1, Y1) ∩ (X2, Y2) = (X1 ∩X2, Y1 ∩ Y2). This yields in particular
(X1, Y1) ∩ (X2, Y2) = ∅ iff X1 ∩ Y1 = ∅ and X2 ∩ Y2 = ∅.

Most of our main results in Chapter 3 will make use of hitting sets:

Definition 2.1.1. Let X be a set of sets. We call S a hitting set of X if S ∩X 6= ∅ for each
X ∈ X . Let minHS(X ) denote the set of all minimal hitting sets of X .

Observe that due to our understanding of minimality, S is a minimal hitting set of X if S is
a hitting set of X and no S ′ ( S is a hitting set of X .

Example 2.1.2 (Hitting sets). Assume we have X = {X1, X2, X3} with X1 = {a, b, c},
X2 = {b, c} and X3 = {c, d}. Then, S = {a, b, d} is a hitting set of X since

S ∩X1 = {a, b} S ∩X2 = {b} S ∩X3 = {d}.

The hitting set S is not minimal though since S ′ = {b, d} is a hitting set of X as well. The
latter is minimal.

We also want to emphasize that now, the definition of a hitting set applies to a set X of
tuples of sets in the natural way. Recall that the subset relation was extended to tuples
component-wise, which induces emptiness of a tuple iff both components are.
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Example 2.1.3 (Hitting sets of tuples). Let X be the following set of tuples:

X = {({a, b}, {b, c}), ({c}, {d})}

Then, S = ({a}, {d}) is a hitting set of X since

({a}, {d}) ∩ ({a, b}, {b, c}) = ({a}, ∅) ({a}, {d}) ∩ ({c}, {d}) = (∅, {d})

Note that S is even a minimal hitting set of X , because moving to, e. g., S ′ = (∅, {d})
yields

(∅, {d}) ∩ ({a, b}, {b, c}) = (∅, ∅).

Similarly, S ′′ = ({a}, ∅) is no hitting set of X , either.

The last notion we require regarding sets is the definition of an upward-closed set of sets:

Definition 2.1.4. Let X be a set of sets and let Y ⊆ X . We call Y upward-closed wrt. X if
X ⊆ X ′ and X ∈ Y already implies X ′ ∈ Y for each X,X ′ ∈ X .

Consider again two sets X and Y . If there is a subset X ′ ⊆ X such that f : X ′ → Y is
a mapping, then we call f a partial mapping from X to Y , denoted by f : X 99K Y . If A
is a set of propositional atoms, then a mapping f : A→ {0, 1} is called an assignment and
a partial mapping f : A 99K {0, 1} is called a partial assignment.

We denote the power set ofX by 2X , i. e., 2X = {Y | Y ⊆ X}. The cardinality of a set
X is |X|. We will, however, only consider the cardinality of finite sets, yielding the simple
definition |X| = n ∈ N iff there is a bijection ρ : X → {1, . . . , n}.

As usual, R denotes the real numbers. Let R≥0 = {x ∈ R | x ≥ 0}, R = R∪ {∞} and
R≥0 = R≥0 ∪ {∞}.

2.2 Propositional Logic

We define propositional logic as usual, so let us briefly recall the standard definitions. Let
A be a set of propositional atoms, i. e., a propositional signature. Any atom a ∈ A is a well-
formed formula wrt. A. If φ and ψ are well-formed formulas wrt. A, then ¬φ, φ ∧ ψ, and
φ ∨ ψ are also well-formed formulas wrt. A (we also assume that the usual abbreviations
→,↔ are defined accordingly). A formula φ is in conjunctive normal form (CNF) if it
is of the form φ = C1 ∧ . . . ∧ Cr where each Ck is a clause, i. e., Ck is of the form
Ck = ak,1 ∨ . . . ∨ ak,n(k) for atoms ak,j . If each Ck contains at most 3 literals, then φ is in
3-CNF. We abuse notation and identify a formula φ of this form with the set {C1, . . . , Cr}
of clauses. Similarly, a formula φ is in disjunctive normal form (DNF) if φ = C1 ∨ . . .∨Cr
where Ck = ak,1 ∧ . . . ∧ ak,n(k). If each Ck contains at most 3 literals, then φ is in 3-DNF.

If ω : A 99K {0, 1} is a (partial) assignment, then ω is extended to formulas in the usual
way:

• ω(¬a) = 1− a,

• ω(φ ∧ ψ) = min{ω(φ), ω(ψ)}, and

• ω(φ ∨ ψ) = max{ω(φ), ω(ψ)}.
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If ω(φ) = 1, then we say ω satisfies φ. A propositional knowledge base K is a set of
propositional formulas. As usual, ω satisfies K iff ω satisfies φ for all φ ∈ K. We say K
entails a formula φ, denoted by K � φ, iff each assignment ω satisfying K also satisfies φ.

We call a knowledge base K consistent iff there is an assignment ω satisfying K, other-
wise it is called inconsistent.

Example 2.2.1. Consider the propositional knowledge base K = {a, a → b, ¬b, c, ¬c}.
Obviously, no assignment satisfies K. Hence, K is inconsistent.

2.3 Answer Set Programming

Answer set programming (ASP, see [36] for an overview) is an emerging problem solving
paradigm. It is based on logic programs under the answer set semantics [57; 58], a popular
non-monotonic formalism for knowledge representation and reasoning which consists of
rules possibly containing default-negated literals. Inconsistencies occur in ASP for two
reasons, cf. [99]. First, the rules allow the derivation of two complementary literals l and ¬l
–also called incoherence, see [82]– thus producing inconsistencies similar to propositional
logic. Second, due to the use of default negation it may happen that some literal assumed to
be false is again derived (called instability).

Let us consider logic programs with disjunction in the head of rules and two kinds of
negation, namely strong negation “¬” and default negation “not”, under the answer set
semantics [57; 58]. In [58] such programs were called extended disjunctive databases,
whereas Gelfond and Leone [57] simply speak of logic programs or A-Prolog programs.
We will call these programs extended disjunctive logic programs or disjunctive logic pro-
grams for short.

Assume we are given an infinite setA of atoms. Let Lit(A) be the set of all literals over
A. Then, a disjunctive logic program P (over A) is a finite set of rules r of the form

l0 ∨ ... ∨ lk ← lk+1, . . . , lm, not lm+1, . . . , not ln. (2.1)

where l0, . . . , ln are literals over A and 0 ≤ k ≤ m ≤ n. If k = 0 holds for each rule
r ∈ P , then we call P a normal logic program. When there is no risk of confusion, we will
simply speak of logic programs instead of disjunctive logic programs resp. normal logic
programs.

For a rule r of the form (2.1) let head(r) = {l0, . . . , lk}, pos(r) = {lk+1, . . . , lm},
and neg(r) = {lm+1, . . . , ln}. If m = n = k, then r is written “head(r).” instead of
“head(r)← .” and if in addition k = 0 holds, then the rule is called a fact.

Now we are ready to define answer sets of a given program.

Definition 2.3.1. Let P be a logic program overA such that neg(r) = ∅ holds for each rule
r ∈ P . Then, a set M of literals is a model of P if for all r ∈ P the following is true: If
pos(r) ⊆M , then head(r)∩M 6= ∅. If M is a model of P containing two complementary
literals, then M = Lit(A). A minimal model of P is called an answer set of P .

Let us consider some example programs where the condition neg(r) = ∅ is met:

Example 2.3.2. Let P be the program P = {a.}. Trivially, {a} is model a of P , and in
particular an answer set. If we consider P as a program over A = {a, b}, then {a, b} is a
model of P as well, but not minimal and hence no answer set.
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Example 2.3.3. Now consider the program P :

P : a ∨ b.

The program has two answer sets {a} and {b}, as well as the model {a, b}. The latter is no
answer set.

Example 2.3.4. The program P

P : a ∨ b. a← b. c. ¬c.

possesses the answer set Lit(A).

The goal is of course to extend this definition of answer sets to arbitrary logic programs.
For that assume we are given a logic program P and a set M of literals. We call

PM = {head(r)← pos(r) | head(r)← pos(r), neg(r) ∈ P, neg(r) ∩M = ∅}

the reduct of P wrt. M . Observe that PM itself is a logic program and neg(r) = ∅ holds
for each r ∈ PM . Now we define:

Definition 2.3.5. Let P be a logic program over A. A set M of literals is an answer set of
P iff M is an answer set of PM .

Example 2.3.6. Let P be the program

P : a← not a.

Let us consider M1 = ∅ and M2 = {a}. We find

PM1 = {a.} PM2 = {}.

In particular, both M1 and M2 are not answer sets of P , because M1 is not a model of
PM1 and M2 –although being a model of PM2– is not minimal. Indeed, P is the simplest
example of a logic program which possesses no answer set.

Example 2.3.7. Now consider the following program P , which will be one of our running
examples:

P : a ∨ b. a← b.

c← not b. ¬c← not b.

The program has no answer set. To see this, consider the three candidates {a}, {b} and
{a, b} with

P {a} : a ∨ b. a← b. c. ¬c.
P {b} : a ∨ b. a← b.

P {a,b} : a ∨ b. a← b.

We see that {a} is not a model of P {a}, {b} is not a model of P {b} and {a, b} is a model of
P {a,b}, but not minimal.
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Note that so far, we defined what an answer set is, no matter whether it is consistent or
not. Recall that if a model contains two complementary literals, it is extended to Lit(A).
Clearly, this should not be considered a consistent answer set. Moreover, in order for a
program to be consistent, it should possess consistent answer sets. Hence, we define:

Definition 2.3.8. Let P be a logic program over A. An answer set M is consistent if it does
not contain two complementary literals. The program P is consistent if it possesses at least
one consistent answer set.

We thus see that the program from Example 2.3.7 is inconsistent.
Some of our example will make use of variables, usually denoted by X or Y . As

usual, a rule of the form “head(X) ← body(Y ).” is a shorthand for all ground instances
of this rule, i. e., each variable may be replaced with an arbitrary literal over A. Moreover,
“head(X)← body(Y ), X 6= Y.” is defined similar, but we need to assign different literals
to X and Y . As usual, we assume the set A consists of all atoms occurring in a given
program P , if not stated otherwise.

Finally, we call a rule of the form

r : a← l1, . . . , lm, not lm+1, . . . , not ln, not a. (2.2)

where a is an atom that does not occur elsewhere in a given program P a constraint. The
intuitive meaning is that no answer set of P is allowed to contain all literals l1, . . . , lm and
none of the literals lm+1, . . . , ln. We use the established shorthand

← l1, . . . , lm, not lm+1, . . . , not ln.

for constraints of the form (2.2).

2.4 Abstract Argumentation Frameworks

In the original formulation, an abstract argumentation framework (AF) F is a directed graph
F = (A,R) where nodes in A represent arguments and the relation R models “attacks”,
i. e., for a, b ∈ A, if (a, b) ∈ R then a is a counterargument for b and we say a attacks
b. Abstract argumentation frameworks consider the problem of argumentation only at this
abstract level and do neither consider the inner structure of arguments nor how the attack re-
lation is derived. Semantics are given to an abstract argumentation framework F = (A,R)
by identifying sets E ⊆ A of arguments (called extensions) that can be “jointly accepted”.
The literature offers various approaches on how to define “jointly accepted”, see [49].

Chapter 5 of this work is devoted to inconsistency in abstract argumentation, taking a
wide range of different semantics into account. However, for now, we will focus on so-
called stable semantics. They are intuitive, easy to understand and thus an appropriate tool
to illustrate our results with examples from abstract argumentation.

Definition 2.4.1. Let F = (A,R) be an AF. A set E ⊆ A is called stable extension if

• a, b ∈ E implies (a, b) /∈ R,

• c ∈ A \ E implies there is an a ∈ E with (a, c) ∈ R.

We denote the set of stable extensions of an AF F by stb(F ).
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The first item ensures thatE is conflict free, i. e., there are no two “accepted” arguments that
attack each other. This requirement is quite usual for abstract argumentation semantics. The
second item is what characterizes stable semantics: each argument which is not included in
E shall be attacked by E. This is a rather decisive requirement, partitioning the arguments
in “accepted” and “attacked” ones.

Example 2.4.2. Consider the AF F = (A,R) where

A = {a, b, c, d} R = {(a, b), (b, a), (c, b), (c, c), (d, c)}.

The AF is depicted in Figure 2.1:

dcba

Figure 2.1: The argumentation framework F from Example 2.4.2

We have

stb(F ) = {{a, d}, {b, d}}

which is depicted in Figure 2.2:

dcba dcba

Figure 2.2: Stable extensions of F from Example 2.4.2

It can be verified straightforwardly that there is no other stable extension.

In comparison to other semantics, stable semantics possess a rare property, namely that an
AF might have no extension at all. This is, for example the case for the following simplified
version of the previous AF.

Example 2.4.3. Consider the AF F = (A,R) (see Figure 2.3) with

A = {a, b, c} R = {(a, b), (b, c), (c, c)} :

cba

Figure 2.3: The argumentation framework F from Example 2.4.3

The argument c attacks itself, so c /∈ E if E is conflict free. However, we see that in order
to attack c, the argument b must be included in our extension E, but then, a can neither be
included in E nor attacked.
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This motivates our definition of inconsistency of an AF: Similar to ASP where we call
a program inconsistent whenever there is no (consistent) answer set, we will call an AF
inconsistent whenever there is no stable extension.

Definition 2.4.4. Let F be an AF. If stb(F ) = ∅, then we call F inconsistent wrt. stable
semantics. If there is no risk of confusion, we will call F simply inconsistent.

This notion will be generalized and further investigated in Chapter 5. For now, we stick
with this notion of inconsistency in abstract argumentation frameworks.

2.5 Logics - A General Approach

Most of the main results in this work are independent of the actual logic, i. e., they hold for
propositional logic, ASP, AFs and many other frameworks. It is thus natural to phrase those
results for an arbitrary but fixed logic L. To achieve this, we require a general definition of
a logic, covering a wide range of frameworks as special cases.

In a nutshell, a logic L consists of syntax and semantics of formulas. To model the
syntax properly, we stipulate a setWF of so-called well-formed formulas. Any knowledge
base K is a subset ofWF . To model the semantics, we let BS be a set of so-called belief
sets. Intuitively, given a knowledge base K, the set of all that can be inferred from K is
B ⊆ BS . To formalize this, a mapping ACC assigns the set B of corresponding belief
sets to each knowledge base K. For example, if our knowledge base is a logic program P ,
then we want to assign all answer sets of P to it. Hence, BS should contain all potential
answer sets of P and we expect ACC(P ) = {M |M is an answer set of P}. Finally, some
belief sets are considered inconsistent. We call the set of all inconsistent belief sets INC.
The inconsistent belief sets are supposed to model conflicting conclusions. We thus expect
them to be upward-closed in BS , i. e., if B,C ∈ BS with B ⊆ C and B is in INC, then
C ∈ INC as well.

Hence, our definition of a logic is as follows.

Definition 2.5.1. A logic L is a tuple

L = (WF ,BS, INC,ACC)

whereWF is a set (of well-formed formulas), BS is a set (of belief sets), INC ⊆ BS is
upward closed wrt. BS and ACC : 2WF → 2BS assigns a collection of belief sets to each
subset ofWF . A knowledge base K of L is a finite subset ofWF .

Note that this definition only covers finite knowledge bases. This does not exclude infinite
knowledge bases which can be represented in a finite way. For example in predicate calculus
we might have an expression “∀x.(∀y.(R(x, y) → R(y, x)))” which represents an infinite
number of formulas if the underlying universe is infinite.

2.5.1 Logic Instances: Previous Frameworks

In order to familiarize us with this abstract definition of a logic, let us illustrate how to
model propositional logic, ASP and AFs under stable semantics as a logic according to
Definition 2.5.1.
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Example 2.5.2 (Propositional logic). Let A be a set of propositional atoms. We define a
logic

LAP =
(
WFAP ,BSAP , INCAP ,ACCAP

)
.

We let WFAP be the well-formed formulas over A (see the inductive definition in Sec-
tion 2.2) and BSAP the deductively closed sets of formulas, i. e.,

BSAP =
{
K ⊆ WFAP | K = {φ | K � φ}

}
.

The set INCAP is supposed to contain the inconsistent belief sets. Since INCAP ⊆ BSAP ,
any set in INCAP needs to be deductively closed as well. As anything can be derived from
an inconsistent knowledge base, the is no other choice than INCAP =

{
WFAP

}
. Finally,

the mapping ACCAP assigns to each K ⊆ WFAP the set containing its set of theorems, i. e.,

ACCAP (K) = {{φ | K � φ}}.

During the remainder of this work, we omit the superscript A whenever there is no risk of
confusion.

Example 2.5.3 (Disjunctive logic programs). Let A be a set of propositional atoms. Ex-
tended disjunctive logic programs under answer set semantics over A can be modeled as
logic

LAASP =
(
WFAASP,BSAASP, INCAASP,ACCAASP

)
.

Here, WFAASP is the set of all rules of the form (2.1) over A (see Section 2.3). Moreover,
BSAASP consists of the sets of literals over A, i. e.,

BSAASP = 2A

and INCAASP = {Lit(A)}. The mapping ACCAASP assigns to a logic program P ⊆ WFASP
the set of all answer sets of P , i. e.,

ACCAASP(P ) =
{
M ∈ 2A |M is an answer set of P

}
.

As before ,we omit the superscript A whenever there is no risk of confusion.

It is a quite simple, yet pleasing observation that moving to a subclass of a certain logic just
requires restrictingWF .

Example 2.5.4 (Normal logic programs). If we let WFAASP∗ ⊆ WF
A
ASP be the set of all

rules of the form (2.1) with k = 0, then

LAASP∗ =
(
WFAASP∗ ,BS

A
ASP, INCAASP,ACCAASP

)
is the logic corresponding to normal logic programs under answer set semantics.
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Example 2.5.5 (Abstract argumentation frameworks). Representing an AF F = (A,R)
as a logic according to Definition 2.5.1 requires some caution since a knowledge base is
supposed to be a subset of WF , but an AF is a tuple. In order to obtain a simple and
intuitive representation of AFs as a set, let us assume a finite set A of arguments is given.
Now, each well-formed formula corresponds to one attack within the AF.

More precisely, we define a logic

LAAF =
(
WFAAF,BSAAF, INCAAF,ACCAAF

)
.

The set WFAF is the set of all possible attacks, i. e., WFAF = (A × A). Belief sets are
arbitrary sets of arguments, i. e., BSAF = 2A. We consider no notion of an inconsistent set
of arguments (recall that an AF F is inconsistent if stb(F ) = ∅). We thus let INCAF = ∅.
Hence, to represent an AF F = (A,R), we fix the set A of attacks and let R be our
knowledge base. Now, the AF under consideration is F , but the knowledge base is the set
R. So we have

ACCAAF(R) = stb(F ), where F = (A,R).

We will thus sometimes abuse terminology and speak of the AF R instead of F = (A,R)
when A is given. As usual, we omit the superscript A whenever it is implicitly clear.

The reader may verify that a wide spectrum of other logics can be modeled as well, e. g.,
first-order logic, modal logic, probabilistic and fuzzy logics.

2.5.2 Inconsistency

Consider a logic L = (WF ,BS, INC,ACC). Until now, the meaning of the set INC
–the inconsistent belief sets– is only intuitively clear. Formally INC is required to clarify
what we mean by an inconsistent knowledge base. The definition of inconsistency is quite
natural: A knowledge base should possess at least one consistent belief set in order to be
consistent, otherwise we call it inconsistent. For example, a logic program should have at
least one consistent answer set, as already noticed in Definition 2.3.8. A knowledge base K
is thus inconsistent if all belief sets ACC(K) are.

Definition 2.5.6. A knowledge baseK is called inconsistent iffACC(K) ⊆ INC. Let I (K)
denote the collection of all inconsistent subsets of K. Let Imin(K) be the set of all minimal
inconsistent subsets of K.

To be precise, inconsistency is a property a knowledge base has with respect to a given logic
L. We should thus write Imin(K)L instead of Imin(K). However, in most cases the under-
lying logic will be clear or simply not important, so we may omit the superscript without
risking confusion. The only exception will be Section 3.3 where we give the superscripts
whenever this is necessary. This remark holds for all notions we are going to give during
this work, whenever they are phrased for an arbitrary but fixed logic.

Now let us discuss the above definition of inconsistency. For propositional logic, incon-
sistency means that every formula can be inferred from a knowledge base.

Example 2.5.7 (Inconsistency in propositional logic). Consider the propositional knowl-
edge base K = {a, a → b, ¬b, c, ¬c} from above. Recall that K entails a contradiction,
so by definition of propositional logic we have ACCP(K) = {{a,¬a, b, . . .}} = {WFP}.
In particular, ACCP(K) ⊆ INC. Thus, K is as expected inconsistent according to Defini-
tion 2.5.6.
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Observe that our definition of inconsistency also captures cases where a given knowledge
base K has no belief set at all. Formally, if ACC(K) = ∅, then ACC(K) ⊆ INC holds
trivially. At a first glance, this may look like an overlooked technical detail. It is however
intended and of importance for many non-monotonic frameworks, including ASP and AFs.
The following example illustrates such a case.

Example 2.5.8 (Inconsistency in ASP). Consider again the logic program P given as

P : a ∨ b. a← b.

c← not b. ¬c← not b.

As pointed out in Example 2.3.7, P has no answer set. Therefore,

ACCASP(P ) = ∅ ⊆ INCASP

and hence P is considered inconsistent as well.

In fact, this is a quite common reason for a logic program to be inconsistent. In the original
formulation, a logic program only contains atoms of the form “a” and no literals of the form
“¬a”, so there is no notion of inconsistent answer sets. Hence, a program of this kind can
only be inconsistent when possessing no answer set. Inconsistency in AFs is similar. Due
to our definition, a given AF F is considered inconsistent whenever stb(F ) = ∅.

Example 2.5.9 (Inconsistency in AFs). Let us consider again the AF F = (A,R) depicted
in Figure 2.3 above. Recall that we assume A to be implicit, so our knowledge base is
R = {(a, b), (b, c), (c, c)}. Since F has no stable extension we obtain

ACCAAF(R) = ∅ ⊆ INCAAF.

The framework is thus considered inconsistent, as expected.

Having established a formal meaning of inconsistency, our definition of consistency is
straightforward.

Definition 2.5.10. A knowledge base K is consistent if ACC(K) * INC, i. e., it is not
inconsistent. We let C (K) and Cmax (K) denote the set of all consistent and maximal con-
sistent subsets of K, respectively.

Following the usual terminology we will sometimes call a set H ∈ C (K) a repair and
S = K \ H (withH ∈ C (K)) a diagnosis for K.

2.5.3 Monotony

As already mentioned, the central issue of this work is to investigate the behavior of in-
consistency in non-monotonic logics. We thus require a formal definition of a monotonic
logic in our setting. The intuitive understanding of monotony is that a conclusion which is
inferred from a knowledge base K is never withdrawn due to additional information. We
want to formalize this idea for our general logic while taking the usual reasoning modes
into account. Our definition generalizes the one of [35]. Whereas the latter requires mono-
tonic logics to associate unique belief sets to knowledge bases, our definition shows that a
reasonable notion of monotony can be defined for logics with multiple belief sets.
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Definition 2.5.11. A logic L = (WF ,BS, INC,ACC) is skeptically monotonic or simply
monotonic whenever K ⊆ K′ ⊆ WF implies:

• if B′ ∈ ACC(K′) then B ⊆ B′ for some B ∈ ACC(K).

The name “skeptically” monotonic is motivated by the observation that in a skeptically
monotonic logic, skeptical reasoning based on the intersection of belief sets is monotonic.
This is formalized in Proposition 2.5.15 below. In this sense, the natural counterpart would
be a notion of a “credulously” monotonic logic. This is indeed possible by requiringB ⊆ B′
for some B′ ∈ ACC(K′) if B ∈ ACC(K). However, within the scope of this work the
crucial monotony notion is the one given in Definition 2.5.11. The reason is that it ensures
that conflicts within a knowledge base cannot be resolved by adding new information (see
Lemma 2.5.18 below).

When there is no risk of confusion, we will call a knowledge base monotonic whenever
its associated logic is. This is a slight abuse of terminology since monotony is a property of
a logic, not of a knowledge base. However, leaving the actual logic implicit does no harm
in many cases, and we prefer the simpler terminology.

Before we formally prove some properties of monotonic logics, let us consider some
examples in order to get familiar with this notion.

Example 2.5.12 (Monotony in propositional logic). Consider the propositional knowledge
bases K = {a ∧ b} and K′ = {a ∧ b, b → c.}. Observe that both ACCP(K) as well as
ACCP(K′) are singletons. More precisely,

ACCP(K) = {{a, b, a ∧ b, a ∨ b, a ∨ c, . . .}},
ACCP(K′) = {{a, b, c, c, a ∧ b, a ∧ c, b ∧ c, . . .}}.

So set B = {a, b, a∧ b, a∨ b, a∨ c, . . .} and B′ = {a, b, c, c, a∧ b, a∧ c, b∧ c, . . .}. Since
B ⊆ B′ we see monotony according to Definition 2.5.11. As this is the case for any two
propositional knowledge bases K ⊆ K′, we see that this logic is skeptically monotonic.

The following example illustrates that ASP is non-monotonic. The intuitive reason is as
follows: Given two logic programs P ⊆ P ′, it might happen that P ′ possesses a novel
answer set in the sense that it is not a superset of an answer set of P . Within ASP, this is a
common feature. It is thus sufficient to consider a rather simple example.

Example 2.5.13 (Monotony in ASP). Consider P ⊆ P ′ given as follows:

P : a← not b. P ′ : a← not b.

b← not a.

We have

ACCASP(P ) = {{a}}, ACCASP(P ′) = {{a}, {b}}.

If we set B′ = {b} ∈ ACCASP(P ′), then there is no B ∈ ACCASP(P ) with B ⊆ B′. ASP is
thus not skeptically monotonic.

It is also a straightforward observation that AFs are non-monotonic as well.
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Example 2.5.14 (Monotony in AFs). Recall the AF from Figure 2.3 which we represent as
knowledge base R = {(a, b), (b, c), (c, c)}. Consider R′ = R ∪ {(a, c)} which yields an
AF with one additional attack. We seeACCAAF(R) = {} andACCAAF(R′) = {{a}}. If we
set B′ = {a}, then there is no B ∈ ACCAAF(R) satisfying B ⊆ B′ which is trivial since
ACCAAF(R) is empty.

As already mentioned, skeptical monotony guarantees monotony of skeptical reasoning.
Formally, we have:

Proposition 2.5.15. Let L be a skeptically monotonic logic. If K and K′ are consistent
knowledge bases and K ⊆ K′, then⋂

B∈ACC(K)

B ⊆
⋂

B′∈ACC(K′)

B′.

Proof. Let p ∈
⋂
B∈ACC(K)B, i. e., p ∈ B for each B ∈ ACC(K). Now consider an

arbitrary B′ with B′ ∈ ACC(K′). Due to skeptical monotony, there is a B ∈ ACC(K) with
B ⊆ B′. We thus have p ∈ B ⊆ B′, so p ∈ B′. Since B′ was an arbitrary set in ACC(K′),
p ∈

⋂
B′∈ACC(K′)B

′.

Let us now collect some examples of monotonic logics. As we already mentioned, it is easy
to extend Example 2.5.12 to a general statement. We thus see:

Proposition 2.5.16. The propositional logic

LAP =
(
WFAP ,BSAP , INCAP ,ACCAP

)
is skeptically monotonic.

We expect the presence of default negation to cause non-monotony of ASP. Indeed, without
occurrences of “not”, ASP is monotonic.

Proposition 2.5.17. Let WFAASP−not consist of rules of the form (2.1) with m = n, i. e.,
rules r such that neg(r) = ∅. The logic

LAASP−not =
(
WFAASP−not ,BSAASP, INCAASP,ACCAASP

)
is skeptically monotonic.

Proof. Let P, P ′ ⊆ WFAASP−not . Let P ⊆ P ′. Let B′ be an answer set of P ′, i. e.,
B′ ∈ ACCAASP(P ′). Since B′ is a minimal model of P ′, it is a model of P ⊆ P ′ as well.
Now there is a setB ⊆ B′ which is a minimal model of P . Since this meansB is an answer
set of P , B ∈ ACCAASP(P ) follows.

Let us now formally state that in a monotonic logic an inconsistent knowledge base cannot
be turned into a consistent one by moving to a superset.

Lemma 2.5.18. Let L = (WF ,BS, INC,ACC) be monotonic and K ⊆ K′. If K is
inconsistent, then so is K′.
Proof. Let K be inconsistent, i. e., ACC(K) ⊆ INC. Let K ⊆ K′. If B′ ∈ ACC(K′), then
B ⊆ B′ for a B ∈ ACC(K). However, B ∈ ACC(K) implies B ∈ INC and since INC is
upward closed, B′ ∈ INC. Thus, ACC(K′) ⊆ INC.

Throughout this work, our results regarding monotonic logics depend especially on the
above Lemma 2.5.18 which states that inconsistency survives moving to supersets. Regard-
ing inconsistency in non-monotonic logics, the loss of this property is the central issue we
need to handle.
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Chapter 3

Duality Characterizations for
Non-monotonic Logics

In [96], Reiter points out a duality between maximal consistent and minimal inconsistent
subsets of a knowledge base – the well-known hitting set duality. Within the context of
propositional logic Reiter’s result reads: A subset S of a knowledge base K is a minimal
hitting set of Imin(K) if and only if K \ S ∈ Cmax (K). This result establishes a connection
between the inconsistent and the consistent subsets of a given knowledge base. We want
to emphasize that the above statement is an equivalence, and hence the set Cmax (K), the
set of maximal consistent subsets of K, is characterized. Besides being interesting from a
structural point of view, this result has various applications. For example, many algorithms
and systems for enumerating minimal inconsistent sets –see [8; 78; 79]– utilize Reiter’s
duality. The reader is referred to Section 3.5 for a more comprehensive discussion of related
work.

Because of the importance of this result and in order to understand the behavior and
structure of inconsistent subsets of a knowledge base, our main goal of this chapter is to
generalize the hitting set duality to non-monotonic logics. There are various situations
we are going to cover. First, we investigate a given non-monotonic knowledge base K,
aiming at the maximal consistent subsets Cmax (K) as usual. In order to characterize those
via a hitting set duality, ordinary inconsistency will turn out to be insufficient. We will
thus introduce a refinement of this notion, called strong inconsistency, which will play a
central role for the remainder of this work. Moreover, motivated by the observation that
supersets of a given knowledge base may resolve conflicts, we investigate repairs based on
adding information, in contrast to the notion of maximal consistent subsets which is based
on removing information. We will see that the notions we introduce are symmetric in their
fashion and amplify each other in a natural way. By applying our results appropriately,
we also obtain characterizations for repairs based on refining instead of deleting or adding
formulas, even without the necessity for novel proofs. The latter observation shall also
demonstrate the versitality of the hitting set characterizations we are going to establish
within the subsequent sections.

We will finish this chapter with a discussion on possibly infinite knowledge bases. Even
though infinite knowledge or data does not occur in real world applications, oftentimes it is
impossible or at least unclear how to establish an upper bound for the size of a knowledge
base. In this case, we need to assume it is infinite or arbitrarily large. Therefore, we also
want to provide formal results for knowledge bases of infinite size.
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Chapter 3. Duality Characterizations for Non-monotonic Logics

3.1 Strong Inconsistency

In classical frameworks like propositional logic, inconsistency does not only render reason-
ing meaningless as anything can be derived from an inconsistent knowledge base, but is
also permanent. More precisely, an inconsistent knowledge base K cannot be turned into
a consistent one via additional formulas. Inconsistency is thus quite straightforward and
seeking for the minimal conflicts Imin(K) suffices when trying to tackle it as formalized
in [96] by Reiter’s hitting set duality. In non-monotonic logics, inconsistency oftentimes
stems from an incorrect use of default assumptions as the famous penguin example illus-
trates. However, default assumptions can typically be overwritten which leads to resolution
of the conflicts. Inconsistency in non-monotonic logics appears thus hardly comparable to
inconsistency in, e.g., propositional logic. To illustrate the dynamic behavior of this notion
in non-monotonic frameworks, let us consider the following example.

Example 3.1.1. Assume an agent came to work by bike in the morning, but now that she is
getting ready to leave, it starts raining. Since walking home would take much time, using
the bike is the preferred option. However, holding an umbrella while cycling is dangerous,
but without it, our agent faces a hard time, gets wet (and maybe even a cold). This situation
can be captured with the following concise AF:

use bikeget wet

hold umbrella

Since this AF does not possess a stable extension, it is not possible for our agent to formally
decide whether to use the bike or not. Unfortunately, the agent realizes that her bike got
stolen. Besides being bad news, this would in principle resolve the conflict: Without a bike,
the only option is walking home holding the umbrella. However, she could also borrow a
bike from a colleague who already decided to stay at the office overnight. This yields the
following AF:

use bikeget wet

hold umbrella stolen

borrow

We see that the option to borrow a bike brings back the initial situation. Assume now that
the rain stops. Suddenly the bike is the preferred option again, but also for the agent’s
colleague. This new situation is modeled by the following AF:
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3.1. Strong Inconsistency

use bikeget wet

hold umbrella stolen

borrow

rain stops

The unique stable extension of this AF formalizes that there is no bike which can be used
and no rain to worry about anymore.

The previous example demonstrates that a non-monotonic knowledge base might be quite
messy when it comes to consistent and inconsistent subsets. The AF itself is consistent, but
while constructing it we found two inconsistent subframeworks. It appears therefore hard
to identify the actual reasons for the presence or absence of stable extensions. This raises
the following questions:

• How does inconsistency in non-monotonic logics behave? Is it possible to identify
some structure?

• How meaningful is the set Imin(K), i. e., the set of minimal inconsistent subsets?

• Is it possible to generalize Reiter’s hitting set duality to non-monotonic logics? If so,
which adjustments to the established definitions are required?

In this section, we motivate and develop the answer to those questions, called strong in-
consistency. Although simple in its spirit, it facilitates a generalization of Reiter’s duality
to arbitrary logics. However, this is not the only reason to consider this extension of ordi-
nary inconsistency. It will turn out to be a key tool to understand the structural behavior of
knowledge bases with respect to inconsistency. With this in mind, further extensions and
generalizations of the achieved results can be obtained in a similar fashion and the required
notions are natural and symmetric to each other. Moreover, strong inconsistency will play
a central role in Chapter 4, where we discuss measuring inconsistency in non-monotonic
logics.

3.1.1 The Classical Hitting Set Dualtiy

In order to motivate and understand the necessity of a refined notion of inconsistency, let us
recall Reiter’s hitting set duality from [96, Theorem 4.4]. It is stated within the setting of
diagnoses of a system description. In case of arbitrary monotonic logics, it is folklore. We
state it explicitly here in order to demonstrate how to phrase it within our setting. Although
this theorem is a corollary of Proposition 3.1.11, second item, and Theorem 3.1.12 from
below, we give a straight proof of this result. This may also help to familiarize with the
notions we have established so far.
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Chapter 3. Duality Characterizations for Non-monotonic Logics

Theorem 3.1.2 (MinHS duality). Let K be a monotonic knowledge base. Then S is a
minimal hitting set of Imin(K) if and only if K \ S ∈ Cmax (K).

Proof. “⇒”: Let S be a minimal hitting set of Imin(K). For the sake of contradiction
assume thatH = K \ S is not maximal consistent, i. e.,H /∈ Cmax (K).

First, assume H is inconsistent. Since K is finite, H ⊆ K is finite as well and thus
contains a minimal inconsistent subset H′ ⊆ H. Due to H′ ⊆ H = K \ S we have
S ∩ H′ = ∅ yielding a contradiction as S was assumed to be a hitting set of Imin(K).
Hence,H ∈ C (K).

Now assume H is consistent, but not maximal, so there is a consistent set H′ with
H ( H′ ⊆ K. Again due to finiteness, we may assume H′ is maximal consistent, i. e.,
H′ ∈ Cmax (K). We claim that in this case, S ′ := K \ H′ ( K \ H = S is a hitting set of
Imin(K) as well, contradicting minimality of S. So assume the contrary, i. e., assume there
is a set I ∈ Imin(K) with I ∩ S ′ = ∅. We infer I ⊆ K \ S ′. Now

I ⊆ K \ S ′ = H′

so there is an inconsistent set I with I ⊆ H′. Since K is monotonic, we may apply
Lemma 2.5.18 which implies inconsistency of H′. This contradicts the assumed consis-
tency ofH′. Hence,H must be maximal consistent.

“⇐”: Let H ⊆ K be a maximal consistent set. Let H = K \ S . If S is no hitting set of
Imin(K), then we see as above thatH contains an inconsistent subset, yielding a contradic-
tion. Hence, S is a hitting set of Imin(K). Now assume there is a (w. l. o. g. minimal) set
S ′ ( S that is a hitting set of Imin(K) as well. Then K \ S ′ ∈ C (K) as already shown
above. However, S ′ ( S implies K \ S ( K \ S ′. Hence, K \ S is not maximal in C (K),
which is again a contradiction.

Let us illustrate this results within the setting of propositional logic.

Example 3.1.3. Consider again K = {a, a → b, ¬b, c, ¬c}. As already discussed,
Imin(K) = {{a, a → b, ¬b}, {c, ¬c}}. We see that there are six minimal hitting sets of
Imin(K), namely {a, c}, {a,¬c}, {a → b, c}, {a → b,¬c}, {¬b, c}, {¬b,¬c}. Consider
{a, c}. Indeed, K \ {a, c} = {a → b, ¬b, ¬c} is maximal consistent. One can verify that
K has exactly the six maximal consistent subsets which can be obtained by removing the
hitting sets of Imin(K).

The process of turning an inconsistent knowledge base into maximal consistent ones is
depicted in Figure 3.1.

K :
{a,¬a, b}

Imin(K) :
{a,¬a}

minHS :
{a}, {¬a}

Cmax (K) :
{a, b}, {¬a, b}

Figure 3.1: Reiter’s hitting set duality in a nutshell: Given an inconsistent knowledge base,
we first compute the minimal conflicts, and then proceed with computing their minimal
hitting sets. This way we find the maximal consistent subsets.
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3.1. Strong Inconsistency

For non-monotonic logics this result does not apply anymore, because a knowledge
base may contain inconsistent subsets. This yields the following undesired behavior: It
might happen that

• for a minimal hitting set S of Imin(K), the set K \ S is not maximal consistent,

• there are sets H ∈ Cmax (K) which are not of the form K \ S for a minimal hitting
set S of Imin(K).

The following examples illustrate this. We may give a quite simple one for the first item.

Example 3.1.4. Let P be the consistent program

P : a← not a. a.

with Imin(P ) = {a← not a.}. Of course, P \ {a← not a.} is not maximal consistent.

For the second item from above we consider again our running examples.

Example 3.1.5. Recall the logic program P given as follows:

P : a ∨ b. a← b.

c← not b. ¬c← not b.

In Example 2.3.7 we noticed that P is inconsistent. Clearly,

Imin(P ) = {{c← not b., ¬c← not b.}}.

By removing minimal hitting sets of Imin(P ) from P we obtain

P \ {c← not b.} : a ∨ b. a← b. ¬c← not b.

P \ {¬c← not b.} : a ∨ b. a← b. c← not b.

Both are indeed maximal consistent subsets of P , but the third maximal consistent subset

P \ {a← b.} : a ∨ b. c← not b. ¬c← not b.

is missing.

A similar observation can be made for abstract argumentation frameworks:

Example 3.1.6. Recall the AF F = (A,R) depicted in Figure 2.3 with the implicitly given
set A = {a, b, c} and thus our knowledge base is R = {(a, b), (b, c), (c, c)}. Clearly
Imin(R) = {(c, c)}, so removing the obvious hitting set {(c, c)} yields the consistent AF
F1 = (A,R1) with R1 = {(a, b), (b, c)}. However, this way we do not find the consistent
AF F2 = (A,R2) with R2 = {(b, c), (c, c)}:

cba

F1 :

cba

F2 :

Figure 3.2: The consistent argumentation frameworks F1 and F2 from Example 3.1.6

31



Chapter 3. Duality Characterizations for Non-monotonic Logics

3.1.2 Refining Inconsistency

In order to generalize the hitting set duality to non-monotonic logics, we require a general
notion of inconsistency which is comparable to minimal inconsistency in monotonic logics.
A minimal inconsistent subsetH of a monotonic knowledge base K is characterized by the
following properties:

• H is inconsistent; more precisely, due to monotony of K, eachH′ withH ⊆ H′ ⊆ K
is inconsistent,

• H is minimal with the above property.

In a non-monotonic logic, the observation made in the first item is not true anymore. In
order to simulate this behavior we require this property as an axiom since it is no longer
guaranteed. This yields our central notion called strong inconsistency.

Definition 3.1.7. For H,K ⊆ WF with H ⊆ K we call H strongly K-inconsistent if
H ⊆ H′ ⊆ K impliesH′ is inconsistent. If there is no risk of confusion, we callH strongly
inconsistent for short. Denote by SI (K) and SImin(K) the set of all strongly inconsistent
and minimal strongly inconsistent subsets of K, respectively.

In other words, a subset of a knowledge baseK is stronglyK-inconsistent if all its supersets
within K are inconsistent as well. Intuitively, one can think of a conflict that cannot be
resolved by formulas in K itself.

A comparison between mere and strong inconsistency is depicted in Figure 3.3. Circles
shall correspond to subsets of K, consistent ones filled blue, inconsistent ones filled red.
We see that for a minimal inconsistent subset H of a knowledge base K, each H′ with
H ⊆ H′ ⊆ K is inconsistent as well (1), whereas this is not necessarily the case for a
non-monotonic logic. This is indicated by the blue circle aroundH (2). The last picture (3)
illustrates a minimal strongly inconsistent subset H. As in the monotonic case, there is no
blue circle betweenH and K.

H

K

H minimal inconsistent
(monotonic)

(1)

H

K

H minimal inconsistent
(non-monotonic)

(2)

H
K

H minimal strongly
inconsistent

(non-monotonic)

(3)

Figure 3.3: Minimal inconsistency vs. minimal strong inconsistency

Example 3.1.8. Consider again K = {a, a → b, ¬b, c, ¬c}. Recall that {c,¬c} is an
inconsistent subset of K. Of course, any set H′ with {c,¬c} ⊆ H′ ⊆ K is inconsistent as
well. Hence, {c,¬c} is strongly K-inconsistent.
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3.1. Strong Inconsistency

More generally, Lemma 2.5.18 ensures that mere and strong K-inconsistency coincide
whenever our logic is monotonic (cf. Proposition 3.1.11 below). Let us thus consider
examples involving non-monotonic logics to see our definition at work.

Example 3.1.9. Consider again the logic program P from above.

P : a ∨ b. a← b.

c← not b. ¬c← not b.

Recall that H = {c ← not b., ¬c ← not b.} is an inconsistent subset of P . There is a
consistent program H ′ with H ⊆ H ′ ⊆ P , namely

H ′ : a ∨ b. c← not b. ¬c← not b.

Hence, H is not strongly inconsistent. However,

H ′′ : a← b. c← not b. ¬c← not b.

is strongly inconsistent; even minimal. In particular, there is no other minimal strongly
inconsistent set, therefore

SImin(P ) = {{a← b., c← not b., ¬c← not b.}}.

Example 3.1.10. Recall the argumentation framework depicted in Figure 2.3 which corre-
sponds to the knowledge base R = {(a, b), (b, c), (c, c)}. We already found the inconsistent
subset {(c, c)}. However, the framework over A = {a, b, c} with attacks {(b, c), (c, c)} has
a stable extension, namely {b}. Hence, the set {(c, c)} of attacks is not strongly inconsis-
tent. The reader may verify that

SImin(R) = {{(a, b), (c, c)}}.

Let us now collect some basic properties of SI (K) and SImin(K) in monotonic and non-
monotonic logics.

Proposition 3.1.11. Let K be a knowledge base.

(a) If K is monotonic, then I (K) = SI (K).

(b) If K is monotonic, then Imin(K) = SImin(K).

(c) K is inconsistent iff SI (K) 6= ∅ iff K ∈ SI (K).

(d) IfH is strongly K-inconsistent andH ⊆ K′ ⊆ K, thenH is strongly K′-inconsistent.

Proof. Let L be a monotonic logic and let K be a knowledge base.
(a): The inclusion I (K) ⊇ SI (K) is clear. For I (K) ⊆ SI (K) let H ⊆ K with H ∈ I (K).
Due to Lemma 2.5.18, each H′ with H ⊆ H′ is inconsistent as well. In particular, each H′
withH ⊆ H′ ⊆ K is inconsistent. Thus,H is strongly inconsistent.
(b): This is a corollary of the first item.
Now let L be an arbitrary logic. As above let K be a knowledge base.
(c): If K is inconsistent, then K ∈ SI (K) and hence, SI (K) 6= ∅. If SI (K) 6= ∅, then there
is a set H such that each H′ with H ⊆ H′ ⊆ K is inconsistent. In particular, K ∈ SI (K).
By definition of SI (K), K is inconsistent if K ∈ SI (K).
(d): Let H ∈ SI (K). Hence, each H′ with H ⊆ H′ ⊆ K is inconsistent. In particular for
K′ ⊆ K, eachH′ withH ⊆ H′ ⊆ K′ ⊆ K is also inconsistent, i. e.,H ∈ SI (K′).
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Chapter 3. Duality Characterizations for Non-monotonic Logics

It is also easy to see that a minimal strongly inconsistent setH ∈ SImin(K) always contains
a minimal inconsistent subset, i. e., there is H′ ∈ Imin(K) with H′ ⊆ H. Otherwise, H
would not contain a conflict. Thus, a strongly inconsistent set consists of a set of formulas
that yield a conflict and some additional formula(s) that make sure the conflict cannot be
resolved within K:

c

b

a

d e

prevents
resolution

conflict

Figure 3.4: Depiction of a strongly inconsistent set (red): It consists of an odd loop and
some additional arguments resp. attacks that prevent resolution of the conflict.

Until now, we have developed the notion strong inconsistency for non-monotonic logics
which is comparable to mere inconsistency for monotonic logics (recall Figure 3.3). The
next step is to investigate which subsets of K are characterized by the minimal hitting sets
of SImin(K). Due to the similarity to Theorem 3.1.2 we would expect some notion of
consistency. As it turns out, no adjustment to this notion is required.

Theorem 3.1.12 (Generalized MinHS duality). Let K be a knowledge base. Then S is a
minimal hitting set of SImin(K) if and only if K \ S ∈ Cmax (K).

Proof. “⇒”: Let S be a minimal hitting set of SImin(K) and letH = K\S . First, we show
that any setH′ withH ( H′ ⊆ K is inconsistent. SuchH′ is of the form

H′ = H ∪ I with ∅ 6= I ⊆ K \ H.

Hence, it holds that ∅ 6= I ⊆ S. Since S was assumed to be a minimal hitting set of
SImin(K), S \ I is not a hitting set of SImin(K). This implies that K \ (S \ I) contains a
strongly inconsistent set. The setH′ = H ∪ I is of the form

H′ = H ∪ I = (K \ S) ∪ I = K \ (S \ I).

HenceH′ contains a strongly inconsistent set, implying thatH′ is inconsistent by definition.
SinceH′ was an arbitrary set of satisfyingH ( H′ ⊆ K we see that this is the case for any
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3.1. Strong Inconsistency

proper supersetH′ ofH. So as a first step we obtained:

H ( H′ ⊆ K ⇒ H′ is inconsistent. (3.1)

Now we show H ∈ C (K). Then, maximality follows from (3.1). Let us assume H is
inconsistent. Then, H is strongly inconsistent due to (3.1). Due to finiteness of H ⊆ K, H
contains a minimal strongly inconsistent subsetH′′ ⊆ H, and since

H′′ ⊆ H = K \ S

we have S ∩ H′′ = ∅, yielding a contradiction as S was assumed to be a hitting set of
SImin(K). Hence,H ∈ C (K). Together with (3.1), we obtain thatH ∈ Cmax (K).

“⇐”: Let H ⊆ K be a maximal consistent set. Let H = K \ S. If S is no hitting set
of SImin(K), then we see as above that H contains a strongly inconsistent set, yielding a
contradiction. Hence, S is a hitting set of SImin(K). Now assume that there is a (w. l. o. g.
minimal) set S ′ ( S that is a hitting set of SImin(K) as well. Then, K \ S ′ ∈ C (K) as
already shown above. However, S ′ ( S implies K \ S ( K \ S ′. Hence, K \ S is not
maximal in C (K), a contradiction.

Theorem 3.1.12 suggests that strong inconsistency can indeed play a similar role in non-
monotonic frameworks as ordinary inconsistency does in monotonic ones. Even though
restoring consistency in one part of K by removing a formula may render another part of
K inconsistent, we can resolve inconsistency as in the monotonic case using the notion of
strong inconsistency.

Let us consider again our examples to illustrate the theorem in monotonic and non-
monotonic frameworks.

Example 3.1.13. Consider again K = {a, a → b, ¬b, c, ¬c}. As already pointed out,
we have Imin(K) = {{a, a→ b, ¬b}, {c, ¬c}}. Due to monotony of propositional logic,
SImin(K) = Imin(K), so we obtain the same hitting sets as in Example 3.1.3 above.

Example 3.1.14. Consider the logic program P :

P : a ∨ b. a← b.

c← not b. ¬c← not b.

As we saw in Example 3.1.9,

SImin(P ) = {{c← not b., ¬c← not b., a← b.}}.

Since P is inconsistent, at least one rule needs to be removed in order to obtain a maximal
consistent subprogram. Let us consider the three possibilities given by the hitting sets of
SImin(P ):

P \ {c← not b.} : a ∨ b. a← b. ¬c← not b.

P \ {¬c← not b.} : a ∨ b. a← b. c← not b.

P \ {a← b.} : a ∨ b. c← not b. ¬c← not b.

Since removing “a ∨ b.” does not yield a consistent subprogram, the collection above is
indeed the set Cmax (P ), as stated in Theorem 3.1.12.
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Example 3.1.15. Now consider the argumentation framework (A,R) from before with our
representation R = {(a, b), (b, c), (c, c)}. Recall that we obtained

SImin(R) = {{(a, b), (c, c)}}

in Example 3.1.10. Indeed,

Cmax (R) = {{(b, c), (c, c)}, {(a, b), (b, c)}}.

The former set of attacks yields an AF with {b} as a stable extension, the latter an AF with
{a, c} (recall Figure 3.2).

We continue our investigation of the structure of knowledge bases and how strong in-
consistency transfers properties from monotonic to non-monotonic logics. So far, we used
hitting sets of SImin(K) in order to characterize Cmax (K). However, consistency and incon-
sistency are complementary concepts, and minimality and maximality can be exchanged:
For example, a set H is maximal consistent if D with H = K \ D is minimal such that K
is consistent. So it is a natural question whether we can reverse the hitting set duality: Is it
possible to characterize SImin(K) via hitting sets of Cmax (K)?

For monotonic logics, the affirmative answer to this question has been stated in [30],
Theorem 4.5, item (d). To be precise, we do not require hitting sets of Cmax (K), but
coCmax (K), defined as expected:

Definition 3.1.16. A set H ⊆ K is in coCmax (K) if there is a set H ∈ Cmax (K) such that
H = K \ H.

Phrased within our setting, the duality result from [30] reads as follows.

Theorem 3.1.17. Let K be a monotonic knowledge base. Then S is a minimal hitting set of
coCmax (K) if and only if S ∈ Imin(K).

So we can indeed characterize Imin(K) via a hitting set duality. This result emphasizes the
close link between minimal inconsistency and maximal consistency. We want to investigate
whether this works similarly straightforward for non-monotonic logics as well.

As it turns out, there is a much deeper connection to be discovered. Independent of
logics and (in)consistency, there is a simple lemma answering our questions:

Lemma 3.1.18. [26] Let X = {X1, . . . , Xn} be a set of sets with Xi 6⊆ Xj for i 6= j. Then
minHS(minHS(X )) = X .

Now consider an arbitrary (possibly non-monotonic) knowledge base K. Since K is finite,
we may apply Lemma 3.1.18 to SImin(K). Note that our hitting set duality from Theo-
rem 3.1.12 reads

minHS(SImin(K)) = coCmax (K).

We infer by moving to minimal hitting sets on both sides

minHS(minHS(SImin(K))) = minHS(coCmax (K))

and after applying Lemma 3.1.18 to the left-hand side we obtain

SImin(K) = minHS(coCmax (K)).

Hereby we proved the desired duality characterization:
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Theorem 3.1.19. LetK be a knowledge base. Then S is a minimal hitting set of coCmax (K)
if and only if S ∈ SImin(K).

Let us reconsider our examples in order to familiarize with this result.

Example 3.1.20. For the propositional knowledge base K = {a, a → b, ¬b, c, ¬c} we
have

Cmax (K) = {{a→ b,¬b, c}, {a,¬b, c}, {a, a→ b, c},
{a→ b,¬b,¬c}, {a,¬b,¬c}, {a, a→ b,¬c}}

and thus

coCmax (K) = {{a,¬c}, {a→ b,¬c}, {¬b,¬c}
{a, c}, {a→ b, c}, {¬b, c}}

We see that coCmax (K) possesses two minimal hitting sets, namely {a, a → b,¬b} and
{c,¬c}. Indeed, these are the minimal inconsistent subsets of K.

Example 3.1.21. Consider again the program P

P : a ∨ b. a← b.

c← not b. ¬c← not b.

again. As already pointed out, we have

Cmax (P ) : coCmax (P ) :

{a ∨ b., a← b., c← not b.} {¬c← not b.}
{a ∨ b., a← b., ¬c← not b. {c← not b.}
{a ∨ b., c← not b., ¬c← not b.} {a← b.}

Indeed, the unique minimal hitting set of coCmax (P ) is the only set contained in

SImin(P ) = {{c← not b., ¬c← not b., a← b.}}.

Example 3.1.22. Our argumentation framework with R = {(a, b), (b, c), (c, c)} from above
possesses

Cmax (R) = {{(b, c), (c, c)}, {(a, b), (b, c)}}, coCmax (R) = {{(a, b)}, {(c, c)}}.

We see that the unique hitting set of coCmax (R) is {(a, b), (c, c)}, which is the only set in
SImin(R).

The procedure of finding the minimal conflicts using this dual version of our hitting set
duality is as before, depicted in Figure 3.5:

K :
{a,¬a, b}

coCmax (K) :
{a}, {¬a}

minHS :
{a¬a}

SImin(K) :
{a,¬a}

Figure 3.5: The “dual” version of the hitting set duality: Given an inconsistent knowledge
base, we first compute coCmax (K) and proceed with computing its minimal hitting sets.
We obtain the minimal inconsistent subsets.

37



Chapter 3. Duality Characterizations for Non-monotonic Logics

Let us summarize the results we obtained so far. Motivated by the observation that Reiter’s
hitting set duality does not generalize to non-monotonic logics, we developed strong in-
consistency. This notion is based on the idea to turn the following property of inconsistent
subsets of monotonic knowledge bases into an axiom:

• IfH ⊆ K is inconsistent, then so is eachH′ withH ⊆ H′ ⊆ K.

We showed natural properties of strong inconsistency in Proposition 3.1.11 and in view of
our hitting set characterizations (Theorem 3.1.12 and the corollary Theorem 3.1.19) we are
convinced that strong inconsistency is an appropriate generalization of mere inconsistency.
We will extend this investigation to cases where one might add information to repair knowl-
edge bases in Section 3.2. Before we do so, we want to continue our investigation of strong
inconsistency by providing links to the related notion of strong equivalence. We will also
discuss a hitting set duality based on refining consistency rather than inconsistency, which
shall illustrate that a symmetric approach yields symmetric results. This further emphasizes
the well-behaved structure of knowledge bases, even for non-monotonic logics.

3.1.3 Strong Inconsistency and Strong Equivalence

In propositional logic, equivalence is an important notion as it guarantees substitutability:
Whenever two formulas φ and φ′ are equivalent, that is, possess the same models, and φ
is a subformula of ψ, then replacing φ by φ′ in ψ yields a formula equivalent to ψ. In
non-monotonic formalisms this is no longer the case, which is illustrated in Example 3.1.23
below. This observation has led to a body of literature on so-called strong equivalence (not
only defined for ASP, but also for example for AFs), a more adequate notion of equivalence
for non-monotonic reasoning (see for instance [54; 81; 89]). Let us consider the following
example to motivate the notion of strong equivalence.

Example 3.1.23. Let P and P ′ be the following logic programs.

P : b← not a. P ′ : b.

c← not a. c.

Even though P and P ′ are equivalent in the sense that they possess the same answer set,
it is quite obvious that they encode different information. Moreover, they might behave
differently when being considered as parts of a larger program. For example if G is the
program consisting of only the rule “a.”, then P ∪G and P ′∪G have different answer sets.

The previous quite simple example already shows that equivalence does not guarantee sub-
stitutability in ASP as it does in propositional logic. We expect expect this behavior in other
non-monotonic formalisms as well. Indeed we can make similar observations for abstract
argumentation frameworks.

Example 3.1.24. Assume we have A = {a, b, c} as usual. Then, both F = (A,R) and
F ′ = (A,R′) with R = {(b, c), (c, c)} and R′ = {(b, c)} have {a, b} as stable extension.
However, the AF with attacks R∪{(a, b)} has none while the AF with attacks R′∪{(a, b)}
has {a, c}. The AFs F and F ′ are depicted below:

cbaF : cbaF ′ :

38



3.1. Strong Inconsistency

As already mentioned above, this observation has led to the development of so-called strong
equivalence. Speaking in terms of answer set programming, P and P ′ are strongly equiv-
alent iff P ∪ G and P ′ ∪ G have the same answer sets for every logic program G. For
argumentation frameworks, strong equivalence is defined analogously.

We now consider a connection between strong equivalence and strong inconsistency.
Strong equivalence can naturally be generalized to arbitrary logics in the following way:

Definition 3.1.25. Let L = (WF ,BS, INC,ACC) be a logic. The knowledge bases K
and K′ are strongly equivalent if ACC(K ∪ G) = ACC(K′ ∪ G) for each G ⊆ WF .

The following proposition shows compatibility of strong inconsistency with strong equiva-
lence.

Proposition 3.1.26. Let K, K′ and G be knowledge bases. If K and K′ are strongly equiv-
alent, then K is strongly (K ∪ G)-inconsistent iff K′ is strongly (K′ ∪ G)-inconsistent.

Proof. The knowledge base K is strongly (K ∪ G)-inconsistent if and only if K ∪ A is
inconsistent for any A ⊆ G. Since K and K′ are strongly equivalent, this is the case if and
only if K′ ∪ A is inconsistent for any A ⊆ G, which is the definition of K′ being strongly
(K′ ∪ G)-inconsistent.

Example 3.1.27. The programs

P : a. P ′ : a.

b. b← a.

¬b← not c. ¬b← not c.

are strongly equivalent. If we letG = {¬a.}, we see that P is strongly (P ∪G)-inconsistent
as well as P ′ is strongly (P ′∪G)-inconsistent. On the other hand, augmenting the programs
with G′ = {c.} renders none of them strongly inconsistent.

Example 3.1.28. Now let us consider a case where equivalence is used instead of strong
equivalence. Take

P : a. P ′ : a.

b. b← a.

¬b. ¬b← not c.

Observe that P and P ′ are not strongly equivalent. Now if G = {c.}, then P is strongly
(P ∪G)-inconsistent, while P ′ is not strongly (P ′ ∪G)-inconsistent.

Let us also consider an example for abstract argumentation. Identifying strong equivalence
for two AFs is far from trivial. For the ones we consider during the following example, we
obtain strong equivalence due to [89] since both AFs possess the same s-kernel, defined as

F sk = (A,Rsk) with Rsk = {R \ (a, b) | a 6= b, (a, a) ∈ R}

for a given AF F = (A,R).
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Example 3.1.29. Now let F = (A,R) and F ′ = (A,R′) with

R = {(a, b), (c, a), (c, c)} and R′ = {(a, b), (c, b), (c, c)}

and A = {a, b, c} as before:

c

baF :

c

baF ′ :

As already mentioned, F and F ′ are strongly equivalent. Consider for instance the attack
(a, a). We see that the knowledge base R is strongly (R ∪ {(a, a)})-inconsistent as well as
R′ is strongly (R′ ∪ {(a, a)})-inconsistent:

c

ba

c

ba

However, introducing an attack (a, c) resolves inconsistency in both cases, i. e., R∪{(a, c)}
as well as R′ ∪ {(a, c)} are consistent with stable extension {a}:

c

ba

c

ba

As a final remark to this section, we want to mention that the connection between strong
equivalence and monotony is in general not as simple as the examples we chose suggest:
Judging from our cases (i. e., propositional logic, ASP and AFs) it might appear that equiv-
alence and strong equivalence coincide whenever the underlying logic is monotonic, so
the latter notion is only interesting for non-monotonic logics. However, this is not true in
general. We refer the reader to [22] for a discussion on this issue.
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3.1.4 Strong Consistency

The analysis so far was based on strong inconsistency. Instead, one could also think of a
refined notion of consistency. In fact, the structure of knowledge bases is robust enough to
obtain similar results by utilizing a symmetrical notion. Recall that strong inconsistency was
chosen to impose a monotonic behavior on K with respect to inconsistency. The same can
be achieved by refining the notion of consistency in a way that it does not allow inconsistent
subsets anymore. Even though the rest of this work will focus on strong inconsistency,
we will discuss this aspect briefly here. We are convinced that it is interesting on its own,
contributing to understanding the structural properties of non-monotonic knowledge bases.

Definition 3.1.30. For H,K ⊆ WF with H ⊆ K we call H strongly consistent if H′ ⊆ H
implies H′ is consistent. Let SC (K) and SCmax (K) denote the strongly consistent and
maximal strongly consistent subsets of K, respectively.

A comparison between mere and strong consistency is depicted in Figure 3.6. As before,
circles correspond to subsets of K, consistent ones filled blue, inconsistent ones filled red.
For a monotonic knowledge base, (maximal) consistency of H implies consistency of each
subset of H (1), which is not true for a non-monotonic logic (2). Picture (3) illustrates
a maximal strongly consistent subset H. As in the monotonic case, there is no red circle
inside the blue one forH.

H

K

H maximal consistent
(monotonic)

(1)

H
K

H maximal consistent
(non-monotonic)

(2)

H

K

H maximal strongly
consistent

(non-monotonic)

(3)

Figure 3.6: Maximal consistency vs. maximal strong consistency

Example 3.1.31. LetK = {a, a→ b, ¬b, c, ¬c}. The setH = {a, a→ b, c} is consistent.
Of course, each subset ofH is consistent as well. Hence,H is strongly consistent.

Example 3.1.32. Now let P be the logic program

P : a ∨ b. a← b.

c← not b. ¬c← not b.

The subset

H : a ∨ b. c← not b. ¬c← not b.

is consistent, but not strongly consistent since {c← not b., ¬c← not b.} is an inconsistent
subset. We see however that {a ∨ b., c← not b.} is strongly consistent.
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Let us also consider our running example AF:

Example 3.1.33. For the knowledge base R = {(a, b), (b, c), (c, c)}, we have the consis-
tent subset {(b, c), (c, c)}, but it is not strongly consistent. However, it is easy to see that
{(a, b), (b, c)} is strongly consistent.

As pointed out in Proposition 3.1.11, ordinary and strong inconsistency coincide for mono-
tonic logics. Unsurprisingly, this is also true for strong consistency. The following result is
an immediate consequence of Lemma 2.5.18.

Proposition 3.1.34. Let K be a knowledge base.

1. If K is monotonic, then C (K) = SC (K).

2. If K is monotonic, then Cmax (K) = SCmax (K).

Before stating the analogous duality results, we need the following notion:

Definition 3.1.35. A set H ⊆ K is in coSCmax (K) if there is a set H ∈ SCmax (K) such
thatH = K \ H.

Now we can phrase Theorems 3.1.12 and 3.1.19 in terms of strong consistency. We want to
emphasize that ordinary inconsistency is used rather than strong inconsistency. This shows
that it is sufficient to move either from mere to strong inconsistency or from mere to strong
consistency; it is not necessary to refine both notions.

Theorem 3.1.36. Let K be a knowledge base. Then S is a minimal hitting set of Imin(K) if
and only if K \S ∈ SCmax (K). Moreover, S is a minimal hitting set of coSCmax (K) if and
only if S ∈ Imin(K).

Proof. It suffices to prove the first statement since the latter can then be inferred from
Lemma 3.1.18.

“⇒”: Let S be a minimal hitting set of Imin(K). We first show that H = K \ S is
strongly consistent. Assume H′ ⊆ H is inconsistent. Let H′ w. l. o. g. be minimal, i. e.,
H′ ∈ Imin(K). However, we have S ∩ H = ∅ by definition of H and hence, S ∩ H′ = ∅
which is a contradiction since S was assumed to be a hitting set of Imin(K).

Now assume H is not maximal, i. e., H′ with H ( H′ is strongly consistent. Then,
S ′ = K \ H′ is a hitting set of Imin(K) (otherwise, H′ would contain an inconsistent
subset). However, we now have S ′ = K \ H′ ( K \ H = S contradicting minimality of S.

“⇐”: If K \ S ∈ SC (K), then S must clearly be a hitting set of Imin(K). Now assume
H = K\S is maximal consistent. Hence, any proper superset ofH contains an inconsistent
set and thus, a proper subset of S cannot be a hitting set. We obtain minimality of S.

In order to familiarize with this duality results, let us consider our running examples – both
monotonic and non-monotonic

Example 3.1.37. For the propositional knowledge base K = {a, a → b, ¬b, c, ¬c},
Theorem 3.1.36 corresponds to the classical duality results.
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Example 3.1.38. For our program

P : a ∨ b. a← b.

c← not b. ¬c← not b.

we have

Imin(P ) = {{c← not b., ¬c← not b.}}

with the two obvious hitting sets. Indeed,

SCmax (P ) = {{a ∨ b., a← b., c← not b.},
{a ∨ b., a← b., ¬c← not b.}}.

Example 3.1.39. For our AF represented by R = {(a, b), (b, c), (c, c)} we have

Imin(R) = {{(c, c)}}, SCmax (R) = {{(a, b), (b, c)}}.

The duality is easy to verify.

Note that here, we use strong consistency and the classical notion of inconsistency. It is
interesting that these complementary results can be obtained by considering strong consis-
tency instead of strong inconsistency. However, we believe that in non-monotonic reason-
ing, strong inconsistency and ordinary consistency as used for the previous results are more
appropriate. For example, inconsistent subsets of a knowledge base should not be an issue
as long as the knowledge base itself is consistent. That is why our investigation focuses on
strong inconsistency rather then strong consistency.

3.2 Augmenting Knowledge Bases: Additional Information

Let us recall the motivation for our notion of strong inconsistency. In monotonic logics, we
have: If H ⊆ K is inconsistent, then the same is true for each H′ with H ⊆ H′ ⊆ K. In
a non-monotonic logic this is not necessarily the case which led to Definition 3.1.7. How-
ever, instead of insisting on moving to maximal consistent subsets of K, this observation
suggests a novel approach, namely resolving conflicts via adding information. Especially
in frameworks like ASP where the absence of answer sets is oftentimes due to a minimality
requirement, this appears to be a quite promising method to restore consistency. To illustrate
this, consider the following example:

Example 3.2.1. Assume a self-driving car is aware of the fact that it should never injure
anyone, so the constraint

← injure(X).

is implemented. Moreover, driving while people are on the street might cause this undesired
outcome, so we have

injure(X)← driving, on street(X).
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Now assume the following situation occurs: Our car has green light ahead which means it
is allowed to cross the intersection by default:

light(green). driving ← light(green), not abn.

However, since a young gentleman is still on the street, the car also learns:

on street(A).

Of course, the above rules form an inconsistent logic program Pcar. Our car is thus not able
to act (in which case it should probably brake immediately, but this is beyond our example).
It does not appear to be reasonable to drop one of the above rules. In fact, it is quite obvious
that our car should treat the presence of people on the street as an “abn” instance, which then
prevents it from applying “driving ← light(green), not abn.”. So instead of removing
anything, we augment Pcar with the rule

r : abn← on street(X).

This yields the consistent program

Pcar ∪ {r} : ← injure(X). injure(X)← driving, on street(X).

light(green). driving ← light(green), not abn.

on street(A). abn← on street(X).

with answer set {light(green), on street(A), abn}.

In the previous example addition of a simple fact was sufficient to restore consistency of the
given program. Of course, this will not always be the case and some conflicts might not be
resolvable via additional information at all, e.g., two complementary facts “a.” and “¬a.”.
We should thus not only focus on adding information, but also combining both approaches.
Hence, the following questions arise:

• How should one formally define repairs of a given knowledge based on adding infor-
mation? How can we combine adding and deleting?

• Is there a hitting set characterization for the above defined repair notions?

• If so, how does the corresponding inconsistency notion look like? Is it natural? Does
it compare to strong inconsistency in a certain sense?

• Does it generalize our former notions and results?

During this section, we will answer the above questions. The results we are going to obtain
are quite pleasant. In particular, the hitting set characterization can be achieved via natural
inconsistency notions, similar in spirit to strong inconsistency. We will also find interesting
relationships to the notions and results we have considered so far.
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3.2.1 A Hitting Set Duality for Addition-Based Repairs

Let us start with repairs based on additional information. In general, it is not quite clear
which additional information might be appropriate, especially when considering an arbitrary
abstract logic as in Definition 2.5.1. Moreover, phrasing meaningful results appears hard
when investigating an arbitrary superset of a knowledge base K. We thus assume the set of
potential additional information is given.

More precisely, we consider knowledge basesK (as usual) and G (of potential additional
assumptions). The set G itself is not necessarily consistent. For technical convenience we
assume K and G to be disjoint. This assumption also matches the intuitive meaning of G
as a set of potential additional information. The following definition formally introduces
repairs that utilize G.

Definition 3.2.2. Let K and G be disjoint knowledge bases. If for A ⊆ G, K ∪ A is
consistent, then we callA a repairing subset of G wrt. K. Let REP(K,G) and REPmin(K,G)
denote the repairing subset of G wrt. K and the minimal ones, respectively.

Of course, no additional information is capable of repairing an inconsistent knowledge base
of a monotonic logic. So our running example of a propositional knowledge base is mean-
ingless in this context, and we move straight to our non-monotonic formalisms.

Example 3.2.3. Recall our running example P .

P : a ∨ b. a← b.

c← not b. ¬c← not b.

Assume we have

G : a. b.

d. b← d.

We see that P ∪ {b.} and P ∪ {d., b← d.} are already consistent and thus

REPmin(P,G) = {{b.}, {d., b← d.}}.

Minimality is clear.

Let us now extend our running example for abstract argumentation. Recall Example 2.5.5
where we defined the logic

LAAF = (WFAF,BSAF, INCAF,ACCAF) .

We pointed out that an AF is actually a tuple and not a set. We thus represent AFs as a
knowledge base in a way that a set A of arguments is fixed and K contains the attacks.
Hence augmenting F with another knowledge base G means in our setup additional attacks
rather than novel arguments. Of course, it would be possible to interpret our running exam-
ple framework F as an AF over, e. g., A′ = {a, b, c, d} resulting in an AF containing the
argument “d” which does not participate in any attack. We will stick however with an AF
over A = {a, b, c}.
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Example 3.2.4. So consider the AF represented by R = {(a, b), (b, c), (c, c)}. Assume we
are given additional attacks G = {(a, c), (b, a), (c, b)}.

ba c

Figure 3.7: The argumentation framework represented by R ∪ G (attacks in G dotted and
gray) from Example 3.2.4

Observe that R ∪ {(a, c)} and R ∪ {(b, a)} represent AFs that possess stable extensions.

ba c ba c

Figure 3.8: The argumentation frameworks represented by R ∪ {(a, c)} and R ∪ {(b, a)}
from Example 3.2.4 including their respective stable extensions (gray)

We thus see
REPmin(R,G) = {{(a, c)}, {(b, a)}}

Again, the repairs are clearly minimal.

Our goal is to characterize the minimal repairs for a given knowledge base K in terms of
a hitting set duality similar in spirit to Theorem 3.1.12. In the latter theorem the result is
the notion of strong inconsistency i. e., subsetsH of a knowledge base K such that each set
H′ with H ⊆ H′ ⊆ K is inconsistent. For addition-based repairs, our notion is a natural
counterpart thereto which we want to develop by considering Example 3.2.3 again.

Assume for the moment the goal was already achieved, implying we had certain sets
whose hitting sets are

REPmin(P,G) = {{b.}, {d., b← d.}}.

Even without being aware of a general technique, this is easy to obtain for this particular
example: We consider G1 = {b., d.} and G2 = {b., b← d.}. The reader may observe that
the two hitting sets of G1 and G2 are {b.} and {d., b ← d.}. By removing the Gi from G,
we find their meaning: We obtain

P : a ∨ b. a← b.

c← not b. ¬c← not b.

G \G1 : a. b← d.

G \G2 : a. d.
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and we see that P is now strongly inconsistent in both cases. More precisely, P is strongly
(P ∪ G \ G1)-inconsistent as well as strongly (P ∪ G \ G2)-inconsistent. The intuitive
reason is that in both cases we removed all possibilities to repair P viaG. Hence, in general
we are looking for sets H ⊆ G such that K is strongly (K ∪ G \ H)-inconsistent. If we
set A = G \ H, this means K has to be strongly (K ∪ A)-inconsistent. When comparing
to strong inconsistency, this is symmetric, taking supersets of K into account rather than
subsets.

Definition 3.2.5. Let K and G be disjoint knowledge bases. If for A ⊆ G, K is strongly
(K∪A)-inconsistent, i. e., K ∈ SI (K∪A), then we callA a non-repairing subset of G wrt.
K. Let NREP(K,G) and NREPmax (K,G) denote the set of non-repairing subsets of G wrt.
K and the maximal ones, respectively.

A maximal non-repairing subsetA of G wrt. K is depicted in Figure 3.9 (2). As we can see,
this notion is similar to strong inconsistency in the sense that all sets within a certain range
need to be inconsistent. Picture (3) illustrates the trivial case where the underlying logic is
monotonic. Here, considering supersets does of course not yield insightful results.

K

K ∪ G

Illustration of K ∪ G

(1)

K
K ∪A

A maximal non-repairing
subset of G

(2)

K

K ∪ G

G maximal non-repairing
subset of G
(monotonic)

(3)

Figure 3.9: Maximal non-repairing subsets of G

To see the non-repairing subsets of G at work, we consider the following examples:

Example 3.2.6. Recall our running example P from above

P : a ∨ b. a← b.

c← not b. ¬c← not b.

with

G : a. b.

d. b← d.

Indeed, the maximal non-repairing subsets of G are A1 and A2 where

A1 : a. b← d.

A2 : a. d.
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Example 3.2.7. Now recall the framework represented by R = {(a, b), (b, c), (c, c)} with
G = {(a, c), (b, a), (c, b)}. There is only one non-repairing subset of G , namely {(c, b)}.
To see this recall from Figure 3.8 that adding “(a, c)” or “(b, a)” results in a consistent AF.
Hence

NREPmax (R,G) = {{(c, b)}}.

We are almost ready to phrase a duality result similar in spirit to Theorem 3.1.12. As before,
we require one additional auxiliary notion, namely co-NREPmax (K,G) which is defined as
expected:

Definition 3.2.8. Let K and G be disjoint knowledge bases. The set co-NREPmax (K,G)
consists of all A ⊆ G such that G \ A is in NREPmax (K,G).

As desired, the following theorem gives a characterization of REPmin(K,G) in terms of a
hitting set duality.

Theorem 3.2.9 (Superset Duality). Let K and G be disjoint knowledge bases. Then S is a
minimal hitting set of co-NREPmax (K,G) if and only if S ∈ REPmin(K,G).

In order to prove this theorem, we utilize Lemma 3.1.18 as we did to infer Theorem 3.1.19
from Theorem 3.1.12. So instead of proving Theorem 3.2.9 directly, we start with the
following:

Theorem 3.2.10 (Superset Duality II). Let K and G be disjoint knowledge bases. Then S
is a minimal hitting set of REPmin(K,G) if and only if G \ S ∈ NREPmax (K,G).

Proof. “⇒”: Let S be a minimal hitting set of REPmin(K,G). For the sake of contradiction
assume that G \ S /∈ NREPmax (K,G).

First assume G \ S /∈ NREP(K,G). Then, there is a set S ′ with S ⊆ S ′ such that
(K∪G)\S ′ is consistent. Due to finiteness of G, we might assume S ′ is maximal among all
subsets of G that render (K∪G) \S ′ consistent. SetA = G \S ′. Then, K∪A is consistent.
In particular, A ∈ REPmin(K,G). Due to

A ∩ S ⊆ A ∩ S ′ = (G \ S ′) ∩ S ′ = ∅

we infer A ∩ S = ∅. Thus, S is no hitting set of REPmin(K,G), which is a contradiction.
Now assume G \ S ∈ NREP(K,G), but it is not maximal. We thus find a set S ′ ( S

such that G \ S ′ ∈ NREP(K,G). Again due to finiteness we might assume maximality,
i. e., G \ S ′ ∈ NREPmax (K,G). We claim that S ′ is a hitting set of REPmin(K,G) as well,
which contradicts minimality of S. This can be seen as follows: AssumeA ⊆ G and K∪A
is consistent and A minimal, i. e., A ∈ REPmin(K,G). In case A ∩ S ′ = ∅ holds, then
A ⊆ G \ S ′. In particular, K ∪A is consistent with

K ⊆ K ∪A ⊆ K ∪ G \ S ′,

i. e., K /∈ SI (K ∪ G \ S ′), which is again a contradiction.

“⇐”: Let G \ S ∈ NREPmax (K,G). For the sake of contradiction assume that S is not a
minimal hitting set of REPmin(K,G).

First assume S is no hitting set of REPmin(K,G). Hence, there is anA ∈ REPmin(K,G)
with A ∩ S = ∅. We infer a contradiction as above. Since A ∩ S = ∅ implies A ⊆ G \ S ,
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and thus K ∪ A ⊆ K ∪ G \ S , we can find a consistent subset of K ∪ G \ S which means
G \ S /∈ NREP(K,G).

Now assume S is a hitting set of REPmin(K,G), but not minimal. So let S ′ ( S be
another hitting set of REPmin(K,G). We claim that this implies G \ S ′ ∈ NREP(K,G)
contradicting the assumed maximality of G \ S. This can be seen as follows: Assume there
is a set A with A ⊆ (G \ S ′) and K ∪A is consistent. Due to finiteness assume minimality
of A, i. e., A ∈ REPmin(K,G). Now A ⊆ (G \ S ′) implies A∩S ′ = ∅ and in particular, S ′
is no hitting set of REPmin(K,G), which is a contradiction.

Now let us turn to the main theorem. As already mentioned, we apply Lemma 3.1.18 as
before.

Proof of Theorem 3.2.9. Due to Theorem 3.2.10, S is a minimal hitting set of REPmin(K,G)
if and only if S ∈ co-NREPmax (K,G). Hence,

minHS(REPmin(K,G)) = co-NREPmax (K,G)

and thus

minHS(minHS(REPmin(K,G))) = minHS(co-NREPmax (K,G)).

Now we apply Lemma 3.1.18 to REPmin(K,G) and obtain:

REPmin(K,G) = minHS(co-NREPmax (K,G)).

This proves Theorem 3.2.9.

Example 3.2.11. Consider again P and G:

P : a ∨ b. a← b. G : a. b.

c← not b. ¬c← not b. d. b← d.

Let us summarize:

REPmin(P,G) = {{b.}, {d., b← d.}},
NREPmax (P,G) = {{a., b← d.}, {a., d.}},

co-NREPmax (P,G) = {{b., d.}, {b., b← d.}}.

Indeed, REPmin(P,G) consists of the minimal hitting sets of co-NREPmax (P,G) (Theo-
rem 3.2.9) and vice versa (Theorem 3.2.10).

Example 3.2.12. Recall R = {(a, b), (b, c), (c, c)} with G = {(a, c), (b, a), (c, b)}. Here,
the relevant sets are:

REPmin(R,G) = {{(a, c)}, {(b, a)}},
NREPmax (R,G) = {{(c, b)}},

co-NREPmax (R,G) = {{(a, c), (b, a)}}.

The set REPmin(R,G) consists of the two hitting sets of co-NREPmax (R,G). Moreover,
co-NREPmax (R,G) contains the unique hitting set of REPmin(R,G).
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3.2.2 A Hitting Set Duality for Arbitrary Repairs

Of course, Theorem 3.2.9 is only meaningful if K is not strongly (K ∪ G)-inconsistent,
i. e., whenever G /∈ NREPmax (K,G). For example, this is naturally violated whenever the
underlying logic is monotonic, but also when G is inappropriate when it comes to providing
repair options for K. This is an advantage of Theorem 3.1.12: Usually, a knowledge base
contains consistent subsets and thus the theorem yields non-trivial results. Clearly, the finest
solution would be combining the benefits of both Theorem 3.1.12 and Theorem 3.2.9. As it
turns out, this can be achieved in a smooth and natural way.

So assume we are given knowledge basesK and G withK∩G = ∅ as before. Our goal is
to find a consistent knowledge baseH which is as close as possible toK. In Theorem 3.1.12
the result was a maximal consistent subset of K, i. e., a knowledge base H of the form
H = K\D whereD is minimal such thatH is consistent. In Theorem 3.2.9 the result was a
minimal consistent superset of K, i. e., a knowledge baseH of the formH = K ∪A where
A is minimal such that H is consistent. Combining both approaches yields the following
notion:

Definition 3.2.13. LetK and G be disjoint knowledge bases. We call (D,A) a bidirectional
repair for K with respect to G if

• D ⊆ K and A ⊆ G,

• K \ D ∪ A is consistent.

By BI-REP(K,G) we denote the set of all bidirectional repairs for K with respect to G. Let
BI-REPmin(K,G) be the set of all minimal ones, i. e., if (D,A) ∈ BI-REPmin(K,G), then
(D′,A′) ∈ BI-REP(K,G) and A′ ⊆ A and D′ ⊆ D implies (D′,A′) = (D,A).

Example 3.2.14. Recall our programs P and G.

P : a ∨ b. a← b. G : a. b.

c← not b. ¬c← not b. d. b← d.

We see that BI-REPmin(P,G) consists of the tuples

({b← a.}, ∅), ({c← not b.}, ∅), ({¬c← not b.}, ∅), (∅, {b.}), (∅, {d., b← d.}).

Here, one of the sets in (D,A) is always empty for (D,A) ∈ BI-REPmin(P,G). We want
to illustrate that this is not necessarily the case in general.

Example 3.2.15. Consider P ′ given via

P ′ : ← not b. ← not c.

and G as before. Note that “← not c.” will cause inconsistency no matter which rules from
G are added. We thus find

BI-REPmin(P ′, G) = {(P, ∅), ({← not c.}, {b.}), ({← not c.}, {d., b← d.})}.

Indeed, for all tuples (D,A) ∈ BI-REPmin(P ′, G) we have← not c. ∈ D which formalizes
that this constraint needs to be removed.
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Let us now continue with our running AF example.

Example 3.2.16. For R = {(a, b), (b, c), (c, c)} and G = {(a, c), (b, a), (c, b)} we recall
from previous examples the following options to turn the represented AF F into one which
possesses a stable extension (see Figure 3.10): Remove (c, c) (F1), remove (a, b) (F2), or
add (a, c) (F3) or (b, a) (F4):

cbaF1 : cbaF2 :

baF3 : c baF4 : c

Figure 3.10: The consistent argumentation frameworks F1, . . . ,F4 from Example 3.2.16

Hence

BI-REPmin(R,G) = {({(c, c)}, ∅), ({(a, b)}, ∅), (∅, {(a, c)}), (∅, {(b, a)})}.

We want to emphasize that repair options generalize the notion of consistent subsets of a
knowledge base.

Proposition 3.2.17. Let K and G be disjoint knowledge bases. A tuple of the form (D, ∅) is
in BI-REPmin(K,G) if and only ifH = K \ D ∈ Cmax (K).

Proof. “⇒”: If (D, ∅) ∈ BI-REPmin(K,G), thenD is minimal such thatK\D is consistent.
So, there is no superset ofH = K \ D which is consistent. HenceH ∈ Cmax (K).
“⇐”: Let H = K \ D ∈ Cmax (K). Of course, (D, ∅) ∈ BI-REP(K,G) since K \ D is
consistent. Further, there is no set D′ ( D such that K \ D′ is consistent. Hence (D, ∅) is
necessarily minimal in BI-REP(K,G), i. e., (D, ∅) ∈ BI-REPmin(K,G).

The same is true for addition-based repairs, which demonstrates the symmetry of these
notions.

Proposition 3.2.18. Let K and G be disjoint knowledge bases. A tuple of the form (∅,A) is
in BI-REPmin(K,G) if and only if A ∈ REPmin(K,G).

Proof. “⇒”: If (∅,A) ∈ BI-REPmin(K,G), thenA is minimal such thatK∪A is consistent.
Hence A ∈ REPmin(K,G).
“⇐”: LetA ∈ REPmin(K,G). Of course, (∅,A) ∈ BI-REP(K,G) sinceK∪A is consistent.
Further, there is no set A′ ( A such that K ∪ A′ is consistent. Hence (∅,A) is necessarily
minimal in BI-REP(K,G), i. e., (∅,A) ∈ BI-REPmin(K,G).
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Let us reconsider the notions which led to the hitting set dualities in the previous theorems.
In Theorem 3.1.12 the solution is the notion of strong inconsistency. Recall thatH is mini-
mal strongly K-inconsistent if H is minimal such that H ⊆ H′ ⊆ K implies inconsistency
of H′. To put it another way, D is maximal such that K \ D ⊆ H′ ⊆ K implies inconsis-
tency ofH′ Analogously, Theorem 3.2.9 was based on the notion of maximal non-repairing
subsets of G. Here, a similar property is required considering sets K∪A rather than K \D,
so roughly speaking, we always face a situation where K is surrounded by inconsistent sets
(recall Figures 3.3 and 3.9). Hence the following comes natural.

Definition 3.2.19. LetK and G be disjoint knowledge bases. We call (D,A) a bidirectional
non-repair for K with respect to G if

• D ⊆ K and A ⊆ G,

• K \ D is strongly (K ∪A)-inconsistent, i. e., K \ D ∈ SI (K ∪A).

Denote by BI-NREP(K,G) the set of all bidirectional non-repair forK with respect to G and
by BI-NREPmax (K,G) the maximal ones.

Consider now Figure 3.11. Intuitively a bidirectional non-repair ensures a “stripe” of in-
consistent sets around K (3). This is similar in spirit to strong inconsistency (1) and non-
repairing subsets of G wrt. K (2), but taking both directions into account.

H
K

H minimal strongly
inconsistent

(1)

K
K ∪A

A maximal non-repairing
subset of G

(2)

K \ D
K
K ∪A

(D,A) maximal
bidirectional non-repair

(3)

Figure 3.11: Comparison of inconsistency notions

To see the notion of bidirectional non-repairs at work, let us reconsider the three examples
from above.

Example 3.2.20. Recall our programs P and G.

P : a ∨ b. a← b. G : a. b.

c← not b. ¬c← not b. d. b← d.

We already noted in Section 3.2.1 that the non-repairing subsets ofG areA1 = {a., b← d.}
and A2 = {a., d.}. Moreover, removal of “a ∨ b.” cannot never help turning P into a
consistent program. Hence

BI-NREPmax (P,G) = {({a ∨ b.}, {a., b← d.}), ({a ∨ b.}, {a., d.})}.
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Example 3.2.21. Consider again P ′

P ′ : ← not b. ← not c.

andG as above. Since “← not c.” will cause inconsistency no matter which rules fromG are
added we see P ′ \{← not b.} ∈ SI (P ′∪G), i. e., ({← not b.}, G) ∈ BI-NREPmax (P ′, G).
Moreover, even if “← not c.” is removed, {b.} ⊆ G or {d., b ← d.} ⊆ G is also required
in order to repair P ′. Thus, BI-REPmin(P ′, G) consists of the following tuples:

({← not b.}, G), ({← not c.}, {a., b← d.}), ({← not c.}, {a., d.}).

Example 3.2.22. Recall the AF represented by R = {(a, b), (b, c), (c, c)} and the additional
attacks G = {(a, c), (b, a), (c, b)}. Observe that removing “(b, c)” or adding “(c, b)” does
not turn the (by R) represented AF F into one possessing a stable extension. Hence,

BI-NREPmax (R,G) = {({(b, c)}, {(c, b)})}.

To verify this, recall that in Example 3.2.16 we saw that any other modification to F yields
one possessing a stable extension (also recall Figure 3.10).

We make the following observations to emphasize how BI-NREPmax (K,G) generalizes min-
imal (strong) inconsistency. First let us consider a monotonic logic. Recall that in this case,
SImin(K) = Imin(K). We do not expect G to play any role here. Indeed, we find:

Proposition 3.2.23. Let K and G be disjoint knowledge bases of a monotonic logic. If
(D,A) ∈ BI-NREPmax (K,G), then A = G. Moreover, (D,G) ∈ BI-NREPmax (K,G) if and
only ifH = K \ D ∈ SImin(K).

Proof. The first statement is clear. So let us prove the equivalence.
“⇐”: Let H = K \ D ∈ Imin(K). Due to monotony of K, Imin(K) = SImin(K), so H
is strongly K-inconsistent. Moreover, adding formulas from G cannot render H consistent.
HenceH is even strongly (K ∪ G)-inconsistent, i. e., (G,D) ∈ BI-NREPmax (K,G).
“⇒”: Let (G,D) ∈ BI-NREPmax (K,G). Then K \D is strongly (K ∪ G)-inconsistent. Due
to monotony, this is equivalent to inconsistency of K \ D. Since D is maximal st. K \ D is
inconsistent,H = K \ D is minimal, i. e.,H ∈ Imin(K) = SImin(K).

In the previous proposition G was irrelevant as the underlying logic was assumed to be
monotonic. Clearly, a similar result holds whenever there is no set G at all.

Proposition 3.2.24. Let K be a knowledge base and G = ∅. A tuple of the form (D, ∅) is in
BI-NREPmax (K,G) if and only ifH = K \ D ∈ SImin(K).

Proof. Let (D, ∅) ∈ BI-NREPmax (K,G). By definition, D is maximal such that K \ D is
strongly K-inconsistent. Equivalently,H = K \ D is minimal strongly K-inconsistent.

A more advanced version of this result without restricting G is the following. It shows that
there is a general connection between BI-NREPmax (K,G) and SImin(K), but it is not as
straightforward as the connection between BI-REPmin(K,G) and Cmax (K) (see Proposi-
tion 3.2.17). The difference is that we are now looking for maximal instead of minimal
tuples with a certain property. Assume we are given a set H ∈ SImin(K). We can be
sure that (D, ∅) ∈ BI-NREP(K,G) with D = K \ H, but there are in general several
sets A ⊆ G such that (D,A) is maximal in BI-NREP(K,G). On the other hand, given
(D,A) ∈ BI-NREPmax (K,G) we can guarantee K \ D ∈ SI (K); but not minimality:
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Proposition 3.2.25. Let K and G be disjoint knowledge bases.

• If (D,A) ∈ BI-NREPmax (K,G), then H = K \ D ∈ SI (K). In particular, there is a
set D′ with D ⊆ D′ such that K \ D′ ∈ SImin(K).

• If H = K \ D ∈ SImin(K), then there is a (not necessarily uniquely defined) A ⊆ G
such that (D,A) ∈ BI-NREPmax (K,G).

Proof.

• Let (D,A) ∈ BI-NREPmax (K,G). Then K \ D is strongly (K ∪ A)-inconsistent,
hence it is also strongly K-inconsistent, soH = K \ D ∈ SI (K).

• LetH = K \D ∈ SImin(K). In particular,H ∈ SI (K). Chose a maximal set A ⊆ G
such thatH ∈ SI (K ∪A). By assumption, such A exists sinceH ∈ SI (K ∪ ∅) (and
G is finite). By definition, (D,A) ∈ BI-NREPmax (K,G).

Thus, the second item is quite nice, but the first one suggests some caution: Given a tuple
(D,A) ∈ BI-NREPmax (K,G), we cannot just “project away” the second component when
looking for sets in SImin(K).

Example 3.2.26. Example 3.2.20 shows that BI-NREPmax (P,G) contains two distinct tu-
ples (D,A) withD = {a∨b.}. We already haveH = P \D ∈ SImin(P ), so we can choose
D′ = D for the first item in Proposition 3.2.25. Since there are two tuples of this form in
Example 3.2.20, it illustrates in particular that A in the second item in Proposition 3.2.25 is
not uniquely defined in general.

Now let us compare BI-NREPmax (K,G) to the non-repairing subsets of G from Defini-
tion 3.2.5. Considering cases where the underlying logic is monotonic or G is empty will
clearly not yield insightful results when investigating NREP(K,G). However, we find a
counterpart to Proposition 3.2.25.

Proposition 3.2.27. Let K and G be disjoint knowledge bases.

• If (D,A) ∈ BI-NREPmax (K,G) then A ∈ NREP(K,G). In particular, there is a set
A′ with A ⊆ A′ such that A′ ∈ NREPmax (K).

• If A ∈ NREPmax (K,G), then there is a (not necessarily uniquely defined) D ⊆ K
such that (D,A) ∈ BI-NREPmax (K,G).

Proof.

• Let (D,A) ∈ BI-NREPmax (K,G). Then K \ D is strongly (K ∪ A)-inconsistent,
hence K is also strongly (K ∪A)-inconsistent, so A ∈ NREP(K,G).

• Let A ∈ NREPmax (K,G). In particular, K ∈ SI (K ∪A) and A is maximal with this
property. Chose a maximal setD ⊆ K such thatK\D ∈ SI (K∪A). By assumption,
such D exists since K \ ∅ ∈ SI (K ∪A), and (D,A) ∈ BI-NREPmax (K,G).

We now return to the main goal of this section, namely our duality characterization for
BI-REPmin(K,G). It should not be surprising that a notion of co-BI-NREPmax (K,G) is re-
quired. The following is natural and well-behaving, extending the previous one component-
wise.
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Definition 3.2.28. LetK and G be disjoint knowledge bases. The set co-BI-NREPmax (K,G)
consists of all (A,D) such that (G \ A,K \ D) is in BI-NREPmax (K,G).

Let us summarize the important sets from the previous examples.

Example 3.2.29. For P and G we found that BI-REPmin(P,G) consists of the following
tuples:

({b← a.}, ∅), ({c← not b.}, ∅), ({¬c← not b.}, ∅), (∅, {b.}), (∅, {d., b← d.}).

Moreover,

BI-NREPmax (P,G) = {({a ∨ b.}, {a., b← d.}), ({a ∨ b.}, {a., d.})}.

Hence if we set H = P \ {a ∨ b.} we obtain

co-BI-NREPmax (P,G) = {(H, {b., d.}), (H, {b. b← d.})}.

Example 3.2.30. Consider again P ′

P ′ : ← not b. ← not c.

We had

BI-REPmin(P ′, G) = {(P, ∅), ({← not c.}, {b.}), ({← not c.}, {d., b← d.})}

and BI-NREPmax (P ′, G) consists of

({← not b.}, G), ({← not c.}, {a., b← d.}), ({← not c.}, {a., d.}).

In particular, co-BI-NREPmax (P ′, G) contains the following tuples:

({← not c.}, ∅), ({← not b.}, {b., d.}), ({← not b.}, {b., b← d.}).

Example 3.2.31. For the AF represented by R = {(a, b), (b, c), (c, c)} and additional at-
tacks G = {(a, c), (b, a), (c, b)} we obtain the following sets:

BI-REPmin(R,G) = {({(c, c)}, ∅), ({(a, b)}, ∅), (∅, {(a, c)}), (∅, {(b, a)})},
BI-NREPmax (R,G) = {({(b, c)}, {(c, b)})},

co-BI-NREPmax (R,G) = {({(a, b), (c, c)}, {(a, c), (b, a)})}.

The following theorem states that the desired duality result is indeed obtained.

Theorem 3.2.32 (Subset-Superset Duality). LetK and G be disjoint knowledge bases. Then
S is a minimal hitting set of co-BI-NREPmax (K,G) iff S ∈ BI-REPmin(K,G).

We will proceed as above and give the proof of Theorem 3.2.32 as a corollary of a theorem
considering hitting sets of BI-REPmin(K,G). Thereto, the following Lemma is convenient
as it establishes a technical property we are going to require.
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Lemma 3.2.33. Let K and G be disjoint knowledge bases. Let A ⊆ G and D ⊆ K. Any
set H with K \ D ⊆ H ⊆ K ∪ A can be written as H = (K \ D′) ∪ A′ with D′ ⊆ D and
A′ ⊆ A.

Proof. Let K \ D ⊆ H ⊆ K ∪A. First observe thatH can be written as

H = (H ∩K)∪̇(H ∩A)

sinceH ⊆ K∪AwithK∩A ⊆ K∩G = ∅. Clearly,H∩A ⊆ A so we may setA′ = H∩A.
Now set D′ = K \ (H ∩K). We have

K \ D ⊆ H ∩K

and thus

D = K \ (K \ D) ⊇ K \ (H ∩K).= D

Moreover,

K \ D′ = K \ (K \ (H ∩ K)) = H ∩K,

and hence we obtain

(K \ D′)∪̇(A′) = (H ∩K)∪̇(H ∩A)

with A′ ⊆ A and D′ ⊆ D.

Equipped with this lemma, we are ready to prove:

Theorem 3.2.34 (Subset-Superset Duality II). Let K and G be disjoint knowledge bases.
Then S is a minimal hitting set of BI-REPmin(K,G) iff S ∈ co-BI-NREPmax (K,G).

Proof. “⇒”: Let S = (SA,SD) be a minimal hitting set of BI-REPmin(K,G). For the sake
of contradiction assume that (K \ SA,G \ SD) /∈ BI-NREPmax (K,G).

First assume (G \ SA,K \ SD) /∈ BI-NREP(K,G). Then, by definition,

K \ (K \ SD) /∈ SI (K ∪ G \ SA),

and thus,
SD /∈ SI (K ∪ G \ SA).

So there is a consistent set H with SD ⊆ H ⊆ K ∪ (G \ SA). Due to Lemma 3.2.33,
we find D ⊆ K \ SD and A ⊆ G \ SA with H = K \ D ∪ A. Due to finiteness of both
knowledge bases we might assume (D,A) ∈ BI-REPmin(K,G). Now SA ∩ A = ∅ as well
as SD ∩D = ∅ implies that S = (SA,SD) is no hitting set of BI-REPmin(K,G), which is a
contradiction.

Now assume (G\SA,K\SD) ∈ NREP(K,G), but the tuple is not maximal. We thus find
a tuple S ′ = (SA′ ,SD′) ⊆ (SA,SD) = S such that (G \ SA′ ,K \ SD′) ∈ NREPmax (K,G).
We claim that S ′ is a hitting set of BI-REPmin(K,G) as well. This can bee seen as follows:
Assume this is not the case, i. e., there is (D,A) ∈ BI-REPmin(K,G) with SA′ ∩ A = ∅ as
well as SD′ ∩D = ∅. By assumption, K \D ∪A is consistent. Due to SA′ ∩A = ∅ as well
as SD′ ∩ D = ∅, we obtain SD′ ⊆ K \ D and A ⊆ G \ SA′ , so

SD′ ⊆ (K \ D) ⊆ (K ∪A) \ D ⊆ (K ∪ (G \ SA′)) \ D ⊆ (K ∪ (G \ SA′)).
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In particular,

SD′ ⊆ (K ∪A) \ D ⊆ (K ∪ (G \ SA′)).

Due to consistency of (K∪A)\D we infer that SD′ /∈ SI (K∪ (G \SA′)). So by definition,
(G \ SA′ ,K \ SD′) /∈ NREP(K,G) which is a contradiction. Hence, S ′ must be a hitting set
of BI-REPmin(K,G) which contradicts minimality of S.

“⇐”: Let (K \ SA,G \ SD) ∈ BI-NREPmax (K,G). For the sake of contradiction assume
that S = (SA,SD) is no minimal hitting set of BI-REPmin(K,G).

First assume that S is no hitting set of BI-REPmin(K,G). As above we find a tuple
(D,A) ∈ BI-REPmin(K,G) with SA ∩ A = ∅ as well as SD ∩ D = ∅. Similarly we obtain

SD ⊆ (K ∪A) \ D ⊆ (K ∪ (G \ SA)).

where (K ∪ A) \ D is consistent. Thus, (K \ SA,G \ SD) /∈ BI-NREP(K,G), which is a
contradiction.

Now assume that S is a hitting set of BI-REPmin(K,G), but not minimal. Let S ′ with
S ′ = (SA′ ,SD′) ⊆ (SA,SD) = S be a minimal hitting set of BI-REPmin(K,G). We claim
that (K \ SA′ ,G \ SD′) ∈ BI-NREP(K,G) contradicting maximality of (K \ SA,G \ SD).
For this, assume

SD′ /∈ SI (K ∪ G \ SA′).

Let H with SD′ ⊆ H ⊆ (K ∪ G) \ SA′ be consistent. As above we apply Lemma 3.2.33
to find D ⊆ K \ SD′ and A ⊆ G \ SA′ with H = K \ D ∪ A. Again due to finiteness we
might assume (D,A) ∈ BI-REPmin(K,G). Hence, S ′ is no hitting set of BI-REPmin(K,G),
which is again a contradiction.

Now we are almost ready to prove Theorem 3.2.32. Before we do so, let us make sure
that Lemma 3.1.18 is still applicable, even though we consider hitting sets of tuples of sets.
There is a simple reason why this is no issue: Since we assume K∩G = ∅, consideration of
tuples is simply for ease of presentation. More precisely, if A ⊆ G and D ⊆ K, then A and
D are disjoint as well and thus, there is a canonical bijection between the tuples of the form
(D,A) and sets of the form A ∪ D. So if S = (SA,SD) with SA ⊆ G and SD ⊆ K, then
S ∩ (D,A) 6= ∅ iff SA ∩A 6= ∅ or SD ∩D 6= ∅. Due toA∩D = ∅ as well as SA ∩SD = ∅
this is the case if and only if (A∪D)∩ (SA∪SA) 6= ∅. However, in the latter term no tuple
is mentioned. So we may apply Lemma 3.1.18 as before.

Proof of Theorem 3.2.32. By Theorem 3.2.34, S is a minimal hitting set of BI-REPmin(K,G)
if and only if S ∈ co-BI-NREPmax (K,G). Hence we see as above,

minHS(minHS(BI-REPmin(K,G))) = minHS(co-BI-NREPmax (K,G)),

which yields

BI-REPmin(K,G) = minHS(co-BI-NREPmax (K,G))

after applying Lemma 3.1.18 as usual.
To see the duality at work, we recall our examples.
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Example 3.2.35. Consider again P ′

P ′ : ← not b. ← not c.

with G as usual. We found

BI-REPmin(P ′, G) = {(P, ∅), ({← not c.}, {b.}), ({← not c.}, {d., b← d.})}

and co-BI-NREPmax (P ′, G) consists of

({← not c.}, ∅), ({← not b.}, {b., d.}), ({← not b.}, {b., b← d.}).

Take ({← not c.}, {b.}) ∈ BI-REPmin(P ′, G). Indeed,

({← not c.}, {b.}) ∩ ({← not c.}, ∅) = ({← not c.}, ∅)
({← not c.}, {b.}) ∩ ({← not b.}, {b., d.}) = (∅, {b.})

({← not c.}, {b.}) ∩ ({← not b.}, {b., b← d.}) = (∅, {b.})

where all intersections are non-empty. It is thus a hitting set of co-BI-NREPmax (P ′, G).
Minimality can bee seen straightforwardly.

Example 3.2.36. For the AF represented by R = {(a, b), (b, c), (c, c)} and additional at-
tacks G = {(a, c), (b, a), (c, b)} we found:

BI-REPmin(R,G) = {({(c, c)}, ∅), ({(a, b)}, ∅), (∅, {(a, c)}), (∅, {(b, a)})},
BI-NREPmax (R,G) = {({(b, c)}, {(c, b)})},

co-BI-NREPmax (R,G) = {({(a, b), (c, c)}, {(a, c), (b, a)})}.

Now consider ({(c, c)}, ∅) ∈ BI-REPmin(R,G). Then

({(c, c)}, ∅) ∩ ({(a, b), (c, c)}, {(a, c), (b, a)}) = ({(c, c)}, ∅),

so it is a hitting set of (the singleton) co-BI-NREPmax (R,G). As above, minimality is clear.

In principle, the process of applying our novel duality results works as before, as depicted
in Figure 3.12:

K,G BI-REPmin

(co-BI-NREPmax )
minHS

co-BI-NREPmax

(BI-REPmin)

Figure 3.12: Summary of Theorems 3.2.32 and 3.2.34: Given an inconsistent knowl-
edge base and potential additional assumptions, we compute BI-NREPmax (K,G) (resp.
BI-REPmin(K,G)) and consider minimal hitting sets as before.

We have now established the main results of this chapter, so let us briefly summarize. We
considered natural notions of repairs of a given knowledge base with the goal to characterize
them via a hitting set duality. As it turns out, the corresponding inconsistency notions are
symmetric and natural generalizations of Imin(K) of a monotonic knowledge base:
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• Minimal strong inconsistency (see Definition 3.1.7) requires that H ⊆ K is minimal
such thatH′ is inconsistent ifH ⊆ H′ ⊆ K. Equivalently, if we setH = K \D, then
D ⊆ K is maximal st.H′ is inconsistent if K \ D ⊆ H′ ⊆ K.

• A maximal non-repairing subset of G wrt. K (see Definition 3.2.5) is characterized
by an analogous behavior wrt. supersets of K.

• A maixmal bidirectional non-repair (see Definition 3.2.19) ensures that for (D,A)
with D ⊆ K and A ⊆ G, we have inconsistency ofH if K \ D ⊆ H ⊆ K ∪A.

Moreover in Propositions 3.2.25 and 3.2.27 we pointed out that bidirectional non-repairs
generalize the two former notions. Motivated by this observation, we will illustrate in the
following section how to see that our duality characterization for bidirectional repairs gen-
eralizes the previous duality results.

3.2.3 Properties of Hitting Sets And Former Dualities

As already mentioned, we want to demonstrate how to infer Theorem 3.1.12 as well as The-
orem 3.2.9 from the more general Theorem 3.2.32. To see this, we need to investigate the
structure of (the hitting sets of) co-BI-NREPmax (K,G). Let us start with Theorem 3.1.12.
Here, the key observation is that –when trying to restore consistency ofK– one is not reliant
on G as long as K possesses consistent subsets. We need to formally find what this means
regarding the hitting sets of SImin(K) resp. co-BI-NREPmax (K,G). We may then translate
the duality characterization from Theorem 3.2.32 into the special case Theorem 3.1.12. The
first and most important step is the following observation.

Proposition 3.2.37. Let K and G be disjoint knowledge bases. Let Cmax (K) 6= ∅, i. e., K
possesses consistent subsets. A set SD is a minimal hitting set of SImin(K) if and only if
(SD, ∅) is a minimal hitting set of co-BI-NREPmax (K,G).

Proof. “⇒”: Let S be a minimal hitting set of SImin(K). Assume the tuple (D,A) is in
co-BI-NREPmax (K,G). Then there is a tuple (D,A) ∈ BI-NREPmax (K,G) withA = G \A
and D = K \ D. Due to Proposition 3.2.25, K \ D ∈ SI (K), i. e., D ∈ SI (K). Due to
finiteness, there is a set D′ ∈ SImin(K) with D′ ⊆ D. Since SD is a minimal hitting set of
SImin(K), we conclude ∅ 6= SD ∩ D

′ ⊆ SD ∩ D. Since (D,A) was an arbitrary tuple in
co-BI-NREPmax (K,G) we see that (SD, ∅) is a hitting set of co-BI-NREPmax (K,G).

We have left to prove minimality of (SD, ∅). Again due to Proposition 3.2.25, for any
K \ D ∈ SImin(K), there is a tuple of the form (D,A) ∈ BI-NREPmax (K,G) and hence
a tuple of the form (K \ D,G \ A) ∈ co-BI-NREPmax (K,G). So if (SD, ∅) is a hitting
set of co-BI-NREPmax (K,G), then SD is a hitting set of SImin(K). Since SD is minimal
(as a hitting set of SImin(K)), we conclude that (SD, ∅) is minimal (as a hitting set of
co-BI-NREPmax (K,G)).
“⇐”: IfH = K \ D ∈ SImin(K), then there is a tuple (D,A) ∈ BI-NREPmax (K,G) due to
Proposition 3.2.25. In particular, there is a tuple (K \ D,G \ A) ∈ co-BI-NREPmax (K,G).
So if (SD, ∅) is a hitting set of co-BI-NREPmax (K,G), then SDSD ∩K \D 6= ∅. Hence SD
is a hitting set of SImin(K).

Minimality is a consequence of “⇒”: Assume (SD, ∅) is a minimal hitting set of
co-BI-NREPmax (K,G). If there is a hitting set S ′D ( SD of SImin(K), then (S ′D, ∅) is
also a hitting set of co-BI-NREPmax (K,G), contradicting minimality of (SD, ∅).
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We want to emphasize that Proposition 3.2.37 in particular implies the following: If (the
conditions of Proposition 3.2.37 are met and) (D,A) ∈ co-BI-NREPmax (K,G), thenD 6= ∅.
Otherwise, (SD, ∅) could not be a hitting set of co-BI-NREPmax (K,G):

Proposition 3.2.38. Let K and G be disjoint knowledge bases. Let Cmax (K) 6= ∅, i. e., K
possesses consistent subsets. Then there is no tuple (D,A) ∈ co-BI-NREPmax (K,G) with
D = ∅.

Proof. Although this is a corollary of Proposition 3.2.37, we want to give a straightforward
proof which directly illustrates why we require K to possess consistent subsets:

For any tuple (D,A) ∈ BI-NREPmax (K,G) we have D ( K. Otherwise, K \ K = ∅
would be strongly (K ∪ A)-inconsistent. However, as K possesses consistent subsets, this
is a contradiction. Hence, whenever (D,A) ∈ co-BI-NREPmax (K,G), we can conclude
D 6= ∅.

Having established those properties of hitting sets, we are now ready to infer Theorem 3.1.12
from Theorem 3.2.32 as a corollary.

Corollary 3.2.39 (Theorem 3.1.12). Let K be a knowledge base. Then S is a minimal
hitting set of SImin(K) if and only if K \ S ∈ Cmax (K).

Proof. In case ∅ ∈ SI (K), i. e., any subset of K is inconsistent, then the claim holds triv-
ially. So assume K possesses consistent subsets.

Let S be a minimal hitting set of SImin(K). Consider an arbitrary knowledge base
G with K ∩ G = ∅. Due to Proposition 3.2.37, S is a hitting set of SImin(K) if and
only if (S, ∅) is a minimal hitting set of co-BI-NREPmax (K,G). By Theorem 3.2.32 this
is equivalent to (S, ∅) ∈ BI-REPmin(K,G). Due to Proposition 3.2.17, this is the case if and
only if K \ S ∈ Cmax (K).

Let us now see how to analogously derive Theorem 3.2.9. Note that Corollary 3.2.39 is
based on Proposition 3.2.37, so towards Theorem 3.2.9 we require a counterpart to it:

Proposition 3.2.40. LetK and G be disjoint knowledge bases. Let REPmin(K,G) 6= ∅, i. e.,
K possesses addition-based repairs. A set SA is a minimal hitting set of co-NREPmax (K,G)
if and only if (∅,SA) is a minimal hitting set of co-BI-NREPmax (K,G).

Proof. “⇒”: Let SA be a minimal hitting set of co-NREPmax (K,G). Assume the tuple
(D,A) is in co-BI-NREPmax (K,G). Then there is a tuple (D,A) ∈ BI-NREPmax (K,G)
with A = G \ A and D = K \ D. Due to Proposition 3.2.27, K ∪ A ∈ NREP(K,G). So
there is a set A′ with A ⊆ A′ ∈ NREPmax (K,G). Since SA is a minimal hitting set of
co-NREPmax (K,G), we conclude

∅ 6= SA ∩ (G \ A′) ⊆ SA ∩ (G \ A) = SA ∩ (A).

Since (D,A) was an arbitrary tuple in co-BI-NREPmax (K,G) we see that (∅,SA) is a hitting
set of co-BI-NREPmax (K,G).

As before, we have left to prove minimality of (∅,SA). Again due to Proposition 3.2.27,
for any A ∈ NREPmax (K,G), there is a tuple (D,A) ∈ BI-NREPmax (K,G). So if (∅,SA)
is a hitting set of co-BI-NREPmax (K,G), then SA is a hitting set of co-NREPmax (K,G).
Since SA is minimal (as a hitting set of co-NREPmax (K,G)), we conclude that (∅,SA) is
minimal (as a hitting set of co-BI-NREPmax (K,G)) as well.

60



3.3. Preferences and Refinements

“⇐”: If A ∈ NREPmax (K,G), then there is a tuple (D,A) ∈ BI-NREPmax (K,G) due to
Proposition 3.2.27. So, if (∅,SA) is a hitting set of co-BI-NREPmax (K,G), then SA is a
hitting set of co-NREPmax (K,G) as well.

Minimality is a consequence of “⇒” as in the proof of Proposition 3.2.37. Assume
(∅,SA) is a minimal hitting set of co-BI-NREPmax (K,G). If there is a set S ′A ( SA that
is a hitting set of NREPmax (K,G), then (∅,S ′A) is a hitting set of co-BI-NREPmax (K,G) as
well, contradicting minimality of (∅,SA).

We may infer an analogous result about the tuples in co-BI-NREPmax (K,G):

Proposition 3.2.41. LetK and G be disjoint knowledge bases. Let REPmin(K,G) 6= ∅, i. e.,
G possesses repairing subsets wrt. K. Then there is no (D,A) ∈ co-BI-NREPmax (K,G)
with A = ∅.

Proof. For any tuple (D,A) ∈ BI-NREPmax (K,G) it holds that A ( G. Otherwise, K
would be strongly (K ∪ G)-inconsistent. However, this contradicts REPmin(K,G) 6= ∅. So,
whenever (D,A) ∈ co-BI-NREPmax (K,G) holds, we conclude A 6= ∅.

Now let us infer Theorem 3.2.9 from Theorem 3.2.32.

Corollary 3.2.42 (Theorem 3.2.9). Let K and G be disjoint knowledge bases. Then S is a
minimal hitting set of co-NREPmax (K,G) if and only if S ∈ REPmin(K,G).

Proof. The case REPmin(K,G) = ∅ is clear. So let REPmin(K,G) 6= ∅. Let S be a min-
imal hitting set of co-NREPmax (K,G). Due to Proposition 3.2.40, S is a hitting set of
co-NREPmax (K) if and only if (S, ∅) is a minimal hitting set of co-BI-NREPmax (K,G). By
Theorem 3.2.32 this is equivalent to (S, ∅) ∈ BI-REPmin(K,G). Due to Proposition 3.2.18,
this is the case if and only if S ∈ REPmin(K).

We thus see that both Theorem 3.1.12 as well as Theorem 3.2.9 can be inferred from Theo-
rem 3.2.32 by establishing appropriate connections between the hitting sets of the different
inconsistency notions. This underlines the fact that the concepts we investigated so far am-
plify and generalize each other in a natural way. We continue our discussion with some
further aspects.

3.3 Preferences and Refinements

Until now, our investigation focused on removing formulas from or adding to a given knowl-
edge base. This approach is rather severe as it does not allow moving from a formula α ∈ K
to a weaker formula α′ instead of just deleting it, i. e., moving toK\{α}. The former would
yield more fine-grained modifications to our knowledge base K. The goal to keep as much
information as possible is already taken into account by moving to a maximal consistent
subset H ∈ Cmax (K) rather than to an arbitrary consistent one. It thus appears natural to
further enhance our methods by modifying instead of just removing or adding formulas.

Moreover, our previous theorems do not allow to discriminate between formulas. Usu-
ally, a knowledge base consists of information from several sources with different levels of
reliability. For example, some information might be hard-coded meta-level observations,
e.g., “If it is raining, the streets get wet.” It does not appear to be beneficial to resolve
conflicts by deleting formulas that encode such information.
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To illustrate why further improvements of our results are desirable, let us consider the
following example:

Example 3.3.1. Assume an agent needs to decide whether to carry an umbrella. In case it
is going to rain outside, this is clearly the right choice. However, if the weather is good our
agent would carry unnecessary items around, so:

bring umbrella← rain. ¬bring umbrella← sunshine.

The day before, the weather forecast predicted sunshine all day:

forecast(sunshine). X ← forecast(X).

However, by looking out of the window we observe that it is a rainy day:

obs(rain). X ← obs(X).

Since this is an inconsistent logic program Prain, we face a situation where our agent does
not know whether to bring an umbrella or not. Let us now see how to resolve this con-
flict in a reasonable way. The rules with non-trivial body are meta-level information, so
we do not want to remove them. For example, if it is raining, we do not want to miss
our umbrella, so we keep the rule “bring umbrella ← rain.”. So we consider the facts
“forecast(sunshine).” and “obs(rain).”. The fact “obs(rain).” is due to an observation
the agent just made with her own eyes. Hence, this information is reliable without any
doubt. The weather forecast, on the other hand, might have predictions wrong, making the
rule r = forecast(sunshine). less reliable. We thus move to the consistent logic program

Prain \ {r} : bring umbrella← rain. ¬bring umbrella← sunshine.

X ← forecast(X).

obs(rain). X ← obs(X).

with answer set {obs(rain), rain, bring umbrella}. However, the problem here is actu-
ally caused by the rule s = X ← forecast(X). which never doubts the weather forecast.
Instead of removing the rule r as above, it is probably more reasonable to only believe the
weather forecast if no contrary observation is made. Hence, we should weaken the rule s and
replace it with s′ = X ← forecast(X), not obs(Y ), X 6= Y. which does not allow us to
infer sunshine anymore due to obs(rain). We thus end up with P ′rain = Prain \{s}∪{s′}
given as follows:

P ′rain : bring umbrella← rain. ¬bring umbrella← sunshine.

forecast(sunshine). X ← forecast(X), not obs(Y ), X 6= Y.

obs(rain). X ← obs(X).

The program possesses the answer set {obs(rain), rain, bring umbrella}.

In this section, we demonstrate how to tackle situations of this kind. First, we assume that
certain information are undisputed because of their reliability, so we want repairs not to
allow for removal of certain formulas in B ⊆ K. Then, we investigate refining instead of
deleting and adding formulas. Our goal is again to characterize the minimal modifications
in terms of a hitting set duality. This raises the following questions:
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• Can repairs that forbid removal of formulas in B ⊆ K be characterized in a natural
way?

• Given a formula α ∈ K, what does it in general mean that another formula β is
weaker or stronger than α?

• Can we apply our former results, in particular Theorem 3.2.32?

In particular the answer to the last question is quite appealing: We will see that we do not
require novel proofs within this section. Applied to an appropriate setup, Theorem 3.2.32
will provide us with the results we are looking for. This demonstrates the versatility of this
theorem, based on an abstract definition of a logic.

3.3.1 Reliable Information

The first situation we discuss is about the existence of formulas B ⊆ K which can be
interpreted as reliable information. We thus introduce a notion of repairs which insists on
B ⊆ K, i. e., removal of α ∈ B yields an inconsistent knowledge base. This ensures that
subsets of K which are accepted as “maximal consistent” contain B.

Definition 3.3.2. For disjoint knowledge bases K and G, and B ⊆ K, set

BI-REP(K,G,B) = {(D,A) ∈ BI-REP(K,G) | D ∩ B = ∅}

and analogously

BI-REPmin(K,G,B) = {(D,A) ∈ BI-REPmin(K,G) | D ∩ B = ∅}.

Observe that BI-REPmin(K,G,B) contains exactly the bidirectional repairs we are inter-
ested in: They are minimal and do not allow for removal of any formula in B. Our goal is
now to characterize BI-REPmin(K,G,B) in terms of a hitting set duality similar to Theo-
rem 3.2.32. More precisely, we can apply this theorem to characterize BI-REPmin(K,G,B).

For this, we start by defining an auxiliary logic. So assume we are given L with
L = (WF ,BS, INC,ACC). We construct LB = (WF ,BS, INC,ACCB) in order to
simulate the desired behavior. Thereto, we change ACC in a way that a knowledge base
which does not contain B is rendered inconsistent. To achieve this, we want to obtain
ACCB(K) ⊆ INC whenever B * K (recall Definition 2.5.6). Since we do not know any-
thing about INC, we set ACCB(K) = ∅ in this case. Otherwise, ACCB(K) shall coincide
with ACC(K). Thus, set

ACCB(K) :=

{
∅ if B * K,
ACC(K) otherwise.

(3.2)

This yields our auxiliary logic LB. Note that we have two different logics L and LB now.
Recall our remark after Definition 2.5.6 that any notion in this work is wrt. a given logic,
but we omit the superscript L for ease of presentation. For the remainder of this section we
need to be precise in order to avoid confusion, so we give the superscripts.

The following lemma shows that the minimal bi-directional repairs wrt. LB coincide
with BI-REPmin(K,G,B)L. Thus, in order to obtain the desired outcome that no α ∈ B is
deleted, we can move to the auxiliary logic LB and investigate the bi-directional repairs as
before.
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Lemma 3.3.3. If L is a logic, K and G are disjoint knowledge bases and B ⊆ K, then
BI-REPmin(K,G)LB = BI-REPmin(K,G,B)L.

Proof. We show BI-REP(K,G)LB = BI-REP(K,G,B)L.
“⊆”: Assume (D,A) ∈ BI-REP(K,G)LB . Then (K\D)∪A is consistent wrt. LB. Clearly,
if a knowledge base is consistent wrt. LB, it must also be consistent wrt. L. We thus have
(D,A) ∈ BI-REP(K,G)L. Moreover, consistency wrt. LB implies D ∩ B = ∅. Hence
(D,A) ∈ BI-REP(K,G,B)L.
“⊇”: Now let (D,A) ∈ BI-REP(K,G,B)L, i. e., (K \ D) ∪ A is consistent wrt. L and
D ∩ B = ∅. We have B ⊆ K and thus B ⊆ (K \ D) ∪ A due to D ∩ B = ∅. Thus, by
definition of ACCB,

ACCB((K \ D) ∪ A) = ACC((K \ D) ∪ A).

Since (K \ D) ∪ A is consistent wrt. L, it is also consistent wrt. LB. Hence we infer
(D,A) ∈ BI-REP(K,G)LB .

Given this lemma, the reader may already predict our technique to find a duality character-
ization for BI-REPmin(K,G,B)L: As we know this set coincides with BI-REPmin(K,G)LB ,
Theorem 3.2.32 suggests to investigate BI-NREPmax (K,G)LB . The outcome is formalized
in the following lemma.

Lemma 3.3.4. If L is a logic, K and G are disjoint knowledge bases and B ⊆ K, then
BI-NREPmax (K,G)LB = {(D ∪ B,A) | (D,A) ∈ BI-NREPmax (K,G)L}.

Proof. “⊆”: Assume (D,A) ∈ BI-NREP(K,G)LB . Then (K \D′) ∪A′ is inconsistent wrt.
LB for each (D′,A′) with (D′,A′) ⊆ (D,A). Due to maximality of (D,A) we see B ⊆ D.
So we may write (D,A) = (D, Ã ∪ B) with Ã = A \ B. Now consider (K \ D′) ∪ A′
with (D′,A′) ⊆ (D, Ã). By assumption, this knowledge base is inconsistent wrt. LB. Due
to A′ ⊆ Ã, we see B ⊆ (K \ D′) ∪ A′ and hence, (K \ D′) ∪ A′ must be inconsistent
wrt. L as well. Thus, (D, Ã) ∈ BI-NREP(K,G)L. Now wee see there is B′ ⊆ B such that
(D, Ã ∪ B′) ∈ BI-NREPmax (K,G)L. Hence, (D,A) is of the form (D, (Ã ∪ B′) ∪ B) with
(D, (Ã ∪ B′)) ∈ BI-NREPmax (K,G)L.
“⊇”: Now assume (D,A) ∈ BI-NREPmax (K,G)L. Then (K \ D′) ∪A′ is inconsistent wrt.
L for each (D′,A′) ⊆ (D,A). In particular, this is also true wrt. LB. Since this means
that (K \ (D′ ∪ B′)) ∪ A′ is also considered inconsistent wrt. LB for each B′ ⊆ B, we see
(D ∪ B,A) ∈ BI-NREP(K,G)LB . We infer maximality since consistency wrt. L and LB
only differs in knowledge bases that do not contain B.

This motivates the following definition, which is similar to BI-REPmin(K,G,B):

Definition 3.3.5. Let K and G be disjoint knowledge bases. Let B ⊆ K. Set

• BI-NREPmax (K,G,B) := {(D ∪ B,A) | (D,A) ∈ BI-NREPmax (K,G)},

• co-BI-NREPmax (K,G,B) := {(D,A) | (K \ D,G \ A) ∈ BI-NREPmax (K,G,B)}.

By applying Theorem 3.2.32 to the logic LB we infer the following duality characterization
of BI-REPmin(K,G,B)L:

Corollary 3.3.6. LetK and G be disjoint knowledge bases. Let B ⊆ K. Then S is a minimal
hitting set of co-BI-NREPmax (K,G,B) if and only if S ∈ BI-REPmin(K,G,B).
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Example 3.3.7. For P and G we found that BI-REPmin(P,G) consists of the following
tuples:

({b← a.}, ∅), ({c← not b.}, ∅), ({¬c← not b.}, ∅), (∅, {b.}), (∅, {d., b← d.}).

Now assume “b ← a.” is considered reliable and thus we do not want to remove this rule.
So let B = {b← a.}. The set BI-REPmin(P,G,B) consists of the tuples

({c← not b.}, ∅), ({¬c← not b.}, ∅), (∅, {b.}), (∅, {d., b← d.}).

Recall

BI-NREPmax (P,G) = {({a ∨ b.}, {a., b← d.}), ({a ∨ b.}, {a., d.})}.

Due to Definition 3.3.5 BI-NREPmax (P,G,B) consists of

({a ∨ b., b← a.}, {a., b← d.}), ({a ∨ b., b← a.}, {a., d.}),

i. e., co-BI-NREPmax (P,G,B) contains

({c← not b., ¬c← not b.}, {b., d.}), ({c← not b., ¬c← not b.}, {b. b← d.}).

The reader may verify that the duality claimed in Corollary 3.3.6 holds indeed.

We were thus able to take account of formulas B ⊆ Kwhich are not supposed to be removed
as they are interpreted as reliable information. As already mentioned, achieving a duality
characterization for the arising repair notion does not require novel proofs, but only applying
Theorem 3.2.32 to an appropriate auxiliary logic LB.

3.3.2 Modifying Formulas

Let us continue with more fine-grained modifications to knowledge bases, namely weaken-
ing and strengthening instead of deleting and adding formulas. For that, we need a general
notion for α being a stronger formula than β. Phrasing this within our setting requires some
caution as we do not have a notion of a model of a formula. However, we can identify the
following property of a “stronger” formula: Whenever it is present in K, then the “weaker”
formula should be subsumed. This can be expressed in terms of ACC(K). Formally, we
define the following general entailment relation:

Definition 3.3.8. Let L be a logic. We say α entails β, denoted by α �L β, iff for all
knowledge bases K, α ∈ K implies ACC(K) = ACC(K ∪ {β}).

To model modifications to formulas, we consider mappings w, s (weaker, stronger) of the
form w, s : K → WF \ K with s(α) �L α �L w(α). For technical reasons we assume
the sets w(K) and s(K) to be disjoint. Note that both of them are disjoint with K by
definition. We consider the knowledge baseK after applying w and s to two disjoint subsets
Hw,Hs ⊆ K, i. e., we let

K[w(Hw), s(Hs)] = (K \ (Hw ∪Hs)) ∪ (w(Hw) ∪ s(Hs)).

Definition 3.3.9. Let K be a knowledge base. If Hw,Hs ⊆ K are disjoint and the knowl-
edge baseK[w(Hw), s(Hs)] is consistent, then we call (Hw, s(Hs)) a consistency-restoring
modification of K wrt. w and s. Let MODmin(K) denote the set of all minimal consistency-
restoring modifications of K wrt. w and s.
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Note the intended asymmetry in the tuple (Hw, s(Hs)), which is chosen to conveniently
phrase Lemmata 3.3.10 and 3.3.11 below. Again we want to characterize MODmin(K) in
terms of a hitting set duality. For this, consider K̃ and G̃ given as K̃ = K∪w(K), i. e., K̃ con-
tains in addition the weakened formulas and G̃ = s(K), i. e., G̃ consists of the strengthened
formulas. Please note thatACC(K̃) = ACC(K). In particular, if we remove α ∈ K from K̃,
then the latter still contains w(α), i. e., ACC(K̃ \ {α}) = ACC(K[w({α}), s(∅)]). Hence,
this corresponds to weakening α. Similarly, adding a formula s(α) ∈ G̃ to K̃ corresponds
to strengthening α. This almost induces a characterization of MODmin(K):

Lemma 3.3.10. If K is a knowledge base, then

BI-REPmin(K̃, G̃) = MODmin(K) ∪ {(D,A) ∈ BI-REPmin(K̃, G̃) | w(K) ∩ D 6= ∅}.

Proof. We prove MODmin(K) = {(D,A) ∈ BI-REPmin(K̃, G̃) | w(K) ∩ D = ∅}.
“⊆”: Assume (D,A) ∈ MODmin(K). This means (D,A) is of the form (Hw, s(Hs)),
whereHw,Hs ⊆ K withHw ∩Hs = ∅, and

K[w(Hw), s(Hs)] = (K \ (Hw ∪Hs)) ∪ (w(Hw) ∪ s(Hs))

is consistent. Consider now (K̃ \ Hw) ∪ s(Hs). Recall that K̃ = K ∪ w(K) and thus

(K̃ \ Hw) ∪ s(Hs) = K \ Hw ∪ (w(K) ∪ s(Hs)).

Due to α �L w(α) for each α ∈ K we can add w(α) to the knowledge base without
changing the semantics, as long as α itself is present. Hence, only adding w(Hw) needs to
be taken into account, yielding

ACC(K \ Hw ∪ (w(K) ∪ s(Hs))) = ACC(K \ Hw ∪ (w(Hs) ∪ s(Hs))).

Due to s(α) �L α for each α ∈ Hs removal of Hs does not change the semantics of the
knowledge base as long as s(Hs) is present, so

ACC(K \ Hw ∪ (w(Hs) ∪ s(Hs))) = ACC(K \ (Hw ∪Hs) ∪ (w(Hs) ∪ s(Hs))).

In summary, we have

ACC((K̃ \ Hw) ∪ s(Hs)) = ACC((K \ (Hw ∪Hs)) ∪ (w(Hw) ∪ s(Hs))). (3.3)

Since the latter is consistent and Hw ⊆ K̃ as well as s(Hs) ⊆ G̃, we are able to infer that
(Hw, s(Hs)) ∈ BI-REP(K̃, G̃). The equation (3.3) also shows that minimality is preserved.
Finally, we have w(K) ∩ Hw = ∅ since w is a mapping w : K → WF \ K. Altogether,
(Hw, s(Hs)) = (D,A) ∈ {(D,A) ∈ BI-REPmin(K̃, G̃) | w(K) ∩ D = ∅}.
“⊇”: Now assume (D,A) ∈ BI-REPmin(K̃, G̃) with w(K) ∩ D = ∅. Simply set Hw = D
andHs = s−1(A). We now have consistency of

(K̃ \ Hw) ∪ s(Hs)

by assumption and since we may infer (3.3) as above, we find consistency of

(K \ (Hw ∪Hs)) ∪ (w(Hw) ∪ s(Hs))

as well. Again minimality is clearly preserved, so (Hw, s(Hs))MODmin(K).
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The above lemma does not yield a characterization of MODmin(K) since one may delete
formulas inw(K) in order to render K̃ consistent, which does not correspond to weakening a
formula of the initial knowledge base. Depending on the desired outcome, one could either
accept this or apply the technique from above in order to forbid removal of B := w(K) ⊆ K̃.
If we define LB as above, Lemma 3.3.10 yields the desired characterization of MODmin(K).

Lemma 3.3.11. If K be a knowledge base, then BI-REPmin(K̃, G̃)LB = MODmin(K)L.

Proof. This is a simple corollary of Lemma 3.3.10 when applying Lemma 3.3.3. We have

BI-REPmin(K̃, G̃)L = MODmin(K)L ∪ {(D,A) ∈ BI-REPmin(K̃, G̃)L | w(K) ∩ D 6= ∅}

and moreover, BI-REPmin(K̃, G̃)Lw(K) = BI-REPmin(K̃, G̃, w(K))L. Hence,

BI-REPmin(K̃, G̃)Lw(K) = BI-REPmin(K̃, G̃, w(K))L

= {(D,A) ∈ BI-REPmin(K̃, G̃)L | (D ∩ w(K)) = ∅}
= MODmin(K)L.

So BI-REPmin(K̃, G̃)Lw(K) captures exactly the tuples in MODmin(K)L.

By applying Theorem 3.2.32 we find a duality in terms of BI-NREPmax (K̃, G̃)LB , so we are
interested in the nature of this set.

Lemma 3.3.12. Let K be a knowledge base. Then BI-NREPmax (K̃, G̃)LB is the collection
of all maximal tuples (D ∪ B,A) = (Hw ∪ w(K), s(Hs)) such that the knowledge base
K[w(H′w), s(H′s)] is inconsistent for all (H′w,H′s) ⊆ (Hw,Hs).

Proof. By definition, BI-NREPmax (K̃, G̃) consists of all maximal tuples (Hw, s(Hs)) such
that K[w(H′w), s(H′s)] is inconsistent for all (H′w,H′s) ⊆ (Hw,Hs). By Lemma 3.3.4,

BI-NREPmax (K̃, G̃)LB = BI-NREPmax (K̃, G̃,B)L

= {(D ∪ B,A) | (D,A) ∈ BI-NREPmax (K̃, G̃)L}

so the claim follows.

Finally, applying Theorem 3.2.32 yields the desired duality.

Corollary 3.3.13. Let K be a knowledge base and K̃, G̃ and B as above. Then S is a
minimal hitting set of co-BI-NREPmax (K̃, G̃)LB iff S ∈ MODmin(K)L.

The following scheme depicts how to utilize the results we obtained in this section in
order to repair a given knowledge base in a more fine-grained fashion:

Given:
inconsistent K

Define
appropriate s, w

Consider :

K̃, LB
Apply

Duality Results

Figure 3.13: Summary of Scetion 3.3: Given an inconsistent knowledge base, we need to
define our mappings w and s to refine formulas. We then consider an appropriate auxiliary
knowledge base and apply the duality results from before.
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3.4 Infinite Knowledge Bases

So far, we were only concerned with finite knowledge bases. This appears to be natural since
one can expect the knowledge of an agent to be finite or at least representable in a finite way.
However finite models are not always sufficient to capture real world applications, mainly
due to the reason that an upper bound for the size of our knowledge base is not known. For
example a security camera needs to collect data until an unknown point of time in the future.
Even though this camera is going to be turned off eventually, we do not know when this will
be. It would thus not make sense to fix a size of a knowledge base when maintaining the
data collected by this camera.

We thus generalize our previous definition of a knowledge base to an infinite set. For
ease of presentation we restrict our investigation to countable knowledge bases.

Definition 3.4.1. Let L = (WF ,BS, INC,ACC) be a logic. An infinite knowledge base
K of L is a countably infinite subset ofWF , i. e., there is a bijection ρ : K → N.

Our notions we previously defined for finite knowledge bases generalize in the expected
way. We want to investigate the sets Cmax (K), SImin(K) and their connection. For this, we
recall that the proof of the duality Theorem 3.1.12 is in principle based on two observations:

• Consistency and inconsistency are complementary properties.

• When considering finite sets, we can always turn a set with a certain property into a
minimal or maximal one possessing this property.

Clearly the former does not change in the context of infinite knowledge bases since it is
true by definition. Thus, the good news is: If we are given a minimal hitting set S of
SImin(K), the complement K \ S is maximal consistent as in the finite case. However, the
existence of minimal (strongly) inconsistent subsets or minimal hitting sets of those is no
longer guaranteed. For example, given an inconsistent setH ⊆ K we do not know whether
there is a minimal inconsistent setH′ withH′ ⊆ H ⊆ K.

Due to the hitting set duality, the existence of maximal consistent subsets is closely
related to the existence of minimal (strongly) inconsistent subsets and minimal hitting sets,
which leads to the following questions:

• Given a (strongly) inconsistent setH ⊆ K, is there a minimal oneH′ ⊆ H?

• Given a hitting set S of SImin(K), is there a minimal one S ′ ⊆ S?

• Given a consistent setH ⊆ K, is there a maximal oneH ⊆ H′ ⊆ K?

• How are the answers to these questions related?

3.4.1 On the Absence of Minimality and Maximality

Due to the generality of our notion of logics and knowledge bases, it should be no surprise
that the answer to the above questions is negative in general. We will now consider several
examples to illustrate this. They will also motivate the restrictions which we consider.

Let us focus on inconsistent subsets of an infinite knowledge base K first. Recall that
in the finite case, we consider SImin(K), i. e., the minimal strongly inconsistent subsets,
and require a minimal hitting set of it. The following example illustrates that an infinite
inconsistent knowledge base does not necessarily possess a minimal strongly inconsistent
subset.
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3.4. Infinite Knowledge Bases

Example 3.4.2. Let A = {ai | i ∈ N} be a countable set of arguments. We consider the
AF represented by the knowledge base K = {(ai, aj) | j < i, i, j ∈ N}, so each ai attacks
all arguments with a strictly smaller index:

a1 a2 a3 a4 a5 . . .

Figure 3.14: The AF from Example 3.4.2.

Observe that K is inconsistent: Assume ai ∈ E for a set E ⊆ A of arguments. If E is
conflict-free, then ai+1 /∈ E. Hence, in order for E to be a stable extension, there must be
an index j ≥ i+ 2 with aj ∈ E. Otherwise ai+1 is not attacked by E. Since (aj , ai) ∈ K,
we see that E with ai, aj ∈ E is not conflict-free and thus no stable extension, so K is
inconsistent. We thus have K ∈ SI (K). In particular, SI (K) 6= ∅. However, there is no
minimal strongly inconsistent subset, i. e., SImin(K) = ∅. To see this, letH ⊆ K. We show
thatH /∈ SImin(K).

First assumeH is finite. Then there is an index k ∈ N such that

H ⊆
⋃

1≤i<j≤k
{(ai, aj)}.

Now consider

H′ = H ∪
⋃

1≤j≤k
{(ak+1, aj)},

i. e., we add the (k + 1)-th argument and all its attacks. Of course, H′ ⊆ K. Moreover,
stb(H′) =

⋃
i≥k+1 ai (recall that we only remove attacks, so each AF contains all argu-

ments), soH′ is consistent. Thus,H /∈ SI (K). In particular,H /∈ SImin(K).
Now assumeH is infinite withH ∈ SI (K). Consider an arbitrary argument ai such that

there is a j < i with (ai, aj) ∈ H. We claim that H \ {(ai, aj)} is strongly inconsistent as
well. Assume this is not the case, then there is a consistent setH′ withH\{(ai, aj)} ⊆ H′.
AssumeE is a stable extension ofH′. Consider an argument ak ∈ E with k > i. Intuitively,
consistency of H′ does not depend on the finitely many arguments a1, . . . , ak, so we may
augment H′ with all attacks (am, an) with m,n ≤ k. Due to potential conflicts, E is not
necessarily a stable extension of this augmented framework. More precisely, this is the case
if there is an argument at ∈ E with t < k. Formally, the framework represented by

H′′ = H′ ∪
⋃

1≤m<n≤k
{(an, am)}

possesses the stable extension E′′ = E \ {ai | i < k}. We have H ⊆ H′′ and H′′ is
consistent, so H is not strongly inconsistent, which is a contradiction, so the assumption
thatH\{(ai, aj)} is not strongly inconsistent must be false. SinceH was an arbitrary set in
SI (K) and we considered removal of an arbitrary attack, we infer that there is no minimal
strongly inconsistent subset of K.
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In order to ensure the existence of minimal hitting sets of SImin(K), we explicitly require
the existence of sets in SImin(K). However, even if SImin(K) is non-empty, it might be
the case that some H ∈ SI (K) do not contain a minimal strongly inconsistent subset (this
can be seen by a straightforward adjustment to the above example). In this case, we cannot
move from H to a set H′ ⊆ H with H′ ∈ SImin(K), which was essential in the proof of
Theorem 3.1.12. However, we require minimal sets for our hitting set characterization. This
can already be seen for finite knowledge bases:

Example 3.4.3. For K = {a,¬a, b, c} consider H = {a,¬a, b} ∈ SI (K). Clearly, H is
not minimal. We have the minimal hitting set S = {b}, but K \ S is inconsistent.

Of course, one could require the missing property explicitly, i. e., consider only knowledge
bases K where each H ⊆ K with H ∈ SI (K) contains a minimal strongly inconsistent
subset. As it turns out, this is still not sufficient in general, because now we face the same
issue regarding the hitting sets. More precisely, given an infinite set X of sets, i. e., Xi ∈ X
for i ∈ N, and given a hitting set S of X , then there is not necessarily a minimal hitting set
S ′ ⊆ S of X . To see this, consider the following example.

Example 3.4.4. Consider X = {Xi | i ∈ N} with Xi ⊆ Z for each i and let

Xi = {−i} ∪ {n ∈ N | n ≥ i}.

Observe that Xi * Xj for i 6= j, so one could construct an (artificial) logic with an infinite
knowledge base K such that SImin(K) = X . We want to show that there is a hitting set S
of X which cannot be turned into a minimal one, namely S = N. This is of course a hitting
set of X , so let S ′ ⊆ S be a hitting set of X as well. We prove that S ′ is not minimal. For
this, let n ∈ N be an integer with n ∈ S ′ and observe that S ′ \ {n} is also a hitting set of X .
Formally, by assumption we have S ′ ∩Xn+1 6= ∅, so there must be an integer m ≥ n + 1
withm ∈ S ′. However, {n}∩Xi 6= ∅ implies {m+1}∩Xi 6= ∅, so S ′ \{n} is a hitting set
of X as well. Since S ′ was arbitrary, there is no minimal hitting set of X which is a subset
of S.

It is clear that similar observations can be made for Cmax (K). For example, even though a
knowledge base K might possess consistent subsets, it is in general possible that Cmax (K)
is empty.

3.4.2 The Minimal Inconsistency And The Maximal Consistency Property

To overcome the issues pointed out during the previous examples, we need to restrict the
considered knowledge base. We do this as follows:

Definition 3.4.5 (Minimal inconsistency property). An inconsistent infinite knowledge base
K satisfies the minimal inconsistency property if

• given a setH ∈ SI (K), there is a setH′ ⊆ H withH′ ∈ SImin(K),

• given a hitting set S of SImin(K), there is a minimal hitting set S ′ ⊆ S of SImin(K).

Given this property, the collection of maximal consistent subsets of an infinite knowledge
base is as well-behaving as in the finite case.
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Proposition 3.4.6. Let K be an inconsistent infinite knowledge base satisfying the minimal
inconsistency property. If H ⊆ K is a consistent subset of K, then there is a maximal
consistent subset H′ ∈ Cmax (K) with H ⊆ H′. In particular, H′ = K \ S for a minimal
hitting set S of SImin(K).

Proof. Let H ⊆ K be consistent. We show that S = K \ H is a hitting set of SImin(K).
Assume this is not the case, i. e., there is a set I ∈ SImin(K) with S ∩ I 6= ∅. Hence,
I ⊆ K \ S and in particular I ⊆ K \ S = H. Since I is strongly inconsistent, the set H
with I ⊆ H is inconsistent, which contradicts our assumption. We thus infer that S = K\H
is a hitting set of SImin(K). Due to the minimal inconsistency property, there is a minimal
hitting set S ′ of SImin(K) with S ′ ⊆ S.

It is left to show that H′ = K \ S ′ is maximal consistent. This can be done similarly
to the proof of Theorem 3.1.12: If there is a consistent set H′′ with H′ ( H′′, it is easy
to show that K \ H′′ is a hitting set of SImin(K) as well, which contradicts minimality
of S ′. Thus, each proper superset of H′ is inconsistent. Furthermore, assume H′ is not
consistent. Since each superset of H′ is inconsistent (as seen before), H′ is in particular
strongly inconsistent. We utilize the minimal inconsistency property ofK again to infer that
there is a minimal strongly inconsistent set H′′ with H′′ ⊆ H′. Since H′′ ⊆ H′ = K \ S ′,
we obtain H′′ ∩ S ′ = ∅, so S ′ is not a hitting set of SImin(K). This is a contradiction.
Therefore,H′ ∈ Cmax (K). SinceH was an arbitrary consistent set, the claim follows.

The minimal inconsistency property ensures that consistent subsets can always be turned
into maximal consistent ones. This leads to the question whether the converse holds as
well, i. e., can we guarantee the minimal inconsistency property if each consistent subsetH
of K can be turned into a maximal consistent one? The answer to this particular question is
negative, but this will not disturb us in any way. For this, recall Theorem 3.1.19, i. e., S is
a minimal hitting set of coCmax (K) if and only if S ∈ SImin(K). Hence, to ensure that a
given setH ∈ SI (K) contains a minimal strongly inconsistent set, we need to ensure that a
given hitting set S of coCmax (K) contains a minimal hitting set S ′ ⊆ S.

Although this cannot be guaranteed in general as seen in Example 3.4.4, the minimal
inconsistency property ensures the required structure of hitting sets of coCmax (K):

Proposition 3.4.7. Let K be an inconsistent infinite knowledge base satisfying the minimal
inconsistency property. If S is a hitting set of coCmax (K), then there is a minimal hitting
set S ′ ⊆ S of coCmax (K). In particular, S ′ ∈ SImin(K).

Proof. To see this, we prove that S ∈ SI (K) if and only if S is a hitting set of coCmax (K).
“⇐”: Let S be a hitting set of coCmax (K). Assume for the sake of contradiction that S is
not in SI (K). Then, there is a consistent setHwith S ⊆ H. According to Proposition 3.4.6,
there is a maximal consistent setH′ ∈ Cmax (K) withH ⊆ H′. In particular,

S ∩ (K \ H′) ⊆ S ∩ (K \ H) = ∅.

Hence, S is not a hitting set of coCmax (K), which is a contradiction.
“⇒”: Now let S ∈ SI (K). Similarly, assume S is not a hitting set of coCmax (K). Then,
there is a setH ∈ coCmax (K) withH∩S = ∅. By definition, K\H is consistent and since
H ∩ S = ∅, we have S ⊆ K \ H which contradicts strong inconsistency of S.

The previous result motivates considering a dual counterpart to the minimal inconsistency
property, defined as follows:
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Definition 3.4.8 (Maximal consistency property). An inconsistent infinite knowledge base
K satisfies the maximal consistency property if

• given a consistent setH ⊆ K, there is a setH′ ∈ Cmax (K) withH ⊆ H′,

• given a hitting set S of coCmax (K), there is a minimal hitting set S ′ of coCmax (K)
with S ′ ⊆ S .

Combining Proposition 3.4.6 and Proposition 3.4.7, we get: If K satisfies the minimal hit-
ting set property, then it satisfies the maximal consistency property as well. As already
mentioned, the converse is also true:

Proposition 3.4.9. Let K be an inconsistent infinite knowledge base. If K satisfies the
maximal consistency property, then it satisfies the minimal hitting set property as well.

Proof. Let H ∈ SI (K). As seen in the proof of Proposition 3.4.7, this is the case if and
only ifH is a hitting set of coCmax (K). By assumption, there is a minimal hitting setH′ of
coCmax (K) withH′ ⊆ H. Hence,H′ ∈ SImin(K).

Now assume we are given a hitting set S of SImin(K). Then, H = K \ S is consistent.
Again by assumption, there is a set H′ ∈ Cmax (K) with H ⊆ H′ and as usual we see that
now, S ′ = K \ H′ must be a minimal hitting set of SImin(K).

So, the results of this section can be summarized as follows.

Theorem 3.4.10. Let K be an inconsistent infinite knowledge base. Then, K satisfies the
minimal inconsistency property if and only if it satisfies the maximal consistency property.
Moreover, S is a minimal hitting set of SImin(K) if and only if K \ S ∈ Cmax (K) and S is
a minimal hitting set of coCmax (K) if and only if S ∈ SImin(K).

This result emphasizes the fact that infinite knowledge bases are similar in their spirit to
finite ones, except for the lack of maximal resp. minimal sets with certain properties. When-
ever we make appropriate assumptions about our knowledge base (for example the minimal
inconsistency property), we can work with our hitting set duality as usual. The definition of
the minimal inconsistency property is tailored ensures the existence of maximal consistent
sets. Interestingly, it also yields an analogous result for the hitting sets of coCmax (K). The
converse Proposition 3.4.9 emphasizes the close link between the notions we investigate.

3.4.3 Compact Logics

Having established Theorem 3.4.10, a naturally arising questions is which significant ex-
amples of logics satisfy the minimal inconsistency property. A rather popular result about
inconsistency of propositional knowledge bases is the compactness theorem.

Theorem 3.4.11 (Compactness Theorem, see [94]). IfK is a propositional knowledge base,
then K is consistent iff each finite subsetsH ⊆ K is.

One would expect this property to ensure a pleasant behavior of inconsistent sets as well as
their hitting sets. Indeed, it is easy to see that propositional knowledge bases satisfy the first
item of the minimal inconsistency property: K is inconsistent iff there is a finite inconsistent
subsetH. Hence, given an inconsistent subsetH ⊆ K, there is a finite minimal inconsistent
subset contained inH.
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For the second item of the minimal inconsistency property, we need to take the hitting
sets into account. The compactness theorem ensures that each H ∈ SImin(K) is finite and
hence, S must be a hitting set of a collection of finite sets. In fact, this ensures that any
hitting set can be turned into a minimal one. This result does not seem to be obvious and
has, to the best of our knowledge, not been stated explicitly before.

Lemma 3.4.12. Let X be a set of finite subsets of a countable set X . If S is a hitting set of
X , then there is a minimal hitting set S ′ ⊆ S of X .

Proof. Note that X is a countable collection of sets, so we may assume X is of the form
X = {Xi | i ∈ N} with Xi ⊆ X for each i ∈ N.

Let S be a hitting set of X . We construct a minimal hitting set S ′ of X inductively as
follows. Let us first considerX1. SinceX1 is finite, the set S∩X1 is finite as well. Consider
a maximal set Y1 of removable elements in X1 ∩ S , i. e., let

Y1 ∈ max{Y ⊆ S ∩X1 | S \ Y is a hitting set of X}

where at least one such maximal set exists since S ∩X1 is finite. Moreover, if we are given
Y1, . . . , Yn−1, then we set

Yn ∈ max

{
Y ⊆

(
S \

n−1⋃
i=1

Yi

)
∩Xn | S \

(
n−1⋃
i=1

Yi ∪ Y

)
is a hitting set of X

}
(3.4)

where again at least one such maximal set exists since(
S \

n−1⋃
i=1

Yi

)
∩Xn

is finite. Note that the Yi are pairwise disjoint by definition. We claim that

S ′ := S \

(⋃
i∈N

Yi

)
is a minimal hitting set of X . First observe that S ′ is indeed a hitting set, since in (3.4) the
set Yn we remove is constrained accordingly.

Now assume S ′ is not minimal. Hence, there is an element xm ∈ X such that S ′ \{xm}
is a hitting set of X as well. Let Xn be such that xm ∈ Xn. We see that this contradicts the
construction of Yn. More precisely, since xm ∈ S ′ we have xm /∈

⋃n−1
i=1 Yi and hence,

Yn ∪ {xm} ⊆

(
S \

n−1⋃
i=1

Yi

)
∩Xn

holds. Clearly,

S \

(
n−1⋃
i=1

Yi ∪ Yn ∪ {xm}

)
is a hitting set of X and thus,

Ym /∈ max

{
Y ⊆

(
S \

n−1⋃
i=1

Yi

)
∩Xn | S \

(
n−1⋃
i=1

Yi ∪ Y

)
is a hitting set of X

}
,

which is a contradiction.
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Equipped with this lemma, we see that propositional logic satisfies the minimal inconsis-
tency property.

Theorem 3.4.13. LetK be an inconsistent infinite knowledge base of the propositional logic
LP. Then K satisfies both the minimal inconsistency as well as the maximal consistency
property.

Proof. Let H ⊆ K be strongly inconsistent. Since propositional logic is monotonic, this
simply means that H is inconsistent. Due to the compactness theorem, H possesses a fi-
nite inconsistent subset H′ ⊆ H. This implies that there is a minimal inconsistent subset
H′′ ⊆ H′. This is the first item of the minimal inconsistency property. Now consider
SImin(K) = Imin(K). Since this a collection of finite sets of a countable set, we apply
Lemma 3.4.12 in order to obtain the second item of the minimal inconsistency property.
Due to Theorem 3.4.10, the maximal consistency property is satisfied as well.

The reader may observe that the proof of Theorem 3.4.13 does not rely on specific properties
of propositional logic, but only on the structural properties that can be inferred from the
compactness theorem. So the following is a sufficient condition for a knowledge base to
satisfy both the minimal inconsistency as well as the maximal consistency property.

Definition 3.4.14 (The compactness property). An inconsistent infinite knowledge base K
satisfies the compactness property if

• a subset H ⊆ K is strongly inconsistent iff it possesses a finite subset H′ ⊆ H with
H′ ∈ SI (K).

The name “compactness property” is motivated by the fact that logics where every knowl-
edge base satisfies the above property are called compact. We now have:

Theorem 3.4.15. Let K be an inconsistent infinite knowledge base which satisfies the com-
pactness property. Then K satisfies both the minimal inconsistency as well as the maximal
consistency property.

The proof is similar to the proof of Theorem 3.4.13. Instead of applying the compactness
theorem, we require K to possess the compactness property and hence, we infer the result
analogously.

In a similar fashion we see that the following dual property also implies both the mini-
mal inconsistency as well as the maximal consistency property.

Definition 3.4.16 (The co-compactness property). An inconsistent infinite knowledge base
K satisfies the co-compactness property if

• for each consistentH ⊆ K there is a supersetH ⊆ H′ withH′ ∈ Cmax (K) such that
K \ H′ is finite.

Now we may proceed as in the above theorem. Given a consistent H ⊆ K, we can move
to a maximal one H′ (first item of the maximal consistency property). Moreover, K \ H′
is finite for each H′ ∈ Cmax (K), and hence we can apply Lemma 3.4.12 which yields the
second item of the maximal consistency property. Thus:

Theorem 3.4.17. Let K be an inconsistent infinite knowledge base which satisfies the co-
compactness property. Then, K satisfies both the minimal inconsistency as well as the
maximal consistency property.
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3.5. Conclusion and Related Work

We want to mention that in general, properties like the minimal inconsistency property
or the compactness property are rare, especially when considering non-monotonic logics.
This becomes apparent in view of Example 3.4.2: First, this example works for nearly all
relevant semantics for AFs in the sense that there is no non-empty extension (see Chapter 5
below). Second, it is straightforward to construct similar examples for ASP or other non-
monotonic frameworks like Reiter’s default logic [95] via infinite chains of default-negated
atoms. However, besides being interesting from a theoretical point of view, the results of
this section can be applied to certain classes of knowledge bases. After all, the compactness
property is inspired by the behavior of propositional logic and so does not appear unnatural.
The compactness theorem is also true for e.g. first order or modal logic. Moreover, in
Chapter 5 we will see how to apply our results to so-called finitary AFs.

3.5 Conclusion and Related Work

In this chapter we studied the relation between inconsistent and consistent subsets of a
knowledge base in an abstract setting covering arbitrary logics, including non-monotonic
ones. We showed that in the general case, the standard notion of inconsistency does not
play the same role as in monotonic reasoning. One of our main results shows that Reiter’s
duality characterization of maximal consistent subsets of a given knowledge base gener-
alizes to non-monotonic logics. This was achieved by strong inconsistency. We extended
our investigation to repairs based on adding formulas to a knowledge base, which is inher-
ently meaningless in the monotonic case and thus a novel approach compared to Reiter’s
setting. We applied our results to handle situations where formulas are to be modified in-
stead of deleted or added. In general, the results we established demonstrate the following
properties of inconsistent subsets in non-monotonic logics:

• In order to obtain the desired duality characterizations, we need to impose monotonic
behavior on the inconsistent sets.

• The requirement that all sets within a certain range are supposed to be inconsistent
facilitates similar duality results for different other settings:

– Allowing for adding information to a knowledge base as well; here, the incon-
sistency notions are REPmin(K,G) and BI-REPmin(K,G).

– Modifying formulas; here, the inconsistency notion requires inconsistency for
all modifications within a certain range.

• Refining consistency to strong consistency yields analogous duality results. This
shows that the “direction” in which we impose monotony on the subsets of K does
not seem to matter from a structural point of view.

• Moving to infinite knowledge bases does not cause any harm besides the usual con-
siderations about the existence of certain sets (in our case minimal resp. maximal sets
with desired properties).

We believe that the results of this chapter are not only interesting regarding generalizations
of Reiter’s hitting set duality, but also point out quite encouraging structural properties of
knowledge bases.
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In his seminal paper [96], Reiter establishes his duality result within a setting consisting
of a system description SD and components Comp. Our results allow us thus to capture
system descriptions expressed in non-monotonic logics, e.g., [53]. The paper [96] is also
concerned about computing hitting sets. In fact, many algorithms and systems for enu-
merating minimal inconsistent sets –see [8; 78; 79]– build on the duality between minimal
inconsistent sets, maximal consistent sets, and their respective hitting sets. For example,
[79] takes turns in computing minimal unsatisfiable sets and maximal consistent sets and
uses the duality between the two to compute remaining sets of either type. Hitting sets
are also utilized in computation of causes and responsibilities of inconsistency in databases
[98].

The motivation of [96] for establishing the duality result is diagnosis, i. e., the problem
of checking whether a system (which is usually formalized in propositional or first-order
logic) is faulty and determining the causes for that. Many further approaches consider this
problem as well and apply and extend the work of [96]. To name just a few, [100] exploits
the duality between minimal inconsistent sets and maximal consistent sets and, similarly
as discussed above for the task of enumerating these sets, interleaves construction of these
two sets with each other, in order to solve the diagnosis problem. The work [85] casts the
problem into SAT and reports on to-date significant performance improvements. Similarly,
Marques-Silva et al. (see [83]) solve the diagnosis problem by casting it into a MaxSAT
problem and leveraging SAT solvers.

We are not aware of any work extending the well known hitting set duality to non-
monotonic logics as we did in this chapter. The concept of maximal consistency in non-
monotonic logics, however, is not novel (see for instance [97, Definition 5.3]). Extensions
of consistency removal to non-monotonic logics can also be found in the literature. An ex-
ample in autoepistemic logic has been analyzed in [70]. The closest to our work is probably
[55]. Thomas Eiter and colleagues have studied ways of restoring consistency in multi-
context systems [35]. They focus on the case where the source of inconsistency can be
attributed to the bridge rules of a multi-context system. The paper [56] considers the prob-
lem of belief revision in ASP and analyzes, similar to the present chapter, a setting where
restoring consistency may be obtained due to additional rules.
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Chapter 4

Measuring Inconsistency

So far, we have viewed inconsistency as a binary concept - a knowledge base or a subset of
it is either inconsistent or not. Although this is true without any doubt, one might ask how
severe conflicts of a given knowledge base are. For example, an agent could be given some
information which yields the choice between several inconsistent conclusions he or she
might draw. The agent is thus interested in a comparison between the conflicts, i. e., which
conclusion represents the “most insignificant” contradictions? This motivates techniques to
quantitatively assess the inconsistency of a given knowledge base rather than just deciding
whether it is consistent or not.

In order to achieve this goal, so-called inconsistency measures have been proposed in the
literature, see for instance [60; 66; 107]. Inconsistency measures are functions that aim at
comparing the severity of the conflicts in propositional knowledge bases. The basic intuition
behind such a measure I is that large values ofK correspond to more severe inconsistencies.

To illustrate possible applications of inconsistency measures as well as the necessity to
take non-monotonic reasoning into account, let us consider the following example.

Example 4.0.1. Assume there is a trial and the judges need to determine who is responsible
for a burglary. There is a suspect A who claims he was at home at that time, in particular he
was not at the crime scene. We can model this testimony as a simple fact, i. e., we have

¬atCrimeScene(A).

However, there is a witness W1 stating the opposite. Any witness is credible by default.

atCrimeScene(X)← witness(Y,X), not ¬credible(Y ). witness(W1, A).

Moreover, the police found the suspect’s fingerprints, which strongly suggests his presence
at the crime scene.

atCrimeScene(X)← fingerprints(X). fingerprints(A).

There is a second suspect B. He was also seen at the crime scene, even by two witnesses
W2 and W3, but also denies his presence.

¬atCrimeScene(B). witness(W2, B). witness(W3, B).

However, witness W3 was drunk at that time, so his testimony is to be taken with a grain of
salt.

¬credible(W3).

77
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After collecting all the information, the judges face the following contradictions: For A

¬atCrimeScene(A).

witness(W1, A).

atCrimeScene(A)← witness(W1, A), not ¬credible(W1).

fingerprints(A).

atCrimeScene(A)← fingerprints(A).

and for B

¬atCrimeScene(B).

witness(W2, B).

atCrimeScene(B)← witness(W2, B), not ¬credible(W2).

The judges are quite sure that A was the burglar, because A is involved in more conflicts;
but without an inconsistency measure they cannot formally justify this intuition.

A simple but popular approach to measure inconsistency is to take the number of minimal
inconsistent subsets [67], i. e., to define IMI(K) = |Imin(K)|. The measure IMI already
complies with many basic ideas of inconsistency measurement, for example it satisfies con-
sistency, i. e., IMI(K) = 0 iffK is consistent. Consistency is one of the most basic properties
an inconsistency measure I should have since if formalizes that I is capable of distinguish-
ing between consistency and inconsistency. By also taking the size and the relationships of
minimal inconsistent subsets into account, a wide variety of different inconsistency mea-
sures can be defined by refining IMI, see [67; 71; 73].

Measuring inconsistency in non-monotonic logics possesses additional challenges which
is already apparent when considering the measure IMI(K) from above. If K is a non-
monotonic knowledge base, IMI is not as meaningful as a knowledge base K may contain
minimal inconsistent subsets even though it is consistent. As the reader may already expect,
our notion of strong inconsistency will play a central role in order to overcome this issue.

Research in inconsistency measurement is driven by rationality postulates, i. e., desir-
able properties that should hold for concrete approaches. There is a growing number of
rationality postulates for inconsistency measurement but not every postulate is generally
accepted, see [27] for a discussion on this topic. The issue of measuring inconsistency in
non-monotonic frameworks requires some reconsideration compared to the propositional
setting. This becomes apparent when considering the monotony postulate which is usu-
ally satisfied by inconsistency measures and demands I(K) ≤ I(K′) whenever K ⊆ K′
holds, i. e., the severity of inconsistency cannot be decreased by adding new information.
This rationality postulate is motivated by the observation that novel information cannot
resolve conflicts. As already discussed, this is not the case anymore when investigating
non-monotonic frameworks. It is thus possible that K is inconsistent, while K′ is not, so we
would expect I(K′) < I(K) for any reasonable measure I in this case.

The goal of this chapter is to contribute to a thorough understanding of inconsistency
by extending our investigation with this quantitative approach to analyze inconsistency. We
want to consider generalized versions of three measures based on minimal inconsistent sets.
In order to assess their behavior, we will develop rationality postulates extending established
ones from the literature. Some of the postulates still make sense for a general, possibly non-
monotonic logic, but most of them require refinements. We then analyze the measures with
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respect to the postulates. We will also discuss the severity of inconsistency of a subset H
of a knowledge base K, i. e., how significant are conflicts within H considering it is part
of a knowledge base K? The end of this chapter is devoted to considerations which are
specific for the concrete framework ASP. This allows for more concrete approaches and
demonstrates how to tailor measures and postulates for particular logics.

4.1 Measures for Non-monotonic Logics

We now introduce the inconsistency measures we are going to consider throughout most of
this chapter. Assume an arbitrary but fixed logic L. In classical inconsistency measurement,
minimal inconsistent subsets of a knowledge base play an important role since they can be
seen as the “atomic conflicts” within K. A rather simple but still popular approach to mea-
sure inconsistency is thus taking the value |Imin(K)|. The notion of strong inconsistency
facilitates the following generalization of this measure to non-monotonic logics.

Definition 4.1.1. Define IMSI : 2WF → R≥0 via IMSI(K) = |SImin(K)|.

One drawback of this approach is that the size of a set H ∈ SImin(K) is not taken into
account. Usually, a minimal inconsistent subsets is considered more severe the smaller it is,
i. e., the fewer formulas are required in order to yield a contradiction. A famous example to
illustrate this is the so-called lottery paradox:

Example 4.1.2. Assume there is a lottery with n tickets. Consider atoms t1, . . . , tn with
the intuitive meaning that ti is true iff the i-th ticket wins. Assume the lottery is fair and
exactly one ticket wins. We thus have t1∨̇ . . . ∨̇tn. However, considering an individual
ticket ti it appears reasonable to assume that it loses, so we have ¬t1, . . . ,¬tn. We thus
obtain the inconsistent knowledge base Kn = {t1∨̇ . . . ∨̇tn,¬t1, . . . ,¬tn}. Now consider
a lottery where n is quite small, e.g., n = 1. In this case, the assumption that t1 loses is
not as reasonable anymore given that at least one ticket wins. However, the bigger n is, the
more reasonable this assumption becomes, e.g., n = 106 yields a negligible chance for each
ti to win. Hence, even though both K1 and K106 are inconsistent, the latter appears quite
reasonable while the former is hard to take seriously.

So commonly, the bigger a minimal inconsistent set is, the less severe the conflict is viewed.
This is obviously ignored by IMSI. For example, IMSI(Kn) = 1 for any n for the knowledge
base Kn from the lottery paradox. In [67] a measure is proposed taking this into account.
Making use of strong inconsistency, we obtain the following measure:

Definition 4.1.3. Define IMSIC : 2WF → R≥0 via IMSIC(K) =
∑
H∈SImin (K)

1
|H| .

Instead of counting the number of sets in SImin(K), one could also consider the amount
of formulas which are considered problematic. Based on a measure in [61], we have the
following, quite simple approach:

Definition 4.1.4. Define Ip : 2WF → R≥0 via Ip(K) = |
⋃
H∈SImin (K)H|.

Note that there are further measures based on minimal inconsistent sets, see [67; 71; 73].
An investigation of generalizations of those is left for future work.
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Example 4.1.5. Consider our running examples from the previous chapter, i. e., the propo-
sitional knowledge base K = {a, a→ b, ¬b, c, ¬c} with

SImin(K) = {{a, a→ b, ¬b}, {c, ¬c}},

the logic program

P : a ∨ b. a← b.

c← not b. ¬c← not b.

with

SImin(P ) = {{c← not b., ¬c← not b., a← b.}}

and the argumentation framework over A = {a, b, c} represented by the knowledge base
R = {(a, b), (b, c), (c, c)} with

SImin(R) = {{(a, b), (c, c)}}.

The inconsistency measures from above assign the following values:

IMSI IMSIC Ip
K 2 5/6 5

P 1 1/3 3

R 1 1/2 2

We observe that IMSIC and Ip differ for P and R even though both possess one minimal
strongly inconsistent subset.

Now assume a situation where we are given some inconsistent knowledge basesK1, . . . ,Kn
and need to assess the severity of their conflicts. To achieve this goal, it seems reasonable
to choose an appropriate inconsistency measure I, compare the values I(K1), . . . , I(Kn)
and then prefer the knowledge base Ki with the lowest inconsistency degree:

Given:
K1, . . . ,Kn

Choose measure:
IMSI? IMSIC? Ip?

Compare:
I(K1), . . . , I(Kn)

Lowest Degree:
Ki

Figure 4.1: Finding “the best” knowledge base via inconsistency measures

Considering this approach we observe that the crucial point is finding the suitable in-
consistency measure. In order to investigate and compare the behavior of inconsistency
measures, researchers have thus proposed various rationality postulates (see for instance
Thimm:2016e). We want to develop similar tools for inconsistency measurement in non-
monotonic logics.
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4.2 Rationality Postulates for General Logics

We are going to revisit rationality postulates for inconsistency measures from the literature
and phrase them within the context of an arbitrary, possibly non-monotonic, logic. We will
start by considering the four postulates that a basic inconsistency measure should have due
to [68]. We will then continue our investigation with a collection of other postulates that
can be lifted to our general setting.If not stated otherwise, we assume an arbitrary but fixed
logic L = (WF ,BS, INC,ACC) and an inconsistency measure I : 2WF → R≥0 for the
remainder of this section.

4.2.1 Basic Postulates

The most basic (and undisputed) property that an inconsistency measure should have is the
ability to distinguish between consistency and inconsistency, i. e., I(K) = 0 if and only if
K is consistent. Undoubtedly this makes sense in non-monotonic frameworks as well.

Consistency For any knowledge base K ⊆ WF , I(K) = 0 if and only if K is consistent.

In contrast to non-monotonic logics, the consistency postulates implies I(H) = 0 for each
H ⊆ K if the underlying logic is monotonic. This follows immediately from Lemma 2.5.18.

Proposition 4.2.1. If L is monotonic, K is consistent and I satisfies consistency, then we
also have I(H) = 0 for eachH ⊆ K.

Since we do not see any reason to doubt the consistency postulate for our setting, let us
continue with the second one, which is monotony. Monotony is a fairly accepted postulate
which formalizes the intuition that moving from a monotonic knowledge base to a superset
should not decrease the inconsistency degree since adding information to a knowledge base
does not resolve conflicts.

Monotony If K and K′ are knowledge bases, then I(K) ≤ I(K ∪ K′).

In non-monotonic frameworks, monotony does not make sense because additional informa-
tion might resolve some conflicts or even render K consistent. We should thus only expect
a monotonic behavior if K′ does not resolve conflicts occurring in K. More precisely, if
H ⊆ K is strongly inconsistent, i. e., H ∈ SI (K), then there should be no subset H′ ⊆ K′
such thatH∪H′ is consistent. Otherwise, ifH∪H′ is consistent, then it is unclear whether
H even contributes to inconsistency of K ∪ K′, which makes a comparison between I(K)
and I(K ∪ K′) questionable. To illustrate this, consider the following example:

Example 4.2.2. Recall our logic program

P : a ∨ b. a← b.

c← not b. ¬c← not b.

Consider P ′ = {b., d., ¬d.} containing “b.”, which resolves the conflict within P : The
subprogram H ∈ SImin(P ) with H = {c ← not b., ¬c ← not b., a ← b.} is not strongly
(P ∪ P ′)-inconsistent due to the consistent superprogram H ∪H ′ with H ′ = {b.} ⊆ P ′:

H ∪H ′ : c← not b. ¬c← not b. a← b. b.

In particular, P ∪ {b.} is consistent as well, but P ′ involves the conflict “d.” vs. “¬d.”. We
have SImin(P ∪ P ′) = {{d., ¬d.}} which only represents the conflict within P ′. So the
comparison between inconsistency of P and P ∪ P ′ does not seem to make sense.
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We thus need to adjust the monotony postulate in order to obtain a meaningful one for non-
monotonic frameworks. For this, recall the first time we faced a similar issue, namely when
considering strong inconsistency as a refinement of the ordinary counterpart in monotonic
logics. The idea was to turn the following property into an axiom:

• IfH ⊆ K is inconsistent, then the same is true for eachH′ withH ⊆ H′ ⊆ K.

This yields the following property for all knowledge bases K and K′ which is significant
regarding the monotony postulate:

• IfH ⊆ K is inconsistent, andH′ ⊆ K′, thenH ∪H′ is inconsistent as well.

The above property formally states that no subset of K′ is capable of resolving any conflict
within K. Given a non-monotonic logic, this is not necessarily the case anymore. However,
we can restrict the postulate to cases whereK′ satisfies this property. As inconsistent subsets
do not play a central role in non-monotonic reasoning (see Chapter 3 above), we may replace
“inconsistent” with “strongly inconsistent”, which yields:

• IfH ⊆ K is strongly K-inconsistent, andH′ ⊆ K′, thenH∪H′ is strongly (K∪K′)-
inconsistent.

It is now easy to see that restricting to H′ = ∅ suffices. More precisely, the above property
is equivalent to the following one:

• IfH ⊆ K is stronglyK-inconsistent, thenH is strongly (K∪K′)-inconsistent as well.

If this is the case, then moving from K to K ∪ K′ is comparable to the same situation in a
monotonic logic. This motivates the following:

Definition 4.2.3. Let K and K′ be knowledge bases. We say that K′ preserves conflicts of
K ifH ∈ SI (K ∪ K′) for anyH ∈ SI (K).

We observe that this property transfers to minimal strongly inconsistent subsets as well:

Proposition 4.2.4. If K and K′ are knowledge bases and K′ preserves conflicts of K, then
SImin(K) ⊆ SImin(K ∪ K′).

Proof. Let H ∈ SImin(K). Since K′ preserves conflicts, H ∈ SI (K ∪ K′). Now assume
there is a setH′ ( H withH′ ∈ SI (K∪K′). SinceH′ ⊆ H, we haveH′ ∈ SI (K), yielding
a contradiction asH was assumed to be minimal. HenceH ∈ SImin(K ∪ K′).

Let us now consider our running examples again to see the definition at work. We first start
with the monotonic propositional knowledge base from before. As the reader may already
expect, monotony renders the property of preserving conflicts trivial.

Example 4.2.5. Recall K = {a, a→ b, ¬b, c, ¬c}. Any propositional knowledge base K′
preserves conflicts ofK due to monotony of the logic, so we have {c,¬c} ∈ SImin(K∪K′).

More generally, the following statement can be easily inferred from Lemma 2.5.18.

Proposition 4.2.6. Let L be monotonic and K and K′ be two knowledge bases of L. Then
K′ preserves conflicts of K.
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Example 4.2.7. Recall the logic program

P : a ∨ b. a← b.

c← not b. ¬c← not b.

The program P ′ = {b., d., ¬d.} from Example 4.2.2 does not preserve conflicts of P as we
already noted above. More precisely, we saw thatH = {c← not b., ¬c← not b., a← b.}
is not strongly (P ∪ P ′)-inconsistent since P ′ contains the fact “b.”.

Example 4.2.8. Now consider the running example AF F = (A,R) with A = {a, b, c}
represented by the knowledge base R = {(a, b), (b, c), (c, c)}. A quite simple choice of a
knowledge base R′ which preserves conflicts of R is R′ = {(c, b)}, which induces the AF
F ′ = (A,R′):

cbaF : cbaF ′:

We see that SImin(R∪R′) = {{(a, b), (c, c)}} = SImin(R). The AF represented by R∪R′
is the following:

cba

The notion of preserving conflicts motivates our postulate strong monotony, a non-monotonic
counterpart to monotony from above. The difference is that we require K′ not not resolve
conflicts within K. This restriction is not completely novel, since it is inherently given for
monotonic logics as we discussed above.

Strong Monotony If K′ preserves conflicts of K, then I(K) ≤ I(K ∪ K′).

It should nevertheless be clear that strong monotony is a weaker postulate than monotony
due to the additional premise. After all, resolving conflicts via adding information is an
important feature for non-monotonic logics which is excluded for the postulate.

We now turn to the free formula independence postulate [68]. Intuitively, a formula α
of a knowledge base K is free in K if it does not cause any conflicts. A free formula should
thus not be “blamed” for inconsistency ofK and hence not change the inconsistency degree,
which is formalized by the postulate free formula independence. We consider two ways to
generalize this notion to non-monotonic logics as we believe both to be reasonable.

Consider a monotonic logic. Formally, a free formula α ∈ K is one that does not occur
in a minimal inconsistent subsetH ∈ SImin(K) = Imin(K).

Definition 4.2.9. Let K be a monotonic knowledge base. A formula α ∈ K is called free if

α ∈ K \
⋃

H∈Imin (K)

H. (4.1)

Denote by Free(K) the set of all free formulas of K.
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This notion matches the intuition that α is not responsible for any conflict within K. When-
ever there is an inconsistent subsetH ⊆ K, thenH \ {α} is inconsistent as well, so α does
not cause any harm.

Example 4.2.10. Recall that the propositional knowledge base K = {a, a→ b, ¬b, c, ¬c}
possesses Imin(K) = {{a, a → b, ¬b}, {c, ¬c}}. Hence it does not contain any free
formula since every formula occurs in a minimal inconsistent subset.

In order to generalize this notion, let us first take a look at an alternative way to define free
formulas. Assume we are given a monotonic logic. Recall Reiter’s hitting set duality, i. e.,
K\S ∈ Cmax (K) iff S is a hitting set of Imin(K). This strong connection between minimal
inconsistent and maximal consistent subsets facilitates a definition of free formulas via the
maximal consistent subsets of K. Indeed,

K \
⋃

H∈Imin (K)

H =
⋂

H∈Cmax (K)

H (4.2)

holds and hence, a formula α is free iff it occurs in every maximal consistent subset of
K. We note that the intuition is the same: Since α can be added to any subset H ⊆ K
without introducing inconsistency, it occurs in any H ∈ Cmax (K). For the purpose of
our generalization to non-monotonic logics, we observe that (4.2) is a corollary of Reiter’s
hitting set duality which is generalized to non-monotonic logics in Theorem 3.1.12. We
thus expect a similar result when replacing Imin(K) with SImin(K). Indeed:

Corollary 4.2.11. Let K be a knowledge base. Then

K \
⋃

H∈SImin (K)

H =
⋂

H∈Cmax (K)

H.

Proof. “⊆”: Let α ∈ K \
⋃
H∈SImin (K)H. Hence, α does not occur in any minimal hitting

set of SImin(K) and thus, due to Theorem 3.1.12, it occurs in all maximal consistent sets
H ∈ Cmax (K).
“⊇”: Now assume α /∈ K\

⋃
H∈SImin (K)H, i. e., α ∈ H for a minimal strongly inconsistent

set H ∈ SImin(K). Hence, H \ {α} /∈ SImin(K) and thus, there is a maximal consistent
set H′ with H \ {α} ⊆ H′. This means α /∈ H′ because otherwise, H′ would contain a
strongly inconsistent set. It follows that α /∈

⋂
H∈Cmax (K)H.

Corollary 4.2.11 suggests a very natural and smooth generalization of free formulas, which
lifts the intuitive as well as the formal meaning with respect to both aspects: A free formula
α does not introduce conflicts (“α /∈ H for each H ∈ SImin(K)”) where we note that the
relevant conflicts of a non-monotonic knowledge base are the minimal strongly inconsistent
subsets; and α can be added to any subset of K without introducing inconsistency (“α ∈ H
for eachH ∈ Cmax (K)”). So we define:

Definition 4.2.12. Let K be a knowledge base. A formula α ∈ K is called free wrt. strong
inconsistency (or SI-free or simply free if there is no risk of confusion) if

α ∈ K \
⋃

H∈SImin (K)

H =
⋂

H∈Cmax (K)

H.

Denote by FreeSI (K) the set of all SI-free formulas of K.
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Example 4.2.13. Consider our program P again:

P : a ∨ b. a← b.

c← not b. ¬c← not b.

As already discussed, SImin(P ) = {c ← not b., ¬c ← not b., a ← b.}. We thus obtain
FreeSI (P ) = {a ∨ b.}. To see Corollary 4.2.11at work we recall

Cmax (P ) = {{a ∨ b., a← b., c← not b.},
{a ∨ b., a← b., ¬c← not b.},
{a ∨ b., c← not b., ¬c← not b.}}.

Since “a ∨ b.” is the only formula occurring in all maximal consistent sets, we obtain⋂
H∈Cmax (P )H = {a ∨ b.}.

Example 4.2.14. For the AF represented by R = {(a, b), (b, c), (c, c)} we obtain the set
FreeSI (R) = {(b, c)}.

As expected, FreeSI (K) generalizes Free(K) to non-monotonic logics in the sense that they
coincide in the monotonic case.

Proposition 4.2.15. Let K be a monotonic knowledge base. Then, Free(K) = FreeSI (K).

Proof. Due to Proposition 3.1.11, Item 2, we have Imin(K) = SImin(K). In particular,

Free(K) = K \
⋃

H∈Imin (K)

H = K \
⋃

H∈SImin (K)

H = FreeSI (K),

which proves our claim.

Finally, let us mention that FreeSI (K) can also be defined without explicitly mentioning
minimality

Proposition 4.2.16. Let K be a knowledge base. If α ∈ K, then α ∈ FreeSI (K) iff

∀H ⊆ K : H /∈ SI (K)⇒ H∪ {α} /∈ SI (K). (4.3)

Proof. The implication “⇐” is trivial, so we show “⇒”: Assume (4.3) is wrong, i. e., there
is a set H /∈ SI (K) with H ∪ {α} ∈ SI (K). Then H ∪ {α} contains a minimal strongly
inconsistent set H′. Observe that α ∈ H′, because otherwise, H′ has a consistent superset
as it is the case for H. Since H′ is minimal, it holds that H′ \ {α} /∈ SImin(K), but
H′ ∈ SImin(K) and thus, α /∈ FreeSI (K).

The similarities between Free(K) and FreeSI (K) motivate a rationality postulate similar in
spirit to free formula independence, which requires I(K) = I(K \ {α}) for α ∈ Free(K).
Analogously, one might expect an SI-free formula α ∈ K not to increase the inconsistency
degree of K since it does not introduce strongly inconsistent subsets. It could still resolve
conflicts, motivating the following postulates, similar to free formula dilution from [87]:

SI-Free If α ∈ FreeSI (K), then I(K) ≤ I(K \ {α}).
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However, SI-free formulas are not as well-behaving as free formulas in monotonic logics.
The issue we need to take into account is that ordinary inconsistency of a subset H ⊆ K
merely depends on H, where strong inconsistency is a property H has with respect to the
whole knowledge base K. Removing an SI-free formula α ∈ K might thus change the
structure of SImin(K) in an unexpected way. To see this, let us consider the following
example.

Example 4.2.17. Let P be the following logic program:

P : a← not a, b. a← not c. d← not d. b. c. d.

The reader may verify that

SImin(P ) = {{a← not a, b., b., c.}}.

In particular,

r1 = d.

r2 = a← not c.

are in FreeSI (P ). However, removal of r1 turns {d ← not d.} into a strongly inconsistent
subset, while removal of r2 renders “c.” irrelevant regarding the conflicts of P , so

SImin(P \ {r1, r2}) = {{a← not a, b., b.}, {d← not d.}}.

We make the following observations:

• the conflict “d← not d.” suddenly occurs,

• the conflict {a← not a, b., b., c.} does not rely on “c.” anymore since the option to
infer a is removed,

• the number of minimal conflicts increased.

It is thus hard to predict what happens when an SI-free formula is removed from a given
knowledge base. In particular, we do not have SImin(K) = SImin(K \ {α}) for each
α ∈ FreeSI (K) which means that not even IMSI –a measure based on minimal strongly in-
consistent subsets– satisfies the SI-free postulate (cf. Section 4.3 below). Another observa-
tion regarding FreeSI (K) is relevant: Although free formulas are not supposed to participate
in minimal conflicts, the set FreeSI (K) itself is in general not consistent.

Example 4.2.18. Consider the logic program

P : a. ¬a. ← not a, not ¬a.

We see that SImin(P ) = {{a., ¬a.}} and hence, FreeSI (P ) = {← not a, not ¬a.} is an
inconsistent program.

The previous considerations suggest that this notion depends heavily on the particular knowl-
edge base. We will thus continue by introducing a stronger notion.
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For this, we consider an alternative to the definition of free formulas in a way that they
“do not induce strong inconsistency”. Let us have a look at the monotonic case again. Since
a free formula α does not induce inconsistency, one can see that α satisfies

∀H ⊆ K : H ∈ C (K)⇒ H∪ {α} ∈ C (K). (4.4)

In a monotonic framework, (4.4) formalizes that α is irrelevant regarding conflicts of K as
it cannot turn a consistent set H ⊆ K in an inconsistent one. In a non-monotonic logic, α
could resolve conflicts, so we need to strengthen the condition:

∀H ⊆ K : H ∈ C (K)⇔ H∪ {α} ∈ C (K). (4.5)

This motivates the following definition.

Definition 4.2.19. Let K be a knowledge base. A formula α ∈ K is called neutral if it
satisfies

∀H ⊆ K : H ∈ C (K)⇔ H∪ {α} ∈ C (K).

The neutral formulas in K are denoted by Ntr(K).

It is easy to see that both notions coincide for monotonic logics.

Proposition 4.2.20. If K is monotonic, then Ntr(K) = Free(K).

Proof. This is clear due to Lemma 2.5.18.

Note that in general, Ntr is a stronger notion than FreeSI .

Proposition 4.2.21. If K is a knowledge base, then Ntr(K) ⊆ FreeSI (K)

Proof. Let α ∈ Ntr(K). Due to (4.4), it can be added to any setH ⊆ K without introducing
inconsistency. Hence, α ∈

⋂
H∈Cmax (K)H = FreeSI (K).

We note that in contrast to SI -free formulas, the neutral ones do not make use of strong
inconsistency. Even though the hitting set duality from Theorem 3.1.12 suggests to utilize
this notion, the neutral formulas are still quite well-behaving. The reason is that neutral
formulas do not depend as much on the structure of the knowledge base and vice versa, do
not influence K and in particular the structure of SImin(K).

Proposition 4.2.22. Let K be a knowledge base and let α ∈ Ntr(K). Then,

SImin(K) = SImin(K \ {α}).

Proof. By definition of Ntr(K) we have H ∈ SI (K) if and only if H ∈ SI (K \ {α}) for
any setH ⊆ K\{α}. Hence, the claim follows since no setH ∈ SImin(K) contains α.

Moreover, in contrast to FreeSI (K), the neutral formulas always form consistent subsets of
a knowledge base, as long as the empty knowledge base is considered consistent. Without
proof, we state the following obvious fact:
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Proposition 4.2.23. If L is a logic such that ∅ is consistent and K a knowledge base of L,
then Ntr(K) is consistent.

As before, we expect a neutral formula α ∈ K not to increase the inconsistency degree of
K since it does not induce inconsistency to any subset H ⊆ K. By definition, resolving
conflicts is impossible as well, motivating:

Independence If α ∈ Ntr(K), then I(K) = I(K \ {α}).

As neutral is a quite strong property, our independence postulate seems to be rather basic.
However, note that independence is a generalization of free formula independence [68]
which is not free from criticism. In [27], for example, it has been noted that the knowledge
base K = {a ∧ c, b ∧ ¬c} should be considered less problematic than K ∪ {¬a ∨ ¬b} even
though the additional formula is free. We want to emphasize that the same concerns apply
to independence. A weaker version can be found in [103], where a formula α ∈ K is called
safe if the atoms in α do not occur elsewhere inK\{α}. The corresponding postulate weak
independence is similar to free formula independence. However, this requirement is hard
to phrase for an arbitrary logic L as in Definition 2.5.1. This suggests that weaker versions
of independence should be tailored for a specific framework like the postulate safe-rule
independence for answer set programming (see Section 4.5).

The final rationality postulate belonging here is dominance [68]. In the propositional
setting, dominance requires that for two formulas α and β such that α is satisfiable and
α � β, then I(K ∪ {α}) ≥ I(K ∪ {β}) should hold. The postulate formalizes that α
carries more information and is hence more likely to be involved in conflicts than β. Of
the postulates we considered so far, it is probably the most disputed one (see [27; 72]).
One of the most notable problems with this postulate was pointed out in [46]. The authors
state the following result for a propositional knowledge base K: If I satisfies monotony
and dominance, then I(K) = I(K ∪ {β}) if α � β for a satisfiable formula α ∈ K.
They continue with describing the following case: Say K = {α1, . . . , αn} where each αi
is satisfiable and let K′ = {β1, . . . , βn} where βi ≡ αi for each i. Then, monotony and
dominance already imply I(K) = I(K ∪ K′), so copying all conflicts does not change the
inconsistency degree. They thus propose a refined version dominance’ of dominance, where
α, β /∈ K is additionally required.

For our setting of a non-monotonic logic, distinguishing between dominance and domi-
nance’ does not make a significant difference, and we do not need to be too concerned about
the objections from [27; 72]. The reason is simply that there is a much more fundamental
issue with this postulate here. Since adding information to a knowledge base may not only
induce, but also potentially resolve conflicts, the intuition does not hold anymore: There is
simply no reason why α, which carries more information than β, should be considered more
problematic in general. We thus believe there is no meaningful generalization of dominance
for non-monotonic logics.

Let us summarize how we obtained our refined rationality postulates so far. We did
not need to adjust consistency. To monotony we added a premise based on the notion of
preserving conflicts, a property which is inherently given in monotonic logics. We con-
sidered two refinements of free formulas, called SI-free and neutral and the corresponding
postulates. We pointed our why dominance does not appear to have a natural counterpart in
our setting. This concludes our discussion on the four postulates that are required for basic
inconsistency measures [68]:
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Monotony Strong Monotony
add premise

Free

SI-Free

Neutral

refine notion

Dominance
remove postulate

Figure 4.2: Making rationality postulates work for non-monotonic logics

4.2.2 Extended Postulates

Many concrete approaches to inconsistency measurement depend on the syntax of a knowl-
edge base. The most common example is the difference between the conjunction {a ∧ b}
and two formulas {a, b}. To illustrate this issue, let us recall the lottery paradox from above.

Example 4.2.24. We considered the knowledge base Kn = {t1∨̇ . . . ∨̇tn,¬t1, . . . ,¬tn}
and argued that the inconsistency degree of Kn should be lower the bigger n is. This was
due to the number of formulas required in order to obtain a contradiction. However, if we
express Kn as the two formulas K′n = {t1 ∨ . . . ∨ tn,¬t1 ∧ . . . ∧ ¬tn}, then the single
minimal inconsistent set of K′ contains two formulas, independent of n.

One could now argue that even when considering K′n, the number n of tickets still effects
the size of the formulas within K′n; but then again, taking the size of a formula into ac-
count raises some other issues: It enforces distinguishing equivalent formulas depending
on how they are written down. There are thus rationality postulates in the literature which
are concerned about the behavior of inconsistency measures when dealing with equivalent
formulas resp. equivalent knowledge bases. Of course, it is desirable that a measure I is
robust wrt. the syntax of K.

The postulate adjunction invariance [27] formalizes the idea that there should be no
difference between {a ∧ b} and {a, b}, i. e., I(K ∪ {a ∧ b}) = I(K ∪ {a, b}). There are
more postulates considering situations where (parts of) semantically equivalent knowledge
bases are compared, see [103].

In non-monotonic frameworks, a notion of equivalence of the form “K has the same
models as K′” is too weak as conclusions can be withdrawn due to non-monotony. This

89



Chapter 4. Measuring Inconsistency

observation has led to the development of strong equivalence, as already discussed in Sec-
tion 3.1.3. Strong equivalence plays a similar role in non-monotonic frameworks as (nor-
mal) equivalence in monotonic frameworks. In particular, it allows for modularisation of
knowledge bases. If a subsetH of a knowledge baseK is strongly equivalent to a setH′ then
H can be replaced in K by H′ without changing the inferences one can draw from K. This
also means that H and H′ should be interchangeably when it comes to the inconsistency
they contribute to K. By generalizing this idea to the whole knowledge base, we obtain that
strongly equivalent knowledge bases should have the same degree of inconsistency.

Strong Equivalence If K ≡s K′, then I(K) = I(K′).

However, whether or not this is desirable depends on the framework under consideration.
In many cases, this postulate does not make sense. For example, in monotonic logics
we have K ≡s K′ for any two inconsistent knowledge bases K and K′, thus satisfying
strong equivalence contradicts the idea of quantitatively assessing the inconsistency of a
knowledge base. In ASP it still allows to distinguish between, e.g., P = {a. ¬a.} and
P ′ = {a← not b. ¬a← not b.} as they are both inconsistent, but not strongly equivalent.

The issue with strong equivalence is quite straightforward: Consideration of the whole
knowledge base is not fine-grained enough. One should look at the single formulas withinK
instead. This allows to compare equivalent and in particular consistent parts of a knowledge
base. The technique we utilize is similar to [103] for the postulate “irrelevance of syntax”.
For our setting we define:

Definition 4.2.25. Let K and K′ be two knowledge bases. We call K and K′ formula-wise
strongly equivalent, denoted by K ≡α K′, if there is a bijection ρ : K → K′ such that
{α} ≡s {ρ(α)} holds for all α ∈ K.

Equipped with this notion we may phrase a refinement of strong equivalence. Instead of
requiring K ≡s K′, we consider two formula-wise strongly equivalent knowledge bases
which yields a more meaningful rationality postulate. We thus obtain the following gener-
alization of irrelevance of syntax [103] (FW=formula-wise):

FW-Strong Equivalence If K ≡α K′, then I(K) = I(K′).

In contrast to strong equivalence, the postulate comes with a quite strong premise. To
illustrate this, let us mention that K ≡α K′ induces the same property for any subset of K
and K′.

Proposition 4.2.26. IfK andK′ are formula-wise strongly equivalent, then there is a bijec-
tion ρ̃ : 2K → 2K

′
such thatH ≡s ρ̃(H) for anyH ⊆ K. In particular, |H| = |ρ̃(H)|.

Proof. By assumption, there is a bijection ρ : K → K′ with {α} ≡s {ρ(α)} for all α ∈ K.
So let ρ̃ : 2K → 2K

′
be the mapping with

ρ̃(H) :=
⋃
α∈H
{ρ(α)}.

Then the claim follows by induction from

γ ≡s γ′ ∧ δ ≡s δ′ ⇒ {γ, δ} ≡s {γ′, δ′},

which is easy to see.
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A further refinement of this notion is to consider the replacement of a formula α with a
strongly equivalent formula α′. Note that this postulate is similar to exchange from [27].

Strong Equivalent Replacement If {α} ≡s {α′} and α /∈ K as well as α′ /∈ K, then
I(K ∪ {α}) = I(K ∪ {α′}).

To conclude this discussion on extended postulates, let us consider two final ones which
are concerned about modularisation of K. The first one is separability [68] which has a
straightforward representation in our general context.

Separability If SImin(K ∪ K′) = SImin(K) ∪ SImin(K′) and SImin(K) ∩ SImin(K′) = ∅
then I(K ∪ K′)=I(K) +I(K′).

In other words, if the conflicts of two knowledge bases K and K′ are independent, the
inconsistency value of their union should decompose as the sum of the individual values.

Finally, we end our investigation with a generalization of monotony, namely supper-
additivity [102]. It states that I(K) + I(K′) ≤ I(K ∪ K′) should hold whenever K and K′
are disjoint. As for strong monotony, we need to take into account that adding information
might resolve conflicts in non-monotonic frameworks. Therefore, we add the additional
condition of conflict preservation to our version of super-additivity.

Strong Super-Additivity If K′ and K preserve each other’s conflicts and K∩K′ = ∅, then
I(K) + I(K′) ≤ I(K ∪ K′).

4.3 Analysis

As already mentioned, we are going to discuss the behavior of the measures with respect
to the introduced postulates. For postulates that are not satisfied by a particular measure
in general, we give counterexamples within the logic LASP. We also briefly discuss rela-
tions between the measures in terms of order compatibility [61] and their relation to the
inconsistency graph [32].

4.3.1 Compliance with Rationality Postulates

In general, we obtain the following result on the compliance of our measures with the ratio-
nality postulates, see also the table below.

Proposition 4.3.1. The measures IMSI, IMSIC and Ip satisfy consistency, strong monotony,
independence, FW-strong equivalence, strong equivalent replacement, and strong super-
additivity. The measures IMSI and IMSIC also satisfy separability.

Proof. Consistency: Since SImin(K) = ∅ if and only if K is consistent (see Proposi-
tion 3.1.11), IMSI, IMSIC and Ip satisfy consistency.
Strong monotony: Let K and K′ be knowledge bases such that K′ preserves conflicts of K.
Let H ∈ SImin(K). By Proposition 4.2.4, we have H ∈ SImin(K ∪ K′). Hence, we see
IMSI(K) ≤ IMSI(K ∪ K′), IMSIC(K) ≤ IMSIC(K ∪ K′) and Ip(K) ≤ Ip(K ∪ K′) follow
straightforwardly.
Independence: Let α ∈ Ntr(K). Then we have SImin(K) = SImin(K \ {α}) according to
Proposition 4.2.22. It follows that IMSI, IMSIC and Ip satisfy independence.
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FW-strong equivalence: Let K and K′ be such that K ≡α K′. Proposition 4.2.26 implies
that there is a bijection ρ̃ : 2K → 2K

′
such that H ≡s ρ̃(H) for any H ⊆ K. Further-

more, observe that if H is strongly K-inconsistent then any H′ with H′ ≡s H is strongly
K \ H ∪ H′-inconsistent. It follows that H ∈ SImin(K) if and only if ρ̃(H) ∈ SImin(K′).
Since |H| = |ρ̃(H)| is also guaranteed in Proposition 4.2.26, IMSI, IMSIC and Ip satisfy
FW-strong equivalence.
Strong equivalent replacement: Similar.
Strong super-additivity: Let K′ and K preserve each other’s conflicts and K ∩ K′ = ∅.
Proposition 4.2.4 implies SImin(K) ∪ SImin(K′) ⊆ SImin(K ∪ K′). Since K ∩ K′ = ∅
yields SImin(K) ∩ SImin(K′) = ∅ we see that the measures satisfy strong super-additivity.
Separability: Straightforward for IMSI and IMSIC .

As already mentioned in Section 4.2, SI-free is not satisfied by any of the measures.

Example 4.3.2. Consider the program P given as follows:

P : a← not a, b. a← not c, not d. b. c. d.

We have r = a ← not c, not d. ∈ FreeSI (P ): the rule “a ← not a, b.” combined with
the fact “b.” is responsible for P being inconsistent and r cannot restore consistency as
long as “c.” or ‘d.” are present. Hence, SImin(P ) consists of {a ← not a, b., b., c.} and
{a ← not a, b., b., d.}, i. e., IMSI(P ) = 2, IMSIC(P ) = 2

3 and Ip(P ) = 4. However
SImin(P \ {r}) = {a ← not a, b., b.}, i. e., IMSI(P \ {r}) = 1, IMSIC(P \ {r}) = 1

2 and
Ip(P \ {r}) = 2.

Example 4.3.3. Consider the programs P and P ′ given via

P : a. ¬a. P ′ : a. ¬a. a← ¬a. ¬a← a.

It is easy to see that P ≡s P ′ as the inconsistency in both programs cannot be repaired in
any extension of them. However, we have that I(P1) 6= I(P2) for all I ∈ {IMSI, IMSIC , Ip}
thus showing that strong equivalence is violated by all three measures.

A counterexample for strong eqiuvalence is easy to find since K ≡s K′ for any two in-
consistent propoistional knowledge bases. For a counterexample of separability wrt. Ip see
[106] (already in the propositional case).

Observe that for those postulates that are generalizations of classical ones -i. e., consis-
tency, strong monotony, independence, strong super-additivity, and separability- the com-
pliance of our three measures generalizes their compliance with the corresponding postu-
lates in the classical case, cf. [106]. The results are summarized in the following table:

IMSI IMSIC Ip
Consistency 3 3 3

Strong Monotony 3 3 3

SI-Free 7 7 7

Independence 3 3 3

Strong Equivalence 7 7 7

FW-Strong Equivalence 3 3 3

Strong Equivalent Replacement 3 3 3

Separability 3 3 7

Strong Super-Additivity 3 3 3
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4.3.2 Further Aspects

We investigate the measures we introduced wrt. two further aspects from the literature.
First, we recall the notion of an IG measure from [32]. Afterwards, we discuss order com-
parability of our measures. Both aspects can be seen as straight generalizations from the
propositional setting.

IG measures. In [32] the notion of the inconsistency graph is utilized in order to classify
inconsistency measures. Let us briefly recall the required notions.

Definition 4.3.4. An inconsistency graph for a monotonic knowledge base K is a bipartite
graph IG(K) = (U, V,E) such that there are bijections fU : U →

⋃
Imin(K) as well as

fV : V → Imin(K) with E = {{u, v} | fU (u) ∈ fV (v)}.

Then, the class of so called IG measures is defined: A measure I is IG if it can be written
as I(K) = f(IG(K)) for a mapping f assigning non-negative real values to inconsistency
graphs.

Example 4.3.5. Consider the knowledge base K = {a, a→ b, ¬b, c, ¬c}. Observe that

Imin(K) = {{a, a→ b, ¬b}, {c, ¬c}}.

The graph IG(K) = (U, V,E) is depicted in Figure 4.3. It is easy to see that the measure
IMI(K) = |Imin(K)| is an IG measure since IMI(K) = |V |.

Figure 4.3: The IG graph of K from Example 4.3.5.

It is quite clear that the inconsistency graph is not appropriate for non-monotonic logics.
We thus consider the straightforward refinement we need.

Definition 4.3.6. A strong inconsistency graph for an arbitrary knowledge base K is a
bipartite graph SIG(K) = (U, V,E) such that there are bijections fU : U →

⋃
SImin(K)

and fV : V → SImin(K) with E = {{u, v} | fU (u) ∈ fV (v)}.

We define SIG measures in the canonical way. As a corollary of Proposition 1 in [32], we
see:

Proposition 4.3.7. The measures IMSI, IMSIC and Ip are SIG measures.

The paper [32] is mostly concerned about classifying inconsistency measures. For the
measures considered in the present section, this classification is quite obvious: All of them
are SIG measures. However, it might be more insightful (and more challenging) when it
comes to inconsistency measures which are specifically tailored for certain logics. We be-
lieve this is a promising research direction for future work.
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Order compatibility. In order to compare inconsistency measures we can use the notion
of order compatibility cf. [61]. We say that two inconsistency measures I1 and I2 are
order-compatible if I1(K) ≤ I1(K′) iff I2(K) ≤ I2(K′) for all knowledge bases K,K′.
So I1 and I2 induce the same ranking on knowledge bases without necessarily assigning
the same inconsistency values. As a corollary of the corresponding result from [61] for the
propositional case, we obtain:

Proposition 4.3.8. The measures IMSI, IMSIC and Ip are pairwise not order-compatible.

Hence, all measures are incompatible and provide different points of view on inconsistency.

4.4 Measuring Inconsistent Subsets

We continue our investigation with a situation where we are not restricted to a knowledge
base K and subsets of it, but have also additional information available. As already noted in
Section 3.2, additional information do not only contribute to inconsistency of a knowledge
baseK, but are also worth investigating when it comes to finding repairs. This leads to more
varied situations that we also want to address in the context of measuring inconsistency.
Similarly to Section 3.2, let us assume we are given a knowledge base K as well as a
disjoint knowledge base G. In the present section, we do not interpret G as a set of potential
additional assumptions. We will instead assume K ∪ G is our whole knowledge base and
thus, K is not an isolated one, but seen as a subset of K ∪ G. This should be taken into
account when assessing the conflicts within K as the following examples illustrate.

Example 4.4.1. Consider the logic program P = {← not a, not c.}. Since there is no way
to infer a or c, the program P is inconsistent and, e.g., the measure IMSI assigns 1 to it.
However, interpreted as part of the program P ∪G with

P ∪G : a← not b. c← not d. ← not a, not c.

b← not a. d← not c.

the program P simply constrains the answer sets rather than causing inconsistency. Hence,
although IMSI(P ) = 1 seems reasonable on its own, it does not appear to make sense when
considering P ∪G.

Example 4.4.2. Now consider the program P ∪G given as follows:

P ∪G : a ∨ b. ← not a. ← not b.

Inconsistency of P ∪ G stems from the two constraints “← not a.” and “← not b.”. As
answer sets are required to be minimal models, it is not possible to satisfy both constraints
simultaneously. The subset P = {← not a., ← not b.} obviously consists of two conflicts
and this intuition is confirmed by the observation that IMSI(P ) = 2. However, given the
disjunctive rule “a∨b.”, this is peculiar since there is actually only one conflict which cannot
be resolved (either a or b is missing). This is confirmed by the observation IMSI(P∪G) = 1.

A simple solution simulates the concept of strong inconsistency. Recall that a subset of
a knowledge base is strongly inconsistent if it contains conflicts that cannot be resolved
(within K). We can proceed similarly here and take all supersets of K within K ∪ G into
account, looking for the smallest possible inconsistency degree. As this approach depends
on a given measure I, we obtain the following notion.
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Definition 4.4.3. Let I : 2WF → R≥0 be an inconsistency measure andK∪G a knowledge
base. We call

CG, I(K) := min
G′⊆G

I(K ∪ G′) (4.6)

the value of I(K) with respect to the context K ∪ G.

This approach is quite well-behaving for the two examples we considered before.

Example 4.4.4. For the logic program P = {← not a, not c.} with

P ∪G : a← not b. c← not d. ← not a, not c.

b← not a. d← not c.

we immediately see CG, IMSI
(P ) = 0 caused by consistency of P ∪G.

Example 4.4.5. Consider again P = {← not a., ← not b.} where P ∪G is

P ∪G : a ∨ b. ← not a. ← not b.

Clearly, there is only one strongly inconsistent subset of P ∪ G, namely P . We thus see
CG, IMSI

(P ) = 1.

Let us collect some properties of CG, I(K), depending on the given measure I. We see that
some desirable properties of I transfer to CG, I(K).

Proposition 4.4.6. Let K,K′ and G be a knowledge bases.

(a) If I satisfies consistency, then CG, I(K) = 0 if and only if K /∈ SI (K ∪ G),

(b) if I satisfies independence and α ∈ Ntr(K ∪ G), then CG, I(K) = CG, I(K \ {α}),

(c) if I satisfies strong equivalence and K ≡s K′, then CG, I(K) = CG, I(K′).

Proof. Let K,K′ and G be knowledge bases.
(a): Assume the measure I satisfies the consistency postulate. If CG, I(K) = 0 then there is
K∪G′ ⊆ K∪G such that I(K∪G′) = 0. Since I satisfies consistency, K∪G′ is consistent
and therefore K is not strongly (K ∪ G)-inconsistent. On the other hand, if K /∈ SI (K ∪ G)
then there is G′ ⊆ G such that K ∪ G′ is consistent and I(K ∪ G′) = 0. Then CG, I(K) = 0
as well.
(b): Let I satisfy independence. For α ∈ Ntr(K ∪ G) we have α ∈ Ntr(H) for any subset
H of K ∪ G. Now the claim follows immediately.
(c): Let I satisfy strong equivalence and let K ≡s K′. It follows that I(K) = I(K′) and,
as K ≡s K′ implies K ∪ G′ ≡s K′ ∪ G′ for all G′ ⊆ G, I(K ∪ G′) = I(K′ ∪ G′) and by this
the claim.

While the expression (4.6) simply takes the minimum over all possible supersets, it would
be rather appealing to utilize a general framework for measuring the information which is
added to a knowledge base. The idea of measuring information is not novel. In [61] an
information measure is defined as a mapping J assigning non-negative real numbers to
propositional knowledge bases and satisfying
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• if K = ∅, then J (K) = 0,

• if K ⊆ K′ and K′ is consistent, then J (K) ≤ J (K′),

• if K is consistent and at least one formula α ∈ K is not a tautology, then J (K) > 0.

Equipped with an appropriate technique to measure information in non-monotonic logics,
one could utilize J (A) (where A ⊆ G) to measure the information added to K and then
consider I(K ∪ A) to measure inconsistency of the remaining conflicts within K. This
approach induces inconsistency measures based on, e.g., the expression

min
A⊆G

J (A) + I(K ∪A). (4.7)

Although we leave a thorough investigation of this issue for future work, we want to mention
that (4.6) is a special case of this approach, utilizing the trivial function J ≡ 0.1 In the
subsequent Section 4.5 on measuring inconsistency in ASP we will consider a measure I±
which can be interpreted as an expression of this form, where J counts the number of facts
we add to a given program.

In order to calculate (4.6), we require a given inconsistency measure I. We also want
to consider a novel approach here. Recall the measures introduced in Section 4.1. They are
based on (the number of) strongly inconsistent subsets of a knowledge base K. The notion
of strong inconsistency facilitated the previously considered generalization of inconsistency
measures from the literature. The results of the previous chapter suggest that bidirectional
non-repairs are worth investigating when given a knowledge base K as a subset of K ∪ G.
This motivates considering the following measures of the type

IG : 2WF → R≥0 with K 7→ IG(K).

Definition 4.4.7. Given disjoint knowledge bases K and G, define

• INR,G via

INR,G(K) = |co-BI-NREPmax (K,G)| = |BI-NREPmax (K,G)|,

• INRc,G via

INRc,G(K) =
∑

(D,A) ∈
co-BI-NREPmax (K,G)

1

|D ∪ A|
.

We observe the similarities to the measures IMSI and IMSIC . Those given in Definition 4.4.7
are similar in their spirit, replacing SImin(K) with co-BI-NREPmax (K,G). We want to
emphasize that the resulting measures are rather pessimistic when it comes to assessing K
as subset ofK∪G. To illustrate this, let us consider INR,G applied to the previous examples.

1More precisely, J ≡ 0 is no information measure according to [61] since the third condition is violated
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Example 4.4.8. Recall the logic program P = {← not a, not c.} with

P ∪G : a← not b. c← not d. ← not a, not c.

b← not a. d← not c.

Even though P ∪G itself is consistent, there is a non-repairing subset G′ of G, namely

G′ : b← not a. d← not c.

We note that

P ∪G′ : b← not a. d← not c. ← not a, not c.

is inconsistent. We thus see BI-NREPmax (P,G) = {(∅, G′)}, yielding INR,G(P ) = 1.
Moreover, co-BI-NREPmax (P,G) = {(P,G \ G′)} = {(P, {a ← not b., c ← not d.})}.
Hence, we have INRc,G(P ) = 1/3.

So these measures punish knowledge bases K and G for each maximal bidirectional non-
repair. This can be seen as a counterpart to CG, I(K) which rewards K for any possibility G
possesses to resolve a conflict. In this sense, one also could interpret INR,G and INRc,G as
measures for the quality of the repair options provided by G. To see the two approaches at
work, let us consider the following example:

Example 4.4.9. Let P and G be the following programs:

P : a. ← not b. G : ¬a. b.

We see that CG, IMSI
(P ) = 0 since P has the consistent superset P ∪{b}. However, there is

also one bidirectional non-repair, namely ({a.}, {¬a.}), thus we find INR,G(P ) = 1.

We also want to mention a quite special feature of the measure INRc,G . Recall the motivation
for defining IMSIC in contrast to IMSI, namely taking the size of a set H ∈ Imin(K) into
account. The measure INRc,G attains larger values the bigger the sets in BI-NREPmax (K,G)
are. This is similar in spirit to IMSI, but not quite the same since punishing the size of a
tuple (D,A) ∈ BI-NREPmax (K,G) means punishing the fact that there is a large number of
formulas which are not capable of providing a repair.

Example 4.4.10. Recall P = {← not a., ← not b.} and G = {a ∨ b.}, i. e.,

P ∪G : a ∨ b. ← not a. ← not b.

As P ∪G is inconsistent, we see BI-NREPmax (P,G) = {(∅, G)}, i. e., INR,G(P ) = 1.

Let us now compare the measures from Definition 4.4.7 to those from Section 4.1. We note
that INR,G(K)) attains larger values in general. This is a corollary of Proposition 3.2.25.

Corollary 4.4.11. Let K and G be disjoint knowledge bases. Then, IMSI(K) ≤ INR,G(K).

Proof. We have INR,G(K) = |BI-NREPmax (K,G)|. As we know from Proposition 3.2.25,
if H = K \ D ∈ SImin(K), then there is an A ⊆ G with (D,A) ∈ BI-NREPmax (K,G). In
particular, |SImin(K)| ≤ |BI-NREPmax (K,G)|, i. e., IMSI(K) ≤ INR,G(K).
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We observe that IMSIC(K) ≤ INRc,G(K) does not hold in general as one can already see
from Example 4.4.8. Here we had INRc,G(P ) = 1/3 where IMSIC(P ) = 1. We want to
emphasize that a comparison between IMSIC(K) and INRc,G(K) does not appear to be very
meaningful. This is because both measures depend positively on the number of undesired
sets, but negatively on their size.

However we note that the expected outcome is obtained whenever G is empty. This is a
corollary of Proposition 3.2.24.

Corollary 4.4.12. Let K be a knowledge base and let G = ∅. Then, INR,∅(K) = IMSI(K)
and INRc,∅(K) = IMSIC(K).

Proof. Due to Proposition 3.2.24, (D, ∅) ∈ BI-NREPmax (K, ∅) iff K \ D ∈ SImin(K).
Equivalently, (H, ∅) ∈ co-BI-NREPmax (K, ∅) iff H ∈ SImin(K). This proves both equa-
tions.

We make an analogous observation whenever the underlying logic is monotonic.

Corollary 4.4.13. Let K and G be disjoint knowledge bases. Let the underlying logic be
monotonic. Then, INR,G(K) = IMSI(K) and INRc,G(K) = IMSIC(K).

Proof. Due to Proposition 3.2.23, (D,G) ∈ BI-NREPmax (K,G) iff K \ D ∈ Imin(K).
Equivalently, (H, ∅) ∈ co-BI-NREPmax (K,G) iff H ∈ SImin(K). This proves both equa-
tions.

Let us now collect some properties of the two measures we just introduced. As before, they
are adapted rationality postulates from Section 4.2. Note the differences and similarities to
Proposition 4.4.6.

Proposition 4.4.14. Given two disjoint knowledge bases K and G, the measures INR,G(·)
and INRc,G(·) satisfy

(a) IG(K) = 0 if and only if K is consistent,

(b) if α ∈ Ntr(K ∪ G), then IG(K) = IG(K \ {α}) = IG\{α}(K),

(c) if G ≡α G′, then IG(K) = IG′(K).

Proof. (a): Observe that K \ D can never be strongly (K ∪ A)-inconsistent, whenever K
itself is consistent. So BI-NREPmax (K,G) = ∅, i. e., INR,G(K) = INRc,G(K) = 0. If K
is inconsistent, then BI-NREPmax (K,G) contains at least one tuple since BI-NREP(K,G)
contains at least (∅, ∅). So INR,G(K), INRc,G(K) > 0.
(b): Clear, similar to the proof of Proposition 4.3.1.
(c): Clear, similar to the proof of Proposition 4.3.1.

This finishes our discussion on the measures based on bidirectional non-repairs. In con-
trast to the measure (4.6) defined in Definition 4.4.3, the measures from Definition 4.4.7 are
based on bidirectional non-repairs and thus do not require a given measure I. One draw-
back of the latter is that inconsistencies which stem from defaults (“a ← not a.”) are not
distinguished from hard-coded ones (“a.” vs. “¬a.”). This can be achieved by measures
defined via (4.7), when making appropriate choices for I and J .
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4.5 Measuring Inconsistency in Answer Set Programming

As we already mentioned, some inconsistency measures or rationality postulates are hard to
phrase for a general notion of a logic. In this section, we will briefly demonstrate how to ob-
tain specific notions, tailored for a given framework. Since most of our examples within this
chapter were logic programs, it is natural to consider ASP as our framework. In this section,
our underlying logic is LASP which we may abbreviate by L = (WF ,BS, INC,ACC).

The above postulate strong monotony provides a meaningful refinement of monotony
for arbitrary logics. For ASP, we may consider more concrete approaches. Let us start with
the most basic case: If a program P (over atoms in A) does not contain default negation
“not”, i. e., neg(r) = ∅ for each r ∈ P , then P can only be inconsistent if it possesses
Lit(A) as the only answer set. Clearly, conflicts of this kind cannot be resolved. More
precisely, we make the following observation.

Proposition 4.5.1. If P is a logic program such that neg(r) = ∅ for each rule r ∈ P , then
SImin(P ) = Imin(P ). Moreover, SImin(P ) ⊆ SImin(P ∪ P ′) for any porgram P ′.

Proof. The first statement is clear. To prove SImin(P ) ⊆ SImin(P ∪ P ′), we first observe
that the reduct PM equals P for any set M of literals. Hence for any H ′ ⊆ P ′, the reduct
(P ∪H ′)M = PM ∪ (H ′)M contains P . Since Lit(A) is the only model of P , the same is
true for P ∪ (H ′)M = (P ∪H ′)M . Hence, P ∪H ′ is inconsistent. Since any superset of P
has the form P ∪H ′ for H ′ ⊆ P ′, the claim follows.

A simple class of rules that cannot resolve conflicts are constraints. Recall that a constraint
is a rule of the form

r : a← l1, . . . , lm, not lm+1, . . . , not ln, not a.

where a does not occur elsewhere in P . Since they prune away answer sets of a program,
we have:

Proposition 4.5.2. If P is a logic program, then SImin(P \ {r}) ⊆ SImin(P ) for any
constraint r ∈ P .

Proof. A set H ⊆ P is inconsistent iff it does not possess any consistent answer set. If this
is the case, then the same is true for H ∪ {r} if r is a constraint.

Finally, let us consider splitting of a logic program [80]. Splitting is an important concept in
non-monotonic reasoning which allows for a modularization of the considered knowledge
base. Due to non-monotonic interactions between formulas, this is usually not given. The
structural properties that come along with splitting can also be utilized to analyze inconsis-
tency. Before we formally introduce splitting, recall that each logic program P consists of
rules r of the form (2.1), i. e.,

r : l0 ∨ ... ∨ lk ← lk+1, . . . , lm, not lm+1, . . . , not ln.

Definition 4.5.3. Let P be a logic program. A set U of literals is a splitting set for P ,
if {l0, . . . , lk} ∩U 6= ∅ implies {l0, . . . , ln} ⊆ U for each rule r ∈ P . For a splitting set U ,
let the bottom program botU (P ) be the set of all rules r ∈ P with {l0, . . . , ln} ⊆ U .

In [80] it has been pointed out that answer sets of a program P can be computed in a
stepwise fashion when given a splitting.
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Theorem 4.5.4 (Splitting Theorem, see [80]). Let U be a splitting set for a program P .
Every answer set M of P is of the form M = X ∪ Y with an answer set X of botU (P ) and
a set Y of literals.

Given the splitting theorem, it is straightforward to infer the following result:

Proposition 4.5.5. Let U be a splitting set of P . If botU (P ) is inconsistent, then so is P . In
particular, SImin(botU (P )) ⊆ SImin(P ).

The above considerations motivate the following rationality postulates which can be inter-
preted as possible refinements of strong monotony for the framework ASP.

CLP-Monotony If P does not contain default negation “not”, then I(P ) ≤ I(P ∪P ′) for
any program P ′.

Con-Monotony If P is a logic program and r ∈ P is a constraint, then I(P \{r}) ≤ I(P ).

Split-Monotony If U is a splitting set for P , then I(botU (P )) ≤ I(P ).

Indeed, all of them describe situations where the additional rules preserve conflicts of the
program on the left hand side. Formally, we have:

Proposition 4.5.6. If a measure I satisfies strong monotony, it satisfies CLP-monotony,
split-monotony and con-monotony.

Proof. This was found in Propositions 4.5.1, 4.5.2 and 4.5.5

However, this does not mean that considering the postulate strong monotony suffices in
order to understand all situations where an inconsistency measure for a logic program be-
haves monotonically. In fact, all three postulates CLP-monotony, split-monotony and con-
monotony can be satisfied simultaneously while strong monotony is not. To see this, we
consider a quite simple inconsistency measure I±, which operates on the language of a
logic program. More precisely, I± aims at measuring the effort needed to turn an inconsis-
tent program into a consistent one. To this end, it quantifies the number of modifications in
terms of deleting and adding rules, necessary in order to restore consistency.

Definition 4.5.7. Define I± :WF → R≥0 via

I±(P ) = min{|A|+ |D| | A,D ⊆ WF st. (P ∪A) \D is consistent}

Let us see how the measure operates on our running example program.

Example 4.5.8. Consider again

P : a ∨ b. a← b.

c← not b. ¬c← not b.

Since removing the rule “a ← b.” yields a consistent program, we may set D = {a ← b.}
in Definition 4.5.7 and hence, I±(P ) ≤ 1. Since P is inconsistent, I±(P ) ≥ 1. Thus
I±(P ) = 1. The same observation can be made due to consistency of P ∪ {b.}, i. e., we
may set A = {b.} in Definition 4.5.7.
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Let us now prove that the above postulates are indeed satisfied by I±. For this, it will
be helpful to investigate the behavior of the measure first: The definition of I± allows the
addition of any rule in order to restore consistency, but in fact it is sufficient to consider only
addition of facts instead of general rules. First, we show that adding rules with disjunction
in their head is not necessary, which is intuitive since ASP already requires minimality.

Proposition 4.5.9. Let P be an inconsistent program. If r is a rule such that P ∪ {r} is
consistent, then there is a literal a ∈ head(r) such that P ∪ {a← body(r).} is consistent.

Proof. LetM be a consistent answer set of P∪{r}. Since P is inconsistent,M cannot be an
answer set of P . Thus the rule must be applicable, i. e., body

(
{r}M

)
⊆ M and {r}M 6= ∅

because otherwise one could delete the rule while maintaining M as answer set. It follows
that head(r)∩M 6= ∅ since M is a model of (P ∪{r})M . Let a ∈ head(r)∩M . We show
that M is an answer set of P ∪ {a ← body(r).} as well. By definition, M is a minimal
model of (P∪{r})M . Since a ∈M ,M is a model of (P∪{a← body(r).})M as well. Now
assumeM is not a minimal model and letM ′ (M be a model of (P ∪{a← body(r).})M .
Since a ∈ head(r), this implies that M ′ is also a model of (P ∪ {r})M . Since M was
assumed to be an answer set of (P ∪ {r})M , this yields a contradiction.

Now we are ready to show that adding facts is sufficient.

Proposition 4.5.10. Let P be an inconsistent program. If r is a rule such that P ∪ {r} is
consistent, then there is a literal a ∈ head(r) such that P ∪ {a.} is also consistent.

Proof. Using Proposition 4.5.9, we assume that head(r) contains only one literal a. As in
the proof of Proposition 4.5.9, we see that body

(
{r}M

)
⊆M and {r}M 6= ∅. Since M is a

model of PM , we obtain a ∈M . However, this means M is an answer set of P ∪{a.}.

We mentioned in Section 4.4 that I± can be written as an expression of the form (4.7) where
J counts the number of facts added to P . For this, we set

I−(P ) := min{|D| | D ⊆ WF st. P \D is consistent}.

If we letWF0 ⊆ WF be the set of facts inWF , then J is a mapping J : WF0 → R≥0

with J (A) := |A|. Due to Proposition 4.5.10, I± is of the form

I±(P ) = min
A⊆WF0

J (A) + I−(P ∪A).

Therefore, measures of the form (4.7) can indeed be defined in a natural way. Let us now
show that I± satisfies the three postulates we introduced above.

Proposition 4.5.11. I± satisfies CLP-monotony, split-monotony and con-monotony.

Proof. CLP-monotony: Let P be a logic program with neg(r) = ∅ for each r ∈ P . Let P ′

be an arbitrary logic program. Assume I±(P ∪P ′) = k. Let (P ∪P ′∪A)\D is consistent
with |A| + |D| = k. As seen in Proposition 4.5.1, P \D must be consistent as well since
adding rules cannot restore consistency. Hence, I±(P ) ≤ |D| ≤ |A|+ |D| = k.
Con-monotony: If r is a constraint and (P ∪ {r} ∪ A) \D is consistent, then the program
(P ∪A) \D is consistent as well.
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Split-monotony: Let P be a program and U a splitting set. Let I±(P ) = k and assume
(P ∪ A) \ D is consistent with |A| + |D| = k. We use Proposition 4.5.10 to assume that
A is a set of facts. Thus, we observe that U is a splitting set of (P ∪ A) \ D as well. In
particular, if we let AU be the subset of A such that r ∈ AU if and only if head(r) ⊆ U ,
then (botU (P ))∪AU )\D is the corresponding bottom program. Now letM be a consistent
answer set of (P ∪A) \D. Due to Theorem 4.5.4, there is a subset X ⊆M such that X is
an answer set of (botU (P ))∪AU ) \D. As a subset of the consistent set M of literals, X is
consistent. Therefore, (botU (P )) ∪AU ) \D is consistent. Hence

I±(botU (P )) ≤ |D|+ |AU | ≤ |D|+ |A| = k,

which finishes our proof.

As already mentioned, despite satisfying the postulates CLP-monotony, split-monotony and
con-monotony, I± does not satisfy strong monotony. To see this, let us consider the follow-
ing example.

Example 4.5.12. Let P and P ′ be the programs

P : ← not a. ← not b. ← not c.

P ′ : a← d. b← d. c← d.

It is easy to see that SImin(P ) consists of the three unsatisfied constraints. Moreover, as d
cannot be entailed, P ′ preserves conflicts of P . Yet, I±(P ) = 3, while I±(P ∪ P ′) = 1.

This example shall illustrate that the notion of preserving conflicts might be too strong in
some cases. The fact that I± satisfies the three weak versions of monotony mentioned
above confirms the intuition that I± behaves quite “monotonic” as long as the additional
information does not resolve conflicts. This is not surprising as I± counts the number of
modifications that are required on the level of formulas to restore consistency. Moving from
P to P ∪P ′ weakens the severity of the inconsistency, since a single additional rule suffices
to satisfy all constraints. However, these are considerations on the level of the language of
the given programs and thus hard to capture within the general notion of a logic.

We want to consider two more rationality postulates for ASP. Both of them make explicit
use of the language of a given program. After our discussion regarding neutral formulas
in Section 4.2.1, we already mentioned the notion of safe formulas [103]: A consistent
formula α is safe wrt. a knowledge base K if α and K do not share any atoms. Therefore
adding α toK will never introduce inconsistency. The corresponding postulate safe-formula
independence requires I(K) = I(K ∪ {α}) whenever α is safe wrt. K.

Since rules are directed, we can be more liberal in defining a corresponding notion of
safeness for ASP and do not require entirely disjoint languages for r and P . There are
two different ways in which a single rule r can influence the consistency of a program P .
First, the literals in the head of r may interact with the program and thus cause or resolve
inconsistency. To exclude this kind of interaction, we require that the atoms in the head of
r are disjoint from the atoms occurring in P . The second and more subtle way of causing
a contradiction is if r is self-contradictory in the sense that a literal is derivable if and only
if it is not derivable. The simplest example of such a rule is “a ← not a.”; when added to
a program P that does not contain the atom a, it causes inconsistency. To avoid this, we
require that the literals in the head of r do not occur default-negated in the body of r.

This leads to the following definition. For this, we let At(P ) and At(head(r)) be the
sets of atoms occurring in P and the head of r, respectively.
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Definition 4.5.13. Let P be a disjunctive logic program and r a disjunctive rule. The rule r
is called safe wrt. P if At(head(r)) ∩At(P ) = ∅ and head(r) ∩ neg(r) = ∅.

The corresponding rationality postulate is the following:

Safe-Rule Independence If r is safe wrt. P , then I(P ) = I(P ∪ {r}).

The last postulate is concerned with situations where the program can be split into two parts
over disjoint sets of atoms. Intuitively, parts of a program which do not share any vocabulary
elements with the rest of the program should be assessed separately wrt. inconsistency.

Language Separability If At(P ) ∩At(P ′) = ∅, then I(P ∪ P ′) = I(P ) + I(P ′).

It is easy to see that our measure I± satisfies both safe-rule independence as well as lan-
guage separability. Let us briefly summarize our approach to obtain rationality postulates
for ASP. Instead of considering the general strong monotony we considered special cases to
find suitable premises for potential postulates, e.g., the added rule is a constraint. By con-
sidering the language of a program we were able to refine the safe formula independence
postulate and even weaken the premise since we are only concerned about the head of the
added rule. Moreover, we gave a version of separability which is based on the language
instead of the (strongly) inconsistent subsets:

Monotony

CLP-Monotony

Con-Monotony

Split-Monotony

consider meaningful
premise

Safe Formula
Independence

Safe-Rule
Independence

adjust for ASP

Separability Language
Separability

utilize language

Figure 4.4: Obtaining rationality postulates for ASP

To conclude our discussion on measuring inconsistency in ASP, let us demonstrate how
to utilize the specifics of ASP semantics in order to tailor inconsistency measures for this
framework. The following measure compares the distance between certain sets of literals.
Distance-based measures have also been used in the setting of propositional logic, see for
instance [62]. Our measure makes use of the reduct PM of a program P wrt. a given set M
of literals. Recall that the reduct is defined via

PM = {head(r)← pos(r) | head(r)← pos(r), neg(r) ∈ P, neg(r) ∩M = ∅}.
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Recall (in Example 2.3.7) we demonstrated that our running example logic program

P : a ∨ b. a← b.

c← not b. ¬c← not b.

does not have an answer set. We considered {a}, {b} and {a, b} with reducts

P {a} : a ∨ b. a← b. c. ¬c.
P {b} : a ∨ b. a← b.

P {a,b} : a ∨ b. a← b.

Neither of them is an answer set of P , for different reasons:

• The reduct wrt. {a} is an inconsistent program; the conflict is “c.” vs. “¬c.”.

• The reduct wrt. {b} is consistent; but {b} is not a model.

• The reduct wrt. {a, b} is consistent and {a, b} is a model of it; the conflict stems from
the minimality requirement of the ASP semantics.

One could thus argue that {b} and {a, b} are “better” candidates than {a}. To formalize this
intuition, we need to specify what it means for a set of literals to be a “good” or a “bad”
candidate. Since an answer set M of P is required to be an answer set of the reduct PM ,
we could measure how close M to the answer sets of PM is. Then the best candidate M
determines the inconsistency degree of P . To compare M to the answer sets of PM we
utilize the symmetric difference. This yields:

Definition 4.5.14. For two sets M and M ′ of literals define the symmetric difference
M∆M ′ between M and M ′ as usual via M∆M ′ = (M ∪ M ′) \ (M ∩ M ′). Define
Isd :WF → R≥0 via

Isd(P ) = min
{
|M∆M ′| |M ′ ∈ ACC(PM ),M,M ′ consistent

}
. (4.8)

where min ∅ :=∞.

Example 4.5.15. We are aware that the program

P : a ∨ b. a← b.

c← not b. ¬c← not b.

is inconsistent. One can see in (4.8) that Isd(P ) ≥ 1 whenever P is inconsistent. Now
consider the candidate M = {a, b}. We have

P {a,b} : a ∨ b. a← b.

with answer setM ′ = {a}. This yields the symmetric differenceM∆M ′ = {b} and hence,
Isd(P ) ≤ 1, i. e., Isd(P ) = 1.

The case Isd(P ) = ∞ occurs whenever the given program allows to infer complementary
literals without applying default-negated literals.

In order to emphasize that Isd is indeed well-behaving, let us mention that it satisfies
the rationality postulates we introduced within this section, as it was the case for I±.
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Proposition 4.5.16. Isd satisfies CLP-monotony, split-monotony, con-monotony, safe-rule
independence, and language separability.

Proof. We only prove split-monotony since the other postulates are straightforward. Let
P be a disjunctive logic program, U a splitting set and botU (P ) the corresponding bottom
program. The case Isd(P ) = ∞ is clear. We consider Isd(P ) = k < ∞. Let M be a
consistent set of literals with |M∆M ′| = k for a consistent set M ′ with M ′ ∈ ACC(PM ).
Note that U is also a splitting set of PM with (botU (P ))M as the corresponding bottom
part. So according to Theorem 4.5.4, M ′ is of the form X ′ ∪ Y ′ with

X ′ ∈ ACC
(
(botU (P ))M

)
.

We can w. l. o. g. assume X ′ ∩ Y ′ = ∅. Now consider X = M ∩ U and Y = M \X . Then
similarly to X ′ and Y ′ we have X ∪ Y = M and X ∩ Y = ∅. We obtain

(botU (P ))M = (botU (P ))X

by construction of the reduct and since U is a splitting set. Thus

X ′ ∈ ACC
(
(botU (P ))X

)
.

The last step argues that the constructed sets are disjoint: We have X,X ′ ⊆ U as well as
Y ∩ U = Y ′ ∩ U = ∅. So X ∩ Y ′ = X ′ ∩ Y = ∅. Furthermore, X ∩ Y = X ′ ∩ Y ′ = ∅
was already mentioned. Thus, we can calculate

X∆X ′ ≤ X ∪ Y∆X ′ ∪ Y ′ = M∆M ′ = k.

To summarize, we found two consistent setsX,X ′ of literals withX ′ ∈ ACC
(
(botU (P ))X

)
and X∆X ′ ≤ k. Hence, Isd(botU (P )) ≤ k.

Clearly, rationality postulates as well as inconsistency measures that are tailored for a spe-
cific framework can take more sophisticated situations into account. In Figure 4.1 it was
not quite clear how to properly select an inconsistency measure for a given application. The
analysis we performed during this chapter suggests to first select some general rationality
postulates the measure should satisfy. The remaining measures can then be refined by some
postulates specific for the framework under consideration:

Given:
I1, . . . , In

Compliance . . .
. . . general
postulates?

. . . specific
postulates?

Best measure:
Ii

Figure 4.5: Finding the best inconsistency measure

We hope this section convinced the reader that considering specific frameworks and uti-
lizing their properties in order to investigate inconsistency is worth the effort. Although the
generality of the measures in Section 4.1 as well as the rationality postulates in Section 4.2
is appealing, it is clearly not possible to cover all conceivable aspects within this general
setting. This discussion on ASP shall demonstrate how the investigation can be enhanced,
covering general as well as ASP-specific aspects.
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4.6 Conclusion and Related Work

In this chapter, we made first steps towards measuring inconsistency in a general, possibly
non-monotonic framework by revisiting rationality postulates for propositional logic and
adjusting them for our setting. Utilizing those postulates, we examined the behavior of
measures based on minimal strongly inconsistent subsets, a generalization of minimal in-
consistent subsets to non-monotonic frameworks. Our results show that the measures are
indeed well behaving as they satisfy desired rationality postulates. Moreover, we pointed
out that a thorough understanding of inconsistency in non-monotonic logics requires con-
sideration of supersets of a given knowledge base as well. We discussed this issue with
measures motivated by duality characterizations for this setting which we found in Sec-
tion 3.2. We also demonstrated the importance of covering specific properties of particular
frameworks by investigating postulates and measures for ASP.

Inconsistency measurement in non-classical frameworks has been addressed in some
limited fashion before [4; 42; 45; 92; 103]. The latter paper studies disagreement in ar-
gumentation graphs, a notion slightly different from inconsistency. It will nevertheless be
interesting to see whether postulates for disagreement are applicable to inconsistency as
well. Moreover, the paper [68] considers the following problem: Given an inconsistent
knowledge base K, how much of the “blame” should be assigned to a particular formula
α ∈ K? For this setting, minimal inconsistent subsets of a knowledge base are a rather
useful tool. This facilitates a smooth generalization within our setting due to our notion
of strong inconsistency. We believe that consideration of inconsistency values for non-
monotonic logics is an interesting and quite promising research direction. However, the
notion of strong inconsistency might not be appropriate in all cases as it depends on the
structure of the whole knowledge base. In addition to that, for non-monotonic logics, an
investigation of the “blame” of a formula also requires some kind of “reward” for resolving
conflicts. This is no issue in monotonic logics and thus requires novel considerations. We
leave an investigation of inconsistency values for non-monotonic logics for future work.
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Chapter 5

Inconsistency in Abstract
Argumentation

In this chapter, we consider an AF as an agent’s knowledge base and the associated ex-
tensions correspond to her beliefs (cf. [44; 47; 88] for similar approaches). We focus on
inconsistency in abstract argumentation frameworks, covering various semantics and cred-
ulous as well as skeptical reasoning. This extends our previous investigation of AFs where
we focused on stable semantics and credulous reasoning in the sense that existence of at
least one stable extension was sufficient to render an AF consistent.

The starting point of our study is a semantical defect of an agent’s AF which prevents
her from drawing any plausible conclusion in the sense that no argument is accepted. Our
aim is to obtain an agent which is able to act. Therefore we want to know what are minimal
diagnoses of the given knowledge base, i.e., which parts are causing the semantical defect.
We focus on both attacks as well as arguments. The knowledge about these diagnoses may
make it easier to decide what to do next. For instance, a certain minimal diagnosis may
consist of arguments which are somehow out of date or not as significant in comparison to
the others. Consequently, one may tend to discard these arguments. To illustrate a situation
like this, let us consider the following example.

Example 5.0.1. Assume an agent is planning her vacation. The agent’s preferred travel
destinations are Macao, Stockholm and Melbourne. She only wants to visit one of them:

MacaoMelbourne

Stockholm

The agent is aware of the many poisonous animals in Australia and hence believes Mel-
bourne is quite dangerous. Macao is very far away. On the other hand, she visits Europe
quite often and thus finds Stockholm less spectacular than the other two options. She deems
being at a dangerous place or pretty far away as spectacular since it is unusual. There is
no relation between the distance and potential risks since dangerous places can be found
anywhere in the world.
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MacaoMelbourne

Stockholm far awaydangerous

unspectacular

Although this AF possesses stable extensions, our agent is not satisfied since when it comes
to reasoning about travel destinations, she is quite skeptical. However, there is no skepti-
cally accepted argument. Our agent is thus unable to formally decide which city to visit.
As a possible solution, she considers grounded semantics. Each framework has a unique
grounded extension, but in case of the Agent’s AF this is the empty set. Other semantics
induce similar problems. She would thus be interested in techniques to modify this AF in a
reasonable way until it possesses accepted arguments.

The main aim of this chapter is to study such semantical defects with regard to the following
naturally arising questions:

• Diagnosis – Which sets of arguments are causing the collapse?

• Properties – Do diagnoses always exist? Are there certain preferred diagnoses? How
computationally costly is it to verify a candidate diagnosis?

• Computation – How to compute one or even all diagnoses? Can we apply results
from Chapter 3?

• Repair – How to use this information to obtain an agent which is indeed able to act?

Our study focuses on modifying a given AF by removing a certain set of arguments or
attacks.

5.1 Background in Abstract Argumentation

As already mentioned, we do not restrict the investigation to stable semantics. We will thus
extend the notions we introduced in Section 2.4 regarding AFs.

Recall that an abstract argumentation framework is a directed graph F = (A,R) where
nodes in A represent arguments and the relation R models attacks, i. e., for a, b ∈ A, if
(a, b) ∈ R we say that a attacks b. We say that F is self-controversial if each argument
attacks itself. If not stated otherwise, we restrict ourselves to non-empty finite AFs (cf.
[20; 21] for a treatment of unrestricted AFs). Formally, we introduce an infinite reference
set U , so-called universe of arguments and require for any possible AF, A ⊆ U . The
collection of all possible AFs is abbreviated by F .

For a set E we use E+ for {b | (a, b) ∈ R, a ∈ E} and define E⊕ = E ∪ E+. In
case we need to be specific about the AF under consideration, we use the more informative
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notation E⊕F . A further essential notion in argumentation is defense. More precisely, an
argument b is defended by a set A if each attacker of b is counter-attacked by some a ∈ A.
Then, the characteristic function of the AF F is a mapping ΓF : 2A → 2A defined as
ΓF (E) = {a ∈ A | a is defended by E}.

An extension-based semantics σ : F → 22U is a function which assigns to any AF
F = (A,R) a set of sets of arguments σ(F ) ⊆ 2A. Each one of them, so-called σ-
extension, is considered to be acceptable with respect to F . Besides conflict-free and ad-
missible sets (abbreviated cf and ad ) and the stable semantics we already introduced, we
consider semi-stable, complete, preferred, grounded, ideal and eager semantics (abbreviated
ss, co, pr , gr , il and eg respectively). Recent overviews can be found in [9; 10].

Definition 5.1.1. Let F = (A,R) be an AF and E ⊆ A.

1. E ∈ cf (F ) iff there are no a, b ∈ E satisfying (a, b) ∈ R,

2. E ∈ad(F ) iff E ∈cf (F ) and E defends all its elements,

3. E ∈ss(F ) iff E ∈ad(F ) and there is no I ∈ad(F ) satisfying E⊕⊂I⊕,

4. E ∈co(F ) iff E ∈ad(F ) and for any a ∈ A defended by E , a ∈ E
(equivalently, E ∈ cf (F ) and Γ(E) = E),

5. E ∈pr(F ) iff E ∈co(F ) and there is no I ∈co(F ) satisfying E⊂I
(equivalently, E ∈ cf (F ) and Γ(E) = E and ⊆-maximal wrt. the conjunction of
both properties),

6. E ∈gr(F ) iff E ∈co(F ) and there is no I ∈co(F ) satisfying I⊂E
(equivalently, E ∈ cf (F ) and Γ(E) = E and ⊆-minimal wrt. the conjunction of
both properties),

7. E ∈ il(F ) iff E ∈ co(F ) and E ⊆
⋂
pr(F ) and ⊆-maximal wrt. the conjunction of

both properties,

8. E ∈ eg(F ) iff E ∈ co(F ) and E ⊆
⋂
ss(F ) and ⊆-maximal wrt. the conjunction of

both properties.

We say that a semantics σ is universally defined if σ(F ) 6= ∅ for any F ∈ F . If even
|σ(F )| = 1 we say that σ is uniquely defined. All semantics apart from stable are universally
defined. In addition, grounded, ideal and eager semantics are examples of uniquely defined
semantics. Stable semantics may collapse, i.e., there are AFs F , st. stb(F ) = ∅. For two
semantics σ and τ we write σ ⊆ τ if for any AF F , σ(F ) ⊆ τ(F ). For instance, it is
well-known that stb ⊆ ss ⊆ pr ⊆ co ⊆ ad ⊆ cf .

In this chapter are interested in situations where a given AF F = (A,R) does not
possess accepted arguments. To make the notion of acceptance precise, we utilize the usual
two alternative reasoning modes, namely credulous and skeptical acceptance. Note that we
require σ(F ) to be non-empty for skeptical reasoning in order to avoid the (for our purpose)
unintended situation that every argument is skeptically accepted due to technical reasons. In
our setting it makes sense to define the expression

⋂
∅ as the empty set since the (skeptical

or credulous) acceptance of an argument a should imply the existence of at least one set
containing a.
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Definition 5.1.2. Let σ be any semantics, F = (A,R) an AF and a ∈ A an argument. We
say that a is

• credulously accepted wrt. σ if a ∈
⋃
σ(F ),

• skeptically accepted wrt. σ if a ∈
⋂
σ(F ) and σ(F ) 6= ∅.

As already mentioned, our motivation for a concept of inconsistency is a semantical defect
of an agent’s AF which prevents her from drawing any plausible conclusion in the sense
that nothing is accepted. This is clearly not only relevant for credulous reasoning (at least
one extension is non-empty), but also skeptical reasoning (there are undisputed arguments).
Since we require σ(F ) 6= ∅ for skeptical acceptance, we naturally obtain the following
notion of inconsistent argumentation frameworks.

Definition 5.1.3. Let σ be any semantics and F = (A,R) an AF. We say that F is

• inconsistent wrt. credulous reasoning and σ if
⋃
σ(F ) = ∅,

• inconsistent wrt. skeptical reasoning and σ if
⋂
σ(F ) = ∅ where we let

⋂
∅ = ∅.

We omit the specifications “wrt. credulous reasoning” and/or “wrt. σ” whenever the reason-
ing mode, the semantics or both are implicitly clear or do not matter.

We want to mention that these notions of consistency and inconsistency can be captured
by our Definition 2.5.1 of a logic. This is true in general and not only for AFs: Given any
logic L = (WF ,BS, INC,ACC) we may consider

ACCcred(K) =
⋃

B∈ACC(K)

B or ACCskep(K) =
⋂

B∈ACC(K)

B

with appropriately refined INC to model credulous or skeptical acceptance of at least one
element.

Having established this background including our notion of inconsistent AFs we are
now ready to tackle the problem of repairing AFs by moving to an appropriate subframe-
work. In the following section, we will discuss different notions of repairs, whether they
exists and connections between them.

5.2 On the Existence of Repairs

Clearly, before computing potential repairs one may wonder what types of repairs exist and
whether there are minimal diagnoses at all. In this section we provide the formal notions
and results wrt. this problem and in particular, we give an affirmative answer for nearly all
considerable cases. We also investigate the relationship between different repairs. Unfortu-
nately, the existence of a least repair is not guaranteed in general which calls for a duality
characterization of all minimal repairs. This issue will be addressed in the subsequent sec-
tion.

5.2.1 Notions for Repairs

Our repair approach involves moving to subgraphs of a given AF. Let us start by introducing
the required notions and formalizing the concepts of diagnoses and repairs. Consider an AF
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F = (A,R). For a given set S ⊆ A of arguments we use FS as a shorthand for the
restriction of F to the set A \ S , i. e.,

F |A\S :=
(
A|A\S , R|A\S∩A\S

)
= (A \ S, {(a, b) ∈ R | a, b ∈ A \ S}) .

In other words, for S ⊆ A, FS is the subframework of F induced by the removal of argu-
ments in S. Analogously, for a given set S ⊆ R of attacks we use FS as a shorthand for
(A,R \ S). We will also sometimes abuse notation and write F ∪ {a} and F ∪ {(a, b)}
instead of F ∪ ({a}, ∅) and F ∪ ({a, b}, {(a, b)}), respectively.

Let us consider an extended version of our running example AF F .

Example 5.2.1. Consider the AF F = (A,R) with

A = {a, b, c, d, e, f} R = {(a, b), (b, c), (c, a), (d, a), (e, d), (f, d)}.

a

b

c

d

f

eF :

Let S = {d} ⊆ A. Then

FS = (A \ {d}, {(a, b) ∈ R | a, b ∈ A \ {d}})
=
(
{a, b, c, e, f}, {(a, b), (b, c), (c, a)}

)
.

Let S ′ = {(a, b)} ⊆ R. Then

FS′ = (A,R \ {(a, b)})
=
(
{a, b, c, d, e, f}, {(b, c), (c, a), (d, a), (e, d), (f, d)}

)
.

The AFs F{d} and F{(a,b)} are depicted in Figure 5.1 (1) and (2), respectively:

a

b

c

f

eF{d} :

(1)

a

b

c

d

f

eF{(a,b)} :

(2)

Figure 5.1: AFs F{d} and F{(a,b)} discussed in Example 5.2.1

Following the usual notions of repairs and diagnoses of knowledge bases we define for our
abstract argumentation setting:
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Definition 5.2.2. Let F = (A,R) be an AF and σ any semantics. We call S ⊆ A (S ⊆ R)
an argument-based (attack-based) σ-cred-diagnosis of F if FS is consistent wrt. credulous
reasoning. Moreover, we call the AF FS an argument-based (attack-based) σ-cred-repair
of F . As usual we use the terms minimal and least for⊆-minimal or⊆-least σ-diagnosis as
well as the associated σ-repairs. We define (minimal, least) σ-skep-diagnoses and σ-skep-
repairs analogously.

If clear from context or unimportant we drop the considered semantics and/or reasoning
mode.

Recall that during the previous chapters, we considered AFs only with stable semantics.
In Example 2.5.5 we modeled a given AF F = (A,R) as a knowledge base K = R and left
A implicit. Then a maximal consistent subsetH of K was a set of attacks which yielded an
AF F = (A,H) with at least one stable extension. This is a special case of Definition 5.2.2
since it corresponds to an attack-based stb-cred-repair of F . More precisely, if we let S =
K\H, then S is an attack-based stb-cred-diagnosis and FS an attack-based stb-cred-repair.

Example 5.2.3. Consider again F and S as well as S ′ from Example 5.2.1, i. e., F = (A,R)
with

A = {a, b, c, d, e, f} R = {(a, b), (b, c), (c, a), (d, a), (e, d), (f, d)}

and S,S ′ with S = {d} and S ′ = {(a, b)}. Let σ = stb. We see that FS possesses no stable
extension due to the (still existing) odd loop. Thus, S is no stb-diagnosis of F . However, S ′
is a stb-diagnosis, since FS′ possesses the unique stable extension {a, b, e, f}. So, FS′ is a
stb-repair. Since only one attack is removed, it is quite easy to see that S ′ is even a minimal
diagnosis.

Our setting is depicted in Figure 5.2. Given an inconsistent AF F = (A,R), there are
several choices we can make when repairing it:

• Which semantics are we interested in?

• Which reasoning mode is appropriate?

• Should we remove arguments or attacks?

Given:
inconsistent AF

Semantics?
stb?, . . . , eg?

Reasoning?
cred? skep?

Modify?
A? R?

Figure 5.2: Repairing an AF: Choices

5.2.2 Relations between Credulous and skeptical Reasoning Mode

We start with some general relations between credulous and skeptical diagnoses. The fol-
lowing theorem applies to any semantics. It states that minimal credulous diagnoses can be
found as subsets of skeptical diagnoses.
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Theorem 5.2.4. Let F = (A,R) be an AF and σ any semantics. If S is a skep-σ-diagnosis
of F , then there is a minimal cred-σ-diagnosis S ′ of F st. S ′ ⊆ S.

Proof. Let S be a skep-σ-diagnosis of F . This means,
⋂
σ(FS) 6= ∅. Consequently,

σ(FS) 6= ∅ and therefore
⋃
σ(FS) 6= ∅. Thus, S is a cred-σ-diagnosis of F . Moreover, by

finiteness of S we deduce the existence of a minimal cred-σ-diagnosis S ′ of F with S ′ ⊆ S
concluding the proof.

Observe that the above theorem holds for both argument-based as well as attack-based di-
agnoses.

Vice Versa, skeptical diagnoses can be found as supersets of credulous ones. We want
to mention two issues. First, in contrast to the assertion before, the proof of Theorem 5.2.5
requires semantics specific properties and thus, does not hold for any argumentation se-
mantics. Secondly, it is not quite clear whether even minimality can be shown. More
precisely, the situation differs depending on the semantics and whether argument-based or
attack-based diagnoses are considered. Let us start with the existence of an arbitrary repair:

Theorem 5.2.5. Let F = (A,R) be an AF and σ ∈ {stb, ss, co, pr , gr , il , eg}. If S is a
cred-σ-diagnosis of F then there is a skep-σ-diagnosis S ′ of F , st. S ⊆ S ′.

Proof. We give two different proofs depending on whether S is argument- or attack-based.
Argument-based: Assume the set S ⊆ A is a cred-σ-diagnosis of F . Then there is an
argument a ∈

⋃
σ(FS) 6= ∅. Since a σ-extension is conflict-free, (a, a) /∈ FS . So define

S ′ = (A \ {a}, ∅) yielding FS′ = ({a}, ∅). Thus, we obtain σ(FS′) = {{a}} for any
semantics σ. Hence,

⋂
σ(FS′) = {a} proving that S ′ is a skep-σ-diagnosis of F .

Attack-based: This is trivial because S ′ = R yields an AF with no attacks, so σ(FS′) = {A}
for any considered semantics σ. Moreover, S ⊆ S ′ for any attack-based diagnosis S.

Now we turn to minimality, i. e., the following problem: Assume we are given an AF F , a
semantics σ ∈ {stb, ss, co, pr , gr , il , eg} and a minimal cred-σ-diagnosis S of F , is there
a minimal skep-σ-diagnosis S ′ of F , st. S ⊆ S ′? Let us first mention the trivial cases
σ ∈ {gr , eg , il} where the reasoning modes coincide as there is exactly one extension.
Clearly, minimality is given as noted in Corollary 5.2.13. For the other semantics the answer
differs depending on the typ of diagnoses under consideration. So let us start with argument-
based ones. Here we have the following counterexample for σ ∈ {ss, co, pr}.

Example 5.2.6. Consider the following AF F = (A,R):

a c

b d

xF : y

Observe the structure of this AF: We have an even loop consisting of arguments a, b, c and
d which is disturbed by two dummy arguments x and y. Let σ ∈ {ss, pr , co}. Clearly,
there is no way to defend anything from x and y and thus ∅ is the only σ-extension. Hence,
F is inconsistent wrt. σ. Now consider the AF F{x}, i. e., the argument x is removed. We

113



Chapter 5. Inconsistency in Abstract Argumentation

still have ∅ as the only extension: The two candidates {a, d} and {b, c} still lack defense
against y. However, removal of x and y yields the following AF F{x,y} possessing the two
non-empty extensions {a, d} and {b, c}:

a

F{x,y} :

c

b d

We thus found the minimal σ-cred diagnosis {x, y}. In order to extend this diagnosis to
a σ-skep diagnosis, we need to remove a, b, c or d as well, so we have σ-skep diagnoses
{x, y, a}, {x, y, b}, {x, y, c} and {x, y, d}. The corresponding repairs as depicted below:

F{x,y,a} :

c

b d

F{x,y,b} :

a c

d

F{x,y,c} :

a

b d

F{x,y,d} :

a c

b

However, there is no minimal σ-skep diagnosis among them. For example, in F{x,y,a} the
argument a is removed in order to render c skeptically accepted. This does not depend on
x, so there is no harm in moving to F{y,a} instead; c is still skeptically accepted:

c

b d

xF{y,a} :

Due to symmetry, we see in addition the minimal σ-skep-diagnoses {y, c}, {x, b} and
{x, d}. There is thus no minimal σ-skep-diagnosis S ′ with {x, y} ⊆ S ′.

For stable semantics, this is an open problem. We conjecture that minimality can be guar-
anteed, but did not find a proof so far.

Conjecture 5.2.7. Let F be an AF. If S is a minimal argument-based stb-cred-diagnosis of
F , then there is a minimal stb-skep-diagnosis S ′ of F , st. S ⊆ S ′.

Let us now turn to attack-based diagnoses. They are more fine-grained since removing a
single attack is just removing an attack, whereas removing an argument yields an arbitrary
amount of removed attacks. We can answer the question regarding minimality affirmatively
for preferred, stable and semi-stable semantics. We have the following, even stronger result.

114



5.2. On the Existence of Repairs

The proof of the theorem below illustrates how precise attack-based diagnoses operate:
Given (a, b) ∈ S for a minimal σ-diagnosis (σ ∈ {ss, pr , stb}), then b is guaranteed to be
skeptically accepted.

Theorem 5.2.8. Let F = (A,R) be an AF and let σ ∈ {ss, pr , stb}. Assume F is incon-
sistent wrt. σ and credulous reasoning. If S ⊆ R is a minimal σ-cred-diagnosis of F , then
S is a minimal σ-skep-diagnosis as well.

Proof. Let (a, b) ∈ S. By assumption, FS ∪ {(a, b)} = FS\{(a,b)} is inconsistent wrt. σ
and credulous reasoning and FS is consistent. By definition this means there is a non-empty
extension ∅ 6= E ∈ σ(FS). We claim that b is skeptically accepted in FS .
Stable: Let E be a stable extension of FS . By definition, E⊕FS = A and E is conflict-free
in FS . Assume for the sake of contradiction b /∈ E. We claim that in this case, E must be a
stable extension of FS ∪ {(a, b)} as well:

• Since E was conflict-free in FS and b /∈ E, E is also conflict-free in FS ∪ {(a, b)},

• due to E⊕FS = A we immediately infer A = E⊕FS ⊆ E⊕FS∪{(a,b)} and since the other
inclusion is clear, we obtain A = E⊕FS∪{(a,b)}.

The two items above are the properties a stable extension requires. Now, since E is a
stable extension of FS ∪ {(a, b)}, we see that S is not a minimal stb-cred-diagnosis of
F contradicting our assumption. We thus conclude b ∈ E. Since E was an arbitrary σ-
extension of FS , b is skeptically accepted. We thus infer that S is even a stb-skep-diagnosis.
Minimality will be discussed below.
Preferred: Now let E be a non-empty preferred extension of FS . Hence E = ΓFS (E)
with E 6= ∅. Again assume b /∈ E. In this case, b is not defended by E, otherwise we had
b ∈ ΓFS (E). This means, there is an argument c ∈ Awith (c, b) ∈ R\S (hence, c 6= a) with
either c ∈ E or c is not attacked by E. Now consider FS ∪ {(a, b)}. Since b /∈ E, E is still
conflict-free. Moreover, there is the argument c as above, so we have b /∈ ΓFS∪{(a,b)}(E) as
well. This means the additional attack (a, b) is irrelevant for the characteristic function Γ
applied to E, i. e.,

E = ΓFS (E) = ΓFS∪{(a,b)}(E)

and hence,E 6= ∅ is a complete extension of FS∪{(a, b)}. Thus, FS∪{(a, b)} is consistent
wrt. complete semantics and credulous reasoning, implying it is consistent wrt. preferred
semantics and credulous reasoning. As above, this contradicts minimality of S. We thus
conclude b ∈ E for any non-empty preferred extension E. Since there is at least one non-
empty preferred extension, ∅ /∈ pr(FS) and we thus see again that b is skeptically accepted.
Semi-Stable: As before, assume we are given an non-empty semi-stable extension E of FS
with b /∈ E. We may argue as above since E is also a preferred extension of FS . We thus
infer that E is a complete extension of FS ∪ {(a, b)}. This is the same contradiction as
before, implying b ∈ E. Again, E was an arbitrary non-empty extension and ∅ /∈ ss(FS),
so b is skeptically accepted.
Minimality: In all three cases we observed that S is a σ-cred-diagnosis as well. As a final
remark we note that S must be minimal since S was assumed to be minimal for credulous
reasoning already. More precisely a proper subset S ′ ( S cannot be a σ-skep-diagnosis
which can be seen as in the proof of Theorem 5.2.4.
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Observe that inconsistency of F wrt. credulous reasoning was a premise of the above the-
orem. In case F possesses a non-empty σ-extension, it is clear that a minimal σ-skep-
diagnosis can be found as a superset of the single minimal σ-cred-diagnosis ∅. So we
summarize:

Corollary 5.2.9. Let F be an AF and let σ ∈ {ss, pr , stb}. If S is a minimal attack-based
σ-cred-diagnosis of F , then there is a minimal σ-skep-diagnosis S ′ of F , st. S ⊆ S ′.
Proof. If F is consistent wrt. σ and credulous reasoning, then S must be empty, so the
claim is trivial. Otherwise, if S is a minimal attack-based σ-cred-diagnosis of F , then due
to Theorem 5.2.8 we may set S ′ = S, i. e., we can even guarantee equality.

When considering complete semantics, we do not have minimality in Theorem 5.2.5 in
general. At a first glance, this might be surprising considering the affirmative answer for
preferred semantics. However, in the proof of Theorem 5.2.8 we could exclude ∅ as a
possible preferred extension once we found an arbitrary non-empty fixed point of Γ. This
does not work for complete semantics. Hence, we find the following counterexample:

Example 5.2.10. Consider the following AF F = (A,R):

a c

b d

wF : y

x z

Clearly, ∅ is the only complete extension. The reader may verify that S = {(w, a), (z, d)}
is a minimal co-cred-diagnosis of F , yielding the complete extension {a, d}. Since ∅ is a
complete extension of FS as well, this is no co-skep-diagnosis of F . One may check that S
cannot be extended to a minimal skeptical diagnosis: A minimal co-skep-diagnosis must en-
sure that at least one argument is unattacked. Thus, they are given as {(w,w)}, . . . , {(z, z)}
and {(w, a), (b, a)}, . . . , {(z, d), (c, d)}. So there is no minimal co-skep-diagnoses S ′ with
S ⊆ S ′.
Finally, we show two helpful, but not unexpected relations between different semantics and
their reasoning modes.

Theorem 5.2.11. Let F = (A,R) be an AF. and let σ and τ , be two semantics with σ ⊆ τ
and σ is universally defined.

• If S ⊆ F is a cred-σ-diagnosis of F , then there is a minimal cred-τ -diagnosis S ′ of
F , st. S ′ ⊆ S.

• If S ⊆ F is a skep-τ -diagnosis of F , then there is a minimal skep-σ-diagnosis S ′ of
F , st. S ′ ⊆ S.

Proof. We prove the second item only. Let S be a skep-τ -diagnosis of F . This means,⋂
τ(FS) 6= ∅. Since σ ⊆ τ is assumed we deduce ∅ 6=

⋂
τ(FS) ⊆

⋂
σ(FS). Since σ is

universally defined we have σ(FS) 6= ∅ which implies that S is a skep-σ-diagnosis of F .
Moreover, by finiteness of S we deduce the existence of a minimal skep-σ-diagnosis S ′ of
F with S ′ ⊆ S concluding the proof.
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5.2.3 Uniquely Defined Semantics

We now focus on uniquely defined semantics, i. e., we have |σ(F )| = 1 for any F ∈ F .
Considering the semantics we investigate in this chapter this means σ ∈ {gr , eg , il}.

Note that in case of uniquely defined semantics we have that any (minimal) skeptical
diagnosis is a (minimal) credulous one and vice versa.

Lemma 5.2.12. If F is an AF and σ ∈ {gr , eg , il}, then S is a cred-σ-diagnosis of F iff it
is a skep-σ-diagnosis of F .

Proof. If |σ(F )| = 1, then
⋂
σ(F ) =

⋃
σ(F ).

This implies in particular that minimality in Theorem 5.2.5 can be shown.

Corollary 5.2.13. Given an AF F and a semantics σ ∈ {gr , eg , il}. If S is a minimal
cred-σ-diagnosis of F , then there is a minimal skep-σ-diagnosis S ′ of F , st. S ⊆ S ′.

Proof. Set S ′ = S and apply Lemma 5.2.12.

We proceed with grounded semantics since these results will play a central role for all other
semantics considered in this chapter. Dung originally defined the grounded extension of an
AF F = (A,R) as the ⊆-least fixed point of the characteristic function ΓF : 2A → 2A

with E 7→ {a ∈ A | a is defended by E}. Moreover, he showed that this definition
coincides with the ⊆-least complete extension [49, Theorem 25] as introduced in Defini-
tion 5.1.1. Since ΓF is shown to be ⊆-monotonic we may compute the unique grounded
extension G stepwise, i.e., applying ΓF iteratively starting from the empty set. More pre-
cisely,G =

⋃|A|
i=1 ΓiF (∅) (cf. [21, Section 3.2]). Consequently, an AF possesses a non-empty

grounded extension if and only if there exists at least one unattacked argument. This renders
argument-based diagnoses weaker in some cases since there is no way to remove a single
argument. It is thus clear that a self-controversial AF does not possess an argument-based
diagnosis. More precisely, we find the following:

Fact 5.2.14. Let F = (A,R) be an AF. Let σ = gr .

• There exists a minimal argument-based gr -repair for F iff F is not self-controversial.

• There exists a minimal attack-based gr -repair for F .

Proof. For the first item, assume F = (A,R) and a ∈ A does not attack itself. Then,
S = A \ {a} is a gr -diagnosis of F . Due to finiteness, we find a minimal one S ′ with
S ′ ⊆ S. For the second item observe that S = R is a diagnosis.

In addition to Fact 5.2.14, we observe that diagnoses for ideal and eager semantics can
be found as subsets of a grounded diagnosis. The intuitive reason is the fact that ideal
semantics accepts more arguments than grounded semantics and eager semantics is even
more credulous than ideal semantics.

Lemma 5.2.15. Let F = (A,R) be an AF. Let σ ∈ {il , eg}. If S ′ is a gr -diagnosis of F ,
then there is a minimal σ-diagnosis S of F , st. S ⊆ S ′.

Proof. As already mentioned, S ′ is a gr -diagnosis of F if and only if FS′ contains an
unattacked argument, say a. In this case we see that a also occurs in the unique ideal as
well as eager extension. Hence, S ′ is a σ-diagnosis for σ ∈ {il , eg}. Due to finiteness, there
is a minimal σ-diagnosis S with S ⊆ S ′.
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The subsequent theorem claims the existence of minimal σ-diagnoses for the considered
uniquely defined semantics (recall that we do not need to distinguish between credulous and
skeptical reasoning here). Due to the above fact, we find the claim for grounded semantics.
Equipped with a grounded diagnosis, we find the other two by applying Lemma 5.2.15.
Moreover, the restriction to finite AFs even gives us the existence of minimal ones.

Theorem 5.2.16. Let σ ∈ {gr , eg , il}. Let F be an AF.

• There exists a minimal argument-based σ-repair for F iff F is not self-controversial.

• There exists a minimal attack-based σ-repair for F .

Proof. For σ = gr , this is Fact 5.2.14. For σ ∈ {eg , il}, this can be inferred from
Lemma 5.2.15 after applying Fact 5.2.14.

Example 5.2.17. The following simple framework F demonstrates that least σ-repairs do
not necessarily exist. For σ ∈ {gr , eg , il} we have σ(F ) = {∅}, i. e., nothing is credulously
or skeptically accepted.

a

F :

b b

F{a} :

a

F{b} :

a

F{(b,a)} :

b a

F{(a,b)} :

b

Observe that all four depicted given diagnoses {a}, {b}, {(a, b)} and {(b, a)} are minimal.
This example thus illustrates that a least repair does not necessarily exist. This is true for
both argument-based as well as attack-based diagnoses.

This finishes our discussion on uniquely defined semantics. In the subsequent section, we
turn to universally defined semantics.

5.2.4 Universally Defined Semantics

Let us consider now semantics which provide us with at least one acceptable position. The
following lemma shows that for these semantics minimal credulous as well as skeptical
diagnoses are guaranteed, whenever there is a grounded diagnosis.

Lemma 5.2.18. Let σ ∈ {ss, pr , co}. For any AF F = (A,R) there exists a minimal
σ-diagnosis S, whenever there exists a gr -diagnosis S ′ of F . Moreover, even S ⊆ S ′ can
be guaranteed.

Proof. Let σ ∈ {ss, pr , co} and S ′ a gr -diagnosis of F . Hence, gr(FS′) = {G} with
G 6= ∅. Since G is the ⊆-least fixpoint of ΓFS′ we deduce G ⊆ C for any C ∈ co(FS′).
Due to ss ⊆ pr ⊆ co and the universal definedness of σ we have ∅ 6= G ⊆

⋂
σ(FS′)

as well as ∅ 6= G ⊆
⋃
σ(FS′). Hence, S ′ is a skeptical as well as credulous σ-diagnosis

of F . Due to finiteness of F , there exists a minimal σ-diagnosis S ⊆ S ′ concluding the
proof.

Combining Theorem 5.2.16 and Lemma 5.2.18 yields the subsequent main theorem for the
considered universally defined semantics. As usual, there is a slight difference between
argument-based and attack-based diagnoses.
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Theorem 5.2.19. Let σ ∈ {ss, pr , co}. Let F be an AF.

• There exists a minimal argument-based σ-repair for F iff F is not self-controversial.

• There exists a minimal attack-based σ-repair for F .

Proof. Apply Theorem 5.2.16 and Lemma 5.2.18.

The following example shows, as promised in Lemma 5.2.18, that already computed groun-
ded diagnoses can be used to find minimal preferred diagnoses. Moreover, in contrast to
uniquely defined semantics we observe that minimal skeptical and minimal credulous diag-
noses do not necessarily coincide. This is the case for both argument-based and attack-based
diagnoses.

Example 5.2.20. Consider the following AF F . Since we have no unattacked arguments
we deduce gr(F ) = {∅}, i.e., nothing is accepted.

F :

a b

c d

Argument-based repairs: Observe that F{a} and F{d} do not possess a grounded extension,
either. Since gr(F{a,d}) = {{c}}, F{a,d} is a minimal argument-based gr -repair. Note that
{a, d} is even a skeptical as well credulous preferred diagnosis of F . These diagnoses are
not minimal for preferred semantics since pr(F ) = {{a, d}, {c}} implies

⋃
pr(F ) 6= ∅ as

well as pr(F{a}) = {{c}} entails
⋂
pr(F{a}) 6= ∅. Altogether, we have strict subset rela-

tion (∅ ( {a} ( {a, d}) between minimal credulous preferred, minimal skeptical preferred
and minimal grounded diagnoses.

F :

a b

c d

F{a} :

b

c d

F{a,d} :

b

c

Attack-based reparis: Regarding attack-based diagnoses, we make similar observations for
the chain ∅ ( {(a, c)} ( {(a, c), (d, c)}.

F :

a b

c d

F{(a,c)} :

a b

c d

F{(a,c),(d ,c)} :

a b

c d
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5.2.5 Collapsing Semantics

Stable semantics is the only prominent semantics which may collapse even for finite AFs,
i. e., there are AFs which do not possess any stable extension. However, in terms of exis-
tence of repairs we do not observe any differences to all other considered semantics.

Fact 5.2.21. Let F be an AF.

• There exists a minimal argument-based stb-repair for F iff F is not self-controversial.

• There exists a minimal attack-based stb-repair for F .

In contrast to all other considered semantics we have that stable diagnoses can not be neces-
sarily found as subsets of an already computed grounded one (Lemmata 5.2.15 and 5.2.18).
For instance, the AF F from Example 5.2.1 possesses the unique grounded extension {e, f}.
Consequently, we have the trivial (least) gr -diagnosis, namely the empty set. As F does
not possess a stable extension, all minimal stb-diagnoses are non-empty. Nevertheless,
credulous as well as skeptical diagnoses for stable semantics can be found as supersets of
grounded ones.

Lemma 5.2.22. Let F = (A,R) be an AF. If S ′ is a gr -diagnosis of F , then there is a
stb-diagnosis S of F , st. S ′ ⊆ S.

Proof. Argument-based: Given S ′ as gr -diagnosis of F = (A,R), i.e., gr (FS′) = {E}
with E 6= ∅. Consider now E⊕ wrt. the attack-relation of FS′ . Then S ′ ⊆ A \ E⊕
and moreover, gr

(
FA\E⊕

)
= {E}. Obviously, by construction E ∈ stb

(
FA\E⊕

)
. Fur-

thermore, since E is non-empty we deduce that there is at least one unattacked argument
a ∈ E. Hence, for any E′ ∈ stb

(
FA\E⊕

)
we have a ∈ E′. Consequently, A \ E⊕ serves

as a credulous as well as skeptical diagnosis for stable semantics.
Attack-based: Trivial since we may set S = R.

Note that Lemma 5.2.22 does not claim minimality of the stb-diagnosis S. Indeed, the
following example illustrates that existence of a minimal stb-diagnosis with S ′ ⊆ S as
above is not obtained in general.

Example 5.2.23. Consider the following AF F

dc

a

bF :

Since every argument is attacked we infer that ∅ cannot be a gr -diagnosis. Consider now
the gr -diagnosis {a}. Indeed, this is also a stb-diagnosis (wrt. credulous as well as skepti-
cal reasoning), but not minimal since F itself possesses the skeptically accepted argument
d. Moreover we make the same observations for the attack-based gr -diagnosis {(a, b)}.
Hence, this is a counterexample for both types of diagnoses.
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5.2.6 Summary

This finishes our discussion regarding rather general results pertaining to the existence
and relationships of repairs. We saw that as long as one is not interested in stable se-
mantics, one can find a minimal diagnosis as a subset of a given grounded one (see Lem-
mata 5.2.15 and 5.2.18). In any case, computing a gr -repair is a reasonable starting point in
order to reduce the search space. In view of this, it is interesting to note that computing gr -
repairs is tractable (see Proposition 6.4.4 in Section 6.4 below) and both reasoning modes
coincide. Our discussion in Section 6.4 also confirms the intuition that skeptical repairs
tend to be more demanding from a computational point of view. Hence if one is interested
in skeptical diagnoses, then the cases covered by Theorem 5.2.8 are the most well-behaved
ones: We can start by computing a minimal cred-diagnosis and then refine it until a mini-
mal skep-diagnosis is found. Recall that this theorem is applicable when we are looking for
an attack-based σ-skep-diagnosis with σ ∈ {ss, pr , stb}. The following scheme depicts a
summary of these results:

skeptical?

gr -diagnosis

Theorem 5.2.8?

guess and check

reduce
search space

F self
controversial?

obtain repair

no

yes yes

no no

Figure 5.3: Finding minimal repairs for σ 6= stb: We start by computing a gr -repair. This
helps reducing the search space. If we are interested in skeptical repairs and Theorem 5.2.8
is applicable, it might be helpful to compute credulous repairs first.

5.3 A Hitting Set Duality for Argumentation Frameworks

Let us now characterize all repairs of a given AF, independent of considered semantics,
reasoning mode or type of repairs (argument-based or attack-based). Our goal is to apply
our hitting set duality from Theorem 3.1.12. Recall the setting from the previous chapters,
where we considered AFs only with stable semantics and credulous reasoning. We left A
implicit and then a knowledge base was a set of attacks. Hence given an AF F = (A,R) a
strongly inconsistent subset (of attacks) was a set H ⊆ R such that each AF F = (A,H′)
with H ⊆ H′ ⊆ R does not possess a stable extension. We need to rephrase the notion of
strong inconsistency for our more comprehensive treatment of AFs.
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Definition 5.3.1. Let F = (A,R) be an AF and let σ be any semantics.
Argument-based: We call H ⊆ A a strongly inconsistent set of arguments of F wrt. σ and
credulous (skeptical) reasoning if for eachH′ withH ⊆ H′ ⊆ A the AF

FA\H′ = (H′, R|H′)

is inconsistent wrt. σ and credulous (skeptical) reasoning. Denote by SIAmin(F , σ, cred)
(SIAmin(F , σ, skep)) the set of all minimal strongly inconsistent sets of arguments of F wrt.
σ and credulous (skeptical) reasoning.
Attack-based: We call H ⊆ R a strongly inconsistent set of attacks of F wrt. σ and credu-
lous (skeptical) reasoning if for eachH′ withH ⊆ H′ ⊆ R the AF

FR\H′ = (A,H′)

is inconsistent wrt. σ and credulous (skeptical) reasoning. Denote by SIRmin(F , σ, cred)
(SIRmin(F , σ, skep)) the set of all minimal strongly inconsistent sets of attacks of F wrt. σ
and credulous (skeptical) reasoning.

As usual the semantics as well as the reasoning mode will sometimes be clear from the
context or irrelevant. In this case we will leave them implicit and simply write SIAmin(F )
resp. SIRmin(F ).

Example 5.3.2. Consider again the AF F = (A,R) with A = {a, b, c, d, e, f} and the
attacks R = {(a, b), (b, c), (c, a), (d, a), (e, d), (f, d)}:

a

b

c

d

f

eF :

Argument-based: Let us focus on credulous reasoning. We already observed that F has
no stable extension, i.e., A itself is a strongly inconsistent set of arguments wrt. stable
semantics. The subsetH1 ⊆ A withH1 = {a, b, c} induces the inconsistent AF

F1 = ({a, b, c}, {(a, b), (b, c), (c, a)})

corresponding to the odd circle contained in F . However, H1 is not a strongly inconsis-
tent set of arguments since the framework induced by H1 ⊆ H2 with H2 = {a, b, c, d}
corresponds to F{e,f} which has the stable extension {b, d}:

a

b

c

dF{e,f} :

One may easily verify that SIAmin(K) = {{a, b, c, e}, {a, b, c, f}}.
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Attack-based: We have R = {(a, b), (b, c), (c, a), (d, a), (e, d), (f, d)}. Again consider
credulous reasoning and stable semantics. Now H1 = {(a, b), (b, c), (c, a)} induces the
odd circle contained in F . Again, H1 is not strongly inconsistent since the superset H2

with H1 ⊆ H2 ⊆ R given as H2 = {(a, b), (b, c), (c, a), (d, a)} induces the consistent
AF FR\H2

= F{(e,d),(f,d)} with the stable extension {b, d, e, f}. Note however that the
represented framework is now different, namely F with two attacks removed:

a

b

c

d

f

eF{(e,d),(f,d)} :

We obtain

SIRmin(F ) = {{(a, b), (b, c), (c, a), (e, d)}, {(a, b), (b, c), (c, a), (f, d)}}.

Now we are ready to apply Theorem 3.1.12 to diagnoses of AFs. The result holds for all
semantics and both reasoning modes. It can be stated for both argument-based as well as
attack-based repairs. To prove this, we proceed as in Example 2.5.5 where we modeled
AFs as set of attacks: We construct a logic where any formula α of a knowledge base K
corresponds to an argument (for argument-based diagnoses) resp. attack (for attack-based
diagnoses). Since an AF is a tuple consisting of both arguments and attacks, one of them
will be fixed. The logic under consideration will also depend on the semantics as well as
the reasoning mode.

Proposition 5.3.3 (Duality: argument-based). Let F = (A,R) be an AF. Let σ be any
semantics and consider any reasoning mode. Then S is a minimal hitting set of SIAmin(F )
if and only if S is a minimal σ-diagnosis of F .

Proof. Assume the set R of attacks is fixed. Define a logic L = (WF ,BS, INC,ACC)
with WF = A (that is, a knowledge base K is a finite set of arguments in A), BS = A,
INC = ∅ and ACC(K) =

⋃
σ(F ) resp. ACC(K) =

⋂
σ(F ) where F is the AF given

as F = (K, R|K). Now given an AF F = (A,R) a minimal argument-based repair corre-
sponds to a maximal consistent subsetH ⊆ K = A and a minimal strongly inconsistent set
of arguments of F corresponds to a minimal strongly inconsistent subset of K. Thus, the
claim can be seen by applying Theorem 3.1.12 to the logic L we defined here.

Proposition 5.3.4 (Duality: attack-based). Let F = (A,R) be an AF. Let σ be any seman-
tics and consider any reasoning mode. Then S is a minimal hitting set of SIRmin(F ) if and
only if S is a minimal σ-diagnosis of F .

Proof. Assume the set A of arguments is fixed. Define a logic L = (WF ,BS, INC,ACC)
withWF = A×A (that is, a knowledge base K is a finite set of attacks over A), BS = A,
INC = ∅ and ACC(K) =

⋃
σ(F ) resp. ACC(K) =

⋂
σ(F ) where F is the AF given as

F = (A,K). Now given an AF F = (A,R) a minimal attack-based repair corresponds to a
maximal consistent subset H ⊆ K = R and a minimal strongly inconsistent set of attacks
of F corresponds to a minimal strongly inconsistent subset of K. Thus, the claim can be
seen by applying Theorem 3.1.12 to the logic L we defined here.
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Example 5.3.5. Consider again our AF F with stable semantics and credulous reasoning.
Argument-based: For the argument-based diagnoses we checked that

SIAmin(K) = {{a, b, c, e}, {a, b, c, f}}.

We obtain four minimal hitting sets, namely {a}, {b}, {c} and {e, f}. Observe that {e, f} is
the already found stb-diagnosis presented in Example 5.3.2. The minimal hitting sets for F
can be interpreted as follows: Either one argument from the odd circle needs to be removed
or both e and f to facilitate d. These sets correspond to the stb-repairs F{e,f} (considered
in Example 5.3.2) as well as F{c}, F{b} and F{a} depicted below.

a

b

d

f

eF{c} :

a

c

d

f

eF{b} :

b

c

d

f

eF{a} :

Attack-based: Recall

SIRmin(F ) = {{(a, b), (b, c), (c, a), (e, d)}, {(a, b), (b, c), (c, a), (f, d)}}.

for the attack-based representation. We find the hitting sets {(a, b)}, {(b, c)}, {(c, a)} as
well as {(e, d), (f, d)}. The latter one yields F{(e,d),(f,d)} from Example 5.3.2. The former
ones correspond to the following AFs:

a

b

c

d

f

e

F{(a,b)} :

a

b

c

d

f

e

F{(b,c)} :

a

b

c

d

f

eF{(c,a)} :

This finishes our discussion regarding a characterization of all diagnoses of a given AF. The
results of this demonstrate indicate that finding repairs can be achieved by consideration
of the strongly inconsistent arguments resp. attacks. This might not be the most efficient
approach if one is just interested in a single diagnosis, but it helps representing all repairs
in a concise way. In the next section, we focus on particular aspects and properties of AFs
in order to infer tailored, more advanced properties.
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5.4 Special Cases For Argumentation Frameworks

We may obtain more insightful results when focusing on certain aspects of the AF under
consideration. We will start our investigation with symmetric AFs [43]. In a nutshell, an
AF is symmetric if the attack relation is. Symmetry is a rather strong property, yielding
a variety of additional connections between repairs and diagnoses. The same is true for
compact [24] and acyclic AFs. We then continue with a splitting method introduced in [12].
Splitting methods are an important concept in non-monotonic reasoning which allow for a
certain modularization of the knowledge base under consideration which is usually not given
due to non-monotonic interactions between formulas (see [11] for an excellent overview).
The structural properties that come along with splitting can be utilized to infer results for
diagnoses. The last part of this section will be devoted to infinite AFs [21]. Allowing the
underlying set of arguments to be infinite possesses additional challenges since the behavior
of an infinite AF is less intuitive and existence and uniqueness of certain extensions as well
as diagnoses is no longer guaranteed.

5.4.1 Symmetric, Compact and Acyclic Frameworks

Let us start with so-called symmetric AFs. According to [43] an AF F = (A,R) is sym-
metric if R is symmetric, nonempty and irreflexive.

Definition 5.4.1. Let F = (A,R) be an AF. We call F symmetric if

• R 6= ∅,

• (a, b) ∈ R implies (b, a) ∈ R for each a, b ∈ A,

• (a, a) /∈ R for each a ∈ A.

For example, the following AF F is symmetric:

Example 5.4.2. Assume F = (A,R) is as depicted below:

dc

a

bF :

The three items of Definition 5.4.1 are straightforward to verify.

Now assume we are given a symmetric AF F . Clearly, when moving from F to FS for
S ⊆ A resp. S ⊆ R, we do not change the fact that the attack relation is irreflexive. We
might end up with an AF with no attack (violating non-emptiness), but this does not concern
us since an AF of the form F = (A, ∅) is consistent in almost all considered cases; the only
exception is σ = ad with skeptical reasoning. However, we need to make sure that the
symmetry of the attack relation is preserved, otherwise we lose the properties we want to
utilize. This is clearly no issue for argument-based diagnoses:

Lemma 5.4.3. If F = (A,R) is symmetric and S ⊆ A, then the attack-relation of FS is
empty or symmetric and irreflexive.
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Of course, we want to consider attack-based diagnoses as well. Fortunately, the restriction
we need to make to removal of attacks is quite natural. We simply need to ensure that the
diagnosis operates symmetric in the sense that removal of (a, b) implies removal of (b, a)
as well. Formally:

Definition 5.4.4. Let F = (A,R) be a symmetric AF. An attack-based diagnosis S ⊆ R of
F is symmetric if (a, b) ∈ S ⇔ (b, a) ∈ S.

Clearly, we now have:

Lemma 5.4.5. If F = (A,R) is symmetric and S ⊆ R a symmetric diagnosis, then the
attack relation of FS is empty or symmetric and irreflexive.

In case of stable, semi-stable and preferred semantics we obtain a very useful property,
namely any argument a ∈ A belongs to at least one extension [43, Proposition 6]. Conse-
quently, we may show the following properties.

Proposition 5.4.6. Let F = (A,R) be a symmetric AF and σ ∈ {stb, ss, pr}.
• ∅ is the least cred-σ-diagnosis and

• S ⊆ F is a (minimal) symmetric skep-σ-diagnosis iff S is a (minimal) symmetric
gr -diagnosis.

Let us assume that our current knowledge base underlies further external revision processes
(cf. [18; 44; 47] for belief revision in abstract argumentation). Both items can be gainfully
used if we know that certain types of revision do not affect the symmetry of an AF. More
precisely, the items 1 and 2 ensure that we have either nothing to do (if interested in cred-
ulous reasoning) or we may act according to grounded semantics instead of σ (if skeptical
reasoning is chosen).

Example 5.4.7. Consider again the symmetric AF F from above:

dc

a

bF :

We have stb(F ) = {{a, d}, {b, d}, {c}}. This means, no argument is skeptically accepted.
In order to repair regarding grounded semantics we have to ensure the existence of at least
one unattacked argument. Consequently, the least argument-based skep-gr -repair is given
as F{c}. As promised by the second item in Proposition 5.4.6 this indeed coincides with the
least skep-stb-repair.

Let us briefly consider two further classes of frameworks, namely so-called compact and
acyclic ones. The first one is semantically defined and characterized by the feature that
each argument of the AF occurs in at least one extension of the AF [15; 24]. For instance,
the AF F depicted in Example 5.4.7 is compact wrt. stable semantics. Compact frameworks
obviously fulfill the first item of Proposition 5.4.6 and thus build an interesting subclass of
AFs if interested in credulous reasoning. The second class is syntactically defined and as
expected: An AF is acyclic if it does not contain any cycles. Such frameworks are known
to be well-founded [49] which means, they possess exactly one complete extension which
is grounded, preferred and stable [43, Propositions 1 and 2]. This means, the agent is able
to act (in both reasoning modes) whenever we are faced with an acyclic AF.
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5.4.2 Splitting

Let us now investigate situations where we are given a splitting of the AF under consider-
ation. Splitting is an important concept in non-monotonic reasoning as it abuses structural
properties of a knowledge base in order to identify a certain monotonic behavior. More pre-
cisely, splitting methods try to divide a theory in subtheories such that the formal semantics
of the entire theory can be obtained by constructing the semantics of the subtheories. For
AFs, splitting was considered in [11; 12; 14]. We briefly recall the required notions here
and then demonstrate how to infer properties of repairs and diagnoses.

Definition 5.4.8. Let F1 = (A1, R1) and F2 = (A2, R2) be two AFs withA1∩A2 = ∅. Let
R3 ⊆ A1 ×A2. We call (F1,F2, R3) a splitting of the AF F = (A1 ∪A2, R1 ∪R2 ∪R3).

In a nutshell, if (F1,F2, R3) is a splitting of F , then extensions of F1 can be computed as a
first step to find those of F . The AF F2 does not influence F1 and can be considered later.

Example 5.4.9. Let F1 = (A1, R1) with A1 = {a, b} and R1 = {(a, b), (b, a)} as well as
F2 = (A2, R2) with A2 = {c, d} and R2 = {(c, d), (d, d)}, and let R3 = {(a, d), (b, c)}.
Then, (F1,F2, R3) is a splitting of the following AF:

a

b

F1 :

c

F2 :

d

The idea of splitting is as follows: Once we are given an extension E1 of the AF F1, based
on E1 we want to construct a reduced version of F2. Then we compute an extension E2 of
this reduced AF to obtain an extension E1 ∪ E2 of F . In the following, we define how to
reduce F2 for stable semantics. The other semantics will be discussed afterwards.

Definition 5.4.10 (Reduct). Let F2 = (A2, R2) be an AF and A1 such that A1 ∩ A2 = ∅.
Let S ⊆ A1 and L ⊆ A1 ×A2. The (S,L)-reduct of F2, denoted by FS,L

2 , is the AF

FS,L2 =
(
AS,L2 , RS,L2

)
with AS,L2 = {a2 ∈ A2 | @a1 ∈ S : (a1, a2) ∈ L}

RS,L2 =
{

(a, b) ∈ R2 | a, b ∈ AS,L2

}
.

Example 5.4.11. Consider again our previous example. The AF F1 = (A1, R1) as above
has two stable extensions E1 = {a} and E′1 = {b}. So we are interested in the (E1, R3)-
and (E′1, R3)-reduct of F2 which are FE1,R3

2 = ({c}, ∅) and FE
′
1,R3

2 = ({d}, {(d, d)}):

a

b

c d

a

b

c d

The former has the stable extension E2 = {c}, the latter none. Indeed, the unique stable
extension of the whole AF F is {a, c} = E1 ∪ E2.
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Now the following theorem states that we can indeed find extensionsE of F by considering
an extension E1 of F1 and then reduce F2 and continue computing. More precisely, we find
all extensions of F this way:

Theorem 5.4.12 ([12]). Let F = (A,R) be an AF and let (F1, F2, R3) be a splitting of F ,
i. e., we haveA = A1∪A2 andR = R1∪R2∪R3 where F1 = (A1, R1) and F2 = (A2, R2).

• If E1 is a stable extension of F1 and E2 a stable extension of the (E1, R3)-reduct
of F2, then E1 ∪ E2 is a stable extension of F .

• Vice versa, if E is a stable extension of F , then E1 = E ∩A1 is a stable extension of
F1 and E2 = E ∩A2 a stable extension of the (E1, R3)-reduct of F2.

We can utilize this in order to find properties of repairs. Each stable extension of F contains
a stable extension of F1, so the latter is required to be consistent wrt. credulous reasoning.
This means when trying to find repairs for F , one may start with repairs of F1. In the
following, we show that one can extend minimal repairs of F1 to minimal repairs of F .

Proposition 5.4.13. Let F = (A,R) be an AF and let (F1, F2, R3) be a splitting of F , i. e.,
we have A = A1 ∪ A2 and R = R1 ∪ R2 ∪ R3 where F1 = (A1, R1) and F2 = (A2, R2).
If S1 is a minimal stb-cred-diagnosis of F1, then there is a minimal stb-cred-diagnosis S
of F with S1 ⊆ S.

Proof. Let S1 be a minimal stb-cred-diagnosis of F1. Let E1 be a stable extension of
(F1)S1 . Now consider FE1,R3

2 , i. e., the (E1, R3)-reduct of F2. If FE1,R3
2 possesses a stable

extension, then we are done. If this is not the case, we need to be careful since two different
extensions of (F1)S1 might induce two reducts where the minimal repairs are in a subset
relation; so we cannot just take the minimal repair of FE1,R3

2 . So assume for the moment
there is an extension of (F1)S1 such that the reduct is not self-controversial and let

S2 ∈ min
E1∈stb((F1)S1)

{
S | S is a minimal repair of FE1,R3

2

}
where we observe straightforwardly that the minimum exists since we are dealing with
finite AFs. Now let S = S1 ∪ S2. We claim that S is a minimal diagnosis of F . For this,
we observe that we cannot remove any element from S1 since this was assumed to be a
minimal diagnosis of F1 and from Theorem 5.4.12 we know that it needs to possess a stable
extension. Moreover, if we are given S2 and the extension E1 in which the minimum is
attained, we see that

(
FE1,R3

2

)
S2

possesses a stable extension ensuring that S is a diagnosis.

Now minimality is due to construction of S2. Finally, if the reduct is self-controversial for
each extension of (F1)S1 , we can set S2 = A2 for argument-based and S2 = R2 for attack-
based diagnoses.

Although being rather simple, the most important observation in the previous proposition
was that F1 needs to be consistent in order for F to be consistent. We can also phrase this
observation in terms of inconsistency, i. e., the sets SIAmin(F ) and SIRmin(F ). The following
proposition formalizes that strongly inconsistent subsets of F1 are also strongly inconsistent
for F , at least for credulous reasoning. This holds for sets of attacks as well as sets of
arguments.
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Proposition 5.4.14. Let F = (A,R) be an AF and let (F1, F2, R3) be a splitting of F , i. e.,
we have A = A1 ∪A2 and R = R1 ∪R2 ∪R3 where F1 = (A1, R1) and F2 = (A2, R2).

• SIAmin(F1, stb, cred) ⊆ SIAmin(F , stb, cred),

• SIRmin(F1, stb, cred) ⊆ SIRmin(F , stb, cred).

Proof. We prove the first item. The second one is similar. We simply write SIAmin(F1)
instead of SIAmin(F1, stb, cred). Assume H1 ∈ SIAmin(F1). Then, for any set H′1 with

H1 ⊆ H′1 ⊆ A1, the AF
(
H′1, (R1)|H′1

)
has no stable extension. Due to Theorem 5.4.12,

this implies
(
H′1, (R1)|H′1

)
∪ F2 ∪ R3 has no stable extension, either. Since we can also

apply the splitting theorem after moving to a subframework of F2, we see that the AF(
H′1, (R1)|H′1

)
∪
(
H′2, (R2)|H′2

)
∪R3

is inconsistent for any H′1 with H1 ⊆ H′1 ⊆ A1 and any H′2 with H′2 ⊆ A2. Thus, H is a
strongly inconsistent sets of arguments of F . Minimality can be inferred from the splitting
theorem in a similar way. Hence,H1 ∈ SIAmin(F ).

Let us now assume we are given SIAmin(F1). Due to the hitting set duality for this setting,
i. e., Propositions 5.3.3 and 5.3.4 we find a minimal diagnosis of F1 by removing a minimal
hitting set S1 of SIAmin(F1). In general it is not quite clear whether we can now extend S1 to
a minimal hitting set S of SIAmin(F ). Due to SIAmin(F1) ⊆ SIAmin(F ) we can surely extend
S1 to a hitting set of SIAmin(F ), but this way, minimality is not yet guaranteed. We can
however prove it via Proposition 5.4.13:

Proposition 5.4.15. Let F = (A,R) be an AF and let (F1, F2, R3) be a splitting of F , i. e.,
we have A = A1 ∪ A2 and R = R1 ∪ R2 ∪ R3 where F1 = (A1, R1) and F2 = (A2, R2).
If S1 is a minimal hitting set of SIAmin(F1, stb, cred) (SIRmin(F1, stb, cred)), then there is a
minimal hitting set S of SIAmin(F , stb, cred) (SIRmin(F , stb, cred)) with S1 ⊆ S.

Proof. By Propositions 5.3.3 and 5.3.4, S1 is a minimal hitting set of SIAmin(F1, stb, cred)
(SIRmin(F1, stb, cred)) iff S1 is a minimal diagnosis of F1. Due to Proposition 5.4.13 there
is a minimal diagnosis S of F with S1 ⊆ S. Again due to Propositions 5.3.3 and 5.3.4, S is
a minimal hitting set of SIAmin(F , stb, cred) (SIRmin(F , stb, cred)).

We want to mention that the situation differs when considering skeptical reasoning. If F1 is
such that stb(F1) 6= ∅ but no argument is skeptically accepted, then it might still be the case
that F possesses a skeptically accepted argument due to F2. So consistency of F1 is not a
necessary condition anymore. It is also not yet sufficient, but with an additional premise:

Proposition 5.4.16. Let F = (A,R) be an AF and let (F1, F2, R3) be a splitting of F , i. e.,
we have A = A1 ∪ A2 and R = R1 ∪ R2 ∪ R3 where F1 = (A1, R1) and F2 = (A2, R2).
If F1 is consistent wrt. skeptical reasoning and stable semantics, then so is F iff there is at
least one extension E1 ∈ stb(F1) such that stb

(
FE1,R3

2

)
6= ∅.

Proof. Immediate from Theorem 5.4.12.
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So far, our investigation was restricted to stable semantics. The reason is quite simple: The-
orem 5.4.12 is based on the (E1, R3)-reduct which requires further adjustments to obtain
the desired result for other semantics. The intuitive reason is that there might be arguments
a ∈ A which are neither in a σ-extension E nor attacked by E if we consider σ 6= stb (see
[12] for more details). Formally, we consider the set of undefined arguments wrt. E (also
known as undecided arguments) as follows.

Definition 5.4.17. If F = (A,R) is an AF, σ any semantics and E ∈ σ(F ), then the set of
undefined arguments wrt. E is

UE = {b ∈ A | b /∈ E,@a ∈ E : (a, b) ∈ R}.

To obtain the splitting result for other semantics, we use the (E1, R3)-reduct as usual, but
in addition we introduce dummy attacks to those arguments in F2 which are attacked by an
undefined argument from F1 wrt. E1. More precisely, the (S,L)-modification is defined as
follows:

Definition 5.4.18 (Modification). Let F2 = (A2, R2) be an AF and let A1 be a set of
arguments such that A1 ∩A2 = ∅. Let S ⊆ A1 and L ⊆ A1×A2. The (S,L)-modification
of F2, denoted by F2, is the AF

modS,L(F2) = (A2, R2 ∪ {(b, b)} | ∃a ∈ S : (a, b) ∈ L).

Observe that we are not interested in modUE1
,R3(F2), but in modUE1

,R3

(
FE1,R3

2

)
, so we

consider the (UE1 , R3)-modification of the (E1, R3)-reduct of F2.

Theorem 5.4.19 ([12]). Let F = (A,R) be an AF and let (F1, F2, R3) be a splitting of F ,
i. e., we haveA = A1∪A2 andR = R1∪R2∪R3 where F1 = (A1, R1) and F2 = (A2, R2).
Let σ ∈ {stb, ad , pr , co, gr}.
• If E1 is a σ-extension of F1 and E2 a σ-extension of the (UE1 , R3)-modification of

FE1,R3
2 , then E1 ∪ E2 is a σ-extension of F .

• Vice versa, if E is a σ-extension of F , then E1 = E ∩ A1 is a σ-extension of F1 and
E2 = E ∩A2 a σ-extension of the (UE1 , R3)-modification of FE1,R3

2 .

For stable semantics and credulous reasoning, the splitting theorem can be used to infer that
consistency of F1 is necessary for consistency of F . For the other semantics, it is not a
necessary, but a sufficient condition.

Proposition 5.4.20. Let F = (A,R) be an AF and let (F1, F2, R3) be a splitting of F , i. e.,
we have A = A1 ∪ A2 and R = R1 ∪ R2 ∪ R3 where F1 = (A1, R1) and F2 = (A2, R2).
Let σ ∈ {ad , pr , co, gr}. If F1 is consistent wrt. σ, then F is consistent wrt. σ as well. This
holds for both credulous and skeptical reasoning.

Proof. Immediate from Theorem 5.4.19.

The treatment of an AF using splitting is convenient since the structural properties induce
strong results. It is thus not surprising, yet encouraging to see that this principle is capable
of improving the investigation of diagnoses and repairs of AFs. As it turns out, splitting
can be used to reduce the search space for repairs (see Proposition 5.4.20) or compute min-
imal diagnoses stepwise (as in Proposition 5.4.13). Moreover, splitting is also meaningful
when looking for strongly inconsistent arguments resp. attacks. We believe this is a promis-
ing research direction for further investigation, including concrete algorithms to compute
repairs.
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5.4.3 Infinite Frameworks

Until now, our investigation was restricted to finite AFs, i. e., F = (A,R) whereA is a finite
set of arguments (and thusR a finite set of attacks). Within this section we want to drop this
restriction and investigate which results still hold. As usual, when moving from the finite
to the infinite case, we are concerned about existence and uniqueness of certain sets as this
might not be clear anymore (cf. [20; 21] for a treatment of unrestricted AFs). In order to
keep this section concise, we focus on universally defined semantics σ ∈ {co, pr , ss} and
in addition gr since gr -diagnoses play an important role similar to the finite case described
in Section 5.2. We focus on argument-based diagnoses.

Let us start with grounded semantics. In the finite case, we observed that an F is
consistent wrt. grounded semantics iff there is at least one unattacked argument. Let us
formally state that this is also the case for infinite AFs.

Proposition 5.4.21. If F = (A,R) is an infinite AF, then F possesses a non-empty grounded
extension iff there is at least one unattacked argument.

This also means we find gr -diagnoses as before, namely by removing arguments resp. at-
tacks until at least one argument is unattacked. Hence:

Fact 5.4.22. If F = (A,R) is an infinite AF, then F possesses a

• argument-based gr -diagnosis iff it is not self-controversial,

• attack-based gr -diagnosis.

Whether a minimal gr -diagnosis exists for a given AF F = (A,R) is no longer trivial since
we cannot just move from a diagnosis S to a minimal one S ′ as it is the case for finite
frameworks. Indeed, when considering argument-based diagnoses, there is no minimal gr -
diagnosis in general.

Example 5.4.23. Recall the AF F = (A,R) = ({ai | i ∈ N}, {(ai, aj) | i > j}) from
Example 3.4.2 (Section 3.4 about infinite knowledge bases):

a1 a2 a3 a4 a5 . . .

It is easy to check that this AF possesses gr -diagnoses: Let j ∈ N. Then, there is an attack
(ai, aj) ∈ R for each i ∈ N with i > j. So in order to obtain a gr -diagnosis of F we
may remove each argument ai with i > j, i. e., we let Sj = {ai | i > j, i ∈ N}. This is a
diagnosis since no argument attacks aj within FSj , so the grounded extension is non-empty.
It is not minimal though since j was arbitrary. More precisely, for any j′ > j, the set Sj′
is a gr -diagnosis of F as well satisfying Sj′ ⊆ Sj . Since we can always move to a smaller
diagnosis, we see that there is no minimal one.

Now let σ ∈ {pr , co}. In [49] it has been noted that those semantics are also universally
defined when considering infinite AFs. Thus given a gr -repair, we also have a σ-repair as
in the finite case.
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Proposition 5.4.24. Let F = (A,R) be an infinite AF and σ ∈ {pr , co}. If S is a gr -
diagnosis of F , then S is a σ-diagnosis of F as well. This holds for both reasoning modes.

Proof. Consider complete semantics and skeptical reasoning. Since the gr -extension is the
least co-extension and nonempty for FS by assumption, we have that at least one argument,
say a ∈ A, is skeptically accepted wrt. complete semantics. This also implies the claim for
credulous reasoning. Now consider σ = pr . Recall that if E is a preferred extension, then
it is a complete extension as well. Hence,

a ∈
⋂

co(FS) ⊆
⋂

pr(FS)

implying a is also skeptically accepted for preferred semantics. This finishes our proof.

This does not work for semi-stable extensions since an infinite AF does not necessarily
posses one [20; 116]. Augmenting an arbitrary AF with no semi-stable extension with an ar-
gument participating in no attack whatsoever yields a counterexample for Proposition 5.4.24
for σ = ss . Moreover, we note that Example 5.4.23 shows that minimal argument-based
σ-diagnoses do not necessarily exist for σ ∈ {pr , co} since this example works analogously
for σ ∈ {pr , co}. We thus see that argument-based diagnoses are not as well-behaved as in
the finite case.

We conclude this section with some good regarding so-called finitary AFs. In a finitary
AF, each argument is only allowed to have finitely many attackers. This solves nearly all
issues we had during this section with minimal diagnoses at once: Now, any gr -diagnosis is
necessarily finite and given a finite diagnosis, we can easily move to a minimal one. Hence,
we obtain existence of minimal complete and preferred diagnoses. Moreover, any finitary
AF possesses as semi-stable extension [20; 116], so the same can be guaranteed here.

Definition 5.4.25. The AF F = (A,R) is called finitary if {a ∈ A | (a, b) ∈ R} is finite
for each b ∈ A.

Theorem 5.4.26. Let F be finitary. Any minimal gr -diagnosis of F is finite. If S is a
gr -diagnosis of F , then there is a minimal gr -diagnosis S ′ of F with S ′ ⊆ S. If S ′ is a
minimal gr -diagnosis of F , then there is a minimal σ-diagnosis S ′′ of F with S ′′ ⊆ S ′ for
any σ ∈ {co, pr , ss}.
Proof. The claims about gr -diagnoses are clear. Given a finite gr -diagnosis, apply Propo-
sition 5.4.24 to obtain a finite σ-diagnosis for σ ∈ {co, pr}. Due to finiteness, one can
turn this diagnosis into a minimal one. Moreover, due to [116], any finitare AF F pos-
sesses a semi-stable extension. Now if FS′ is a minimal gr -repair, then there is at least one
unattacked argument. It is easy to see that this occurs in each semi-stable extension, so S ′
is a ss-diagnosis as well. Again we can move to a minimal one due to finiteness.

Observe that –speaking in terms of Section 3.4– we just proved that finitary AFs possess the
co-compactness property (see Definition 3.4.16) for σ ∈ {co, pr , ss} wrt. both reasoning
modes.

When investigating infinite instead of finite AFs, one needs to accept the possibility that
certain results are not conveyed. In our case, the investigation showed that argument-based
diagnoses are somewhat clumsy and minimality can almost never be guaranteed. It is worth
mentioning that a reasonably simple example suffices to demonstrate this for all considered
semantics and both reasoning modes. As formalized in Theorem 5.4.26, the issues we faced
in this section stem from the infinite number of attacks (to single arguments) rather than the
infinite number of arguments.
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5.5 How to Repair? - A Short Case Study

As mentioned before, due to Lemmata 5.2.15, 5.2.18 and 5.2.22 we may reduce the search
space for diagnoses as long as we are equipped with an already computed grounded one.
If one is interested in all diagnoses, the notion of strong inconsistency in order to use the
hitting set duality might be useful. The aim of this section is to briefly demonstrate how to
repair a given AF. We discuss both credulous and skeptical reasoning.

First let us consider an example with stable semantics. Let us start with credulous rea-
soning. It is well-known that in case of finite AFs the non-existence of acceptable positions
implies the existence of odd-cycles. This means, by contraposition, one possible strategy
for repairing AFs in case of stable semantics is to break odd-cycles. This approach corre-
sponds to the minimal stb-repairs F{a}, F{b} and F{c} from Example 5.3.5. Since possess-
ing odd-cycles is not sufficient for the collapse of stable semantics further considerations
are required. Indeed, in case of our running example, we have seen that eliminating the
arguments e and f results in a minimal stb-repair, namely F{e,f}, too. Regarding the prin-
ciple of minimal change one may argue that breaking the odd-cycle in F has to be preferred
over the latter strategy since less arguments are involved. The following slightly modified
version of this example shows that this observation is not true in general. A further intensive
study of this issue will be part of future work.

Example 5.5.1. Consider the following AF F . One may easily confirm that there are 9
minimal cred-stb-diagnoses, namely {ai, bj , ck} with i, j, k ∈ {1, 2, 3}. They comply
with the idea to break all odd loops of the given AF. However, {e} is a minimal cred-stb-
diagnosis as well, and arguably the most immediate one.

c1

c2

c3

b1
b2

b3

a2

a1

a3

d

e

F :

As the reader may have already observed, the same applies to attack-based diagnoses. For
example, {(a1, a2), (b1, b2), (c1, c2)} is an attack-based diagnosis breaking all odd loops.
However, consideration of {(e, d)} suffices.

Example 5.5.2. Let now F be the following AF:

aF :

b

c d

e

f

We set F1 = (A1, R1) with A1 = {a, b, c} and R1 = {(a, b), (b, c), (c, a)} as well as
F2 = (A2, R2) with A2 = {d, e, f} and R2 = {(d, e), (e, d), (d, f), (e, f)}, and finally
R3 = {(b, e), (c, d)}. Then (F1, F2, R3) is a splitting of F :
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a

b

c

F1 :

d

F2 :

e

f

Since F1 does not possess a stable extension, we need to remove a, b or c. In any case, there
is a sceptically accepted argument. The only stb-repair with two extensions is F{c}:

b

cF{a} : d

e

f aF{b} :

c d

e

f

aF{c} :

b

d

e

f aF{c} :

b

d

e

f

Due to the splitting Theorem 5.4.12, we can be sure that we found exactly the three minimal
stb-repairs.

The subsequent example considers a semantical defect wrt. preferred semantics which is
tackled via grounded repairs.

Example 5.5.3. The following AF F exemplifies a situation where preferred semantics do
not possess any skeptically accepted argument. More precisely,

⋂
pr(F ) = ∅ due to

pr(F ) = {{a, e}, {b, e}, {c, d, f}} .

F :

a b

c d

e

f F{c,d} :

a b

e

f
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Our goal is to find a minimal skep-pr -diagnosis S , i.e., a set S such that
⋂
pr
(
FS
)
6= ∅ and

pr
(
FS
)
6= ∅. Lemma 5.2.18 suggests that looking for gr -repairs is a reasonable starting

point. In order to guarantee at least one unattacked argument one finds {c, d} as minimal gr -
diagnosis. Let F{c,d} denote the associated minimal repair. We have gr

(
F{c,d}

)
= {{e}}.

Hence,
⋂

pr
(
F{c,d}

)
6= ∅ is implied. This means, {c, d} is a skep-pr -diagnosis. Moreover,

{c, d} is even minimal proven by the following two AFs F{c} and F{d}.

F{c} :

a b

d

e

f F{d} :

a b

c

e

f

Indeed, we have
⋂
pr
(
F{c}

)
=
⋂
pr
(
F{d}

)
= ∅ since {a, e}, {d, f} ∈ pr

(
F{c}

)
and

{a, e}, {c, f} ∈ pr
(
F{d}

)
.

5.6 Conclusions and Related Work

In this chapter, we investigated approaches aiming at repairing argumentation frameworks
which are inconsistent in the sense that they do not possess any accepted argument. We
considered a reasonable range of semantics, the standard reasoning modes, namely credu-
lous and skeptical reasoning, and two different tools to repair, namely removal of a certain
(minimal) sets of arguments or attacks. We identified repairs wrt. grounded semantics as the
arguably most important case: They can be utilized as a starting point in order to calculate
repairs wrt. other semantics, coincide for both reasoning modes and in Section 6.4 below we
will even see that they are tractable from an algorithmic point of view. We illustrated how
to derive stronger results for specific situations like restricting the AFs to certain subclasses
or if the AF allows for a splitting. We also investigated infinite AFs.

The topic of diagnoses and repairs as introduced in [96] is less developed in the area
of abstract argumentation. The closest one to our work is probably [88]. The authors de-
fine an operator and provide an algorithm, st. the resulting framework does not collapse.
The mentioned work considers a semantical defect as the absence of any extension. Conse-
quently, only stable semantics can be considered in contrast to our setup which additionally
includes a treatment of semantics which may provide the empty set as unique extension. All
semantics known from the literature do so. Moreover, restoring consistency is achieved via
dropping a minimal set of arguments or attacks. In the latter case, all arguments survive the
revision process.

The very first and basic works which are dealing with dynamics in abstract argumenta-
tion are [13; 16; 17] as well as [31; 40]. The first two are tackling the so-called enforcing
problem wrt. possibility as well as minimal change. More precisely, they are dealing with
the question whether it is possible (and if yes, as little effort as possible) to add new in-
formation in such a way that a desired set of arguments becomes an extension or at least a
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subset of one. In [74] the authors studied this problem under the name σ-repair and pro-
vided parametrized complexity results. Although adding information as well as desired sets
are not the focus of our study there is at least one interesting similarity to our work, namely:
given an AF where nothing is credulously accepted, then enforcing a certain non-empty set
can be seen as a special kind of repairing. The other two works are case studies of what
happens with the set of extensions if one deletes or adds one argument. The so-called de-
structive change is somehow the inverse of our notion of credulous repair since the initial
framework possesses at least one credulously accepted argument whereas the result does
not. Quite recently, in [19] the so-called extension removal problem was studied. That is,
is it possible to modify a given AF in such a way that certain undesired extensions are no
longer generated?
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Chapter 6

Computational Complexity

This chapter is devoted to the computational complexity of decision and function problems
which naturally arise in sight of the results we obtained up until this point. The most appar-
ent ones are concerning strong inconsistency. We demonstrated how strong inconsistency
generalizes the properties of inconsistency to non-monotonic logics. However, the price we
need to pay is consideration of all supersets instead of justH ⊆ K itself. We will hence not
only focus on strong inconsistency, but in particular how it compares to mere inconsistency
in monotonic logics. Consideration of minimal inconsistency in monotonic logics is not
novel: For example the paper [91] discusses minimal inconsistency of a given propositional
formula and the discussion of the complexity of inconsistency measures in [108] also in-
volves counting minimal inconsistent subsets of a knowledge base. With the results from
the literature in mind, we are interested in the following problems:

• How demanding is finding strongly inconsistent subsets from a computational point
of view?

• How demanding is the corresponding counting problem, i. e., computing |SImin(K)|?

• How do our problems compare to corresponding ones regarding ordinary inconsis-
tency in monotonic logics?

It is clear that the answer to those questions depends on the logic under consideration, more
precisely on the satisfiability check. Most of our results are thus relative to the following
decision problem:

SATL Input: K ⊆ WF
Output: TRUE iff K is consistent

We may thus give some general upper bounds for the problems we consider, depending
on the complexity of SATL. However, lower bounds usually require constructions which
utilize specific properties a particular logic under consideration possesses. To demonstrate
how to infer lower bounds for our setting, we discuss most of the problems related to strong
inconsistency for ASP.

In contrast to Chapters 3 and 4, Chapter 5 about inconsistency in abstract argumentation
was mainly concerned about consistent subframeworks and repairs, as well as their rela-
tions. We will proceed similarly with our discussion about the computational complexity
and focus on deciding maximal consistency. Here we keep in mind that repairs for grounded
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semantics were helpful when reducing the search space for repairs wrt. other semantics. We
thus ask:

• How demanding is finding maximal consistent subframeworks from a computational
point of view?

• How do skeptical and credulous reasoning compare? How do different semantics
compare?

• Can gr -diagnoses be computed within a reasonable amount of time?

We proceed similarly here and give general upper bounds before discussing lower bounds
for the various semantics. In comparison to the prior discussion on strong inconsistency this
shall demonstrate the similarities between the notions and the results we obtain.

In a nutshell, the outline of this chapter is as follows: We cover monotonic and non-
monotonic logics, decision and counting problems, and consider minimal strong inconsis-
tency for ASP and maximal consistency for AFs.

monotonic and
non-monotonic

decision and
counting

SImin

in ASP
Cmax

in AFs

Figure 6.1: Aspects of computational complexity

Some of the proofs in this chapter contain quite lengthy constructions and are not necessary
to follow the investigation we are going to perform. They can be found in Appendix A.

6.1 Background

We assume the reader to be familiar with the classes P, NP and coNP. Furthermore, we
consider the polynomial hierarchy as usual (see for instance [90]): we let Σp

0 = Πp
0 = P

and for m ≥ 1, Σp
m is the class of all languages L such that there is a polynomial time

Turing machine M (with output M(x,X1, ..., Xm)) and a polynomial p such that x ∈ L if
and only if

∃X1 . . . QmXm : M(x,X1, . . . , Xm) = 1 (6.1)

with |X1|, ..., |Xm| ≤ p(|x|) and alternating Qi ∈ {∃, ∀} for 2 ≤ i ≤ m. The class Πp
m is

defined analogously, but the expression in (6.1) starts with a universal quantifier rather then
an existential one. Note that Σp

1 = NP and Πp
1 = coNP.

An equivalent formalization makes use of oracle machines. Let CD be the class of de-
cision problems solvable in C having access to an oracle for some problem that is complete
in D. Then we have Σp

0 := Πp
0 := P and for each m ≥ 0,

Σp
m+1 = NPΣp

m , Πp
m+1 = coNPΣp

m .
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6.1. Background

The generic framework to capture complexity classes within the polynomial hierarchy
is quantified boolean formulas (QBFs). A QBF Φ is a formula

Φ = Q1X1 . . . QmXm φ (6.2)

with alternating quantifiers Q1, . . . , Qm ∈ {∀,∃}, pair-wise disjoint sets X1, . . . , Xm of
variables, and a propositional formula φ over the variablesX1∪ . . .∪Xm. Here, we slightly
abuse notation and consider quantifiers over sets of variables. More precisely, QiXi is to be
understood as Qixi,1, . . . , Qixi,ni where Xi = {xi,1, . . . , xi,ni}.

A QBF Φ is true if φ evaluates to true wrt. the quantifiers. A QBF Φ of the form (6.2)
is in prenex normal form (PNF) if the quantifiers Q1, . . . , Qm alternate between ∀ and ∃.

Example 6.1.1. The QBF

∀x1∃x2(x1 ⇔ ¬x2)

is true and in prenex normal form.

We will also consider open QBFs. They are defined similar as QBFs, but also contain free
variables. Thus, an open QBF is of the form

Φ = Φ(X) = Q1X1 . . . QmXm φ(X,X1, . . . , Xm).

If Φ = Φ(X) is an open QBF, then MOD(Φ) is the set of all models of Φ, i. e., the set of all
assignments to the X-variables rendering φ true with respect to the quantifiers.

Example 6.1.2. For the open QBF

Φ = Φ(x) = ∀x1∃x2 x ∧ (x1 ⇔ ¬x2)

we have MOD(Φ) = {x 7→ 1}.

If a QBF is not an open QBF, it is called a sentence.
The problem of deciding whether a QBF Φ with m alternating quantifiers starting with

∃ (resp. starting with ∀) is true is the canonical Σp
m-complete (resp. Πp

m-complete) problem
[90]. More precisely, this is the case wrt. polynomial-time many-one reductions (or polyno-
mial reductions for short). The hardness results we are going to give for decision problems
are wrt. polynomial reductions and we assume the reader to be familiar with this notion.

We also make use of the differences classes Dp
m [90]. They were introduced to capture

threshold problems like “Is it true that a given graph G has a Hamiltonian cycle, but if one
removes an arbitrary edge, the resulting graph does not?” Observe that this corresponds
to checking that a certain instance belongs to a language decidable in NP, while another
instance does not. Formally,

Dp
1 = {L1 \ L2 | L1, L2 ∈ NP}

or, equivalently,
Dp

1 = {L1 ∩ L2 | L1 ∈ NP, L2 ∈ coNP}.

For example, the generic Dp
1-complete problem is SAT-UNSAT, where we are given two

propositional formulas φ1 and φ2, and have to decide whether φ1 is satisfiable while φ2 is
not. The natural generalization of Dp

1 to higher levels of the polynomial hierarchy is

Dp
m = {L1 ∩ L2 | L1 ∈ Σp

m, L2 ∈ Πp
m}.
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Moreover, we consider PSPACE, i. e., the class of all languages L that can be computed
using polynomial space. In contrast to Σp

m and Πp
m, where we can decide the truth value of

a QBF with m alternating quantifiers, the generic PSPACE-complete problem is deciding
the truth value of an arbitrary QBF.

Our investigation of the inconsistency measures will lead to the consideration of count-
ing complexity classes (cf. [114]). They are defined using witness functions w that assign
words from an input alphabet Σ to finite subsets of an alphabet Γ. Given a string x from the
alphabet Σ, the task is to return |w(x)|, i. e., the number of witnesses. Given a class C of
decision problems, by #·C we denote the class of counting problems such that

• for every input string x, each y ∈ w(x) is polynomially bounded,

• the decision problem “Is y ∈ w(x)?” is in C.

For example, the generic #·Πp
2-complete problem is counting |MOD(Φ)| for an open QBF

Φ = ∀Y φ(X,Y ) (see [50]). Here, MOD(Φ) is the witness function assigning to a given for-
mula the corresponding models. As required, each truth assignment is polynomial bounded
and given an assignment to the X-variables, the decision problem whether ∀Y φ(X,Y )
holds is in coNP.

Hardness results for function problems are going to be given under subtractive re-
ductions [50]. For that, let #V and #W be counting problems with witness sets v(x)
and w(y). The problem #V reduces to #W under strong subtractive reductions if there
are polynomial-time computable functions f and g such that w(f(x)) ⊆ w(g(x)) and
|v(x)| = |w(g(x))| − |w(f(x))|. Subtractive reductions are the transitive closure of strong
subtractive reductions. The reason to consider novel notions of reductions for function
problems are also discussed in [50], let us briefly mention an issue with polynomial re-
ductions: From results in [109] one can, for example, infer that there is a problem that is
#·P -complete, but also #·Πp

k-complete under polynomial-time many-one reductions for any
integer k. This strongly suggests that the classes #·Πp

k are not closed under those reductions.
For some decision problems we require the counting polynomial hierarchy [115]. For

this, consider the counting quantifier C: Given a predicateR(x, y) with free variables x and
y, let

Ck
yR(x, y) :⇔ |{y | R(x, y) true }| ≥ k.

The counting quantifier is true for the predicate R and the bound k iff there are at least k
values for y st. R is true. The polynomially bounded version of this quantifier is defined
as follows. For any class C of problems, A is in CC if there is a B ∈ C, a function f
computable in P and a polynomial p such that

x ∈ A :⇔ Cf(x)
|y|≤p(|x|)(x, y) ∈ B,

i. e., there are at least f(x) many (by a polynomial in x bounded) values y such that a
predicate holds for (x, y). The latter check shall be in B.

Example 6.1.3. A generic complete problem for the class CP is the following: Given a
propositional formula φ, is it true that |MOD(φ)| ≥ k? To give a generic example for the
class CcoNP, we make use of open QBFs: Given an open QBF Φ = ∀Y φ(X,Y ), is it true
that |MOD(Φ)| ≥ k?
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6.2 The Complexity of Inconsistency

Let us now focus on decision problems that are related to strong inconsistency. The no-
tion of strong inconsistency includes consideration of all supersets of a given set, which
is apparently more involved than ordinary inconsistency in monotonic logics. We are thus
interested in the computational complexity of deciding (minimal) strong inconsistency and,
in particular, the difference between monotonic and non-monotonic logics. In order to for-
malize the comparison between ordinary and strong inconsistency, we start by investigating
QBFs. They are a suitable tool due to the following reasons:

• QBFs are monotonic in the following sense: If φ evaluates to false wrt. the given
quantifiers, then the same is true if we augment φ with additional clauses.

• QBFs capture the whole polynomial hierarchy in the following sense: For any class
Σp
k resp. Πp

k there is a class of QBFs such that deciding their truth value is complete
in this class.

After discussing QBFs, we will continue with upper bounds for our decision problems
which involve strong inconsistency. Even though these bounds appear rather generic, we
will see that they cannot be improved in general. We will also give corresponding lower
bounds for ASP and conclude this section with a generic algorithm to compute strongly
inconsistent subsets of a given knowledge base.

Let us now formally introduce the decision problems we are going to consider. They
are phrased for an arbitrary logic L, but keep in mind that they should be assessed relative
to the satisfiability check SATL.

S-INCL Input: (K,H) with K ⊆ WF ,H ⊆ K
Output: TRUE iffH ∈ SI (K)

MIN-S-INCL Input: (K,H) with K ⊆ WF ,H ⊆ K
Output: TRUE iffH ∈ SImin(K)

So, S-INCL simply asks whether a given subset H of a knowledge base K is strongly
inconsistent. The problem MIN-S-INCL additionally requires minimality ofH.

6.2.1 Minimal Unsatisfiability for QBFs

In the literature, there is a counterpart to our problem MIN-S-INCL for propositional logic.
One of the main results in [91] is that the following problem Minimal Unsatisfiability (MU)
is Dp

1-complete:

MU Input: A propositional formula φ = {C1, . . . , Cr} in CNF
Output: TRUE iff φ is inconsistent, but φ \ Ck is consistent for any k

In other words, a formula φ in CNF consisting of clauses C1, . . . , Cr is a positive instance
if it is not satisfiable, but removing an arbitrary clause Ck of φ ensures existence of a sat-
isfying assignment. Since we do not want to restrict ourselves to logics whose satisfiability
check is in NP, we need to lift this result to a wider range of complexity classes.

One such generalization can be found in [39], where it has been shown that deciding
whether a QBF is false, but any subformula of it is true is PSPACE-complete. Unfortu-
nately, the class PSPACE is, roughly speaking, too big for our comparison between or-
dinary and strong inconsistency. To see this we need to recall the the two inconsistency
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notions: Checking whetherH is inconsistent requires a satisfiability check forH. Checking
whether H is strongly inconsistent requires taking the supersets of H into account as well.
Now assume the satisfiability check is in PSPACE. Then, within PSPACE we can not only
perform the satisfiability checks, but also enumerate each subset of a given knowledge base.
Hence, there is no difference between ordinary and strong inconsistency.

Proposition 6.2.1. If the decision problem SATL is in PSPACE, then both S-INCL as well
as MIN-S-INCL are in PSPACE.

Proof. Enumerate all subsets ofK and perform corresponding consistency checks. It is then
clear whether or not (K,H) is a “yes” instance of S-INCL resp. MIN-S-INCL.

We thus focus on logics whose decision problem SATL lies within the polynomial hierarchy.
In terms of QBFs this means we need to fix the number of quantifiers. This motivates the
following problem QBF-MU(Q1, ..., Qm):

QBF-MU(Q1, ..., Qm) Input: Φ = Q1X1 . . . QmXm φ in PNF, φ = C1 ∧ . . . ∧ Cr
Output: TRUE iff Φ is false, but true for φ \ Ck for any k

Since φ is a conjunction, Φ is true if and only if all conjuncts C1, . . . , Cr evaluate to true
(wrt. the quantifiers). Note that Φ evaluates to true if φ is the empty conjunction.

Recall that we are looking for a generalization of the result in [91] since we are inter-
ested in minimal inconsistency for monotonic logics beyond cases where SATL is in NP.
We are now ready to give such a generalization for the problem QBF-MU(Q1, ..., Qm).

Theorem 6.2.2. If m ≥ 2, then QBF-MU(Q1, ..., Qm) is Dp
m-complete.

Combining Theorem 6.2.2 and the result in [91] (i. e., m = 1 and Q1 = ∃), one can observe
that the case where Φ is of the form Φ = ∀Xφ is missing. Indeed, it turns out to be easier,
at least under standard assumptions.

Proposition 6.2.3. QBF-MU(∀) is NP-complete.

The following scheme depicts the complexity of QBFs. The cases “inc?” are clear and the
cases “MI?” (minimal inconsistent) are our previous results. Note that we require m ≥ 2.

SAT ?

Σp
m-c

Πp
m-c

Πp
m-c

Dp
m-c

Σp
m-c

inc?

MI?

MI?

inc?

Figure 6.2: The complexity of QBFs (m ≥ 2)
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We want to mention that it is straightforward to cast deciding the truth value of a QBF
into our general definition of a logic. Theorem 6.2.2 can then be interpreted as a result for
QBFs regarding the problem MIN-S-INCL. More precisely, this means that MIN-S-INCL
is Dp

m-hard in general, if L is monotonic and SATL is in Σp
m or Πp

m for m ≥ 2. Clearly, if
the satisfiability check of our QBF is in Σp

P (Πp
P ), then verifying unsatisfiability is in Πp

P

(Σp
P ). We will now see how these results generalize to arbitrary logics.

6.2.2 (Minimal) Strong Inconsistency in General

We now turn to the general discussion on the computational complexity of problems related
to strong inconsistency. Assume L = (WF ,BS, INC,ACC) is an arbitrary but fixed logic.
If L is monotonic and SATL ∈ C for some class C, then S-INCL is in co-C. However, the
notion of strong inconsistency is not only a property ofH itself, but also of all setsH′ with
H ⊆ H′ ⊆ K. Hence, deciding whether a given setH is strongly inconsistent may be more
demanding in some cases, but not always as the following result shows.

Theorem 6.2.4. Let m ≥ 1. If the decision problem SATL is in

(a) Σp
m, then S-INCL is in Πp

m,

(b) Πp
m, then S-INCL is in Πp

m+1,

(c) Πp
m and L is monotonic, then S-INCL is in Σp

m.

Proof. See proof of Theorem 6.2.5.

Theorem 6.2.2 already showed how difficult MIN-S-INCL is compared to the decision
problem SATL in the generic framework of QBFs. As stated in Theorem 6.2.4, checking
strong inconsistency is in general more difficult in non-monotonic frameworks and we ob-
tain a similar result in the case of MIN-S-INCL. However, the increase of the computational
complexity stems from checking the “strong“ part in “minimal strong inconsistency” rather
than the “minimal” part. For that reason and as the following result shows, moving from the
problem S-INCL to the problem MIN-S-INCL -i. e., additionally asking for minimality-
does not involve going up an additional level in the polynomial hierarchy but only moving
to the corresponding Dp

m class.

Theorem 6.2.5. Let m ≥ 1. If the decision problem SATL is in

(a) Σp
m, then MIN-S-INCL is in Dp

m,

(b) Πp
m, then MIN-S-INCL is in Dp

m+1,

(c) Πp
m and L is monotonic, then MIN-S-INCL is in Dp

m.

Proof. (a): We need to show that it is sufficient to solve one problem in Σp
m and one in Πp

m.
To check whether H is strongly inconsistent, we need to check that H′ is inconsistent for
each H ⊆ H′ ⊆ K. Checking that H′ is a “no” instance of SATL is in Πp

m. Since there are
only exponentially manyH′ ⊆ K, we can also decide in Πp

m whether

∀H ⊆ H′ ⊆ K : H′ is inconsistent
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is true. That is, a TM non-deterministically guesses a set H′ as above and performs a
satisfiability check. The minimality ofH can be written as

∀D ( H ∃D′ : D ⊆ D′, D′ is consistent (6.3)

stating that each proper subset D of H has a consistent superset D′, which ensures that D
is not strongly K-inconsistent. However, it is sufficient to check |H| subsets of H: Let
H = {α1, . . . , αk} and let Hi = H \ {αi}, i. e., we consider the |H| possible subsets of
size |H|−1. Now consider an arbitrary setD ( H. Clearly, there is an i such thatD ⊆ Hi.
Hence, if Hi has a consistent superset H′i, then so has D. Thus, all proper subset of H do
have a consistent superset if and only if this is the case forH1, ...,Hk. Hence, we only need
to check these subsets ofH and therefore, deciding whether

∃Hi ⊆ H′i : H′i is consistent

is true (with H1, ...,Hk as described) is sufficient. Since there are only linearly many Hi,
this is in Σp

m if SATL is in Σp
m. That is, for i = 1, . . . , k, a TM non-deterministically

guesses a set H′i as above and performs a satisfiability check. Now, the claim follows due
to the definition of Dp

m.
(b): This follows from (a) since Πp

m ⊆ Σp
m+1.

(c): If L is monotonic and SATL in Πp
m, then MIN-S-INCL corresponds to

• verifying thatH is inconsistent (which is in Σp
m) and

• verifying thatH1, ...,Hk as in (a) are consistent (which is in Πp
m).

Thus, MIN-S-INCL is in Dp
m. This finishes our proof.

The following scheme summarizes the membership results for MIN-S-INC we obtained so
far. We see that most cases yield membership in Dp

m:

SAT ? L ?

Dp
m

Dp
m+1

Πp
m non-mon

Σ p
m mon

Figure 6.3: Membership results for MIN-S-INC (red) depending on different cases (m ≥ 1)

In the above Theorems 6.2.4 and 6.2.5, only membership statements are given. However,
bear in mind that these results are valid for every logic that can be phrased via Defini-
tion 2.5.1. One cannot expect to obtain similar general hardness results as reductions may
work very differently for different logics. In the subsequent section, we will give some
concrete hardness results for ASP.
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Before doing so, let us take a closer look at the two above theorems. Since they are only
about upper bounds, it is natural to ask whether they can be improved in general. Here, the
cases (a) and (c) are quite clear, since our investigation regarding QBFs already witnesses
that the upper bounds we found are also lower bounds in general. The most interesting case
is thus probably (b). Indeed, this upper bound can also not be improved in general. To prove
this, we construct an artificial non-monotonic logic where the problems are complete for the
corresponding classes.

Theorem 6.2.6. For m ≥ 1, there is a logic LΠp
m

= (WFΠp
m
,BSΠp

m
, INCΠp

m
,ACCΠp

m
)

such that SATL
Π
p
m

is in Πp
m and

(a) S-INCL
Π
p
m

is Πp
m+1-complete and

(b) MIN-S-INCL
Π
p
m

is Dp
m+1-complete.

Note that in the previous theorems we excluded logics with SAT in P, i. e., we required
m ≥ 1. This condition is indeed necessary as we will see in Theorem 6.2.9 below.

6.2.3 Hardness Results for Answer Set Programming

In this section, we will give the corresponding hardness results for the statements of Theo-
rems 6.2.4 and 6.2.5 from above when instantiating the logic with ASP. We consider normal
and disjunctive logic programs. Those frameworks belong to case (a) of the theorems. We
will also discuss the case m = 0 which is excluded in Theorems 6.2.4 and 6.2.5. As it will
turn out, the results do indeed not hold for m = 0. We will give a counterexample based on
so-called stratified logic programs, where the satisfiability check can be performed in P.

For our formal investigation of normal and disjunctive logic programs, we consider the
logics LASP and LASP∗ as introduced in Section 2.5.1. Be reminded that deciding whether a
given normal logic program P is consistent is NP-complete [52].

Theorem 6.2.7. For normal logic programs,

(a) the problem S-INCLASP∗
is coNP-complete,

(b) the problem MIN-S-INCLASP∗
is Dp

1-complete.

Proof. Membership: The membership statements follow from Theorems 6.2.4 and 6.2.5
since SATLASP∗

is in NP.
Hardness: As mentioned above, the problem MU, i. e., checking whether a given formula
φ in CNF is unsatisfiable, but removing one clause renders it satisfiable, is Dp

1-complete
[91]. Given such a formula, we construct a program P and a subprogram H that is minimal
strongly inconsistent if and only if φ is a “yes” instance of MU.

Let φ be in 3-CNF, i. e., the conjunction of C1, ..., Cr with Ck = lk,1 ∨ . . . ∨ lk,3. Let
a1, ..., an be the atoms occurring in φ. Let σ be the mapping translating classical negation
into default negation, i. e.,

σ(l) =

{
ai if l = ai ∈ {a1, ..., an},
not ai if l = ¬ai ∈ {¬a1, ...,¬an}.
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Let P and H be the following programs:

P :

a1., . . . , an.

wCk
← σ(lk,1). k = 1, . . . , r

wCk
← σ(lk,2). k = 1, . . . , r

wCk
← σ(lk,3). k = 1, . . . , r

← not wCk
. k = 1, . . . , r

H :

← not wCk
. k = 1, . . . , r

Intuitively, for each k the atom wCk
shall witness that the clause Ck is true. That is why it

can be included in an answer set whenever one of the literals σ(lk,1), . . . , σ(lk,3) is. Note
that the construction of P is polynomial. We prove the claimed hardness results, starting
with the second one.
(b): We claim that H is minimal strongly inconsistent iff φ is a “yes” instance of MU.
“⇒”: Assume H ∈ SImin(P ). Hence, no program H ′ with H ⊆ H ′ ⊆ P is consistent.

We argue that φ must be unsatisfiable: For the sake of contradiction, assume there is a
satisfying assignment ω to the variables a1, . . . , an. Augment H with the fact “ai” for the i
such that ω(ai) = 1. Moreover, add all rules of the form “wCk

← σ(lk,i)”. Since ω renders
φ true, all constraints in H are satisfied. Thus, H ′ is consistent, which is a contradiction
since H was assumed to be strongly inconsistent. Similarly, minimality of H in SI (P )
ensures that removing any conjunct from φ renders it satisfiable.
“⇐”: Now assume φ is a “yes” instance of MU. Then, the construction as described above
does not work; no super-program of H is consistent. Hence, H is strongly inconsistent.
Minimality is similar, again.
Since MU is Dp

1-hard, we obtain hardness of MIN-S-INCLASP∗
in Dp

1.
(a): Since φ is an arbitrary formula, deciding whether it is unsatisfiable is coNP-complete
in general. As argued above, H is strongly inconsistent if and only if φ is unsatisfiable.
Hardness in coNP follows.

In the proof of Theorem 6.2.7 a program P is constructed which can be turned into a strat-
ified one with a minor adjustment [6]. This is particularly interesting since computing the
single answer set and then checking whether it is consistent and all constraints are sat-
isfied can be done in P as well. This observation can be turned into a proof that Theo-
rems 6.2.4 and 6.2.5 are not applicable for m = 0. We recall the notion of stratification.

Definition 6.2.8 ([6]). A logic program P over a set A of atoms is called stratified if there
is a mapping ‖·‖ : A→ N such that for any rule

r : l0 ← l1, . . . , lm, not lm+1, . . . , not ln.

from P it holds that

• k(l0) ≥ k(li) for i = 1, ...,m,

• k(l0) > k(lj) for j = m+ 1, ..., n.
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We can now construct a simple logic that rejects any program which is not stratified. A
knowledge base is going to consist of rules and integers corresponding to strata for the
atoms. It is thus quite easy to see that the satisfiability check of this logic is in P. We utilize
the a similar construction as in the previous proof for the hardness results and thus obtain:

Theorem 6.2.9. There is a logic LPStrat
= (WFPStrat

,BSPStrat
, INCPStrat

,ACCPStrat
)

such that SATLPStrat
is in P = Σp

0 and

(a) S-INCLPStrat
is coNP-complete and

(b) MIN-S-INCLPStrat
is Dp

1-complete.

More generally, if SAT is in P for a logicL, then we almost never expect verifying (minimal)
strong inconsistency of H ⊆ K to be in P as well. The intuitive reason is that we cannot
non-deterministically guess supersets ofH in P.

Let us now consider disjunctive logic programs i. e., the logic LAASP from Section 2.5.1.
Due to [52], deciding whether a given disjunctive program is consistent is Σp

2-complete.

Theorem 6.2.10. For disjunctive logic programs,

(a) the problem S-INCLASP
is Πp

2-complete,

(b) the problem MIN-S-INCLASP
is Dp

2-complete.

Normal and disjunctive LPs belong to case (a) of Theorems 6.2.4 and 6.2.5 and we saw that
the corresponding lower bounds can be proved as well. Moreover, the notion of stratification
[6] yielded a counterexample for m = 0 in the theorems. The following scheme depicts a
summary of the results.

stratified or
normal LP

coNP-c Dp
1-c

SI
?

SI
m
in ?

disjunctive
LP

Πp
2-c Dp

2-c

SI
?

SI
m
in ?

Figure 6.4: The complexity of ASP

6.2.4 Computing Strongly Inconsistent Subsets

To conclude this section, we present a generic algorithm for computing SI (K). Algorithm 1
computes strongly inconsistent subsets in the order of decreasing cardinality, starting with
K. It is based on the observation that a proper subset S of K can only be strongly inconsis-
tent if all subsets of K which contain one additional element are also strongly inconsistent
(this property is checked during the computation of New). This additional check presum-
ably reduces the search space in many cases, but a detailed evaluation of this algorithm is
left for future work.
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Input: a knowledge base K
Result: SI (K)
n := |K|; H := ∅; H ′ := ∅;
if K inconsistent then H ′ := {K};
while H 6= H ′ do

n := n− 1; H := H ′; New := ∅ ;
for each S ∈ H with |S| = n+ 1 do

for each S′ ⊆ S with |S′| = n do
if S′ inconsistent and
S′ ∪ {φ} ∈ H for each φ ∈ K \ S′
then New := New ∪ {S′};

end
end
H ′ := H ′ ∪New;

end
return H .

Algorithm 1: A generic algorithm for computing SI (K)

The algorithm is somewhat reminiscent of the Apriori algorithm for computing frequent
sets in data mining [1], but rather than working bottom up from smaller to bigger sets, it
works in the opposite direction. The algorithm can easily be turned into one for SImin(K)
by deleting non-minimal elements whenever New is added to H ′.

Proposition 6.2.11. Algorithm 1 is sound, complete, and has runtimeO(2n∗n∗f(n)) where
n = |K| and f(n) is the runtime of an algorithm for checking whether K is consistent.

Proof. In order to prove soundness let H be the result of applying Algorithm 1 on K and
let S ∈ H . We have to show that S ∈ SI (K). If S = K, then S has been added to H before
the while-loop because K is inconsistent. By definition it follows S ∈ SI (K). If S 6= K,
then S has been added to H at the end of the while-loop. This is due to the fact that S is
inconsistent and, by induction, each union of S with another formula is strongly inconsistent
(second if-statement). It follows that S is strongly inconsistent as well. For completeness,
let T ∈ SI (K). Then there is a chain T = T0 ( T1 ( . . . ( Tk−1 ( Tk = K such that
T0, . . . , Tk ∈ SI (K) (note that this statement actually holds for all such chains). As Tk = K
is strongly inconsistent it is inconsistent as well and added to H before the while-loop. By
induction, each Ti (in reverse order) is found in the following while-loops as all subsets of
the given cardinality are tested for inconsistency.

Let now f(n) be the runtime of an algorithm for checking consistency. First, observe
that the worst-case runtime of Algorithm 1 is attained when SI (K) = 2K \ {∅}, i. e., all
subsets of K (except the empty set) are strongly inconsistent. Then the first for-loop is
iterated exactly once for each S ∈ SI (K)—i. e. 2|K| − 1 = 2n − 1 times— during the
execution of the algorithm as it considers all sets with decreasing cardinality (note that
the actual number of iterations of the outer while-loop is thus irrelevant for the runtime
analysis). For each S ∈ SI (K) we then consider each subset of S with cardinality |S| − 1
of which there are at most |K| = n many. For each of those one consistency check with
runtime f(n) is executed and at most |K| = n many member checks (of constant runtime)
are performed. In total we have that Algorithm 1 has runtime O(2n ∗ n ∗ f(n)).

148



6.3. On The Number of Strongly Inconsistent Subsets

We expect that for specific logics one can do better. For instance, for logic programs
without classical negation it is well-known that inconsistency can only arise if there are
certain negative loops in the dependency graph. The analysis of such loops may lead to
more direct algorithms. Given the results of this section it is however clear that (minimal)
strong inconsistency is quite demanding in terms of computational complexity in general.

This finishes our discussion on the decision problems for minimal strong inconsistency.
We found general upper bounds for them and constructed an artificial logic to witness that
they cannot be improved in general. Moreover, we considered normal and disjunctive logic
programs as exemplary frameworks to demonstrate how to derive the corresponding hard-
ness results. We believe that similar results can be proved for AFs, for both credulous as
well as skeptical reasoning (see Chapter 5). As already mentioned, in order to keep this
chapter varied and within a reasonable space, we focus on the dual notion, namely maximal
consistency when investigating the complexity of AFs.

6.3 On The Number of Strongly Inconsistent Subsets

We now address the complexity related to the number of strongly inconsistency subsets of
a knowledge base. So instead of verifying a given subset H ⊆ K we ask how many sets
H ∈ SImin(K) a knowledge base K possesses. There are several computational problems
related to this question. Inspired by [108], we consider two decision problems UPPERL and
LOWERL, and the natural function problem VALUEL, where L is an arbitrary logic:

UPPERL Input: K ⊆ WF , x ∈ [0,∞]
Output: TRUE iff |SImin(K)| ≤ x

LOWERL Input: K ⊆ WF , x ∈ (0,∞]
Output: TRUE iff |SImin(K)| ≥ x

VALUEL Input: K ⊆ WF
Output: The number |SImin(K)|

We omit the superscripts whenever the logic L is implicit.

6.3.1 General Membership Results

Similar to Section 6.2.2 above, we start with some general membership results. Note that as
in Theorems 6.2.4 and 6.2.5 the case where SATL is in Πp

m for anm and L is non-monotonic
is the hardest one in general.

Theorem 6.3.1. Let m ≥ 1. If the decision problem SATL is in

(a) Σp
m, then UPPER and LOWER are in CΣp

m,

(b) Πp
m, then UPPER and LOWER are in CΣp

m+1,

(c) Πp
m and L is monotonic, then UPPER and LOWER are in CΣp

m.

Proof. (a): Given an integer k, (K, k) is a positive instance of LOWER if there are at least
k minimal strongly inconsistent sets. Due to Theorem 6.2.5, deciding whether H ⊆ K
is in SImin(K) is in Dp

m. Moreover, any H ⊆ K is of polynomial bounded size. Due to
CDp

m = CΣp
m (see [115]), LOWER is in CΣp

m. Regarding UPPER, CΣp
m is closed under
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complement (see [115]) and (K, k) is a yes instance iff (K, k+1) is a no instance of LOWER.
(b): Similar; here deciding whetherH ∈ SImin(K) holds is in Dp

m+1 due to Theorem 6.2.5.
(c): Similar with decision problem in Dp

m due to Theorem 6.2.5.

When considering the proof of the above theorem, it becomes apparent that the complexity
of the counting problems heavily depends on the complexity of the underlying decision
problems. Besides general properties of the counting polynomial hierarchy [115] the proof
only makes use of the results given in Theorem 6.2.5. The same is true for the function
problem value:

Theorem 6.3.2. Let m ≥ 1. If the decision problem SATL is in

(a) Σp
m, then VALUE is in #·Πp

m,

(b) Πp
m, then VALUE is in #·Πp

m+1,

(c) Πp
m and L is monotonic, then VALUE is in #·Πp

m.

Proof. We prove (a) only. The other cases are similar. We make use of the observation that

#·∆p
m+1 = #·Πp

m

(see [64]). Furthermore, it is clear that

Dp
m ⊆ ∆p

m+1.

Hence: If SATL is in Σp
m, then checking whether H ∈ SImin(K) holds is in Dp

m (Theo-
rem 6.2.5) and thus, VALUE is in #·∆p

m+1 = #·Πp
m.

This finishes our discussion regarding general membership results. As the reader may have
already observed, they are quite simply corollaries of the results we already obtained for
the corresponding decision problems. We want to emphasize that similar results can be
shown for monotonic logics. For example, in [108, Proposition 11], it has been shown that
computing |Imin(K)| is in #·coNP (even complete under subtractive reductions). So as for
the decision problems, we obtain comparable results except in case (c) of our theorems.
This is too surprising since the results from this section are inferred from the corresponding
results for decision problems, as we already mentioned.

6.3.2 Hardness Results for Answer Set Programming

We are going to give the corresponding hardness results for ASP. As in Section 6.2.3, ASP
belongs to case (a) for both theorems, and as in Section 6.2.3, the corresponding lower
bounds can indeed be proved. We start with normal logic programs. In Lemma 6.3.3 below
we will give the central constructions required for the subsequent results regarding LASP∗ .
We will then infer those results from Lemma 6.3.3. Later on we will give the corresponding
result for LASP (see Lemma 6.3.6). Inferring the analogous hardness results for disjunctive
logic programs is then straightforward.

As already mentioned, the groundwork for our hardness results is the following obser-
vation. It is the required link between minimal strongly inconsistent sets of a program P to
models of an open QBF Φ.
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Lemma 6.3.3. Given an open QBF Φ = ∀Y φ(X,Y ), there is a normal logic program
P (Φ) ⊆ WFASP∗ of polynomial size with

|SImin(P (Φ))| = |X|+ |MOD(Φ)|.

Proof. Let X = {x1, . . . , xn} and Y = {y1, . . . , ym}. We abuse notation and write
φ(X,Y ) = 1 (φ(X,Y ) = 0) if φ evaluates to true (false) under a given assignment to
the X and Y variables, so we have

|MOD(Φ)| = |{X | ∀Y φ(X,Y ) = 1)}|
= |{X | ∀Y ¬φ(X,Y ) = 0}|.

We can assume φ to be a formula in 3-DNF and thus, ¬φ is in 3-CNF, i. e., the conjunction
of C1, . . . , Cr with Ck = lk,1 ∨ . . . ∨ lk,3. Let x′1, . . . , x

′
n, y
′
1, . . . , y

′
m be fresh atoms.

Intuitively, they shall correspond to the negated atoms ¬x1, . . . ,¬xn,¬y1, . . . ,¬ym. Let σ
be the appropriate mapping, i. e.,

σ(a) =

{
a if a ∈ X ∪ Y,
a′ if a ∈ {¬x1, . . . ,¬xn} ∪ {¬y1, . . . ,¬ym}.

We construct a programP = P (Φ) whose minimal strongly inconsistent subsets correspond
to {X | ∀Y ¬φ(X,Y ) = 0}. We include a fresh atom w not occurring in X ∪ Y which is
going to witness whether ¬φ is satisfied. Hence, P contains a constraint

← not w.

Moreover, ¬φ is satisfied if all conjuncts are true, where a conjunct Ck = lk,1 ∨ . . .∨ lk,3 is
true if one of the literals occurring in Ck is true. Thus, we introduce atoms w1, . . . , wr and
rules

w1 ← σ(l1,1). ... w1 ← σ(l1,3).

... ... ...

wr ← σ(lr,1). ... wr ← σ(lr,3).

w ← w1, . . . wr, wx1 . . . , wxn .

The meaning of the atoms wxi is as follows:
We want subsets of the program P to correspond to assignments to the X-variables.

Thus, we introduce rules “xi.” and “x′i.” for i = 1, . . . , n. A subprogram H ⊆ P may
contain both “xi.” and “x′i.” for an i. We want to ensure that H can only be consistent if
“xi.” or “xi.′” is not contained in H . That is the reason we need the atoms of the form wxi
in the rule “w ← w1, . . . wr, wx1 . . . , wxn .”. We include the following rules.

x1., . . . , xn. x′1., . . . , x
′
n.

wx1 ← not x1. wx1 ← not x′1.

... ...

wxn ← not xn. wxn ← not x′n.

Now, if H does not contain both “xi.” and “xi.′”, then the corresponding rule can be added
to H to ensure wxi is entailed. This way we check that a subset H ⊆ P (which is either
strongly inconsistent or not) corresponds to a proper assignment to the X-variables.
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Moreover, we want to make sure that a strongly inconsistent subset corresponds to an
assignment to all X-variables (and not to a partial assignment). In other words, if H ⊆ P
does not model an assignment to all X-variables, then H is not supposed to be strongly
inconsistent. We thus ensure existence of a consistent superset H ′ with H ⊆ H ′ ⊆ P as
follows: We allow entailment ofw if “xi.” or “x′i.” is missing for any i. This shall, however,
only work for proper assignments, i. e., wxi is required for any i. We hence introduce a
rule “w ← not xi, not x′i, wx1 , ..., wxn” for i = 1, ..., n. Now, if a subset H of P does
not contain “xi.” or “x′i.” (and not both) for any i = 1, . . . , n, we see that adding the
corresponding rule to H ensures w is entailed, rendering H consistent. We include:

w ← not xi, not x′i, wx1 , ..., wxn . i = 1, ..., n

Since our goal is counting |{X | ∀Y ¬φ(X,Y ) = 0}|, we do not want rules corresponding
to the choice of Y -variables to occur in a minimal strongly P -inconsistent subset H . The
following translates assignments to Y -variables without any restrictions:

y1 ← not y′1. y′1 ← not y1.

... ...

ym ← not y′m. y′m ← not ym.

To summarize, P is given as follows.

P :

x1., . . . , xn.

x′1., . . . , x
′
n.

w ← not xi, not x′i, wx1 , ..., wxn . i = 1, ..., n

wxi ← not xi. wxi ← not x′i. i = 1, ..., n

yj ← not y′j . y′j ← not yj . j = 1, ...,m

wk ← σ(lk,1). k = 1, ..., r

wk ← σ(lk,1). k = 1, ..., r

wk ← σ(lk,3). k = 1, ..., r

w ← w1, . . . wr, wx1 . . . , wxn .

← not w.

Note that the construction is polynomial. We show

|SImin(P )| = |X|+ |{X | ∀Y ¬φ(X,Y ) = 0}|.

We make a few observations in order to obtain this result.

(a) Any inconsistent subset of P contains the constraint “← not w.” and the inconsis-
tency stems from it.

(b) Let H ∈ SImin(P ). Then, H only contains “← not w.” and rules of the form “xi.”
or “x′i.”.
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For this, let W ⊆ P be the following program

W :

w ← not xi, not x′i, wx1 , ..., wxn . i = 1, ..., n

wxi ← not xi. wxi ← not x′i. i = 1, ..., n

yj ← not y′j . y′j ← not yj . j = 1, ...,m

wk ← σ(lk,1). k = 1, ..., r

wk ← σ(lk,1). k = 1, ..., r

wk ← σ(lk,3). k = 1, ..., r

w ← w1, . . . wr, wx1 . . . , wxn .

It is easy to see that rules in W can never introduce inconsistency, because they
facilitate entailment of w. Hence, a set H ∈ SImin(P ) consists of rules in P \W .

(c) Let H ∈ SImin(P ). If H does not contain both “xi.” and “x′i.” for an i ∈ {1, ..., n},
then it contains either “xi.” or “x′i.” for all i ∈ {1, ..., n}.
For this, assume neither “xi.” nor “x′i.” is inH . AugmentH with the following rules:

• “w ← not xi, not x′i, wx1 , ..., wxn .”,

• “wxj ← not xj .” and “wxj ← not x′j .” for j = 1, ..., n.

We obtain a consistent program since w is entailed now (cf. (a)). Hence,H /∈ SI (P ).

Now, we explicitly give the two kinds of minimal strongly P -inconsistent subsets. The
first one corresponds to inconsistent assignments, the second one to assignments where
∀Y ¬φ(X,Y ) = 0 holds.

(d) Let i ∈ {1, ..., n} and let Hi := {xi., x′i., ← not w.}. Then, Hi ∈ SImin(P ).

Since satisfying the constraint “← not w.” requires the atom wxi , any program H
with Hi ⊆ H ⊆ P is clearly inconsistent. Hence, Hi ∈ SI (P ). For minimal-
ity, assume “xi.” is removed from Hi. Augment the obtained subprogram with the
following rules:

• “w ← not xj , not x′j , wx1 , ..., wxn .” for any j 6= i (w. l. o. g. assume that
n ≥ 2),

• “wxj ← not xj .” and “wxj ← not x′j .” for j = 1, ..., n.

Since “xi.” is not contained in the subprogram anymore, w can be entailed now.
Thus, we found a consistent superprogram. Hence, Hi \ {xi.} /∈ SI (P ). For the
same reason, Hi \ {x′i.} /∈ SI (P ). The observation that Hi \ {← not w.} /∈ SI (P )
is trivial. Thus, Hi is minimal in SI (P ).

For our last step, let
HI =

⋃
i∈{1,...,n}

Hi. (6.4)

As we can conclude now, H ∈ SImin(P ) \HI contains either “xi.” or “x′i.” for all indices
i ∈ {1, ..., n}. More general, let HΩ ⊆ 2P be the set of all subprograms of P containing
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either “xi.” or “x′i.” for all i ∈ {1, ..., n}. Hence for H ∈ HΩ, it makes sense to define a
corresponding assignment ω(H) : X → {0, 1} with

ω(H)(xi) :=

{
1 if xi. ∈ H,
0 if x′i. ∈ H.

We are now ready to prove our last step.

(e) Let H ∈ HΩ. Then, H ∈ SImin(P ) \ HI if and only if ∀Y (¬φ(X,Y ) = 0) holds
for the assignment ω(H) to the X-variables.

“⇒”: Let H ∈ SImin(P ) \HI . Assume ∀Y (¬φ(X,Y ) = 0) is false for the assign-
ment ω(H), i. e., ∃Y ¬φ(X,Y ) holds. Consider the program H ∪W where W is
as in (b). Any answer set of W corresponds to one particular assignment to the Y -
variables. By construction of P and since ∃Y ¬φ(X,Y ) holds, H ∪W has a stable
modelM withw ∈M . Hence,H∪W is consistent and we concludeH /∈ SImin(P ).

“⇐”: Minimality of H in SI (P ) follows from the observations we made above.
Assume H ′ is consistent with H ⊆ H ′. Due to (d), H ′ \ H ⊆ W with W as
above, because adding additional rules of the form “xi.” or “x′i.” to H renders the
subprogram inconsistent. However, rules inW do not introduce inconsistency. Hence
H ′ with H ⊆ H ′ ⊆ H ∪W being consistent implies that H ∪W is consistent as
well. As above, we conclude ∃Y φ(X,Y ) is true.

In (d) and (e), we found two possible cases for sets H ∈ SImin(P ). Due to (b) and (c), no
other case occurs. Thus,

|SImin(P )| = |X|+ |{X | ∀Y ¬φ(X,Y ) = 0}|

is proved.

The main results follow via the above construction. We start with LOWER and UPPER.

Proposition 6.3.4. The problems LOWERLASP∗
and UPPERLASP∗

are CNP-complete.

Proof. Membership of LOWERLASP∗
and UPPERLASP∗

follows from Theorem 6.3.1, so we
need to show hardness. We consider the CNP-complete problem of deciding whether
|MOD(Φ)| ≥ k for an open QBF Φ = ∀Y φ(X,Y ) (recall CΣp

m = CΠp
m, see [115]).

Since we can construct the program P (Φ) as in Lemma 6.3.3 in P, we already found a
polynomial reduction: MOD(Φ) ≥ k if and only if SImin(P ) ≥ k + |X|.

Next we show that VALUE is #·coNP-complete under subtractive reductions. For #·coNP,
computing |MOD(Φ)| for an open QBF Φ = ∀Y φ(X,Y ) is the generic complete problem
under subtractive reductions. Recall the idea behind this kind of reduction: We first over-
count the value we actually aim at. Then, we correct this by subtracting unintended items.
Consequently, the above construction where we found a program P = P (Φ) satisfying
SImin(P )| = |X| + |MOD(Φ)| is a suitable starting point for a subtractive reduction. We
have left to find a program P ′ with

• SImin(P ′) ⊆ SImin(P ),

• MOD(Φ) = SImin(P )− SImin(P ′).
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Given these programs P and P ′ we have proved that MOD(Φ) can be computed for an open
QBF Φ = ∀Y φ(X,Y ) via |SImin(P )| − |SImin(P ′)| in #·coNP (see [50]). This yields
completeness under subtractive reductions.

Theorem 6.3.5. The problem VALUELASP∗
is #·coNP-complete under subtractive reduc-

tions.

Proof. As membership is due to Theorem 6.3.2, we prove hardness. Consider an open QBF
Φ = ∀Y φ(X,Y ). We use the same construction (and the same notation for φ, X and Y )
as in Lemma 6.3.3, i. e., consider P = P (Φ) given as follows:

P :

x1., . . . , xn.

x′1., . . . , x
′
n.

w ← not xi, not x′i, wx1 , ..., wxn . i = 1, ..., n

wxi ← not xi. wxi ← not x′i. i = 1, ..., n

yj ← not y′j . y′j ← not yj . j = 1, ...,m

wk ← σ(lk,1). k = 1, ..., r

wk ← σ(lk,1). k = 1, ..., r

wk ← σ(lk,3). k = 1, ..., r

w ← w1, . . . wr, wx1 . . . , wxn .

← not w.

Recall that P yields |SImin(P (Φ))| = |X| + |MOD(Φ)|. So for our subtractive reduction
we require a program P ′ with |SImin(P ′)| = |X| and SImin(P ′) ⊆ SImin(P ). For this,
consider P ′ = P ′(Φ) as follows:

P ′ :

x1., . . . , xn.

x′1., . . . , x
′
n.

w ← not xi, not x′i, wx1 , ..., wxn . i = 1, ..., n

wxi ← not xi. wxi ← not x′i. i = 1, ..., n

← not w.

It is easy to see that SImin(P ′) = HI with HI as in (6.4). In particular,

SImin(P ′) ⊆ SImin(P )

and |SImin(P ′)| = |X|. Since

|{X | ∀Y φ(X,Y )}| = |SImin(P )| − |X|
= |SImin(P )| − |SImin(P ′)|

follows, we found a subtractive reduction.
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This ends our discussion pertaining to LASP∗ . As already mentioned, the case LASP is
similar but involves going up one level in the corresponding hierarchy. Analogously, the
fundamental step is constructing a program P with |SImin(P (Φ))| = |X|+ |MOD(Φ)| for
an open QBF Φ = ∀Y ∃Z φ(X,Y, Z). The construction is rather similar: As we already did
in Section 6.2.3 we augment our previous construction with features from the program in
[52] which is used to prove Σp

2-completeness of the satisfiability check for disjunctive logic
programs. Then, the subsequent steps are as above. Due to the technical similarities, we
only sketch the proof of the following results in Appendix A:

Lemma 6.3.6. Given an open QBF Φ = ∀Y ∃Z φ(X,Y, Z), there is a disjunctive logic
program P (Φ) ⊆ WFASP of polynomial size with

|SImin(P (Φ))| = |X|+ |MOD(Φ)|.

Proposition 6.3.7. The problems LOWERLASP
and UPPERLASP

are CΣp
2-complete. The prob-

lem VALUELASP
is #·Πp

2-complete under subtractive reductions.

The following scheme summarizes the results of this section.
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Figure 6.5: The complexity of counting in ASP

We want to emphasize the similarities to Section 6.2: Again the general membership
results are rather generic and quite easy to see. Moreover, for our exemplary framework
ASP we could prove the corresponding lower bounds as before. When comparing these
results to the complexity analysis of inconsistency measures performed in [108] we see
that counting minimal strongly inconsistent subsets is not more demanding than the same
problem for ordinary inconsistency. More precisely, in [108, Proposition 11], it has been
shown that computing |Imin(K)| is #·coNP-complete under subtractive reductions if K is a
propositional knowledge base. Since satisfiability of propositional logic is NP-complete as
well, we do not expect the analogous problem for normal logic programs to be easier. In fact,
one might anticipate an increase in computational complexity since computing |SImin(K)|
appears to be more demanding than computing |Imin(K)|.

The membership results from Section 6.2 show that this intuition should be taken with a
grain of salt, at least in our setting of a worst case analysis. As it turns out, for normal logic
programs computing |SImin(P )| is #·coNP-complete under subtractive reductions as it is
the case for |Imin(K)|. This is true even though ASP is non-monotonic, counting complexity
classes are hard to define and their closure properties are not quite satisfying, calling for
notions like subtractive reductions which appear unusual at a first glance. Nonetheless,
SImin(P ) and Imin(K) remain comparable even up until this point.
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6.4 Consistent Argumentation

In this section we discuss the computational complexity of two decision problems that natu-
rally arise in view of Chapter 5 about inconsistency in AFs, namely the existence problem as
well as the verification problem regarding minimal repairs. We mostly restrict our investiga-
tion to σ ∈ {gr , co, pr , stb}. We also consider argument-based diagnoses only. We believe
this suffices to demonstrate the reader how to derive the results. Formally, we consider the
following decision problems:

EX-MIN-REPAIRσ,�
Input: An AF F
Output: TRUE iff there is a minimal σ-�-diagnosis for F

VER-MIN-REPAIRσ,�
Input: (F ,S) where F = (A,R) is an AF and S ⊆ A
Output: TRUE iff S minimal σ-�-diagnosis for F

We start with the problem of deciding whether a minimal repair exists. As we know from
Theorems 5.2.16, 5.2.19 and Fact 5.2.21 (see Section 5.2 about existence of repairs) it suf-
fices for both reasoning modes to perform a simple syntactical check, namely whether the
AF in question is self-controversial. This can be done in linear time.

Proposition 6.4.1. For σ ∈ {ad , gr , eg , il , ss, pr , co, stb} and � ∈ {cred, skep} the prob-
lem EX-MIN-REPAIRσ,� can be solved in linear time.

We turn to the problem VER-MIN-REPAIRσ,�, which will turn out to be more demanding
in most cases. The hardness results we give in the subsequent subsections are oftentimes
adjustments of existing constructions (see [51]). Membership results are a corollary of the
following observation, similar to Theorem 6.2.5 which was concerned about minimal strong
inconsistency instead of maximal consistency.

Proposition 6.4.2. Let � ∈ {cred, skep}. Let σ be any semantics. If deciding whether an
AF F is consistent wrt. σ and � is in Σp

m for any integer m ≥ 1, then VER-MIN-REPAIRσ,�
is in Dp

m. If deciding whether an AF F is consistent wrt. σ and � is in Πp
m for any integer

m ≥ 1, then VER-MIN-REPAIRσ,� is in Πp
m+1.

Proof. If checking consistency is in Σp
m, then we check in Σp

m whether we are given a repair
FS and for minimality we non-deterministically guess a subset S ′ and verify that FS′ is not
a repair in Πp

m, which needs to be the case for every S ′ ⊆ S. In summary, this procedure is
in Dp

m. The other case is similar.

6.4.1 Grounded Semantics

Given an AF (and a potential diagnosis), we know that the grounded extension is non-empty
if and only if there is an argument which is not attacked. Thus, verifying that a given set is
a gr -diagnosis is quite easy. It turns out that minimality is tractable as well.

Proposition 6.4.3. For � ∈ {cred, skep}, the problem VER-MIN-REPAIRgr ,� is in P.

Proof. If FS contains no unattacked argument, we reject since it is no repair. For minimal-
ity, we check whether there is α ∈ S st. FS\{α} has an unattacked argument as well.
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We want to mention that we can even compute all gr -diagnoses in P. We believe this
observation is relevant since the grounded repairs play an essential role as the results from
Section 5.2 suggest. Assume we are given the AF F = (A,R) with gr(F ) = {∅}. Since
a grounded diagnosis needs to ensure that at least one argument a ∈ A is not attacked
anymore, we can successively look at any a ∈ A and consider S = {b ∈ A | (b, a) ∈ R}.
If S is a minimal gr -diagnosis (verification is in P due to Proposition 6.4.3), we add S to
our list. Since there are at most |A| gr -diagnoses, this procedure is in P.

Proposition 6.4.4. Computing all gr -diagnoses of a given AF F can be done in P.

Although finding a σ-diagnosis may become rather hard depending on σ, we can hence
efficiently compute all gr -diagnoses and then utilize Lemmata 5.2.15, 5.2.18 and 5.2.22
in order to reduce the search space. This approach explains the central role of grounded
semantics. In a nutshell, the gr -repairs can be seen as a (polynomial time computable)
starting point in order to find minimal repairs for other semantics. A thorough investigation
of this approach is part of future work.

6.4.2 Universally Defined Semantics

Considering the computational complexity of different reasoning problems in AFs, it is
quite unsurprising that VER-MIN-REPAIRσ,cred is intractable for most semantics σ as it
requires checking whether a non-empty extension exists. Due to the additional minimality
check we require, the decision problem turn out to be in the corresponding difference class
for the universally defined semantics we consider.

Theorem 6.4.5. VER-MIN-REPAIRσ,cred is Dp
1-complete for σ ∈ {ad , pr , co}.

Proof. Membership is due to Proposition 6.4.2. For hardness, we reduce the problem MC
which is analogous to MU from above:

MC
Input: (φ, ϑ) where φ is a formula in 3-CNF and ϑ ⊆ φ
Output: TRUE iff ϑ is satisfiable, but any formula ϑ′ with ϑ ( ϑ′ ⊆ φ is not.

The problem MC is Dp
1-complete [90].

Let φ be in 3-CNF, i. e., the conjunction of C1, ..., Cr with Ck = lk,1 ∨ . . . ∨ lk,3. Let
x1, ..., xn be the literals occurring in φ, set ¬¬xi = xi. We can prove hardness utilizing a
minor adjustment of the standard construction (see [51]) depicted in Figure 6.6:

x1¬x1 . . . xn ¬xn

C1 C2
. . . Cr

φ φ

. . .

Figure 6.6: Standard Construction for 3-SAT reductions
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Let F be the AF F = (A,R) with A = {x1,¬x1, . . . , xn,¬xn, C1, . . . , Cr, φ, φ} and

R = {(xi,¬xi) | i ∈ {1, . . . , n}} ∪ {(¬xi, xi) | i ∈ {1, . . . , n}}
∪ {(xi, Cj) | xi occurs in Cj} ∪ {(Cj , φ) | j ∈ {1, . . . , r}}
∪ {(φ, φ)} ∪ {(φ, xi) | xi occurs in φ} ∪ {(φ,Cj) | j ∈ {1, . . . , r}}

Consider σ = ad . It is well-known that φ is satisfiable iff there is a non-emtpy admissible
extension of the framework depicted in Figure 6.6. The reader may verify that a non-empty
admissible extension E needs to contain some of the X arguments. In order to defended
them, φ ∈ E is required. In order to find an admissible set of arguments defending φ,
the formula needs to be satisfiable. Now let ϑ be a subformula of φ, i. e., ϑ is w. l. o. g.
of the form ϑ = {C1, . . . , Cs}. Then, (φ, ϑ) is “yes” instance of MC iff (F ,S) with
S = {Cs+1, . . . , Cr} is a “yes” instance of VER-MIN-REPAIRad ,cred.

Clearly, any framework possesses a non-empty admissible extension iff this is the case
for σ = co and σ = pr

We turn to skeptical reasoning. First observe that for ad semantics, the problem is trivial
since any framework possess an empty admissible extension.

Recall that the unique grounded extension of an AF F is complete as well. Moreover
we have gr(F ) ⊆

⋂
co(F ). Hence, any framework F possesses a skeptically accepted

argument wrt. grounded semantics if and only if this is the case for complete semantics.
Hence, applying Proposition 6.4.3 yields:

Corollary 6.4.6. VER-MIN-REPAIRco,skep is in P.

Now we consider σ = pr . Recall that deciding whether an argument is skeptically accepted
is Πp

2-complete [51]. Given a framework F and a set S ⊆ A of arguments, the decision
problem VER-MIN-REPAIRpr ,skep involves checking whether for all S ′ with S ′ ⊆ S the
framework FS′ does not possess a skeptically accepted argument. Since the latter check is
in Σp

2 for each S ′, we immediately see a Πp
3 upper bound for VER-MIN-REPAIRpr ,skep due

to Proposition 6.4.2. So the main work for the following theorem is the lower bound:

Theorem 6.4.7. VER-MIN-REPAIRpr ,skep is Πp
3-complete.

Proof. Membership is due to Proposition 6.4.2. Recall the following construction from [51]
with the property that the AF accepts an argument skeptically wrt. preferred semantics if
and only if a formula Φ = ∀Y ∃X : φ(X,Y ) in CNF evaluates to true.

HΠp
2

:

xi¬xi . . . yi ¬yi

C1 C2
. . . Cr

Φ⊥

. . .

In order to prove hardness in Πp
3 for our problem we need to simulate an additional quan-

tifier. So let us assume we are given a formula Ψ = ∃Z ∀Y ∃X : ψ(X,Y, Z) in CNF. We
augment the above construction from [51] with the intention that Ψ evaluates to true if and
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only if (F ,S) is a “no” instance of VER-MIN-REPAIRpr ,skep (that is, there exists a subset
S ′ with S ′ ( S such that FS′ possesses a skeptically accepted argument wrt. preferred
semantics).

Thereby we will construct an AF F = (A,R) with a set S ⊆ A of arguments with the
following properties:

• FS itself is consistent, i. e., there is a skeptically accepted argument,

• subsets of S, i. e., the sets S ′ ⊆ S may correspond to assignments to the Z-variables,

• there is one S ′ with S ′ ( S such that FS′ is consistent if and only if the formula
Ψ = ∃Z ∀Y ∃X : ψ(X,Y, Z) evaluates to true.

The first and the last item together ensure that (F ,S) is a positive instance of the decision
problem VER-MIN-REPAIRpr ,skep if and only if the formula Ψ is false.

Before depicting and explaining our construction, we name all arguments occurring in
the AF. We hope this improves readability of the proof. Which attacks we include will be
explained later. Our framework is F = (A,R) with

A = {x1,¬x1, . . . , xn,¬xn, y1,¬y1, . . . , ym,¬ym, z1,¬z1, z
′
1,¬z′1, . . . , zt,¬zt, z′t,¬z′t,

C1, . . . , Cr, D1,1, . . . , D1,4, . . . , Dt,1, . . . , Dt,4,Φ,>,⊥}

Moreover, we set

S = {D1,1, D1,2, . . . , Dt,1, Dt,2}

We will see that sets S ′ with S ′ ⊆ S induce AFs FS′ with the intuitive meaning that values
to Z variables are assigned.

So first we consider Z variables z1,¬z1, . . . , zt,¬zt which attack the C1, . . . , Cr in the
natural way: We have (zj , Ci) ∈ R iff zj occurs in the clause Ci and (¬zj , Ci) ∈ R iff ¬zj
occurs in the clause Ci. We also consider copies z′1,¬z′1, . . . , z′t,¬z′t.

xi¬xi . . . yj ¬yj

C1 C2
. . . Cr

z1z′1 . . . ¬zt ¬z′t

. . .

. . .

The reason for the copies z′1, . . . ,¬z′t is to ensure that the Z arguments themselves are not
skeptically accepted. Now consider the following gadged, which will be included for any
Z variable.

Di,3 Di,4

zi z′i

Di,1

¬zi ¬z′i

Di,2
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The dummy arguments Di,1 and Di,2 as well as their attacks are depicted with dotted lines
to illustrate that they do not occur in FS , as those arguments belong to S. Augmenting
FS with Di,1, for example, ensures that zi and z′i are never defended and thus occur in no
preferred extension. Hence, this choice corresponds to letting zi be false. The role of the
Di,3 and Di,4 becomes apparent considering the following arguments:

HΠp
2

Φ

Di,3Di,4

Now, for any i ∈ {1, . . . , t} we observe: Since Di,3 and Di,4 attack all arguments in HΠp
2

we have that {D1,3, . . . , Dt,3} and {D1,4, . . . , Dt,4} are two preferred extensions for any
FS′ with S ′ ⊆ S which contains both Di,1 and Di,2, i. e., in FS′ occur neither Di,1 nor
Di,2. Hence, the intersection

⋂
pr(FS′) is empty. We thus see: A framework FS′ with

S ′ ⊆ S can only possess a skeptically accepted argument if for each i ∈ {1, . . . , t} it is not
true that both Di,1 and Di,2 occur in S ′.

Now assume this is given, i. e., we have a framework FS′ with S ′ ⊆ S as described.
Recall that the choice of the Di,1 and Di,2 naturally corresponds to a (partial) assignment
ω : Z → {0, 1}. As in the original construction HΠp

2
we see that Φ is skeptically accepted

iff ∀Y ∃X : ψ(X,Y, Z) evaluates to true under the assignment ω : Z → {0, 1}. In this
case, FS′ is consistent. Since this applies to any S ′ of the form described above we see:
Every FS′ with S ′ ⊆ S is inconsistent iff for any assignment ω : Z → {0, 1} the formula
∀Y ∃X : ψ(X,Y, Z) evaluates to false iff the formula ∃Z ∀Y ∃X : ψ(X,Y, Z) evaluates
to false.

To summarize, we have established: ∃Z ∀Y ∃X : ψ(X,Y, Z) is false iff FS′ is incon-
sistent for all S ′ ( S. The latter nearly means that (F ,S) for S = A \ H is a positive
instance of VER-MIN-REPAIRpr ,skep. Finally, we make sure that FS itself is consistent,
i. e., there is a skeptically accepted argument. The following final gadget does the job:

D1,2D1,1 . . . Dt,1 Dt,2

>

There is no other argument attacking >. Hence, as long as no Di,1 resp. Di,2 argument is
chosen,> is skeptically accepted. As soon as a proper superset ofH is under consideration,
> can never be defended and is thus rendered pointless.

This finishes our discussion on the universally defined semantics. In summary, we obtained
the following results:

• for credulous reasoning, we find a Dp
1 lower bound for all cases,

• skeptical reasoning trivializes for ad semantics, is tractable for co semantics (since it
coincides with gr semantics) and is quite demanding for pr semantics (Πp

3-complete).
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6.4.3 Stable Semantics

Let us now turn to our only example for collapsing semantics, namely σ = stb. If we are
interested in credulous reasoning, we face a similar situation (and a similar proof which can
be found in Appendix A) as in Theorem 6.4.5.

Theorem 6.4.8. VER-MIN-REPAIRstb,cred is Dp
1-complete.

We turn to skeptical reasoning. Since finding a stable extension is NP-complete, it is not
hard to see that there is a coNP lower bound for skeptical reasoning. However, as the
framework in question might collapse, we also need to verify that there is at least one stable
extension of a given framework. The result is a Dp

1 lower bound (see [93]). Interestingly, this
observation is not relevant in our case. The coNP lower bound is already responsible for
VER-MIN-REPAIRstb,skep to have a Πp

2 lower bound: Given H ⊆ K the decision problem
VER-MIN-REPAIRstb,skep involves checking whether all sets H′ with H ⊆ H′ ⊆ K do not
possess any skeptically accepted argument. Since the latter test has a NP lower bound, we
have a Πp

2 lower bound for VER-MIN-REPAIRstb,skep. More precisely:

Theorem 6.4.9. VER-MIN-REPAIRstb,skep is Πp
2-complete.

The following table summarizes the results for the decision problem VER-MIN-REPAIRσ,�
we obtained. Except for gr semantics, credulous reasoning yields Dp

1-completeness for all
considered semantics. Due to special properties of semantics, the upper bound from Propo-
sition 6.4.2 is not always a lower bound for skeptical reasoning.

credulous skeptical
gr P P
ad Dp

1-c trivial
pr Dp

1-c Πp
3-c

co Dp
1-c P

stb Dp
1-c Πp

2-c

Table 6.1: Complexity of verifying maximal consistency in AFs

6.5 Conclusion and Related Work

In this chapter, we investigated the computational complexity of decision and function prob-
lems related to strong inconsistency. We placed value on a comparison between this refined
notion and ordinary inconsistency in monotonic logics. We argued that the this comparison
is not meaningful if the satisfiability check for the logic is in PSPACE (or more demand-
ing) and thus restricted the investigation to logics where this problem is in the polynomial
hierarchy. For this, we extended a result [91] about the problem MU to our generalized
version QBF-MU(Q1, ..., Qm). We then gave general upper bounds for the decision prob-
lems of verifying (minimal) strong inconsistency. Although they appear rather generic, we
showed that they cannot be improved in general. We also demonstrated how to infer the
corresponding lower bounds for ASP. In a similar fashion, we investigated the problem of
computing |IMSI(K)|, i. e., the number of minimal strongly inconsistent subsets of a given
knowledge base. Our last step was a similar investigation of inconsistency in AFs, where
we focused on maximal consistency rather than minimal (strong) inconsistency.
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The results of this chapter suggest that in terms of a worst case analysis, strong incon-
sistency is in many cases not more demanding than mere inconsistency. This result does
not transfer to logics where the satisfiability check is in P since this class does not allow
for a non-deterministic guess of supersets of a given H ⊆ K. Similar observations can be
made for the corresponding counting problems. We did not consider the notions concerned
with adding formulas to a knowledge base, for example bidirectional non-repairs. It is easy
to see that similar results transfer to these notions, which we did not state explicitly here in
order to keep our investigation concise.

We already mentioned that Reiter [96] was also concerned about computing hitting
sets. Many algorithms and systems for enumerating minimal inconsistent sets –[8; 78; 79]–
build on the duality results. Hitting sets are also utilized in computation of causes and
responsibilities of inconsistency in databases [98]. Our discussion regarding the complexity
of minimal unsatisfiability for QBFs was inspired by [91]. A rather thorough discussion
about the complexity of inconsistency measures has been done in [107; 108], which also
discusses various problems about minimal inconsistent and maximal consistent sets of a
given knowledge base. The paper [46] discusses computational complexity as well.
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Chapter 7

Conclusion

7.1 Summary

In this work we studied inconsistency in an abstract setting covering arbitrary logics, in par-
ticular non-monotonic ones. We demonstrated that in the general case the standard notion
of inconsistency is unable to play the same role it does in monotonic reasoning. One of
our main contributions is the identification and investigation of an adequate strengthening
of inconsistency. Our main results can be summarized as follows:

In Chapter 3 we focused on structural properties of knowledge bases, especially the con-
nection between consistent and inconsistent subsets. We gave a generalization of Reiter’s
well-known hitting set duality to non-monotonic logics (Theorem 3.1.12). Reiter’s duality –
tailored for a monotonic setting– is only concerned about removing formulas. We also gave
a duality characterization for repairs which can be obtained by adding (Theorem 3.2.9) or
adding and removing formulas (Theorem 3.2.32). We demonstrated structural properties of
knowledge bases, which are themselves interesting, not just as tools for proving the main
theorems (cf. Propositions 3.2.25 and 3.2.27 as well as Propositions 3.2.37 and 3.2.40). We
also considered more fine-grained modifications like strengthening and weakening instead
of adding and removing formulas (Corollary 3.3.13). Using several examples we illustrated
that infinite knowledge bases are in general not as well-behaved as finite ones. We identi-
fied sufficient conditions in order to overcome some of the arising issues, most notably the
so-called compactness property (see Theorem 3.4.15).

We devoted Chapter 4 to measuring inconsistency in non-monotonic logics. We in-
troduced inconsistency measures for this setting –IMSI, IMSIC and Ip– which are natural
generalizations of measures from the literature. In order to help assessing the quality of
our measures, we refined existing rationality postulates to obtain meaningful ones for non-
monotonic logics. Thereby, the most important ones were the four postulates for a basic
inconsistency measure (see [68]). As a result, we proposed strong monotony which is sim-
ilar to the monotony postulate, but requires an additional premise. Based on two refined
notions of free formulas we considered SI-free and Independence, and we argued that dom-
inance is not meaningful in non-monotonic logics. We analyzed the compliance of our
generalized measures with the refined rationality postulates. Our investigation continued
with the question how to assess inconsistencies of a knowledge base within the context of a
larger one. Interestingly, a well-behaved approach was based on our notion of bidirectional
non-repairs (see Definition 3.2.19). We also discussed measuring inconsistency in ASP as
a special case of our definition of a general logic.
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The results of this chapter suggest that the existing work on measuring inconsistency in
propositional knowledge bases can be extended to non-monotonic logics, when considering
appropriate adjustments to the established approaches. Interesting novel questions arise,
because additional information may resolve conflicts. However, one needs to accept that
not all aspects can be covered by a general definition of a logic. Consideration of particu-
lar frameworks cannot easily be subsumed if a thorough understanding of inconsistency is
desired.

In Chapter 5 we investigated inconsistency in AFs, with respect to various semantics
and the two standard reasoning modes, credulous and skeptical. We pointed out that ex-
istence of repairs is guaranteed in most cases (see Theorem 5.2.16, Theorem 5.2.19 and
Fact 5.2.21). We investigated the relations between repair notions (see Theorems 5.2.4 and
5.2.5 and in particular Conjecture 5.2.5, Theorem 5.2.8 and the examples we gave). We
demonstrated how our previous results yield duality characterizations for repairs of AFs
(Propositions 5.3.3 and 5.3.4). In order to refine our analysis, we considered specific sit-
uations, e.g., symmetry of the attack relation (see Proposition 5.4.6) or splitting (Proposi-
tions 5.4.13 and 5.4.14). In a brief discussion on infinite AFs our main result was proving the
co-compactness property (introduced in Section 3.4) for finitary AFs (see Theorem 5.4.26).
We also performed a short case study, illustrating how to repair some given AFs.

This chapter shall demonstrate how to apply our techniques to tackle inconsistency,
when given a specific logic. We found connections between the repair notions and were able
to apply our duality results to characterize repairs of AFs, independent of the underlying
semantics or reasoning mode. We gave encouraging connections to subclasses of AFs and
splitting results from the literature.

In Chapter 6 we performed an analysis of the computational complexity of related de-
cision and function problems. For this, we established results for the generic monotonic
framework of QBFs (Theorem 6.2.2). We found that in many cases, strong inconsistency
is not more demanding than the ordinary one, from a computational point of view (The-
orem 6.2.5). In addition to general upper bounds, we gave corresponding lower bounds
for ASP (Theorems 6.2.7 and 6.2.10). We extended the investigation to the corresponding
problem of counting strongly inconsistent subsets. Since the results can be derived from
the corresponding decision problems, strong inconsistency is again comparable to mere in-
consistency in many cases (Theorems 6.3.1 and 6.3.2). In Section 6.4 we gave complexity
results for verifying minimal repairs for AFs, covering various semantics and the two rea-
soning modes considered in Chapter 5.

7.2 Future Work

Several future directions arise considering restrictions and choices we made in this thesis.
First, the following aspects were only discussed for removing formulas from a knowledge
base K and could be extended to a setting which takes additional information into account:

• infinite knowledge bases (Section 3.4),

• inconsistency in AFs wrt. different semantics and reasoning modes (Chapter 5),

• computational complexity (Chapter 6).

Second, we considered measuring inconsistency in ASP, but not in AFs. Chapter 5 points
out several aspects that are worth taking into account when investigating inconsistency in
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AFs. An in-depth discussion on inconsistency measurement in abstract argumentation ap-
pears to be a promising research direction. Although we discussed inconsistency measures
for ASP, we did not perform an investigation of different reasoning modes as we did for
AFs. Doing so would not only be interesting on its own, but (due to the close link between
ASP and stable semantics) probably also yield insights in order to find a proof or a coun-
terexample for Conjecture 5.2.7. More precisely, as shown in [101, Theorem 4.13] there is a
standard translation T from AFs to LPs, st. for any AF F , σ(F ) coincides with τ(T (F )) for
certain pairs of semantics σ and τ . This means, one interesting research question is to which
extent our results for AFs can be conveyed to repairing in ASP and vice versa. Independent
of ASP, Conjecture 5.2.7 appears to be one of the most exciting open problems regarding
our investigation of AFs. One could also cover additional argumentation semantics. A fur-
ther intensive study of subclasses of AFs seems to be very promising since certain useful
semantical properties are already ensured by syntactic properties.

Our discussion on measuring inconsistency is mostly restricted to adjusted versions of
three measures from the literature. All of them are based on (the number of) minimal
strongly inconsistent subsets of a knowledge base K. It would of course be interesting to
extend this investigation to a wider range of inconsistency measures. We briefly demon-
strated that the classification of inconsistency measures proposed in [32] can be generalized
to non-monotonic logics, at least to a certain extent. A simple corollary of the result in [32]
was that all our considered measures can be defined as functions on the strong inconsistency
graph. It would be interesting to find meaningful measures for non-monotonic logics that
are no SIG measures. We also mentioned that measuring inconsistency in this general set-
ting would probably greatly benefit from information measures for non-monotonic logics.
The reason is that some conflicts can be resolved by adding information, but this is hard to
formalize if the added information cannot be assessed appropriately. An extension of the
discussion on inconsistency values similar in spirit to [68] would probably also benefit from
tools to measure information.

The analysis of the computational complexity covered hardness results for minimal
strong inconsistency in ASP and maximal consistency in AFs. One could complete this
picture by discussing the remaining two cases. Moreover, conceiving concrete algorithms
to compute minimal strongly inconsistent or maximal consistent sets would amplify our
investigation. For example, our identification of grounded repairs for diagnoses in AFs
appears to be a promising starting point. Another direction for future work is the applica-
tion of strong inconsistency for unsatisfiable core analysis1 in reasoning algorithms. Works
such as [2; 3] use the classical notion of minimal inconsistency to determine models in non-
monotonic formalisms such as answer set programming and circumscription. Using strong
inconsistency instead might boost performance further in these settings.

1An unsatisfiable core is a minimal inconsistent set of formulas in conjunctive normal form

167



Chapter 7. Conclusion

168



References

[1] Rakesh Agrawal and Ramakrishnan Srikant. Fast algorithms for mining association
rules in large databases. In VLDB’94, Proceedings of 20th International Confer-
ence on Very Large Data Bases, pages 487–499, 1994. URL http://www.vldb.
org/conf/1994/P487.PDF.

[2] Mario Alviano. Model enumeration in propositional circumscription via unsatisfiable
core analysis. TPLP, 17(5-6):708–725, 2017. doi: 10.1017/S1471068417000278.
URL https://doi.org/10.1017/S1471068417000278.

[3] Mario Alviano and Carmine Dodaro. Anytime answer set optimization via unsatisfi-
able core shrinking. Theory and Practice of Logic Programming, 16(5-6):533–551,
2016.

[4] Leila Amgoud and Jonathan Ben-Naim. Measuring disagreements in argumentation
graphs. In Proceedings of the 11th International Conference on Scalable Uncertainty
Management (SUM’17), 2017.

[5] Meriem Ammoura, Yakoub Salhi, Brahim Oukacha, and Badran Raddaoui. On an
mcs-based inconsistency measure. International Journal of Approximate Reasoning,
2016.

[6] Krzysztof R. Apt, Howard A. Blair, and Adrian Walker. Towards a theory of declar-
ative knowledge. In Foundations of Deductive Databases and Logic Programming,
pages 89–148. Morgan Kaufmann, 1988.

[7] Franz Baader, Diego Calvanese, Deborah McGuinness, Peter Patel-Schneider, and
Daniele Nardi. The description logic handbook: Theory, implementation and appli-
cations. Cambridge university press, 2003.

[8] James Bailey and Peter J. Stuckey. Discovery of minimal unsatisfiable subsets of con-
straints using hitting set dualization. In Practical Aspects of Declarative Languages,
7th International Symposium, PADL 2005, Long Beach, CA, USA, January 10-11,
2005, Proceedings, pages 174–186, 2005. doi: 10.1007/978-3-540-30557-6 14.
URL https://doi.org/10.1007/978-3-540-30557-6_14.

[9] Pietro Baroni, Martin Caminada, and Massimiliano Giacomin. An introduction to ar-
gumentation semantics. The Knowledge Engineering Review, 26(4):365–410, 2011.

[10] Pietro Baroni, Martin Caminada, and Massimiliano Giacomin. Abstract argumenta-
tion frameworks and their semantics. In Pietro Baroni, Dov Gabbay, Massimiliano

169



References

Giacomin, and Leendert van der Torre, editors, Handbook of Formal Argumentation,
chapter 4. College Publications, February 2018.

[11] Pietro Baroni, Massimiliano Giacomin, and Beishui Liao. Locality and modularity
in abstract argumentation. In Pietro Baroni, Dov Gabbay, Massimiliano Giacomin,
and Leendert van der Torre, editors, Handbook of Formal Argumentation, chapter 19.
College Publications, February 2018.

[12] Ringo Baumann. Splitting an argumentation framework. In International Conference
on Logic Programming and Nonmonotonic Reasoning, pages 40–53. Springer, 2011.

[13] Ringo Baumann. What does it take to enforce an argument? minimal change in
abstract argumentation. In 20th European Conference on Artificial Intelligence.,
pages 127–132, 2012. doi: 10.3233/978-1-61499-098-7-127. URL https:
//doi.org/10.3233/978-1-61499-098-7-127.

[14] Ringo Baumann. Metalogical Contributions to the Nonmonotonic Theory of Abstract
Argumentation. College Publications - Studies in Logic, 2014.

[15] Ringo Baumann. On the nature of argumentation semantics: Existence and unique-
ness, expressibility, and replaceability. In Pietro Baroni, Dov Gabbay, Massimiliano
Giacomin, and Leendert van der Torre, editors, Handbook of Formal Argumentation,
chapter 14. College Publications, February 2018. also appears in IfCoLog Journal of
Logics and their Applications 4(8):2779-2886.

[16] Ringo Baumann and Gerhard Brewka. Expanding argumentation frameworks: En-
forcing and monotonicity results. In Proceedings of COMMA 2010, pages 75–86,
2010. doi: 10.3233/978-1-60750-619-5-75. URL http://dx.doi.org/10.
3233/978-1-60750-619-5-75.

[17] Ringo Baumann and Gerhard Brewka. Spectra in abstract argumentation: An anal-
ysis of minimal change. In LPNMR, Proceedings of 12th International Confer-
ence in Logic Programming and Nonmonotonic Reasoning,, pages 174–186, 2013.
doi: 10.1007/978-3-642-40564-8\ 18. URL https://doi.org/10.1007/
978-3-642-40564-8\_18.

[18] Ringo Baumann and Gerhard Brewka. AGM meets abstract argumentation: Expan-
sion and revision for Dung frameworks. In Proceedings of the 24th International
Conference on Artificial Intelligence, IJCAI’15, pages 2734–2740. AAAI Press,
2015. ISBN 978-1-57735-738-4. URL http://dl.acm.org/citation.
cfm?id=2832581.2832631.

[19] Ringo Baumann and Gerhard Brewka. Extension removal in abstract argumentation
– an axiomatic approach. In Proceedings of the Thirty-Third AAAI Conference on
Artificial Intelligence, 2019. in press.

[20] Ringo Baumann and Christof Spanring. Infinite argumentation frameworks - On the
existence and uniqueness of extensions. In Advances in Knowledge Representation,
Logic Programming, and Abstract Argumentation - Essays Dedicated to Gerhard
Brewka on the Occasion of His 60th Birthday, pages 281–295, 2015. doi: 10.1007/
978-3-319-14726-0 19.

170



References

[21] Ringo Baumann and Christof Spanring. A study of unrestricted abstract argumenta-
tion frameworks. In IJCAI, Proceedings of the 26th International Joint Conference
on Artificial Intelligence, pages 807–813, 2017.

[22] Ringo Baumann and Hannes Strass. An abstract logical approach to characterizing
strong equivalence in logic-based knowledge representation formalisms. In Fifteenth
International Conference on the Principles of Knowledge Representation and Rea-
soning, 2016.

[23] Ringo Baumann and Markus Ulbricht. If nothing is accepted - repairing argu-
mentation frameworks. In Principles of Knowledge Representation and Reason-
ing: Proceedings of the Sixteenth International Conference, KR 2018, Tempe, Ari-
zona, 30 October - 2 November 2018., pages 108–117, 2018. URL https:
//aaai.org/ocs/index.php/KR/KR18/paper/view/17979.

[24] Ringo Baumann, Wolfgang Dvorák, Thomas Linsbichler, Hannes Strass, and Stefan
Woltran. Compact argumentation frameworks. In 21st European Conference on Ar-
tificial Intelligence, pages 69–74, 2014. doi: 10.3233/978-1-61499-419-0-69. URL
https://doi.org/10.3233/978-1-61499-419-0-69.

[25] Salem Benferhat, Didier Dubois, and Henri Prade. A local approach to reasoning un-
der inconsisteny in stratified knowledge bases. In Proceedings of the Third European
Conference on Symbolic and Quantitative Approaches to Reasoning and Uncertainty
(ECSQARU’95), 1995.

[26] Claude Berge. Hypergraphs: Combinatorics of finite sets, vol. 45, 1989.

[27] Philippe Besnard. Revisiting postulates for inconsistency measures. In Proceedings
of the 14th European Conference on Logics in Artificial Intelligence (JELIA’14),
pages 383–396, 2014.

[28] Philippe Besnard. Forgetting-based inconsistency measure. In Proceedings of
the 10th International Conference on Scalable Uncertainty Management (SUM’16),
pages 331–337, 2016.
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[75] Sébastien Konieczny and Ramon Pino Perez. Logic based merging. Journal of Philo-
sophical Logic, 40:239–270, 2011.
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Appendix A

Technical Proofs of Chapter 6

Theorem 6.2.2. If m ≥ 2, then QBF-MU(Q1, ..., Qm) is Dp
m-complete.

Proof. Membership: Given a QBF

Φ = Q1X1 . . . QmXm φ

with φ = C1 ∧ . . . ∧ Cr we can verify that it is a postive instance of our decision problem
QBF-MU(Q1, ..., Qm) by

• checking that Φ is false which is in Πp
m if Q1 = ∃ and in Σp

m if Q1 = ∀ and

• checking that for each k = 1, ..., r the formula

Q1X1 . . . QmXm C1 ∧ . . . ∧ Ck−1 ∧ Ck+1 ∧ . . . ∧ Cr

is true which is in Σp
m if Q1 = ∃ and in Πp

m if Q1 = ∀.

Since the latter consists of only linearly many checks, we obtain membership in Dp
m.

Hardness: We consider the generic Dp
m-complete problem which asks for two given QBFS

Φi = Q1X1 . . . QmXm φi, i = 1, 2, whether Φ1 is false while Φ2 is true. First, we give a
(polynomial) construction to obtain a formula Ψ which is a positive instance of the decision
problem QBF-MU(Q1, ..., Qm) if and only if Φ1 is false. A minor adjustment will lead
to a second formula Ψ′ which is a “yes” instance of QBF-MU(Q1, ..., Qm) if and only Φ2

is true. Combining both constructions will yield Dp
m-hardness. Since both reductions are

considered independently, we omit the indices 1 and 2 for ease of presentation and denote
the formula by Φ = Q1X1 . . . QmXm φ in both steps.

So let φ = C1 ∧ . . . ∧ Cr be a conjunction and let

Φ = Q1X1 . . . QmXm φ

be a QBF in prenex normal form where m ≥ 2. We distinguish two cases, depending on
the final quantifier.

Case 1: Qm = ∃.
Here, we can assume that φ is in 3-CNF, i. e., all Ck are disjunctions containing at most
three literals, say Ck = xk,1 ∨ . . . ∨ xk,3 for k = 1, ..., r. Our proof is similar to the one
given in [91], Theorem 1. The reader may be referred to this proof since we do not give as
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Appendix A. Technical Proofs of Chapter 6

many details. We use a similar construction, where we, roughly speaking, ignore variables
that occur in the scope of an universal quantifier for the most part.

For any k ∈ {1, . . . , r}, we assume w. l. o. g. that the disjunction Ck is not a tautology,
i. e., does not contain both a and ¬a for an atom a.

Let X be the set of all variables in Φ that occur in the scope of an existential quantifier.
Let y1, . . . , yr be fresh atoms not appearing in Φ and define

Y = y1 ∨ . . . ∨ yr.

Let
Y − yk := y1 ∨ . . . ∨ yk−1 ∨ yk+1 ∨ . . . ∨ yr

for each k = 1, . . . , r. We construct a formula ψ containing the following conjuncts.

• If Ck occurs in φ, then
Dk = Ck ∨ (Y − yk)

is a conjunct of ψ.

• Let Ck = xk,1 ∨ . . . ∨ xk,3. Then, for j = 1, 2, 3 and xk,j ∈ X

Ek,j = ¬xk,j ∨ (Y − yk) ∨ ¬yk

occurs in ψ as a conjunct.

• For each i, j = 1, . . . , r with i 6= j

Hi,j = ¬yi ∨ ¬yj

is a conjunct of ψ.

Consider
Ψ = Q1X1 . . . Qm−1Xm−1∃Xm ∪ {y1, . . . , yr} ψ.

We claim that Φ is false if and only if Ψ is a “yes” instance of QBF-MU(Q1, ..., Qm).

“⇒”: We start by showing that Ψ is false. Afterwards, we prove minimality. The first step
is to argue that all y-variables would need to be false in order for Ψ to be true. Due to the
Hi,j conjuncts, at most one y-variable can be true, say yk. We can assume that at least one
Ek,j (j = 1, 2, 3) exists, i. e., Ck contains variables in X . Otherwise, all variables in Ck
occur in the scope of an universal quantifier. Since we assumed no tautological conjunct
exists, there is an assignment to those variables rendering Ck false. Thus, in order for Ψ to
be true, there has to be a k′ 6= k such that yk′ is true (because of the conjunct Dk), which is
not possible, as argued above.

Now consider Ek,j . To render it true, xk,j needs to be false (j = 1, 2.3). However, we
also need to consider the conjunct

Dk = xk,1 ∨ xx,2 ∨ xk,3 ∨ (Y − yk).

If all three variables xk,1, . . . , xk,3 are in X , then Dk is false. Otherwise, the remaining
variables occur in the scope of an universal quantifier. Again, there is a assignment to those
variables rendering Dk false.

Hence, if one y-variable is true, then Ψ is false. This, however, finishes the first step
already: Since Φ is false by assumption and all y-variables need to be false, Ψ is false as
well.

We turn to minimality and argue that removal of any conjunct in ψ renders Ψ true.
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• If we remove Hi,j , then letting yi and yj be true ensures satisfaction of all conjuncts.
Of course, the other y-variables need to be false.

• If Ek,j is removed (assuming it exists and hence xk,j ∈ X ), then let xk,j and yk be
true, the other y-variables false. If Ek,j′ exists for j′ 6= j, then xk,j′ needs to be false.
This assignment ensures satisfaction of all conjuncts.

• If we remove Dk, then all conjuncts are satisfied if yk is true and xk,1, . . . , xk,3 are
false (for the j such that xk,j ∈ X ). The latter are needed for the Ek,j (which exists
for the j such that xk,j ∈ X ).

“⇐”: Assume Ψ is false. In particular, this means that Ψ is false even if all y-variables are
false. Thus, Φ is false.

So, Ψ is a “yes” instance of QBF-MU(Q1, ..., Qm) if and only if Φ is false.
As mentioned above, we need a second reduction to obtain a formula Ψ′ that is a “yes”

instance of QBF-MU(Q1, ..., Qm) if and only if Φ is true. To obtain such a formula, use
the same construction and add y1 ∨ . . . ∨ yr as a conjunct to ψ. Then, Ψ′ is definitely false
and minimal if and only if Φ is true, as similar considerations show.

Hence, we obtain the two desired formulas Ψ and Ψ′. We describe below how they are
combined, which does not depend on the cases we distinguish.

Case 2: Qm = ∀.
We may assume φ to be in 3-DNF here, i. e., r = 1 and C := C1 is in 3-DNF. Assume
C = D1 ∨ . . . ∨ Dn with Di = xi,1 ∧ xi,2 ∧ xi,3 for i = 1, . . . , n. We see that Ψ = Φ
is a “yes” instance of QBF-MU(Q1, ..., Qm) if and only if the formula Φ is false, since
removing the only conjunct (i. e., the whole formula φ) renders Φ true, because the empty
conjunct is true by definition. Moreover,

Ψ′ = Q1X1 . . . Qm−2Xm−2∃Xm−1 ∪ {y}∀Xm ψ′

with
ψ′ = ((D1 ∧ y) ∨ . . . ∨ (Dn ∧ y)) ∧ (¬y)

is a “yes” instance of QBF-MU(Q1, ..., Qm) if and only if Φ is true.

Combining:

In both cases above, we obtain two formulas Ψ and Ψ′ that are both positive instances of
QBF-MU(Q1, ..., Qm). To finish our proof for hardness, we turn them into one formula.
We assume w. l. o. g. that Ψ and Ψ′ are QBFs over disjoint sets of variables. Given these
two QBFs, we construct one formula Θ as it is done in [91], Lemma 3. Let

Ψ = Q1X1 . . . QmXm ψ, Ψ′ = Q1X
′
1 . . . QmX

′
m ψ′

with

ψ = C1 ∧ . . . ∧ Cr, ψ′ = C ′1 ∧ . . . ∧ C ′r′ .

Now, Θ contains of all possible pairs of clauses, one from ψ and one from ψ′, i. e., for

θp,q = Cp ∧ C ′q, p = 1, . . . , r, q = 1, . . . , r′
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we let
Θ = Q1X1 ∪X ′1 . . . QmXm ∪X ′m

∧
p=1,...,r,q=1,...,r′

θp,q

Now, removing θp,q from Θ corresponds to removing Cp from Ψ and C ′q from Ψ′. Hence,
Θ is a “yes” instance of QBF-MU(Q1, ..., Qm) if and only if both Ψ and Ψ′ are.

To summarize, Θ is a positive instance of QBF-MU(Q1, ..., Qm) if and only if Φ1 is
false while Φ2 is true. Hardness in Dp

m follows.

Proposition 6.2.3. QBF-MU(∀) is NP-complete.

Proof. Let Φ be the sentence
Φ = ∀Xφ

with φ = C1 ∧ . . . ∧ Cr. Verifying that Φ is false is obviously NP-complete in general.
However, there is nothing to check beyond that, because removal of an arbitrary conjunct
renders Φ true if and only if r = 1, i. e., if φ consists of one conjunct only. That is easy to
see: Assume r ≥ 2 and assume Φ is false. Then, there is a k and a truth assignment to the
variables such that Ck is false. If we remove k′ for any k′ 6= k, then Ck is still false for the
same truth assignment and thus,

∀X (C1 ∧ . . . ∧ Ck′−1 ∧ Ck′+1 ∧ . . . ∧ Cr)

is still false, i. e., Φ is a “no” instance of QBF-MU(∀).

Theorem 6.2.6. For m ≥ 1, there is a logic LΠp
m

= (WFΠp
m
,BSΠp

m
, INCΠp

m
,ACCΠp

m
)

such that SATL
Π
p
m

is in Πp
m and

(a) S-INCL
Π
p
m

is Πp
m+1-complete and

(b) MIN-S-INCL
Π
p
m

is Dp
m+1-complete.

Proof. For this proof, we make use of the following notation: Assume we are given a set X
of atoms and a formula φ over X . Consider a (partial) assignment ω : X → {0, 1}. Now,
we let φ[ω] be the formula where the atoms are evaluated according to ω, i. e., a ∈ X is
substituted by 1 if ω(a) = 1, by 0 if ω(a) = 0 and remains unchanged if ω is not defined
on a.

Now letm ≥ 1. Consider quantifiersQ1 = ∀, . . . , Qm and sets of variablesX1, . . . , Xm.
We define a logic

LΠp
m

= LΠp
m

(Q1, . . . , Qm, X1, . . . , Xm) =
(
WFΠp

m
,BSΠp

m
, INCΠp

m
,ACCΠp

m

)
.

The setWFΠp
m

consists of tuples of the form (φ,L), where φ is a boolean formula over the
variables inX1∪. . .∪Xm andL is a set of literals overX1∪. . .∪Xm. Let BSΠp

m
= {⊥,>}

and INCΠp
m

= {⊥}. In a nutshell, the set L in (φ,L) defines a partial assignment. So given
a knowledge base

K = {(C1, L1), . . . , (Cr, Lr)}

we let LK = L = L1 ∪ . . . ∪ Lr. If L contains two complementary literals, then we
let ACCΠp

m
(K) = {⊥}, rendering K inconsistent (the reason is that L shall correspond to

a (partial) assignment to the variables; hence, it cannot contain a complementary pair of

182



literals). Otherwise, let ωK = ω : X1 ∪ . . . ∪ Xm → {0, 1} be the (partial) assignment
corresponding to L, i. e.,

ω(l) =

{
1 if l ∈ L,
0 if l /∈ L.

The mappingACCΠp
m

treats the formulas C1, . . . , Cr inK as conjuncts while respecting the
(partial) assignment ω, i. e., we let φK = φ = C1 ∧ . . . ∧ Cr and

ACCΠp
m

(K) =

{
{>} if ∀X1 . . . QmXm φ[ω],

{⊥} otherwise.

This mechanism introduced by ω is important for us due to two different reasons: First,
we can introduce formulas that correspond to partial assignments to “neutralize” a univer-
sal quantifier, which gives our logic the non-monotonic layer we need. Second, we can
construct knowledge bases such that supersets correspond to assignments. As strong incon-
sistency considers all supersets of a givenH ⊆ K, this facilitates simulation of an additional
universal quantifier.

We now show that LΠp
m

has the properties we claim, i. e., SATL
Π
p
m

is in Πp
m, S-INCL

Π
p
m

is Πp
m+1-complete and MIN-S-INCL

Π
p
m

is Dp
m+1-complete.

Membership: Since we consider m quantifiers, where the first one is universal, it is rather
easy to see that SATL

Π
p
m

is in Πp
m. Then S-INCL

Π
p
m
∈ Πp

m+1 and MIN-S-INCL
Π
p
m
∈ Dp

m+1

follow from Theorems 6.2.4 and 6.2.5.
Hardness: Assume we are given a formula

Φ = ∃Z∀X2Q3X3 . . . Qm+1Xm+1 φ. (A.1)

Note that Φ contains m + 1 quantifiers, i. e., deciding whether it is true is Σp
m+1-complete

in general. We assume φ is an arbitrary conjunction, i. e., φ = C1 ∧ . . . ∧ Cr. We consider
the logic

LΠp
m

= LΠp
m

(∀, Q3, . . . , Qm+1, Z ∪X2, X3, . . . , Xm+1).

For (a), we show that there is a knowledge base K with a subset H such that (K,H) is a
“yes” instance of S-INCL

Π
p
m

if and only if Φ is false. The statement (b) follows from (a)
utilizing a formula similar to Θ we constructed in the proof of Theorem 6.2.2.
(a): We prove the following statement: Given the formula

Φ = ∃Z∀X2Q3X3 . . . Qm+1Xm+1 φ (A.1)

where φ = C1 ∧ . . . ∧ Cr is an arbitrary conjunction, the pair (K,H) with

K = {(C1, ∅), . . . , (Cr, ∅), (>, z1), (>,¬z1), . . . , (>, zn), (>,¬zn)},
H = {(C1, ∅), . . . , (Cr, ∅)}

is a “yes” instance of S-INCL
Π
p
m

if and only if Φ is false.
Note that we can identify H with {φ, ∅} due to the definition of our logic. The subset

H is considered consistent if

∀Z ∪X2Q3X3 . . . Qm+1Xm+1 φ

183



Appendix A. Technical Proofs of Chapter 6

is valid and hence, inconsistent if

∃{Z ∪X2}Q3X3 . . . Qm+1Xm+1 ¬φ (A.2)

holds, where Qi is the complementary quantifier. Note that the formulas besides the (Ci, ∅)
are all of the form (>, zk) resp. (>,¬zk). Hence, all they do is fixing z-variables. So,
naturally, any set H′ with H ⊆ H′ ⊆ K corresponds to the formula Φ with respect to a
partial assignment onZ. This motivates the following notation: Given a (partial) assignment
ω : Z → {0, 1}, we let Hω be the set of formulas of the form (>, zk) resp. (>,¬zk) that
naturally corresponds to the assignment, i. e., if ω(zk) = 1, then (>, zk) occurs in Hω and
if ω(zk) = 0, then (>,¬zk) occurs inHω.

Now, we show: Φ is false if and only ifH is strongly K-inconsistent.

“⇐”: Assume H is strongly K-inconsistent. Consider an assignment ω : Z → {0, 1} and
the set

H′ = H ∪Hω.

Since H is strongly K-inconsistent, H′ is inconsistent. The formulas Hω augment φ with
conjuncts “>” only, which can be ignored. Additionally, the z-variables are fixed accord-
ing to ω, making the consideration of φ[ω] rather than φ itself necessary. Thus, H′ being
inconsistent means

∃{Z ∪X2}Q3X3 . . . Qm+1Xm+1 ¬φ[ω]

holds. Since ω fixes the z-variables, this is equivalent to

∃X2Q3X3 . . . Qm+1Xm+1 ¬φ[ω].

Since ω was an arbitrary assignment, we obtain that

∀Z∃X2Q3X3 . . . Qm+1Xm+1 ¬φ

holds. Hence,
Φ = ∃Z∀X2Q3X3 . . . Qm+1Xm+1 φ (A.1)

is false.

“⇒”: Now assume Φ is false. Hence,

∀Z∃X2Q3X3 . . . Qm+1Xm+1 ¬φ (A.3)

holds. Again, consider an assignment ω : Z → {0, 1}. Since (A.3) is true, we obtain that
in particular,

∃X2Q3X3 . . . Qm+1Xm+1 ¬φ[ω]

is true. Since the z-variables are fixed anyway,

∃{Z ∪X2}Q3X3 . . . Qm+1Xm+1 ¬φ[ω]

holds as well. Due to the definition of our logic, this means that the set

H′ = H ∪Hω

is inconsistent. Now consider any set H∗ with H ⊆ H∗ ⊆ H′. Such H∗ naturally corre-
sponds to an assignment ω∗ : Z∗ → {0, 1} with Z∗ ⊆ Z and ω|Z∗ = ω∗. It is an easy
observation that

∃{Z ∪X2}Q3X3 . . . Qm+1Xm+1 ¬φ[ω]
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being true now implies that

∃{Z ∪X2}Q3X3 . . . Qm+1Xm+1 ¬φ[ω∗]

holds as well, because the latter is the same formula with less z-variables being fixed. Again
by definition of our logic, H∗ is inconsistent. Since ω and ω∗ are arbitrary, we obtain that
any

H′ = H ∪Hω

where ω is a (partial) assignment is inconsistent. The remaining setsH′ withH ⊆ H′ ⊆ K
do not correspond to a (partial) assignment. Hence, all of them contain at least one pair of
the form {(>, zk), (>,¬zk)} rendering them inconsistent (recall the definition of ACCΠp

m

if the set L contains a complementary pair of literals). Hence,H is strongly K-inconsistent.
This completes (a).

(b): For (b), the technical work is already done. Assume we are given the generic Dp
m+1-

complete problem, i. e., two formulas Φ1 and Φ2 of the form

Φi = ∃Z∀X2Q3X3 . . . Qm+1Xm+1 φi (A.1)

and have to decide whether Φ1 is false while Φ2 is true. We construct the formula

Θ = ∃Z∀X2Q3X3 . . . Qm+1Xm+1 θ

as it is done in the proof of Theorem 6.2.2, in the last step. Thus, θ is a conjunction and for
notational convenience, we assume θ = C1 ∧ . . . ∧ Cr. Recall that Θ is a “yes” instance of
QBF-MU(Q1, ..., Qm+1) if and only if Φ1 is false while Φ2 is true. Consider (K,H) given
as in (a), i. e.,

K = {(C1, ∅), . . . , (Cr, ∅), (>, z1), (>,¬z1), . . . , (>, zn), (>,¬zn)},
H = {(C1, ∅), . . . , (Cr, ∅)}.

Now (K,H) is a “yes” instance of MIN-S-INCL
Π
p
m

iffH is stronglyK-inconsistent, but no
proper subset of H. Due to (a), this is the case if and only if Θ is false, but removing any
conjunct from θ renders it true. By construction of Θ, this is the case if and only if Φ1 is
false, while Φ2 is true. This yields hardness in Dp

m+1.

Theorem 6.2.9. There is a logic LPStrat
= (WFPStrat

,BSPStrat
, INCPStrat

,ACCPStrat
)

such that SATLPStrat
is in P = Σp

0 and

(a) S-INCLPStrat
is coNP-complete and

(b) MIN-S-INCLPStrat
is Dp

1-complete.

Proof. Our logic

LPStrat
= (WFPStrat

,BSPStrat
, INCPStrat

,ACCPStrat
)

is similar to

LASP∗ = (WFASP∗ ,BSASP, INCASP,ACCASP)
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with some minor modifications: in addition to rules r, WFPStrat
contains tuples (l, k(l))

where l is a literal and k(l) a non-negative integer. The integer k(l) is the stratum corre-
sponding to l. Hence, formally a knowledge base K is of the form K = P ∪ S where P is a
set of rules of the form

r : l0 ← l1, . . . , lm, not lm+1, . . . , not ln.

and S (S for strata) is a set of tuples of the form (l, k(l)) with l ∈ A. Now given a
knowledge base K = P ∪ S we check in polynomial time that for every literal l occurring
in P , exactly one tuple (l, k(l)) is contained in S. Then, for every rule (except for the
constraints occurring in P )

r : l0 ← l1, . . . , lm, not lm+1, . . . , not ln.

we check in polynomial time that

• ‖l0‖ ≥ ‖li‖ for i = 1, ...,m,

• ‖l0‖ > ‖lj‖ for j = m+ 1, ..., n,

i. e., that the program is stratified and the integers k(l) correspond to appropriate strata for
the atoms. If there is a literal l occurring in the program such that (l, k(l)) is not contained
or occurring twice for two different integers k1(l) and k2(l) in S, then K is considered
inconsistent. Otherwise, K is consistent if and only if the (stratified) program P has an
answer set, i. e., all constraints are satisfied by the unique answer set of P . This check is
done in polynomial time as well [6] and hence SATLPStrat

is in P = Σp
0.

Now we utilize the construction given in the proof of Theorem 6.2.7 to see the hardness
results.

Theorem 6.2.10. For disjunctive logic programs,

(a) the problem S-INCLASP
is Πp

2-complete,

(b) the problem MIN-S-INCLASP
is Dp

2-complete.

Proof. Membership: The membership statements follow from Theorems 6.2.4 and 6.2.5
since SATLASP

is in Σp
2.

Hardness: In [52], it has been shown that deciding whether a disjunctive logic program
is consistent is Σp

2-complete. We sketch the proof since we are going to make use of the
construction.

Assume we are given a QBF
Φ = ∃X∀Y φ

where φ is in 3-DNF, i. e., φ = C1∨. . .∨Cr withCk = lk,1∧. . .∧lk,3. LetX = {x, . . . , xn}
and Y = {y1, . . . , ym}. We introduce fresh atoms {x′1, . . . , x′n} and {y′1, . . . , y′m} corre-
sponding to the classical negation of the atoms. We let σ be the appropriate mapping, i. e.,

σ(l) =


l if l is of the form xi or yj ,
x′i if l is of the form ¬xi,
y′j if l is of the form ¬yj .
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We consider the following program P .

P :

xi ∨ x′i. i = 1, ..., n

yj ∨ y′j . j = 1, ...,m

yj ← w. j = 1, ...,m

y′j ← w. j = 1, ...,m

w ← σ(lk,1), σ(lk,2), σ(lk,3). k = 1, ..., r

← not w.

Now, in order for a set M to be an answer set of P , w needs to be contained in M . Since
w ∈ M , all y-variables have to be in M as well. Thus, in order for M to be a minimal
model, it needs to be possible to entail w for any choice of the y-variables (that is the
translation of the universal quantifier). We refer the reader to [52] for more details.

Now, for (b), i. e., the hardness of MIN-S-INCLASP
in Dp

2, we proceed as in the proof of
Theorem 6.2.2. We assume we are given an instance of the generic Dp

2-complete problem,
i. e., two formulas

Φi = ∃Xi∀Yi φi, i = 1, 2

where we have to decide whether it holds that Φ1 is false while Φ2 is true. We construct
programs (P1, H1) that are a “yes” instance of MIN-S-INCLASP

if and only if Φ1 is false,
programs (P2, H2) that are a “yes” instance of MIN-S-INCLASP

if and only if Φ2 is true
and then we show how to combine them to one instance (Q,G) of MIN-S-INCLASP

which
is a positive one if and only if both (P1, H1) and (P2, H2) are. Utilizing the construction of
(P1, H1) yields (a).

As in the proof of Theorem 6.2.2, we omit the indices and denote the formula by Φ
for both constructions. We assume w. l. o. g. that both formulas are over disjoint sets of
variables. So consider

Φ = ∃X∀Y φ

as above. The reason why we have to adjust the construction given in [52] is the translation
of the universal quantifier. The rules “yj ← w.” and “y′j ← w.” make sure that the formula
is true for any choice of the y-variables. However, given H , one might construct H ′ with
H ⊆ H ′ ⊆ P such that H ′ does not contain all rules of this form. Then, the universal
quantifier is not translated correctly.

To solve this issue, we allow entailment of w only if all yj and y′j are true. Thus, we
introduce the atom w∗ as a tool to obtain the y-variables. They, in turn, allow entailment of
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w. So we construct P1 and H1 as follows.

P1 :

xi ∨ x′i. i = 1, ..., n

yj ∨ y′j . j = 1, ...,m

yj ← w∗. j = 1, ...,m

y′j ← w∗. j = 1, ...,m

w∗ ← σ(lk,1), σ(lk,2), σ(lk,3). k = 1, ..., r

w ← y1, y
′
1, . . . , ym, y

′
m.

← not w.

H1 :

← not w.

We can already argue for hardness of S-INCLASP
in Πp

2.
(a): Deciding whether Φ is true is Σp

2-complete in general. Since P1 is strongly inconsistent
if and only if it is inconsistent itself, we see (as in [52]): Φ is false if and only if (P1, P1) is
a “yes” instance of S-INCLASP

. Hence, the latter is Πp
2-hard in general.

(b): We claim that Φ is false if and only if H1 is minimal strongly P1-inconsistent.
“⇒”: Minimality is clear sinceH1 consists of one rule only. Now assumeH1 is not strongly
inconsistent. Then, there is a program H1 ⊆ H ′1 ⊆ P1 that is consistent. We argue that in
this case, P1 itself is consistent. The programH ′1 must contain “w ← y1, z1, . . . , ym, zm.”.
One can see that any answer set M of H ′1 has to contain y1, y

′
1, . . . , ym, y

′
m. Hence, the

rules of the form “yj ← w.” and “y′j ← w.” can all assumed to be contained in H ′1. It is
easy to see that the remaining rules do not introduce inconsistency. Hence, P1 is consistent.
Thus, Φ is true (cf. [52]), a contradiction.
“⇐”: Assume H1 is minimal strongly inconsistent. Then, P1 itself is inconsistent. Hence,
Φ is false.

As already mentioned, we construct a second program as well. As stipulated above, we
denote the given QBF by Φ again. We make use of the same notations as above. However,
recall that we assume the formulas to be over disjoint sets of variables. Also note that our
goal is now to obtain programs (P2, H2) that are a positive instance of MIN-S-INCLASP

if
and only if Φ is true. Consider:

P2 :

xi ∨ x′i. i = 1, ..., n

yj ∨ y′j . j = 1, ...,m

yj ← v∗. j = 1, ...,m

y′j ← v∗. j = 1, ...,m

v∗ ← σ(lk,1), σ(lk,2), σ(lk,3). k = 1, ..., r

v ← y1, y
′
1, . . . , ym, y

′
m.

← not v.

← v.

188



and

H2 :

← not v.

← v.

The situation is similar except that now, H2 is strongly inconsistent in any case. Further-
more, the subprogram {← v.} is consistent. So, we have:

H2 is minimal strongly inconsistent

⇔ {← not v.} is not strongly inconsistent

⇔ P2 \ {← v.} is consistent

⇔ Φ is true.

Combining:
Now assume we are given two formulas Φ1 and Φ2 as above over disjoint sets of variables.
Construct P1 and P2 as above, except the occurring constraints. Let P be the union of both
programs, i. e.,

P = (P1 ∪ P2) \ {← not w., ← not v.,← v.}
SetQ = P∪{← not v, not w.,← v, not w.} andG = {← not v, not w.,← v, not w.}. Us-
ing the considerations above, we can easily verify thatG is minimal stronglyQ-inconsistent
if and only if Φ1 (responsible for entailment of w) is false while Φ2 (responsible for entail-
ment of v) is true.

To summarize, (Q,G) is a “yes” instance of MIN-S-INCLASP
if and only if Φ1 is false

while Φ2 is true. We thus obtain the desired hardness result.

Lemma 6.3.6. Given an open QBF Φ = ∀Y ∃Z φ(X,Y, Z), there is a disjunctive logic
program P (Φ) ⊆ WFASP of polynomial size with

|SImin(P (Φ))| = |X|+ |MOD(Φ)|.

Proof. This proof is similar to the one given in Lemma 6.3.3. Roughly speaking, the main
difference is that we use the construction in [52, Theorem 3.1], in order to translate the two
quantifiers in the formula.

So let X = {x1, . . . , xn}, Y = {y1, . . . , ym} and Z = {z1, . . . , zt}. Consider

MOD(Φ) = {X | ∀Y ∃Z φ(X,Y, Z)}.

We will construct a program P = P (Φ), where subsets correspond to assignments to theX-
variables as in the proof of Lemma 6.3.3. The subsets that are not strongly P -inconsistent
will correspond to assignments where

∃Y ∀Z ¬φ(X,Y, Z)

holds, and thus, strongly P -inconsistent subsets correspond to assignments in MOD(Φ).
We can assume φ to be a formula in 3-CNF and thus, ¬φ is in 3-DNF, i. e., the disjunc-

tion of C1, . . . , Cr with Ck = lk,1 ∧ . . . ∧ lk,3. Let x′1, . . . , x
′
n, y
′
1, . . . , y

′
m, z

′
1, . . . , z

′
t be

fresh atoms and let σ be the mapping

σ(a) =

{
a if a ∈ X ∪ Y ∪ Z,
a′ if a ∈ {¬x1, . . . ,¬xn} ∪ {¬y1, . . . ,¬ym} ∪ {¬z1, . . . ,¬zt}.
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The construction in [52] works as follows: Given a formula

Ψ = ∃Y ∀Z ψ(Y,Z)

in 3-DNF (with the notations as here), the following program P is consistent if and only if
Ψ is valid.

P :

yj ∨ y′j . j = 1, ...,m

zl ∨ z′l. l = 1, ..., t

zl ← w∗. z′l ← w∗. l = 1, ..., t

w∗ ← σ(lk,1), σ(lk,2), σ(lk,3). k = 1, ..., r

w ← z1, . . . , zt, z
′
1, . . . , z

′
t.

← not w.

After consideration of the proof of Lemma 6.3.3, the following construction should be clear
in principle. We give the program and make the few necessary observations afterwards.

P :

x1., . . . , xn.

x′1., . . . , x
′
n.

w ← not xi, not x′i, wx1 , ..., wxn . i = 1, ..., n

wxi ← not xi. wxi ← not x′i. i = 1, ..., n

yj ∨ y′j . j = 1, ...,m

zl ∨ z′l. l = 1, ..., t

zl ← w∗. z′l ← w∗. l = 1, ..., t

w∗ ← σ(lk,1), σ(lk,2), σ(lk,3). k = 1, ..., r

w ← z1, . . . zt, z
′
1, . . . z

′
t, wx1 , ..., wxn

← not w.

Consider a program H ⊆ P with ← not w. ∈ H . Now if H is consistent, then so is
P because the other rules facilitate entailment of w and can thus never be responsible for
inconsistency.

Now the following observations can be made similar as in the proof of Lemma 6.3.3:

(a) Any inconsistent subset of P contains the constraint “← not w.” and the inconsis-
tency stems from it.

(b) Let H ∈ SImin(P ). Then, H only contains “← not w.” and rules of the form “xi.”
or “x′i.”.

(c) Let H ∈ SImin(P ). If H does not contain both “xi.” and “x′i.” for an i ∈ {1, ..., n},
then it contains either “xi.” or “x′i.” for all i ∈ {1, ..., n}.

(d) Let i ∈ {1, ..., n} and let Hi := {xi., x′i., ← not w.}. Then, Hi ∈ SImin(P ).
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Again, let
HI =

⋃
i∈{1,...,n}

Hi.

As before, H ∈ SImin(P ) \ HI contains either “xi.” or “x′i.” for all i ∈ {1, ..., n}. Let
HΩ ⊆ 2P be the set of all subprograms containing either “xi.” or “x′i.” for all i ∈ {1, ..., n}.
We define a corresponding assignment ω(H) : X → {0, 1} as before:

ω(H)(xi) :=

{
1 if xi. ∈ H,
0 if x′i. ∈ H.

And the last step is as above.

(e) Let H ∈ HΩ ⊆ 2P . Then H ∈ SImin(P ) \ HI if and only if ∃Y ∀Z ¬φ(X,Y, Z)
does not hold for the assignment ω(H) to the X-variables.

Hence, any H ∈ SImin(P ) \HI corresponds to an assignment where

∃Y ∀Z ¬φ(X,Y, Z)

is not the case, i. e.,

|SImin(P )| = |X|+ |{X | ∀Y ∃Z φ(X,Y, Z)}|

holds.

Proposition 6.3.7. The problems LOWERLASP
and UPPERLASP

are CΣp
2-complete. The prob-

lem VALUELASP
is #·Πp

2-complete under subtractive reductions.

Proof. This can be inferred from the construction given in the proof of Lemma 6.3.6 as in
the analogous result for normal logic programs.

Theorem 6.4.8. VER-MIN-REPAIRstb,cred is Dp
1-complete.

Proof. Membership is due to Proposition 6.4.2. Hardness is as in the proof of Theo-
rem 6.4.5. We utilize a similar construction:

x1¬x1 . . . xn ¬xn

C1 C2
. . . Cr

φ φ

The result can be inferred similarly, reducing the problem MC as above.

Theorem 6.4.9. VER-MIN-REPAIRstb,skep is Πp
2-complete.
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Proof. Membership is due to Proposition 6.4.2. For hardness, recall how to prove that
skeptical reasoning is coNP-complete for stable semantics. Given a formula of the form
Φ = ∃X : φ(X) where φ is a formula over variables in X = {x1, . . . , xn} in 3-CNF with
φ(x) = C1 ∧ . . . ∧ Cr recall the following construction HΦ from [93]. It has the property
that the AF accepts Φ skeptically wrt. stable semantics if and only if Φ = ∃X : φ(X)
evaluates to false.

HΦ :

x1¬x1 . . . xn ¬xn

C1 C2
. . . Cr

ΦΦ

. . .

We augment this construction in order to show that VER-MIN-REPAIRstb,skep is Πp
2-hard.

We proceed as in the proof of Theorem 6.4.7. We construct an AF F = (A,R) and consider
S ⊆ A as well as the induces subframework FS . We need to check whether in FS any
argument is skeptically accepted, while this is not the case for any FS with S ′ ( S . Hence,
we may also take possible subsets of S into account. Assume we are given a formula
Ψ = ∀Y ∃X : ψ(X,Y ) with X as above and Y = {y1, . . . , ym}. Assume ψ(X,Y ) = ψ is
in CNF with ψ = C1 ∧ . . . ∧ Cr. We will construct a subframework FS with the following
properties:

• FS itself is consistent, i. e., there is a skeptically accepted argument,

• subsets of S , i. e., the sets S ′ ⊆ S may correspond to assignments to the Y -variables,

• there is no S ′ with S ′ ( S such that the AF FS′ consistent if and only if the formula
Ψ = ∀Y ∃X : ψ(X,Y ) evaluates to true.

The first and the last item together ensure that (F ,S) with S is a positive instance of the
decision problem VER-MIN-REPAIRstb,skep if and only if the formula Ψ is true.

Before depicting and explaining our construction we give the arguments A of the AF
F = (A,R) as we did in the proof of Theorem 6.4.7. We have

A = {x1,¬x1, . . . , xn,¬xn, y1,¬y1, . . . , ym,¬ym,
C1, . . . , Cr,Φ,Φ, Φ̃, y1?, . . . , ym?, all?,>}

Moreover, our subset S ⊆ A is

S = {y1,¬y1, . . . , ym,¬ym}.

For the moment it suffices to observe that sets S ′ with S ′ ⊆ S correspond to choosing y
arguments.

Observe that HΦ from above possesses a stable extension containing only Φ. Our first
step is consideration of a similar argument which will be called Φ̃. Similar to Φ, the argu-
ment Φ̃ attacks all arguments. Moreover, Φ̃ and Φ attack each other.

192



HΦ

Φ

ΦΦ̃

This framework has at least two stable extensions, namely Φ and Φ̃. Note the intended
asymmetry between the two arguments: Φ is attacked by Φ while Φ̃ is not. The reason is
as follows: The purpose of Φ is as in the original construction to control whether there is a
satisfying assignment to the given formula or not. This is why it needs to be attacked by Φ.
However, Φ̃ is utilized to render some subframeworks FS′ with S ′ ⊆ S inconsistent as we
will see later. This is why there is no attack from Φ to Φ̃.

As our next step, we consider arguments y1,¬y1, . . . , ym,¬ym which shall correspond
to the Y -variables in the given formula Ψ = ∀Y ∃X : ψ(X,Y ). As already pointed out,
they do not occur in the AF FS as they belong to S . So, a subset S ′ with S ′ ⊆ S somewhat
corresponds to a partial assignment ω : Y → {0, 1}. Similar to the X arguments, they
attack the arguments C1, . . . , Cr in the natural way: We have (yj , Ci) ∈ R iff yj occurs in
the clause Ci and (¬yj , Ci) ∈ R iff ¬yj occurs in the clause Ci. Note that the Y arguments
do not attack each other.

x1¬x1 . . . xn ¬xn

C1 C2
. . . Cr

y1¬y1 . . . ym ¬ym

. . .

. . .

The Y arguments as well as their attacks are depicted with dotted lines to illustrate that they
do not occur in FS . Now let us ensure only intended subsets of {y1,¬y1, . . . , ym,¬ym} are
important. Recall that they shall correspond to assignments ω : Y → {0, 1}. Interestingly,
we only need to prune away partial assignments, i. e., cases where there is an index j such
that neither yj nor ¬yj occurs in FS′ . The case that both yj and ¬yj occur in FS′ –actually
not corresponding to a well-defined assignment– does no harm. Consider the following
additional arguments and attacks:

y1

¬y1

...

ym

¬ym

y1?

ym?

all? Φ̃
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Observe that the auxiliary argument “all?” attacks Φ̃ only and not Φ. The meaning of this
construction is as follows: In case for any j there is yj or ¬yj occurring in FS′ , each “yj?”
is attacked and hence, “all?” is defended from {y1?, . . . , ym?}. It may thus occur in a stable
extension. In this case, Φ̃ does not occur in any stable extension. Otherwise, it does.

However, Φ keeps attacking all arguments and is thus still a given possibility to find a
stable extension:

y1

¬y1

...

ym

¬ym

y1?

ym?

all? Φ̃

Φ

We thus see the following: For any FS′ with S ′ ⊆ S there is always a stable extension
containing Φ. There is another stable extension containing Φ̃ iff for at least one index j
neither yj nor ¬yj occur in FS′ . Then, no argument is skeptically excepted. The AF FS′ is
thus inconsistent.

Now let us assume that for any index j there is either yj or ¬yj occurring in FS′ . Then
we see that there are two cases:

1. The formula ∃X : ψ(X,Y ) evaluates to true under the corresponding assignment
ω : Y → {0, 1}. Then, as in the construction from [93] there is a stable exten-
sion containing the corresponding X arguments as well as Φ, but not Φ. Hence, no
argument is skeptically accepted.

2. The formula ∃X : ψ(X,Y ) evaluates to false under the corresponding assignment
ω : Y → {0, 1}. Then, Φ is skeptically accepted.

Hence, the formula ∀Y ∃X : ψ(X,Y ) is true iff the former case always occurs. Assume
this is the case. Now consider a choice of the Y -variables which does not correspond to a
well-defined assignment, i. e., there is j such that both yj and ¬yj occur in FS′ . It is clear
that for this AF FS′ we also have the former case, i. e., no argument is skeptically accepted
since this was already the case with only yj or ¬yj occurring in the AF.

To summarize, we have: ∀Y ∃X : ψ(X,Y ) is true iff FS′ is inconsistent for all S ′ ( S.
The latter nearly means that (F ,S) is a “yes” instance of VER-MIN-REPAIRstb,skep. What
we have left to do is to make sure that FS itself is consistent, i. e., there is at least one
skeptically accepted argument. The following final gadget does the job:

y1¬y1 . . . ym ¬ym

>

There is no other argument attacking >. Hence, as long as no Y argument is chosen, > is
skeptically accepted. As soon as a proper superset of S is under consideration,> is rendered
pointless.
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