213 research outputs found

    HLA high performance and real-time simulation studies with CERTI

    Get PDF
    Our work takes place in the context of the HLA standard and its application in real-time systems context. Indeed, current HLA standard is inadequate for taking into consideration the different constraints involved in real-time computer systems. Many works have been invested in order to provide real-time capabilities to Run Time Infrastructures (RTI). This paper describes our approach focusing on achieving hard real-time properties for HLA federations through a complete state of the art on the related domain. Our paper also proposes a global bottom up approach from basic hardware and software basic requirements to experimental tests for validation of distributed real-time simulation with CERTI

    TeamUp5G: a multidisciplinary approach to training and research on new RAN techniques for 5G ultra-dense mobile networks

    Get PDF
    Proceeding of: 12th IEEE/IET International Symposium on Communication Systems, Networks and Digital Signal Processing, (CSNDSP), 20-22, July 2020, (online).This paper presents a summary of the main research directions being followed in TeamUp5G European Training Network, teaming up a new generation of researchers and entrepreneurs ready to address complex engineering problems and innovation to work both at university and industry in the 5G field. This project is focused on new radio access network (RAN) techniques for 5G, considering ultradense mobile networks as a key ingredient of the actual mobile networks and their evolution. Research covers a wide spread of topics from physical layer and medium access control to applications, looking at spectrum sharing and energy efficiency as important features.This work has received funding from the European Union (EU) Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie ETN TeamUp5G, grant agreement No. 813391

    Mobile Computing in Digital Ecosystems: Design Issues and Challenges

    Full text link
    In this paper we argue that the set of wireless, mobile devices (e.g., portable telephones, tablet PCs, GPS navigators, media players) commonly used by human users enables the construction of what we term a digital ecosystem, i.e., an ecosystem constructed out of so-called digital organisms (see below), that can foster the development of novel distributed services. In this context, a human user equipped with his/her own mobile devices, can be though of as a digital organism (DO), a subsystem characterized by a set of peculiar features and resources it can offer to the rest of the ecosystem for use from its peer DOs. The internal organization of the DO must address issues of management of its own resources, including power consumption. Inside the DO and among DOs, peer-to-peer interaction mechanisms can be conveniently deployed to favor resource sharing and data dissemination. Throughout this paper, we show that most of the solutions and technologies needed to construct a digital ecosystem are already available. What is still missing is a framework (i.e., mechanisms, protocols, services) that can support effectively the integration and cooperation of these technologies. In addition, in the following we show that that framework can be implemented as a middleware subsystem that enables novel and ubiquitous forms of computation and communication. Finally, in order to illustrate the effectiveness of our approach, we introduce some experimental results we have obtained from preliminary implementations of (parts of) that subsystem.Comment: Proceedings of the 7th International wireless Communications and Mobile Computing conference (IWCMC-2011), Emergency Management: Communication and Computing Platforms Worksho

    Armada: a Parallel I/O Framework for Computational Grids

    Get PDF
    High-performance computing increasingly occurs on “computational grids” composed of heterogeneous and geographically distributed systems of computers, networks, and storage devices that collectively act as a single “virtual” computer. One of the great challenges for this environment is to provide efficient access to data that is distributed across remote data servers in a grid. In this paper, we describe our solution, a framework we call Armada. Armada allows applications to flexibly compose modules to access their data, and to place those modules at appropriate hosts within the grid to reduce network traffic

    Vetronics Architecture with in vehicle Networking

    Get PDF
        The effectiveness of combat and combat support vehicles platforms can be improved significantly by incorporating Vetronics concept at the platform design stage itself which allows on-board systems to be interconnected as networks and enables them not only to share the information with-in the platform but also with the neighbouring platforms. The Vetronics concept not only optimises the on-board computing resources and other electronic sub-systems, also aids in easier platform integration. The Vetronics architecture with in-vehicle networking can be conceived and optimised based for vehicle type, requirement of types of systems envisaged for integration and having a balance between standard and customised components. The conceptual architecture proposed in this paper brings out the benefits offered by Vetronics approach for integration of on-board sub-systems thereby enhancing the platform effectiveness and Battlefield Management System for in-service and futuristic platforms considering the space as one of the major constraints. The proposed concept is adaptable, flexible and scalable enabling integration of the various electronic sub-systems

    Department of Computer Science Activity 1998-2004

    Get PDF
    This report summarizes much of the research and teaching activity of the Department of Computer Science at Dartmouth College between late 1998 and late 2004. The material for this report was collected as part of the final report for NSF Institutional Infrastructure award EIA-9802068, which funded equipment and technical staff during that six-year period. This equipment and staff supported essentially all of the department\u27s research activity during that period

    Flexible Scheduling in Middleware for Distributed rate-based real-time applications - Doctoral Dissertation, May 2002

    Get PDF
    Distributed rate-based real-time systems, such as process control and avionics mission computing systems, have traditionally been scheduled statically. Static scheduling provides assurance of schedulability prior to run-time overhead. However, static scheduling is brittle in the face of unanticipated overload, and treats invocation-to-invocation variations in resource requirements inflexibly. As a consequence, processing resources are often under-utilized in the average case, and the resulting systems are hard to adapt to meet new real-time processing requirements. Dynamic scheduling offers relief from the limitations of static scheduling. However, dynamic scheduling offers relief from the limitations of static scheduling. However, dynamic scheduling often has a high run-time cost because certain decisions are enforced on-line. Furthermore, under conditions of overload tasks can be scheduled dynamically that may never be dispatched, or that upon dispatch would miss their deadlines. We review the implications of these factors on rate-based distributed systems, and posits the necessity to combine static and dynamic approaches to exploit the strengths and compensate for the weakness of either approach in isolation. We present a general hybrid approach to real-time scheduling and dispatching in middleware, that can employ both static and dynamic components. This approach provides (1) feasibility assurance for the most critical tasks, (2) the ability to extend this assurance incrementally to operations in successively lower criticality equivalence classes, (3) the ability to trade off bounds on feasible utilization and dispatching over-head in cases where, for example, execution jitter is a factor or rates are not harmonically related, and (4) overall flexibility to make more optimal use of scarce computing resources and to enforce a wider range of application-specified execution requirements. This approach also meets additional constraints of an increasingly important class of rate-based systems, those with requirements for robust management of real-time performance in the face of rapidly and widely changing operating conditions. To support these requirements, we present a middleware framework that implements the hybrid scheduling and dispatching approach described above, and also provides support for (1) adaptive re-scheduling of operations at run-time and (2) reflective alternation among several scheduling strategies to improve real-time performance in the face of changing operating conditions. Adaptive re-scheduling must be performed whenever operating conditions exceed the ability of the scheduling and dispatching infrastructure to meet the critical real-time requirements of the system under the currently specified rates and execution times of operations. Adaptive re-scheduling relies on the ability to change the rates of execution of at least some operations, and may occur under the control of a higher-level middleware resource manager. Different rates of execution may be specified under different operating conditions, and the number of such possible combinations may be arbitrarily large. Furthermore, adaptive rescheduling may in turn require notification of rate-sensitive application components. It is therefore desirable to handle variations in operating conditions entirely within the scheduling and dispatching infrastructure when possible. A rate-based distributed real-time application, or a higher-level resource manager, could thus fall back on adaptive re-scheduling only when it cannot achieve acceptable real-time performance through self-adaptation. Reflective alternation among scheduling heuristics offers a way to tune real-time performance internally, and we offer foundational support for this approach. In particular, run-time observable information such as that provided by our metrics-feedback framework makes it possible to detect that a given current scheduling heuristic is underperforming the level of service another could provide. Furthermore we present empirical results for our framework in a realistic avionics mission computing environment. This forms the basis for guided adaption. This dissertation makes five contributions in support of flexible and adaptive scheduling and dispatching in middleware. First, we provide a middle scheduling framework that supports arbitrary and fine-grained composition of static/dynamic scheduling, to assure critical timeliness constraints while improving noncritical performance under a range of conditions. Second, we provide a flexible dispatching infrastructure framework composed of fine-grained primitives, and describe how appropriate configurations can be generated automatically based on the output of the scheduling framework. Third, we describe algorithms to reduce the overhead and duration of adaptive rescheduling, based on sorting for rate selection and priority assignment. Fourth, we provide timely and efficient performance information through an optimized metrics-feedback framework, to support higher-level reflection and adaptation decisions. Fifth, we present the results of empirical studies to quantify and evaluate the performance of alternative canonical scheduling heuristics, across a range of load and load jitter conditions. These studies were conducted within an avionics mission computing applications framework running on realistic middleware and embedded hardware. The results obtained from these studies (1) demonstrate the potential benefits of reflective alternation among distinct scheduling heuristics at run-time, and (2) suggest performance factors of interest for future work on adaptive control policies and mechanisms using this framework

    Efficient I/O for Computational Grid Applications

    Get PDF
    High-performance computing increasingly occurs on computational grids composed of heterogeneous and geographically distributed systems of computers, networks, and storage devices that collectively act as a single virtual computer. A key challenge in this environment is to provide efficient access to data distributed across remote data servers. This dissertation explores some of the issues associated with I/O for wide-area distributed computing and describes an I/O system, called Armada, with the following features: a framework to allow application and dataset providers to flexibly compose graphs of processing modules that describe the distribution, application interfaces, and processing required of the dataset before or after computation; an algorithm to restructure application graphs to increase parallelism and to improve network performance in a wide-area network; and a hierarchical graph-partitioning scheme that deploys components of the application graph in a way that is both beneficial to the application and sensitive to the administrative policies of the different administrative domains. Experiments show that applications using Armada perform well in both low- and high-bandwidth environments, and that our approach does an exceptional job of hiding the network latency inherent in grid computing
    • …
    corecore