163 research outputs found

    Localization Algorithms of Underwater Wireless Sensor Networks: A Survey

    Get PDF
    In Underwater Wireless Sensor Networks (UWSNs), localization is one of most important technologies since it plays a critical role in many applications. Motivated by widespread adoption of localization, in this paper, we present a comprehensive survey of localization algorithms. First, we classify localization algorithms into three categories based on sensor nodes’ mobility: stationary localization algorithms, mobile localization algorithms and hybrid localization algorithms. Moreover, we compare the localization algorithms in detail and analyze future research directions of localization algorithms in UWSNs

    Wireless Sensor Networks for Underwater Localization: A Survey

    Get PDF
    Autonomous Underwater Vehicles (AUVs) have widely deployed in marine investigation and ocean exploration in recent years. As the fundamental information, their position information is not only for data validity but also for many real-world applications. Therefore, it is critical for the AUV to have the underwater localization capability. This report is mainly devoted to outline the recent advance- ment of Wireless Sensor Networks (WSN) based underwater localization. Several classic architectures designed for Underwater Acoustic Sensor Network (UASN) are brie y introduced. Acoustic propa- gation and channel models are described and several ranging techniques are then explained. Many state-of-the-art underwater localization algorithms are introduced, followed by the outline of some existing underwater localization systems

    A Survey of Techniques and Challenges in Underwater Localization

    Get PDF
    Underwater Wireless Sensor Networks (UWSNs) are expected to support a variety of civilian and military applications. Sensed data can only be interpreted meaningfully when referenced to the location of the sensor, making localization an important problem. While global positioning system (GPS) receivers are commonly used in terrestrial WSNs to achieve this, this is infeasible in UWSNs as GPS signals do not propagate through water. Acoustic communications is the most promising mode of communication underwater. However, underwater acoustic channels are characterized by harsh physical layer conditions with low bandwidth, high propagation delay and high bit error rate. Moreover, the variable speed of sound and the non-negligible node mobility due to water currents pose a unique set of challenges for localization in UWSNs. In this paper, we provide a survey of techniques and challenges in localization specifically for UWSNs. We categorize them into (i) range-based vs. range-free techniques; (ii) techniques that rely on static reference nodes vs. those who also rely on mobile reference nodes, and (iii) single-stage vs. multi-stage schemes. We compare the schemes in terms of localization speed, accuracy, coverage and communication costs. Finally, we provide an outlook on the challenges that should be, but have yet been, addressed. (C) 2011 Elsevier Ltd. All rights reserved

    Improving Localization Accuracy and Packet Scheduling in Underwater Sensor Networks

    Get PDF
    One of the vital issues for wireless sensing element networks is increasing the network time period. Bunch is associate economical technique for prolonging the time period of wireless sensing element networks. This thesis proposes a multihop bunch formula (MHC-multihop clustering algorithm) for energy saving in wireless sensing element networks. MHC selects the clusterheads consistent with theto parameters the remaining energy and node degree. Additionally cluster heads choose their members consistent with the two parameters of sensing element the remaining energy and therefore the distance to its cluster head. MHC is finished in 3 phases quickly. Simulation results show that the planned formula will increase the network time period over 16 % compared of the LEACH(Low-energy adaptive clustering hierarchy) protoco

    Mobile node-aided localization and tracking in terrestrial and underwater networks

    Get PDF
    In large-scale wireless sensor networks (WSNs), the position information of individual sensors is very important for many applications. Generally, there are a small number of position-aware nodes, referred to as the anchors. Every other node can estimate its distances to the surrounding anchors, and then employ trilateration or triangulation for self-localization. Such a system is easy to implement, and thus popular for both terrestrial and underwater applications, but it suffers from some major drawbacks. First, the density of the anchors is generally very low due to economical considerations, leading to poor localization accuracy. Secondly, the energy and bandwidth consumptions of such systems are quite significant. Last but not the least, the scalability of a network based on fixed anchors is not good. Therefore, whenever the network expands, more anchors should be deployed to guarantee the required performance. Apart from these general challenges, both terrestrial and underwater networks have their own specific ones. For example, realtime channel parameters are generally required for localization in terrestrial WSNs. For underwater networks, the clock skew between the target sensor and the anchors must be considered. That is to say, time synchronization should be performed together with localization, which makes the problem complicated. An alternative approach is to employ mobile anchors to replace the fixed ones. For terrestrial networks, commercial drones and unmanned aerial vehicles (UAVs) are very good choices, while autonomous underwater vehicles (AUVs) can be used for underwater applications. Mobile anchors can move along a predefined trajectory and broadcast beacon signals. By listening to the messages, the other nodes in the network can localize themselves passively. This architecture has three major advantages: first, energy and bandwidth consumptions can be significantly reduced; secondly, the localization accuracy can be much improved with the increased number of virtual anchors, which can be boosted at negligible cost; thirdly, the coverage can be easily extended, which makes the solution and the network highly scalable. Motivated by this idea, this thesis investigates the mobile node-aided localization and tracking in large-scale WSNs. For both terrestrial and underwater WSNs, the system design, modeling, and performance analyses will be presented for various applications, including: (1) the drone-assisted localization in terrestrial networks; (2) the ToA-based underwater localization and time synchronization; (3) the Doppler-based underwater localization; (4) the underwater target detection and tracking based on the convolutional neural network and the fractional Fourier transform. In these applications, different challenges will present, and we will see how these challenges can be addressed by replacing the fixed anchors with mobile ones. Detailed mathematical models will be presented, and extensive simulation and experimental results will be provided to verify the theoretical results. Also, we will investigate the channel estimation for the fifth generation (5G) wireless communications. A pilot decontamination method will be presented for the massive multiple-input-multiple-output communications, and the data-aided channel tracking will be discussed for millimeter wave communications. We will see that the localization problem is highly coupled with the channel estimation in wireless communications

    Algorithms for propagation-aware underwater ranging and localization

    Get PDF
    MenciĂłn Internacional en el tĂ­tulo de doctorWhile oceans occupy most of our planet, their exploration and conservation are one of the crucial research problems of modern time. Underwater localization stands among the key issues on the way to the proper inspection and monitoring of this significant part of our world. In this thesis, we investigate and tackle different challenges related to underwater ranging and localization. In particular, we focus on algorithms that consider underwater acoustic channel properties. This group of algorithms utilizes additional information about the environment and its impact on acoustic signal propagation, in order to improve the accuracy of location estimates, or to achieve a reduced complexity, or a reduced amount of resources (e.g., anchor nodes) compared to traditional algorithms. First, we tackle the problem of passive range estimation using the differences in the times of arrival of multipath replicas of a transmitted acoustic signal. This is a costand energy- effective algorithm that can be used for the localization of autonomous underwater vehicles (AUVs), and utilizes information about signal propagation. We study the accuracy of this method in the simplified case of constant sound speed profile (SSP) and compare it to a more realistic case with various non-constant SSP. We also propose an auxiliary quantity called effective sound speed. This quantity, when modeling acoustic propagation via ray models, takes into account the difference between rectilinear and non-rectilinear sound ray paths. According to our evaluation, this offers improved range estimation results with respect to standard algorithms that consider the actual value of the speed of sound. We then propose an algorithm suitable for the non-invasive tracking of AUVs or vocalizing marine animals, using only a single receiver. This algorithm evaluates the underwater acoustic channel impulse response differences induced by a diverse sea bottom profile, and proposes a computationally- and energy-efficient solution for passive localization. Finally, we propose another algorithm to solve the issue of 3D acoustic localization and tracking of marine fauna. To reach the expected degree of accuracy, more sensors are often required than are available in typical commercial off-the-shelf (COTS) phased arrays found, e.g., in ultra short baseline (USBL) systems. Direct combination of multiple COTS arrays may be constrained by array body elements, and lead to breaking the optimal array element spacing, or the desired array layout. Thus, the application of state-of-the-art direction of arrival (DoA) estimation algorithms may not be possible. We propose a solution for passive 3D localization and tracking using a wideband acoustic array of arbitrary shape, and validate the algorithm in multiple experiments, involving both active and passive targets.Part of the research in this thesis has been supported by the EU H2020 program under project SYMBIOSIS (G.A. no. 773753).This work has been supported by IMDEA Networks InstitutePrograma de Doctorado en IngenierĂ­a TelemĂĄtica por la Universidad Carlos III de MadridPresidente: Paul Daniel Mitchell.- Secretario: Antonio FernĂĄndez Anta.- Vocal: Santiago Zazo Bell

    Synchronous-Clock, One-Way-Travel-Time Acoustic Navigation for Underwater Vehicles

    Full text link
    This paper reports the development and deployment of a synchronous-clock acoustic navigation system suitable for the simultaneous navigation of multiple underwater vehicles. Our navigation system is composed of an acoustic modem–based communication and navigation system that allows for onboard navigational data to be broadcast as a data packet by a source node and for all passively receiving nodes to be able to decode the data packet to obtain a one-way-travel-time (OWTT) pseudo-range measurement and navigational ephemeris data. The navigation method reported herein uses a surface ship acting as a single moving reference beacon to a fleet of passively listening underwater vehicles. All vehicles within acoustic range are able to concurrently measure their slant range to the reference beacon using the OWTT measurement methodology and additionally receive transmission of reference beacon position using the modem data packet. The advantages of this type of navigation system are that it can (i) concurrently navigate multiple underwater vehicles within the vicinity of the surface ship and (ii) provide a bounded-error XY position measure that is commensurate with conventional moored long-baseline (LBL) navigation systems [i.e., ] but unlike LBL is not geographically restricted to a fixed-beacon network. We present results for two different field experiments using a two-node configuration consisting of a global positioning system–equipped surface ship acting as a global navigation aid to a Doppler-aided autonomous underwater vehicle. In each experiment, vehicle position was independently corroborated by other standard navigation means. Results for a maximum likelihood sensor fusion framework are reported.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/86046/1/reustice-2.pd

    Cooperative Localization in Mobile Underwater Acoustic Sensor Networks

    Get PDF
    Die großflĂ€chige Erkundung und Überwachung von Tiefseegebieten gewinnt mehr und mehr an Bedeutung fĂŒr Industrie und Wissenschaft. Diese schwer zugĂ€nglichen Areale in der Tiefsee können nur mittels Teams unbemannter Tauchbote effizient erkundet werden. Aufgrund der hohen Kosten, war bisher ein Einsatz von mehreren autonomen Unterwasserfahrzeugen (AUV) wirtschaftlich undenkbar, wodurch AUV-Teams nur in Simulationen erforscht werden konnten. In den letzten Jahren konnte jedoch eine Entwicklung hin zu gĂŒnstigeren und robusteren AUVs beobachtet werden. Somit wird der Einsatz von AUV-Teams in Zukunft zu einer realen Option. Die wachsende Nachfrage nach Technologien zur UnterwasseraufklĂ€rung und Überwachung konnte diese Entwicklung noch zusĂ€tzlich beschleunigen. Eine der grĂ¶ĂŸten technischen HĂŒrden fĂŒr tief tauchende AUVs ist die Unterwasserlokalisierug. SatelitengestĂŒtzte Navigation ist in der Tiefe nicht möglich, da Radiowellen bereits nach wenigen Metern im Wasser stark an IntensitĂ€t verlieren. Daher mĂŒssen neue AnsĂ€tze fĂŒr die Unterwasserlokalisierung entwickelt werden die sich auch fĂŒr FahrzeugenverbĂ€nde skalieren lassen. Der Einsatz von AUV-Teams ermöglicht nicht nur völlig neue Möglichkeiten der Kooperation, sondern erlaubt auch jedem einzelnen AUV von den Navigationsdaten der anderen Fahrzeuge im Verband zu profitieren, um die eigene Lokalisierung zu verbessern. In dieser Arbeit wird ein kooperativer Lokalisierungsansatz vorgestellt, welcher auf dem Nachrichtenaustausch durch akustische Ultra-Short Base-Line (USBL) Modems basiert. Ein akustisches Modem ermöglicht die Übertragung von Datenpaketen im Wasser, wĂ€rend ein USBL-Sensor die Richtung einer akustischen Quelle bestimmen kann. Durch die Kombination von Modem und Sensor entsteht ein wichtiges Messinstrument fĂŒr die Unterwasserlokalisierung. Wenn ein Fahrzeug ein Datenpaket mit seiner eignen Position aussendet, können andere Fahrzeuge mit einem USBL-Modem diese Nachricht empfangen. In Verbindung mit der Richtungsmessung zur Quelle, können diese Daten von einem Empfangenden AUV verwendet werden, um seine eigene Positionsschatzung zu verbessern. Diese Arbeit schlĂ€gt einen Ansatz zur Fusionierung der empfangenen Nachricht mit der Richtungsmessung vor, welcher auch die jeweiligen Messungenauigkeiten berĂŒcksichtigt. Um die Messungenauigkeit des komplexen USBL-Sensors bestimmen zu können, wurde zudem ein detailliertes Sensormodell entwickelt. ZunĂ€chst wurden existierende AnsĂ€tze zur kooperativen Lokalisierung (CL) untersucht, um daraus eine Liste von erwĂŒnschten Eigenschaften fĂŒr eine CL abzuleiten. Darauf aufbauend wurde der Deep-Sea Network Lokalisation (DNL) Ansatz entwickelt. Bei DNL handelt es sich um eine CL Methode, bei der die Skalierbarkeit sowie die praktische Anwendbarkeit im Fokus stehen. DNL ist als eine Zwischenschicht konzipiert, welche USBL-Modem und Navigationssystem miteinander verbindet. Es werden dabei Messwerte und Kommunikationsdaten des USBL zu einer Standortbestimmung inklusive RichtungsschĂ€tzung fusioniert und an das Navigationssystem weiter geleitet, Ă€hnlich einem GPS-Sensor. Die FunktionalitĂ€t von USBL-Modell und DNL konnten evaluiert werden anhand von Messdaten aus Seeerprobungen in der Ostsee sowie im Mittelatlantik. Die QualitĂ€t einer CL hangt hĂ€ufig von vielen unterschiedlichen Faktoren ab. Die Netzwerktopologie muss genauso berĂŒcksichtig werden wie die LokalisierungsfĂ€higkeiten jedes einzelnen Teilnehmers. Auch das Kommunikationsverhalten der einzelnen Teilnehmer bestimmt, welche Informationen im Netzwerk vorhanden sind und hat somit einen starken Einfluss auf die CL. Um diese Einflussfaktoren zu untersuchen, wurden eine Reihe von Szenarien simuliert, in denen Kommunikationsverhalten und Netzwerktopologie fĂŒr eine Gruppe von AUVs variiert wurden. In diesen Experimenten wurden die AUVs durch ein OberflĂ€chenfahrzeug unterstĂŒtzt, welches seine geo-referenzierte Position ĂŒber DNL an die getauchten Fahrzeuge weiter leitete. Anhand der untersuchten Topologie können die Experimente eingeteilt werden in Single-Hop und Multi-Hop. Single-Hop bedeutet, dass jedes AUV sich in der Sendereichweite des OberflĂ€chenfahrzeugs befindet und dessen Positionsdaten auf direktem Wege erhĂ€lt. Wie die Ergebnisse der Single-Hop Experimente zeigen, kann der Lokalisierungsfehler der AUVs eingegrenzt werden, wenn man DNL verwendet. Dabei korreliert der Lokalisierungsfehler mit der kombinierten Ungenauigkeit von USBL-Messung und OberflĂ€chenfahrzeugposition. Bei den Multi-Hop Experimenten wurde die Topologie so geĂ€ndert, dass sich nur eines der AUVs in direkter Sendereichweite des OberflĂ€chenfahrzeugs befindet. Dieses AUV verbessert seine Position mit den empfangen Daten des OberflĂ€chenfahrzeugs und sendet wiederum seine verbesserte Position an die anderen AUVs. Auch hier konnte gezeigt werden, dass sich der Lokalisierungfehler der Gruppe mit DNL einschrĂ€nken lĂ€sst. Ändert man nun das Schema der Kommunikation so, dass alle AUVs zyklisch ihre Position senden, zeigte sich eine Verschlechterung der LokalisierungsqualitĂ€t der Gruppe. Dieses unerwartet Ergebnis konnte auf einen Teil des DNL-Algorithmus zurĂŒck gefĂŒhrt werden. Da die verwendete USBL-Klasse nur die Richtung eines Signals misst, nicht jedoch die Entfernung zum Sender, wird in der DNL-Schicht eine Entfernungsschatzung vorgenommen. Wenn die Kommunikation nicht streng unidirektional ist, entsteht eine Ruckkopplungsschleife, was zu fehlerhaften Entfernungsschatzungen fĂŒhrt. Im letzten Experiment wird gezeigt wie sich dieses Problem vermeiden lasst, mithilfe einer relativ neue USBL-Klasse, die sowohl Richtung als auch Entfernung zum Sender misst. Die zwei wesentlichen BeitrĂ€ge dieser Arbeit sind das USBL-Model zum einen und zum Anderen, der neue kooperative Lokalisierungsansatz DNL. Mithilfe des Sensormodels lassen sich nicht nur Messabweichungen einer USBL-Messung bestimmen, es kann auch dazu genutzt werden, einige FehlereinflĂŒsse zu korrigieren. Mit DNL wurde eine skalierbare CL-Methode entwickelt, die sich gut fĂŒr den den Einsatz bei mobilen Unterwassersensornetzwerken eignet. Durch das Konzept als Zwischenschicht, lasst sich DNL einfach in bestehende Navigationslösungen integrieren, um die LangzeitstabilitĂ€t der Navigation fĂŒr große VerbĂ€nde von tiefgetauchten Fahrzeugen zu gewĂ€hrleisten. Sowohl USBL-Model als auch DNL sind dabei so ressourcenschonend, dass sie auf dem Computer eines Standard USBL laufen können, ohne die ursprĂŒngliche FunktionalitĂ€t einzuschrĂ€nken, was den praktischen Einsatz zusĂ€tzlich vereinfacht

    Experimental Results in Synchronous-Clock One-Way-Travel-Time Acoustic Navigation for Autonomous Underwater Vehicles

    Full text link
    This paper reports recent experimental results in the development and deployment of a synchronous-clock acoustic navigation system suitable for the simultaneous navigation of multiple underwater vehicles. The goal of this work is to enable the task of navigating multiple autonomous underwater vehicles (AUVs) over length scales of O(100 km), while maintaining error tolerances commensurate with conventional long-baseline transponder-based navigation systems (i.e., O(1 m)), but without the requisite need for deploying, calibrating, and recovering seafloor anchored acoustic transponders. Our navigation system is comprised of an acoustic modem-based communication/navigation system that allows for onboard navigational data to be broadcast as a data packet by a source node, and for all passively receiving nodes to be able to decode the data packet to obtain a one-way travel time pseudo-range measurement and ephemeris data. We present results for two different field experiments using a two-node configuration consisting of a global positioning system (GPS) equipped surface ship acting as a global navigation aid to a Doppler-aided AUV. In each experiment, vehicle position was independently corroborated by other standard navigation means. Initial results for a maximum-likelihood sensor fusion framework are reported.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/86032/1/reustice-20.pd
    • 

    corecore