7 research outputs found

    Self-Seeded RSOA-Fiber Cavity Lasers vs. ASE Spectrum-Sliced or Externally Seeded Transmitters—A Comparative Study

    Get PDF
    Reflective semiconductor optical amplifier fiber cavity lasers (RSOA-FCLs) are appealing, colorless, self-seeded, self-tuning and cost-efficient upstream transmitters. They are of interest for wavelength division multiplexed passive optical networks (WDM-PONs) based links. In this paper, we compare RSOA-FCLs with alternative colorless sources, namely the amplified spontaneous emission (ASE) spectrum-sliced and the externally seeded RSOAs. We compare the differences in output power, signal-to-noise ratio (SNR), relative intensity noise (RIN), frequency response and transmission characteristics of these three sources. It is shown that an RSOA-FCL offers a higher output power over an ASE spectrum-sliced source with SNR, RIN and frequency response characteristics halfway between an ASE spectrum-sliced and a more expensive externally seeded RSOA. The results show that the RSOA-FCL is a cost-efficient WDM-PON upstream source, borrowing simplicity and cost-efficiency from ASE spectrum slicing with characteristics that are, in many instances, good enough to perform short-haul transmission. To substantiate our statement and to quantitatively compare the potential of the three schemes, we perform data transmission experiments at 5 and 10 Gbit/s

    Intra-cavity frequency shifted laser pumps for non-degenerate and partially coherent Bragg-Scattering FWM in nonlinear fiber

    Get PDF
    International audienceIn this work the authors experimentally study the problem of non-degenerate four-wave-mixing (FWM) by using a pair of partially coherent pumps, and focus our attention on a specific type of FWM, which is generally called "Bragg-Scattering" (BS-FWM). This kind of FWM has attracted a renewed interest because of its intrinsically low-noise nature which makes it potentially applicable for light-by-light manipulation even for very faint signals such as quantum keys

    Architectures and dynamic bandwidth allocation algorithms for next generation optical access networks

    Get PDF

    Bit-and power-loading-A comparative study on maximizing the capacity of RSOA based colorless DMT transmitters

    No full text
    We present a comparative study of the capacity increase brought by bit- and power-loading discrete multi-tone (DMT) modulation for low-cost colorless transmitters. Three interesting reflective semiconductor optical amplifier (RSOA) based colorless transmitter configurations are compared: First, an amplified spontaneous emission (ASE) spectrum-sliced source; second, a self-seeded RSOA fiber cavity laser (FCL) and third, an externally seeded RSOA. With bit- and power-loaded DMT, we report record high line rates of 6.25, 20.1 and 30.7 Gbit/s and line rates of 4.17, 10.1 and 24.5 Gbit/s in a back-to-back and in a 25 km nonzero dispersion shifted fiber (NZDSF) transmission experiments for the three transmitter configurations, respectively. In all the experiments, BER (bit error ratios) below an FEC (forward error correction) limit of 7.5 × 10−3 were achieved.ISSN:2076-341
    corecore