
Dartmouth College Dartmouth College

Dartmouth Digital Commons Dartmouth Digital Commons

Open Dartmouth: Published works by
Dartmouth faculty Faculty Work

3-2002

Armada: a Parallel I/O Framework for Computational Grids Armada: a Parallel I/O Framework for Computational Grids

Ron Oldfield
Dartmouth College

David Kotz
Dartmouth College

Follow this and additional works at: https://digitalcommons.dartmouth.edu/facoa

 Part of the Computer Sciences Commons

Dartmouth Digital Commons Citation Dartmouth Digital Commons Citation
Oldfield, Ron and Kotz, David, "Armada: a Parallel I/O Framework for Computational Grids" (2002). Open
Dartmouth: Published works by Dartmouth faculty. 3318.
https://digitalcommons.dartmouth.edu/facoa/3318

This Article is brought to you for free and open access by the Faculty Work at Dartmouth Digital Commons. It has
been accepted for inclusion in Open Dartmouth: Published works by Dartmouth faculty by an authorized
administrator of Dartmouth Digital Commons. For more information, please contact
dartmouthdigitalcommons@groups.dartmouth.edu.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Dartmouth Digital Commons (Dartmouth College)

https://core.ac.uk/display/231141189?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://digitalcommons.dartmouth.edu/
https://digitalcommons.dartmouth.edu/facoa
https://digitalcommons.dartmouth.edu/facoa
https://digitalcommons.dartmouth.edu/faculty
https://digitalcommons.dartmouth.edu/facoa?utm_source=digitalcommons.dartmouth.edu%2Ffacoa%2F3318&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=digitalcommons.dartmouth.edu%2Ffacoa%2F3318&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.dartmouth.edu/facoa/3318?utm_source=digitalcommons.dartmouth.edu%2Ffacoa%2F3318&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:dartmouthdigitalcommons@groups.dartmouth.edu

Future Generation Computer Systems 18 (2002) 501–523

Armada: a parallel I/O framework for computational grids�

Ron Oldfield∗, David Kotz1

Department of Computer Science, Dartmouth College, 6211 Sudikoff Laboratory, Hanover, NH 03755-3510, USA

Abstract

High-performance computing increasingly occurs on “computational grids” composed of heterogeneous and geographically
distributed systems of computers, networks, and storage devices that collectively act as a single “virtual” computer. One of
the great challenges for this environment is to provide efficient access to data that is distributed across remote data servers
in a grid. In this paper, we describe our solution, a framework we callarmada. The framework allows applications and
dataset providers to flexibly compose graphs of processing modules that describe the distribution, application interfaces, and
processing required of the dataset before computation. The armada runtime system then restructures the graph, and places the
processing modules at appropriate hosts to reduce network traffic. © 2002 Elsevier Science B.V. All rights reserved.

Keywords: Framework; Parallel I/O; Computational grids; Data grids

1. Introduction

A recent trend in high-performance computing
is to build “computational grids” that tie together
heterogeneous, geographically distributed computers
and storage systems. Applications for these environ-
ments use high-speed networks to logically assemble
resources into a virtual supercomputer. The trend
toward grid computing derives from many factors
[1]. Among them are the technological advances in
networking, computing, and distributed computing
software; the increase in the number ofdemand-
driven applications—applications that have infrequent

� Expanded version of a talk presented at First IEEE/ACM
International Symposium on Cluster Computing and the Grid
(Brisbane, Australia, May 2001).

∗ Corresponding author. Tel.:+1-603-646-1639;
fax: +1-603-646-1672;
URL: http://www.cs.dartmouth.edu/∼raoldfi.
E-mail addresses: raoldfi@cs.dartmouth.edu (R. Oldfield),
dfk@cs.dartmouth.edu (D. Kotz).

1 Tel.: +1-603-646-1439; fax:+1-603-646-1672;
http://www.cs.dartmouth.edu/∼raoldfi.

requirements for large computing resources (e.g., a
medical diagnosis system during surgery or a seismic
simulation after an earthquake); the utilization of idle
compute resources; and the increased need to share
data that was computed or gathered at geographically
distributed locations, e.g., weather prediction simula-
tions that use data gathered from many satellites and
stored at locations around the world.

A particularly challenging class of grid applica-
tions is the class of data-intensive grid applications. A
data-intensive grid application typically requires ac-
cess to large (terabyte–petabyte size) remote datasets,
and has significant computational requirements that
may require high-performance supercomputers. In ad-
dition, the data is often stored in “raw” formats and
requires significant preprocessing or filtering before
the computation can take place. For example, seismic
data, used to extract images of the subsurface, requires
a variety of processing steps to filter and transform
data before computation [2]. Data-intensive applica-
tions also exist in climate modeling [3,4] physics and
astronomy [5], biology and chemistry [6,7], visualiza-
tion [8–10], and many others.

0167-739X/02/$ – see front matter © 2002 Elsevier Science B.V. All rights reserved.
PII: S0167-739X(01)00076-0

David Kotz
Available at <http://www.cs.dartmouth.edu/~dfk/papers/oldfield:framework.pdf>.Future Generation Computing Systems (FGCS), 18(4):501-523, March 2002.

502 R. Oldfield, D. Kotz / Future Generation Computer Systems 18 (2002) 501–523

In this paper, we present the armada framework for
building I/O-access paths for data-intensive grid ap-
plications. Armada’s goal is to allow grid applications
to access datasets that are distributed across a compu-
tational grid, and in particular to allow the application
programmer and the dataset provider to design and
deploy a flexible network of application-specific and
dataset-specific functionality across the grid.

1.1. Flexibility

Computation grids are large and diverse. Data-
intensive applications have a wide variety of needs
and data-access patterns. It is, therefore, critical
to allow applications the flexibility to construct
application-specific interfaces, caching policies, data
distribution layouts, and so forth.

Studies of data-intensive scientific applications
demonstrate the performance benefits of using appli-
cation-level interfaces that enable advanced parallel-I/O
techniques like collective I/O, prefetching, and data
sieving [11–14]. A system based on a flexible and
powerful low-level interface encourages the develop-
ment of application-specific libraries that provide the
interface and features that benefit applications [15].
For example, tailoring the prefetching and caching
policies to match the application’s access patterns can
reduce latency and avoid unnecessary data requests
[16–18], and matching data-distribution policies to
the application’s access patterns can optimize parallel
access to distributed disks [19,20].

1.2. Remote processing of application code

A typical data-intensive grid application consists
of a set ofclient processes and a set of remotedata
servers. The traditional approach is for data servers
to run system software, perhaps the server side of
a parallel file system, and for client processors to
run all application-specific code. Even Galley [15],
which encourages layers of libraries that provide
application-specific functionality, contains all the ap-
plication code on the client processors. Since the
network is typically the bottleneck of data-intensive
grid applications, the placement of data-processing
functionality is critical. A key goal of armada is to
allow application code to execute on or near the data
servers, when that helps to reduce network traffic.

There are many good reasons to allow application-
specific functionality to run on processors other than
the clients. Application-specific data-distribution pat-
terns, perhaps to support disk-directed I/O [21], need
to execute on the data servers. If the distribution
of data across clients or across disks is dependent
on the value of the data, moving that function to
the data server can halve network traffic [22]. Pro-
cessors near the data servers can filter data in an
application-specific way, passing only the necessary
data on to the clients, saving network bandwidth
and client memory [10,22–24]. Processors near the
data servers can exchange blocks without passing
the data through clients, e.g., to rearrange blocks be-
tween disks during a copy or permutation operation.
Format conversion, compression, and decompres-
sion are also possible. In short, there are many ways
to optimize memory and disk activity, reduce net-
work latency, and reduce disk and network traffic, by
moving application-specific code closer to the data
servers.

1.3. Overview of the armada framework

Using the armada framework, grid applications ac-
cess remote datasets by sending data requests through
a graph of distributed application objects. The graph
is called anarmada and the objects are calledships.
We expect most applications to access data through
existing armadas constructed by a dataset provider;
however, it is also possible for the application to ex-
tend existing armadas with application-specific func-
tionality or to construct entire armadas from scratch.
The armada encodes the programmer’s interface, data
layout, caching and prefetching policies, interfaces
to heterogeneous data servers, and most other func-
tionality provided by an I/O system. The application
code sees an armada as an object that provides ac-
cess to a specific type of data through a high-level
interface.

Fig. 1 illustrates a parallel application using an
armada to access a distributed dataset. This armada
includes an application-interface ship, a preprocess-
ing ship “Op” that manipulates the data, a distribution
ship that defines how the data is distributed among
data segments, and low-level storage ships that pro-
vide access to the data segments stored on data
servers.

R. Oldfield, D. Kotz / Future Generation Computer Systems 18 (2002) 501–523 503

Fig. 1. An armada for a parallel application accessing a distributed dataset. The disk-shaped “data segments” may be as simple as a file
in a UNIX system, or as complex as a database.

The armada’s clients call methods of the API ship
(perhaps through a collective interface). This ship gen-
eratesdata requests that flow through the graph toward
the storage. Along the way, the ships may transform
or split the requests. Each storage ship transfers data
either by reading from the data server and pushing the
data back through the graph, or by pulling data from
the clients through the graph and then writing to the
data server. As we describe below, the armada sys-
tem optimizes this graph, transports data over a subset
of this control-flow graph, replicates ships to provide
parallel data paths, and carefully places ships onto the
grid to limit network traffic.

Notice that the armada system is not a parallel
file system, nor does the system itself store any data.
The set ofdata segments that make up adataset are
each stored in conventional data servers, as files, as
databases, or the like. In a computational grid it is
important to be able to work with an existing, hetero-
geneous set of data servers, and (often) with existing
datasets stored by those servers in their native formats.
Implementations of the armada system provide a va-
riety of storage ships that integrate existing resources
into an armada.

In the remainder of this paper, we discuss related
projects and the design of the armada framework. In
the next section, we present related work. In Section 3,
we describe the process of constructing an armada, in-
cluding the design of ships, the arrangement of ships
in a graph, and the deployment and management of
the armada. In Sections 4 and 5, we describe the im-
plementation of a prototype system and the initial per-
formance results of the prototype. We summarize in
Section 6.

2. Related work

Various groups within the research community as
well as the commercial sector are investigating issues
related to I/O for computational grids. Here, we dis-
cuss the systems most related to armada. In particular
we discuss I/O systems designed to be flexible, sys-
tems that optimize data paths to improve I/O perfor-
mance, and systems that support remote execution of
application code.

2.1. Flexible I/O systems

Much of the design of the armada system is in-
spired by stackable file systems [25–29]. Stackable
file systems provide flexibility by representing files as
a collection of application-specific “stackable” build-
ing blocks. This flexibility enables the file system to
provide only the necessary functionality to suit the
application, allowing good performance for a wide
variety of applications. Two of the most recent stack-
able file systems are the hurricane file system (HFS)
and wrapFS.

HFS [28] is a stackable file system designed for
tightly connected shared-memory machines. They
showed that for a several file access patterns, HFS
can provide the full I/O bandwidth of parallel disks
to parallel applications.

WrapFS [29] is a file system template in which
kernel-level modules, with a common vnode inter-
face, are stacked to form complex file systems. They
demonstrate flexibility by implementing four separate
file systems using wrapFS, including one that hashes
files into smaller directories for fast lookups and one

504 R. Oldfield, D. Kotz / Future Generation Computer Systems 18 (2002) 501–523

that automatically encrypts file data and file names. In
a later paper [30], they describe FiST, a language used
to describe a stackable file system. The FiST compiler
generates the necessary vnode modules used by the
system.

Another interesting system that follows the stack-
able file system philosophy is the parallel storage-and-
processing server (PS2) [31], from École Polytech-
nique Fédérale de Lausanne. PS2 is a data-flow
system that uses the computer-aided parallelization
tool (CAP) [32] to express the parallel behavior of the
I/O intensive applications at a high-level. The CAP
system constructs a data-flow computation graph
with “actors” as nodes of the graph. The actors are
computational units that provide application-specific
functionality. For I/O-intensive applications, the ac-
tors provide application-specific data distribution,
prefetching, or filtering.

The armada framework extends the stackable file
system concept to a grid environment. A data provider,
using armada, can describe complex arrangements and
distributions of data with a graph of mobile objects.
The application can layer other objects, perhaps to
cache, prefetch, or provide a matching interface, on
top of the graph constructed by the data provider.

2.2. Systems that optimize data paths to improve I/O

One goal of the armada system is to improve I/O
performance by restructuring the data-flow paths be-
tween the storage server and the clients. The dynamic
QUery OBject (dQUOB) system [33] also has this
goal. dQUOB is a runtime system for managing and
optimizing large data streams. Users request remote
data with SQL-like queries, and computations are
performed on the data stream between remote data
servers to the client. The computation is encapsulated
in a piece of compiled code called a “quoblet”. The
quoblet is embedded into the data streams in arbitrary
points (client, data server, or intermediate points) and
are primarily used to filter and/or transform the data.
The dQUOB system applies several optimizations to
the data stream to improve performance. After the
dQUOB compiler converts an SQL query to a “query
tree”, the tree is evaluated at runtime to determine
which portions of the query tree apply the most
filtering. The tree is then restructured to move the
high-filtering portions closer to the data.

Our goal is to generalize this approach. The ar-
mada framework is flexible enough to allow graphs of
generic ships (not just filters using an SQL interface)
to be restructured to reduce network traffic. In some
cases, we may dynamically replicate ships to distribute
network and processing load across the network.

2.3. Systems with support for remote execution
of application code

In addition to dQUOB, there are several software
systems that support processing near the data server
to either reduce network traffic or distribute compu-
tational load. Two such systems from the University
of Maryland are MOCHA (middleware based on code
shipping architecture) [34] and DataCutter [35]. Each
provide capability to move filtering code close to the
data, but the decision about where to place the code
is made by the application. In situations where many
applications compete for the server’s resources, plac-
ing the filtering code on the server may actually slow
performance rather than improve it. In such cases, the
application may not be able to make the correct choice
about where to place the filtering code.

Abacus [36] and Coign [37] are systems that auto-
mate placement of functions based on communication
profiling. Coign uses historical profiling data while
Abacus profiles during execution to adapt placement
decisions to runtime conditions. While our current pro-
totype places objects manually, our goal is to use an
approach similar to that of Abacus and possibly ex-
tend their approach by deciding placement based on
communication, CPU, and memory requirements of
the various components.

3. Building an armada

There are several steps to build an armada of
ships. The application programmer selects ships from
a library of ship classes, or writes her own ship
classes. She then writes a “blueprint” to describe the
armada. When the application runs, it presents the
blueprint to the armada system, which validates the
blueprint and deploys the ships to hosts in the grid.
The armada runtime system monitors and manages
the armada throughout the execution, potentially re-
structuring and re-deploying the armada to improve

R. Oldfield, D. Kotz / Future Generation Computer Systems 18 (2002) 501–523 505

Fig. 2. Hierarchy of armada ships.

network performance. We consider each of these steps
in turn.

3.1. Ships

The task of the ship builder is to decompose the
desired functionality into ships. The class hierarchy in
Fig. 2 illustrates the ship classes in a typical armada
implementation.

Structural ships manage distributed datasets,
through distribution or replication.

Distribution ships manage datasets composed of
many data segments. To clients, the dataset is a single
large unit, and the distribution ship maps between the
dataset and the data in the segments. When writing, the
ship decides to which segment(s) the data should be
written. When reading, the ship identifies the correct
segment(s) to read the desired data. The distribution
may be dependent only on the “position” of the data
in the dataset, such as a ship that stripes blocks of a
dataset across data segments. Or, the distribution may
depend on the value of the data, using a hash func-
tion or a key to map the request into the appropriate
segments.

Replica ships manage replicated datasets. The
replica ship decides to which replica to forward the
data request, depending on current load and capacity
conditions in the grid.

Developers can nest structural ships on top on one
another, as in Fig. 3. This application uses both a
replica-management ship (labeled D1 in the figure)

and two striping distribution ships (labeled D2) to
read data from a replicated and distributed dataset.
When a request arrives a the replica management
ship, it selects one of the two files from which to
read the data and forwards the request to the corre-
sponding distribution ship. The distribution ship then
forwards to request to the proper storage server based
on a simple striping algorithm.

A data-processing ship manipulates data elements,
either individually, or in groups, as they pass through
the ship. Data-processing ships are likely to be use-
ful for “on-the-fly” preprocessing in scientific appli-
cations.

Our hierarchy from Fig. 2 identifies five types of
data-processing ships. Afilter ship outputs a subset
of its input elements; e.g., to select observations from
a given region of a spatial dataset. Atransform ship
changes the content of individual data elements; e.g., a
fast Fourier transform (FFT) ship transforms complex
data from time values to frequency values. Areduc-
tion ship applies a function to a collection of elements
and returns a single result; e.g., to sum all of the el-
ements. Apermute ship rearranges the elements in a
collection; e.g., to sort or transpose a dataset. Finally,
conversion ships cast one data type to another to allow
two ships that expect different types to connect. For
example, a library may contain a generic structural
ship that distributes fixed-sized blocks of byte data
to a set of storage ships. The application, however,
wishes to view the data as an array of floating-point
values. This requires a type-conversion ship between

506 R. Oldfield, D. Kotz / Future Generation Computer Systems 18 (2002) 501–523

Fig. 3. A graph for an application that uses nested distribution ships to access a replicated dataset.

the client application and the block-distribution ship.
The conversion ship converts both requests and data to
the appropriate type, e.g., converting a block of bytes
into a chunk of floating-point elements in the array.

Optimization ships improve I/O performance
through techniques like caching, prefetching, and
data aggregation. Data aggregation, near the client
nodes for writing and near the I/O nodes for reading,
increases the size of network transfers and thus re-
duces the number of requests that travel through the
network.

There are two kinds ofinterface ships: on the client
side, to present the application with a convenient in-
terface to its data, and on the server side, to link an
armada to specific storage resources (such as files and
databases) in the grid.

Client-interface ships convert an application’s
method calls to a set of data requests into the rest
of the armada ships. We expect library programmers
to develop client-interface ships that match the se-
mantics of a particular class of applications, such as
computational chemistry applications [14]. Other li-
braries include interfaces that support collective I/O
and data sieving [38]. Others may support out-of-core
data-parallel programming [39]. Still others may want
to provide a conventional Unix interface to allow
legacy software to transparently access grid datasets.

Storage-interface ships process armada requests and
access low-level data servers to either load or store data

based on the request. They are essentially “drivers”
for the many available storage systems, e.g., a file ship
to store a data segment in a UNIX file, or a database
ship to store a data segment in a relational database.

Interface ships exist as the endpoints of an armada.
Because they provide direct access to either the ap-
plication or the storage device, they are not mobile.
Throughout the life of the application, they remain on
the same host.

3.2. Blueprints

The second stage of building an armada involves ar-
ranging the application’s choice of ships into a graph.
The meta-data used to describe the graph is called a
blueprint. The blueprint specifies the interconnection
of the ships, and information about each ship (loca-
tion of its implementation, hints about placement of
the ship, etc.).

We constrain graph descriptions to series–parallel
form; in such a graph, a node represents a ship (base
case) or a subgraph. Subgraphs take two forms: a
sequential subgraph (shown in Fig. 4a) that rep-
resents a series of connected nodes and a parallel
subgraph (Fig. 4b) that consists of a set of simulta-
neous nodes, connected to a source on the left and
a sink on the right. By expressing the arrangement
of ships in series–parallel form, we can describe the
graph with a directed series–parallel tree (“SP tree”).

R. Oldfield, D. Kotz / Future Generation Computer Systems 18 (2002) 501–523 507

Fig. 4. The types of subgraphs in a series–parallel digraph. (a) This
figure shows a sequential subgraph and (b) a parallel subgraph.

Fig. 5. (a) This figure shows the armada blueprint broken into series–parallel vertices and (b) the series–parallel tree representation of the
blueprint.

Fig. 5 illustrates this conversion. Such a tree is syn-
tactically easy to describe (we use XML) and easy to
manipulate internally.

Unlike a file system, the armada system does
not provide specific storage or a namespace for
blueprints. Blueprints can be stored on conventional
file systems, web servers, databases, or any other
location accessible to the application; one typical ap-
proach would be to store blueprints in files on a Unix
workstation.

508 R. Oldfield, D. Kotz / Future Generation Computer Systems 18 (2002) 501–523

3.3. Deployment

An armada’s ship objects do not exist until the
blueprint is used to deploy the armada. An application
obtains or creates a blueprint for the desired dataset,
optionally extends the blueprint to add ships to the
client side of the graph, and submits it to the ar-
mada runtime system. The runtime system validates
the blueprint and then instantiates aship manager ob-
ject to deploy, monitor, and manage all ships in the ap-
plication. The ship manager decides onto which hosts
to place the ships, based on the graph, blueprint hints
about the ships, and information about current net-
work load and topology. The primary goal is to re-
duce network traffic. The ship manager also monitors
the hosts’ resource consumption and periodically uses
that information to optimize the graph if necessary and
revise the ships’ placement. If the ship manager has
access to historical data about the application, it may
choose to optimize the graph before the initial place-
ment as well. The placement of ships will be based on
the results of an analytic cost/benefit model similar to
that employed by the Abacus system [36].

The focus of this paper is the armada framework.
We leave the details of our placement algorithms for
a later paper.

3.4. Control-flow and data-flow

The application accesses data by sending re-
quests from the client to the data servers along the

Fig. 6. An armada for a parallel application at site A using a federated dataset located at sites B and C.

control-flow graph—a graph defined by the blueprint
and constructed during deployment. The requests
sent along the control-flow graph carry with them
a reference to the ship that generated the request.
When another ship services that request, the result
is sent back to the requesting ship along an edge of
the data-flow graph. Unlike the control-flow graph,
the ships that service requests define edges of the
data-flow graph at runtime. Write requests are special
because they carry an additional reference to the ship
that contains the data. A ship servicing a write request
collects the data from the source by sending a new
read request directly to the source, along an edge of
the data-flow graph. The result (containing the data)
is then returned along the same path.

Fig. 6 shows the control-flow graph and data-flow
graph for an application with access to a federated
dataset. A blueprint from the data provider describes
a dataset spanning two sites, with the data at each
site distributed, for parallel access. The application
extends the blueprint with a processing ship “Op”,
and a collective client-interface. The solid lines of the
graph represent the control-flow graph, defined by the
blueprint. Dashed lines represent the data-flow graph,
established at runtime.

Data has to flow through ships that manipulate the
data, but need not flow through most structural ships.
The distribution ships in Fig. 6, e.g., only forward
requests and do not process data. This approach al-
lows armada to define complex structures but to avoid
touching and transporting data more than necessary.

R. Oldfield, D. Kotz / Future Generation Computer Systems 18 (2002) 501–523 509

3.5. Blueprint optimization

A significant contribution of our work is the op-
timization of blueprints to reduce the load on the
network. In a typical situation, there may be a slow
or congested network connecting the site hosting the
application and the site hosting data segments. In
an armada used for reading a dataset, e.g., moving
data-processing ships that reduce the data-flow closer
(in terms of network connectivity) to the data can

Fig. 7. Original (a) and optimized (b) armadas for an application spanning three domains.

dramatically reduce the amount of data that travels
through the “slow” portion of the network.

Consider, again, the application in Fig. 6. Assume
that the application-specific processing ship “Op” is a
data-reducing filter, and consider the task of choosing
a host for that filter. If we place the filter in site A, we
do not reduce inter-site traffic. If we place the filter in
site B or site C, we do not gain much if the connectivity
between sites B and C is slow. If, however, we replace
the single filter with an equivalent set of filter ships that

510 R. Oldfield, D. Kotz / Future Generation Computer Systems 18 (2002) 501–523

can be pushed past the distribution ships closer to the
data servers, plus a merge ship to combine the partial
results, we can reduce network traffic by performing a
large portion of the filtering near the storage servers.
Fig. 7 illustrates the placement for the original and
modified graphs.

There are two primary requirements that allow a
data-processing ship to be defined in this way: the op-
erator used by the data-processing ship must be recur-
sive and commutative. A processing ship is recursive
if it can be defined as a tree of ships, where nodes of
the tree combine results from the leaves, which consist
of the original processing ship operating on segments
of the data. A processing ship is commutative if the
order of operations on the data is independent. This al-
lows the operator to move past distribution ships that
use arbitrary distribution schemes. There are in fact
many operators that are both recursive and commu-
tative, e.g., sum, min, max, sort, and select based on
value. Processing ships that operate on a single data
element at a time, such as select based on value, do
not require a “combine” ship, making it even easier to
optimize the data-flow graph.

Our optimizer cannot determine automatically
whether a processing ship is recursive or commu-
tative. Therefore, it is responsibility of the ship’s
designer to document the properties of the ship, and
to encode the ships used for the optimization in the
blueprint description for the ship.

4. Implementation

In this section, we discuss the implementation of
armada. A quick overview: armada ships are Java ob-
jects instantiated on hosts in the grid. Each host has a
persistent server to host ships, called aharbor. Each
harbor monitors and manages the resources used by
each ship, and controls access to system resources
through a capability-based mechanism [40,41].

We chose Java for several reasons: it provides a
“sandbox” [42] for executing untrusted client code,
it is reasonably efficient now that just-in-time com-
pilers are available, it is increasingly popular among
HPC programmers, it has convenient mechanisms for
remote execution and communication (RMI), and it
can interface to application code in other languages
through the Java native interface (JNI). Only the ships

and harbors need to be written in Java; client code
could be in C, C++, or any other language that inter-
faces with Java.

In the remainder of this section, we detail the ship
and harbor implementations, and discuss how we use
the extensible markup language (XML) for armada
blueprints.

4.1. Ships

Ships are the foundation of the armada frame-
work. They provide all of functionality of the I/O
system, including distribution, replica management,
data-processing, and so forth. The ship class, the
base class for all other ships, provides mechanisms
that manage connections between ships, and provide
methods that allow the communication of requests
and data along those connections. In our current
implementation, ships communicate using a combi-
nation of RMI and TCP sockets. We use RMI for
administrative tasks, such as establishing a connec-
tion, sending and receiving profiling information, or
shutting down a ship, and we use persistent TCP
sockets to communicate requests and data between
ships.

An application or library developer extends the ship
class to implement application-specific functionality.
Extended classes communicate through the “send-
Request” and “sendResult” methods. These methods
use the underlying communication protocol to send
data to a given destination ship. Abstracting the de-
tails of the communication protocol from the library
developer allows us to change the protocol without
changes to ship libraries.

The ship class manages control connections (for re-
quests) and data connections (for results) separately.
In each case, the ship class manages existing connec-
tions with a hash table that maps a destination ship’s
id to a TCP socket. If a connection does not exist,
the ship class creates a new connection by calling the
“connect” method. The connection persists, and is thus
reused, until the application exits, or the connection is
explicitly closed by the application.

4.2. Harbors

Each host has a persistent server to host ships, called
aharbor. The harbor class provides methods (executed

R. Oldfield, D. Kotz / Future Generation Computer Systems 18 (2002) 501–523 511

through RMI) to “anchor” armada ships to the harbor.
The anchor methods instantiate a ship object within
the harbor, and thus require a class name, an array of
string arguments for the constructor, and an optional
class loader. The ShipManager (see Section 3.3) calls
the anchor method when deploying ships according to
the blueprint.

public interface Harbor extends Remote{
Ship anchor(String className, String[] args)

throws RemoteException;

Ship anchor(String className, String[] args,

ClassLoader loader)

throws RemoteException;

}

The harbor is layered on top of the host’s operating
system to provide a secure execution environment that
allows ships to access the CPU, memory, network, and
storage resources of the host machine. The essential
components of the harbor include asecurity manager
and aresource manager.

The security manager is responsible for providing
a secure execution environment for application ships.
Before installing an untrusted application ship on a
harbor, the security manager authenticates the code
for the ship and user wishing to install the ship. and
authorizes use of the host resources based on the
user identity and the security policies of the host.
After identifying the user, the security manager in-
stalls the ship inside a protected domain, known as a
“sandbox ” [42]. Once inside the sandbox, access to
resources outside the domain are strictly controlled
resource manager. The resource manager provides
“capability-based” access [40,41] to system resources
(the CPU, network, storage, and memory) outside of
the protected domain of the sandbox, and it monitors
per-ship and overall usage of the resources available
on the host. Although Java provides protection against
unauthorized memory accesses, it does not allow
object references to be revoked by the system. Capa-
bilities provide the ship with a revocable “ticket” that
enables cross-domain access to a resource while the
ticket is valid. This scheme prevents abuse of system
resources by allowing the harbor to invalidate a ticket
if the ship violates a resource usage policy or exceeds
a consumption limit assigned to the capability.

The resource manager also monitors and publishes
information about the resource consumption of the in-
dividual ships and the system as a whole. The harbor

requires this information to enforce resource consump-
tion policies, but we make the information available
so external programs (like the ship manager) can use
it for their own needs.

4.3. XML blueprints

We use the XML to encode the blueprints used to
describe an armada. We chose XML because XML’s
hierarchical structure fits our SP tree needs well and
there are existing class libraries (e.g., Java API for
XML parsing (JAXP)) that provide mechanisms for
creating and manipulating XML documents.

As specified in Section 3.2, blueprints use
series–parallel trees to represent ship graphs. A ver-
tex in the SP tree is either a representation of a
ship, a series of connected vertices, or a set of par-
allel vertices. We define the structure of the SP-tree
blueprint with the XML document type definition
(DTD) shown in Fig. 8. The ship element contains
attributes for the classname and the initial host where
the ship is to be installed. Additional options (an
array of name–value pairs represented as an array
of string objects) can be passed into the constructor
of the ship by adding Option elements to the ship’s
description. Finally, if a processing ship is optimiz-
able (see Section 3.5), the ship designer inserts an
optimization element into the ship’s XML description
that specifies a set of ships to be used by the blueprint
optimizer. If a processing ship operates on individual
elements, and thus does not require a ship to combine

Fig. 8. DTD for an armada blueprint.

512 R. Oldfield, D. Kotz / Future Generation Computer Systems 18 (2002) 501–523

Fig. 9. XML blueprint of a simple distributed file.

sub-results, the designer inserts an empty optimization
element.

Fig. 9 shows an XML blueprint for a simple dis-
tributed file with a compression and de-compression
ship added by the application. The application wishes
to compress blocks of data before transmission
through a slow network. In this application, the
compression ship is optimizable. Because the com-
pression ship operates on individual blocks and does

not require another ship to combine results, thus, the
optimize element is empty.

5. Experimental results

In this section, we measure the performance of
two applications that use armada: a remote file copy
application, and the I/O portion of a seismic imaging

R. Oldfield, D. Kotz / Future Generation Computer Systems 18 (2002) 501–523 513

Fig. 10. An armada for a simple remote file copy application. The
client application sends a file transfer request to the destination
host, which then requests data from the source.

application. It is important to note that although we
have a developing implementation of the harbor class
that uses JKernel for capability-based access, we
use a version without this additional security for our
experiments. The JKernel version requires a large
amount of tuning, and some debugging, before it will
be ready for large-scale experiments.

5.1. Remote file copy

We constructed a remote copy application (shown
in Fig. 10) that transfers data from one data server
to another. The armada consists of twoBlock-
File server-interface ships that read or write 32KB
blocks from the local file system, and aCopyClient
application-interface ship that initiates a transfer be-
tween the two hosts. The CopyClient ship sends a
write request to the destination BlockFile ship that
identifies the source ship as the data source. When
the destination ship receives the write request, it gen-
erates read requests and sends them to the source
ship. The source ship then returns the data to the des-
tination ship, and the destination ship writes the data
to the disk as the blocks arrive. Although this appli-
cation is unusual because data-flows through the two
BlockFile ships without traveling through the client,
configuring this type of application is easy and totally
transparent to the BlockFile objects.

This test measures how well armada compares with
existing remote copy applications for two-party and
third-party copies. In a two-party copy, one of the
data servers is the host that initiated the transfer. In a
third-party transfer, a client initiates a transfer between
two separate data servers. This test provides a baseline
benchmark for the raw performance of armada, and
for the potential of remote ship placement to improve
performance.

We used three workstations2 connected with
100MB Ethernet to perform our tests. Each worksta-
tion contains a single disk that achieved a measured
disk bandwidth (for sequential accesses) of 7.1Mbps
for reads and 11Mbps for writes. We measured a net-
work bandwidth of 66Mbps, with latency measured
at 160�s between each machine.

For the two-party tests, we measured the time to
transfer a 126MB file using scp2 (secure copy), rsync
(with ssh2), sftp2, nfs, and armada. To avoid additional
overhead applied by ssh, we disabled data encryption
and compression for all tools that use ssh. Since rsync
and sftp do not have support for third-party transfers,
we were unable to include them in the second test.
Fig. 11 shows timing results (averaged over 10 tests)
from the five applications.

The results show that we are competitive with tradi-
tional file transfer mechanisms, and in fact outperform
nfs and scp for third-party file transfers. For third-party
transfers, NFS moves data across the network twice—
from source to client, then from client to the destina-
tion. We believe scp is moving data across the network
twice, but are uncertain about why it is so slow. ar-
mada was able to avoid transferring data through the
client.

5.2. Seismic imaging

Our second example demonstrates how an armada
can be restructured to improve performance for a
seismic imaging application. The goal of seismic
imaging is to identify sub-surface geological struc-
tures that may contain oil. Seismic imaging is both
computationally intensive (often requiring months
to process a single dataset), and data-intensive. A
seismic dataset can be large, sometimes more than a
terabyte in size, and is often stored as a collection of
files. For example, the SEG/EAEG synthetic seismic
dataset (SSD) [43,44] is a multi-terabyte synthetically
generated dataset consisting of several thousand files.
A file consists of recorded pressure waves, gathered
by a set of receivers distributed across the surface, and
generated by a single acoustic source, also located on
the surface. Each file contains data from a different
source position. We refer to the data collected by a

2 The workstations are PCs running RedHat Linx 7.0. Each have
a Pentium II, 500 MHz processor with 256MB of RAM.

514 R. Oldfield, D. Kotz / Future Generation Computer Systems 18 (2002) 501–523

Fig. 11. Measured time to copy a 126MB file between two remote hosts.

single receiver as a “trace”, and the file associated
with a single source position as a “shot file”.

Post-stack migration [2] is a technique that signifi-
cantly reduces the amount of processing by “stacking”
(i.e., summing) traces from each shot file before the
computation phase. If the result of the post-stack com-
putation shows promise, the scientist may perform the
more computationally intensive “pre-stack” method
that calculates an image for each shot file before com-
bining the results.

The post-stack imaging application is ideal for
demonstrating the potential of the armada system—
it requires access to large datasets, it requires
application-specific preprocessing, and datasets are
often stored remotely. The goals of our experiments
are to investigate the effect of placement of applica-
tion ships and the benefit of restructuring armadas to
move filtering ships close to the data source.

Using armada, we developed an application to em-
ulate the input phase of a “post-stack” seismic imag-
ing application. Our application accesses data from a
collection of eight shot files. Each shot file contains
2000 traces (32KB/trace). The shot files that make up
the dataset are a subset of the SEG/EAEG SSD, which
uses the enhanced stanford exploration project (SEP)
format [45]. Note that our dataset is much smaller
than a real dataset that may contain thousands of shot
files, each with over a thousand traces per file. We
have several reasons for using a smaller dataset. First,

we do not have the physical resources to store ter-
abytes of data for our experiments, and our prototype
is not yet developed enough to deploy to a real grid
test-bed where we could access such a dataset. Sec-
ond, a smaller dataset is sufficient to demonstrate the
effectiveness of the armada approach.

Our experiments take place on an 8-processor SGI
Origin,3 and four PCs.4 All machines are connected
with 100MB Ethernet and achieve a measured com-
munication bandwidth of 66Mbps between any two
machines, with latencies ranging from 160�s to 2 ms.
The SGI Origin has eight disks that can be accessed
in parallel. Each disk achieves a measured bandwidth
of 67Mbps for writes and 82Mbps for reads.

We use the five machines to emulate a wide-area
network that consists of three separate domains: two
domains that contain the data, and a client domain.
The data domains consist of four processors each from
the Origin machine, and the client domain contains
at least one of the Linux machines to host the appli-
cation. We emulate a wide-area network by forcing
communications between domains to pass through a

3 The Origin is an 8-processor SMP that uses R10000 186 MHz
processors. It has 4 GB main memory and uses the IRIX 6.5
operating system.

4 The PCs consist of one 2-processor (each 1 GHz Pentium Pros)
SMP machine with 500MB of main memory, and three single
processor (500 MHz Pentium IIs) machines. All run RedHat Linux
Version 7.0.

R. Oldfield, D. Kotz / Future Generation Computer Systems 18 (2002) 501–523 515

Fig. 12. Blueprint for an application that reads stacked traces.

single Linux machine that uses NistNet [46] to control
bandwidth and network latency. We use the remain-
ing Linux machines to host armada ships between the
host and the data servers. These machines can exist in
any of the three domains.

Fig. 12 shows an armada blueprint for the applica-
tion. The data provider presents the collection of files
as an armada of ships that expects aTraceRequest
object as input and returns aTrace object. A Trac-
eRequest identifies a seismic trace based on the shot
number, and the index that identifies the trace within
the experiment. The armada consists of three layers
of ships: a trace-distribution ship (TraceDist) that dis-
tributes trace requests to the correct domain, another
layer of trace-distribution ships that send trace re-
quests to the correct storage server, and storage inter-
face ships (TraceFile) that retrieve trace data stored in
SEP format, from the local disk of a data server.

The application extends the armada from the data
provider by first prepending aStack operator ship
and aTraceInput ship. The Stack ship takes as in-
put aStackedTraceRequest that identifies an array of
traces. It converts a single StackedTraceRequest into

an array of TraceRequests and forwards the Trac-
eRequests to the first distribution ship from the data
provider. The Stack ship returns aStackedTrace ob-
ject that represents the vector sum of the data from
each trace. In front of the Stack ship is the TraceInput
client-interface ship that provides a simple interface
for requesting stacked traces.

We used two configurations of the armada (Fig. 13).
The first configuration places the stacking code in the
client domain. This configuration represents the tradi-
tional approach where most of the application-specific
functionality exists on the client. In the second con-
figuration, we restructured the graph and replace the
Stack ship with a tree of three types of ships: aMerge
ship, that combines results from the two data domains;
a Group ship, placed in each data domain, to combine
individual TraceRequests into StackedTraceRequests;
and another Stack ship following each Group ship, to
stack the subset of traces stored in that domain. Like
the Stack ship, the Merge ship takes as input Staked-
TraceRequests and converts them to TraceRequests,
allowing the Group and Stack ships to migrate toward
the data servers without modifying the input types

516 R. Oldfield, D. Kotz / Future Generation Computer Systems 18 (2002) 501–523

Fig. 13. Two configurations of the seismic application: (a) unoptimized armada; (b) optimized armada.

of the distribution ships. The programmer that writes
the code for the Stack ship also codes the Merge and
Group ships, and she identifies the ships to use for
optimization in the blueprint (see Section 3.5).

The plots in Fig. 14 show running times of the
two armadas as the available bandwidth between
domains increase. We experimented with three dif-
ferent inter-domain latencies: (a) 2 ms, equivalent
to a local-area network, (b) 100 ms, equivalent to a

cross-country connection, and (c) 200 ms, for domains
located on different continents. Fig. 15 shows the
same data, unoptimized in (a) and optimized in (b),
allowing easy comparison across the three latencies.

The results show, as we expected, that the second
configuration outperforms the first configuration, par-
ticularly in situations with limited bandwidth or high
latency. In both configurations, the application appears
to be bandwidth-limited for bandwidths below 2Mbps

R. Oldfield, D. Kotz / Future Generation Computer Systems 18 (2002) 501–523 517

Fig. 14. Comparison of the running time of the optimized and the unoptimized armada for the seismic application that reads eight shot
files (approximately 32MB each): (a) latency= 2 ms; (b) latency= 100 ms; (c) latency= 200 ms.

and latency limited elsewhere. We clearly show this
effect in Fig. 16, which shows the throughput of the
two armadas (measured as the ratio of the total num-
ber of bytes read from disk and the running time).

The straight line in the figure shows the available
bandwidth between the data domains and the client
domain. The optimized application achieves a higher
(perceived) throughput than the available bandwidth

518 R. Oldfield, D. Kotz / Future Generation Computer Systems 18 (2002) 501–523

Fig. 15. Plots that show how latency effects the two armadas: (a) unoptimized armada; (b) optimized armada.

because it filters three-fourths of the total bytes in the
data domain.

To understand why the application is latency-limited
for high bandwidths, we measured the computa-
tional rate of each computer (to estimate the stack
operation), and the time required to serialize and
de-serialize a single trace. Then we used those mea-
surements to construct a rough analytic model of the
data-flow path for the optimized armada. In the op-
timized armada, data passes through four ships on
its way to the client: TraceFile, Stack, Merge, and
TraceInput. Our model measures the time to transfer
a single trace between each of these ships. We show
the equations used in our model below. The variables
αdes, αser, andαcomm are the latencies (in seconds) as-
sociated with de-serializing a trace, serializing a trace,
and initiating a network transfer.βdisk andβcomm are
the bandwidths (in bytes/s) available for reading data

from the disk and sending data through the network.
The variableflops, is the measured number of float-
ing points per second a computer can calculate. The
variablek represents the size (in bytes) of a trace.

The approximate time to transfer a single trace from
a TraceFile to a Stack ship is

t = k
1

βdisk
+ αdes+ αser+ αcomm+ k

8

βcomm
. (1)

We divide the communication bandwidth by 8 because
the network is shared by eight other FileShips. The
time to transfer data from the Stack ship to the Merge
ship is

t = αdes+ k
1

flops
+ αser+ αcomm+ k

2

βcomm
. (2)

The equation calculating the time from the Merge ship
to the TraceInput ship is the same as Eq. (2).

R. Oldfield, D. Kotz / Future Generation Computer Systems 18 (2002) 501–523 519

Fig. 16. Performance relative to available bandwidth: (a) latency= 2 ms; (b) latency= 100 ms; (c) latency= 200 ms.

The approximate throughput isk/t for the path
from the TraceFile to the Stack ship, 4k/t for trans-
fer from the Stack ship to the Merge ship, and 8k/t
from the Merge ship to the TraceInput ship. We

multiply the throughputs to account for the amount
of data removed by each filter. Table 1 shows the
measured values for each variable, and in Fig. 17,
we plot the estimated throughput to the application

520 R. Oldfield, D. Kotz / Future Generation Computer Systems 18 (2002) 501–523

Table 1
Measured latencies and bandwidths used by the optimized armada

TraceFile to Stack Origin to Fast PC Stack to Merge Merge to TraceInput

k 32KB 32KB 32KB
αdes 7 ms 800�s 800�s
αser 10 ms 1.4 ms 1.4 ms
αcomm 2 ms {2,100,200}ms 160�s
βcomm 8.25Mbps {0.2, 0.4,. . . , 8}Mbps 8.25Mbps
βdisk 83Mbps – –
Flops 13 Mflop/s 70 Mflop/s 70 Mflop/s

Fig. 17. Approximation of the running time for the optimized armada.

as the minimum of the three calculated through-
puts.

We notice that the approximate application band-
width is close to the measured bandwidth of the appli-
cation. The application achieves slightly higher per-
formance because we pipeline data requests, hiding
some of the latency costs. The analysis indicates that
the primary factor limiting performance of our appli-
cation is Java serialization.

It is clear from the results that further tuning is nec-
essary. For the current prototype, we were more con-
cerned with finishing the implementation than improv-
ing performance.

6. Summary

In this paper, we describe the design of a frame-
work that supports data-intensive parallel applications
in a wide-area computational network, or “grid”.
Our framework, armada, allows applications and data
providers to create datasets that span the grid. Ap-
plications combine flexible modules called “ships”
into series–parallel graphs called “armadas”. These
armadas provide a path for the application to access
the data. Typically, the armada is a combination of a
graph designed by the dataset owner and extensions
provided by the application. The armada thus encodes

R. Oldfield, D. Kotz / Future Generation Computer Systems 18 (2002) 501–523 521

the structure of the data, the application’s interface,
and intermediate processing and filtering.

Our framework includes a rich hierarchy of ship
classes, a “blueprint” mechanism to specify the struc-
ture of an armada graph, execution environments
called “harbors” that securely host ships, and algo-
rithms that optimize blueprints and deploy ships onto
the network of harbors.

The preliminary results presented here demonstrate
the value of the armada approach. The ability to
flexibly combine modular ships into an access graph
leads directly to the ability to adjust the placement
of functionality within the grid. It is well known
that placement can improve performance by reducing
network load. Our placement and graph-optimization
schemes enable applications-specific code to migrate
deep into potentially complex data distributions to fil-
ter data close to the source. Since data-intensive grid
applications are typically limited by the network, we
expect armada’s approach will lead to better overall
application performance.

Our work on the armada system is far from com-
plete. Our priority is to complete the implementation
by including capability-based mechanisms on the har-
bors; developing efficient placement algorithms that
consider memory and CPU rates, as well as network
capacity; and performance tuning. Our plans also in-
clude a further study of algorithms for optimizing the
graphs described by blueprints, and protocols that can
improve the communication efficiency of data-flowing
through an armada.

Acknowledgements

Work funded by Sandia National Laboratories under
contract DOE-AV6184.

References

[1] I. Foster, C. Kesselman (Eds.), The Grid: Blueprint for a New
Computing Infrastructure, Morgan Kaufmann, Los Altos, CA,
1998.

[2] O. Yilmaz, Seismic Data Processing: Investigations in
Geophysics, Vol. 2, Society of Exploration Geophysicists,
Tulsa, Oklahoma, 1990, p. 74170.

[3] J. Demmel, M.Y. Ivory, S.L. Smith, Modeling and identi-
fying bottlenecks in EOSDIS, in: Proceedings of the
Sixth Symposium on the Frontiers of Massively Parallel

Computation, IEEE Computer Society Press, San Jose, CA,
1996, pp. 300–308.

[4] P. Lyster, K. Ekers, J. Guo, M. Harber, D. Lamich, J.
Larson, R. Lucchesi, R. Rood, S. Schubert, W. Sawyer, M.
Sienkiewicz, A. da Silva, J. Stobie, L. Takacs, R. Todling, J.
Zero, Parallel computing at the NASA data assimilation office
(DAO), in: Proceedings of the SC97 on High Performance
Networking and Computing, IEEE Computer Society Press,
San Jose, CA, 1997.

[5] W. Greiman, W.E. Johnston, C. McParland, D. Olson, B.
Tierney, C. Tull, High-speed distributed data handling for
HENP, in: Proc. Int. Conf. on Computing in High Energy
Physics, Berlin, Germany, 1997, http://www-rnc.pbp.gov/
computing/ldrdfy97/henpdata.htm

[6] S. Young, G.G.Y. Fan, D. Hessler, S. Lamont, Implementing
a collaborator for microscopic digital anatomy, Int. J. Super-
comput. Appl. High Perform. Comput. 10 (2) (1996) 170–
181.

[7] Y. Wang, F. D. Carlo, I. Foster, J. Insley, C. Kesselman, P.
Lane, G. von Laszewski, D. Mancini, I. McNulty, M.-H. Su,
B. Tieman, A quasi-realtime X-ray microtomography system
at the advanced photon source, in: Proceedings of the SPIE99,
Vol. 3772, 1999, pp. 318–327.

[8] J. Leigh, A.E. Johnson, T.A. DeFanti, S. Bailey, R. Gromman,
A methodology for supporting collaborative exploratory
analysis of massive data sets in tele-immersive environments,
in: Proceedings of the Eighth IEEE International Symposium
on High Performance Distributed Computing, IEEE Computer
Society Press, Redondo Beach, CA, 1999, pp. 62–69.

[9] L.A. Freitag, R.M. Loy, Adaptive, multiresolution visuali-
zation of large data sets using a distributed memory octree, in:
Proceedings of the SC99 on High Performance Networking
and Computing, ACM Press/IEEE Computer Society Press,
Portland, OR, 1999.

[10] E. Franke, M. Magee, Reducing data distribution bottlenecks
by employing data visualization filters, in: Proceedings
of the Eighth IEEE International Symposium on High
Performance Distributed Computing, IEEE Computer Society
Press, Redondo Beach, CA, 1999, pp. 255–262.

[11] D. Mackay, G. Mahinthakumar, E. D’Azevedo, A study of
I/O in a parallel finite element groundwater transport code,
Int. J. High Perform. Comput. Appl. 12 (3) (1998) 307–319.

[12] R.A. Oldfield, D.E. Womble, C.C. Ober, Efficient parallel
I/O in seismic imaging, Int. J. High Perform. Comput. Appl.
12 (3) (1998) 333–344.

[13] E. Smirni, D. Reed, Lessons from characterizing the input/
output behavior of parallel scientific applications, Perform.
Eval. Int. J. 33 (1) (1998) 27–44 http://vibes.cs.uiuc.edu/
Publications/Papers/PerfEval98.ps.gz

[14] J. Nieplocha, I. Foster, R. Kendall, ChemIO: high-perfor-
mance parallel I/O for computational chemistry applications,
Int. J. High Perform. Comput. Appl. 12 (3) (1998) 345–363.

[15] N. Nieuwejaar, D. Kotz, The Galley parallel file system,
Parallel Comput. 23 (4) (1997) 447–476.

[16] A.S. Grimshaw, J. Prem, High performance parallel file
objects, in: Proceedings of the Sixth Annual Distributed-
memory Computer Conference, 1991, pp. 720–723.

http://www-rnc.pbp.gov/computing/ldrd_fy97/henpdata.htm
http://www-rnc.pbp.gov/computing/ldrd_fy97/henpdata.htm
http://vibes.cs.uiuc.edu/Publications/Papers/PerfEval98.ps.gz
http://vibes.cs.uiuc.edu/Publications/Papers/PerfEval98.ps.gz

522 R. Oldfield, D. Kotz / Future Generation Computer Systems 18 (2002) 501–523

[17] D. Kotz, C.S. Ellis, Practical prefetching techniques for multi-
processor file systems, J. Distrib. Parallel Databases 1 (1)
(1993) 33–51.

[18] R. H. Patterson, G. A. Gibson, E. Ginting, D. Stodolsky, J.
Zelenka, Informed prefetching and caching, in: Proceedings
of the Fifteenth ACM Symposium on Operating Systems
Principles, ACM Press, Copper Mountain, CO, 1995,
pp. 79–95.

[19] T.H. Cormen, D. Kotz, Integrating theory and practice
in parallel file systems, in: Proceedings of the 1993
DAGS/PC Symposium, Dartmouth Institute for Advanced
Graduate Studies, Hanover, NH, 1993, revised as Dartmouth
PCS-TR93-188 on 9/20/1994, pp. 64–74.

[20] D. Womble, D. Greenberg, S. Wheat, R. Riesen, Beyond
core: making parallel computer I/O practical, in: Proceedings
of the 1993 DAGS/PC Symposium, Dartmouth Institute for
Advanced Graduate Studies, Hanover, NH, 1993, pp. 56–63.

[21] D. Kotz, Disk-directed I/O for MIMD multiprocessors, ACM
Trans. Comput. Syst. 15 (1) (1997) 41–74.

[22] D. Kotz, Expanding the potential for disk-directed I/O, in:
Proceedings of the 1995 IEEE Symposium on Parallel and
Distributed Processing, IEEE Computer Society Press, San
Antonio, TX, 1995, pp. 490–495.

[23] A. J. Borr, F. Putzolu, High performance SQL through low-
level system integration, in: Proceedings of the ACM
SIGMOD International Conference on Management of Data,
ACM Press, Chicago, IL, 1988, pp. 342–349.

[24] T. Kurc, C. Chang, R. Ferreira, A. Sussman, Querying very
large multi-dimensional datasets in ADR, in: Proceedings of
the SC99 on High Performance Networking and Computing,
ACM Press/IEEE Computer Society Press, Portland, OR,
1999.

[25] J.S. Heidemann, G.J. Popek, File-system development with
stackable layers, ACM Trans. Comput. Syst. 12 (1) (1994)
58–89.

[26] D. Rosenthal, Requirements for a stacking Vnode/VFS inter-
face, Technical Report SD-01-02-N014, Unix International,
1992.

[27] G.C. Skinner, T. Wong, Stacking vnodes: a progress report,
in: Proceedings of the 1993 Summer USENIX Technical
Conference, USENIX Association, 1993, pp. 161–174.

[28] O. Krieger, M. Stumm, HFS: A performance-oriented flexible
file system based on building-block compositions, ACM
Trans. Comput. Syst. 15 (3) (1997) 286–321.

[29] E. Zadok, I. Badulescu, A. Shender, Extending file systems
using stackable templates, in: Proceedings of the 1999 Annual
USENIX Technical Conference, USENIX Association, 1999,
pp. 57–70.

[30] E. Zadok, J. Nieh, FiST: a language for stackable file systems,
in: Proceedings of the 2000 Annual USENIX Technical
Conference, USENIX Association, 2000, pp. 55–70.

[31] V. Messerli, Tools for parallel I/O and compute intensive
applications, Ph.D. Thesis, École Polytechnique Fédérale de
Lausanne, 1999, p. 1915.

[32] B.A. Gennart, M. Mazzariol, V. Messerli, R.D. Hersch,
Synthesizing parallel imaging applications using the CAP
Computer Aided Parallelization Tool, in: Proc. IS&T SPIE

10th Ann. Symp. on Electronic Imaging. Storage and Retrieval
for Image and Video Databases VI, pp. 446–458.

[33] B. Plale, K. Schwan, dQUOB: managing large data flows by
dynamic embedded queries, in: Proceedings of the Ninth IEEE
International Symposium on High Performance Distributed
Computing, 2000.

[34] M. Rodŕıguez-Mart́ınez, N. Roussopoulos, MOCHA: a
self-extensible database middleware system for distributed
data sources, in: Proceedings of the ACM SIGMOD
International Conference on Management of Data, Dallas,
TX, 2000.

[35] M.D. Beynon, R. Ferreira, T. Kurc, A. Sussman, J. Saltz,
DataCutter: Middleware for filtering very large scientific
datasets on archival storage systems, in: Proceedings
of the 2000 Mass Storage Systems Conference, IEEE
Computer Society Press, College Park, MD, 2000, pp. 119–
133.

[36] K. Amiri, D. Petrou, G.R. Ganger, G.A. Gibson, Dynamic
function placement for data-intensive cluster computing,
in: Proceedings of the 2000 Annual USENIX Technical
Conference, USENIX Association, 2000, pp. 307–322.

[37] G. Hunt, M. Scott, The Coign automatic distributed
partitioning system, in: Proceedings of the 1999 Symposium
on Operating Systems Design and Implementation, USENIX
Association, San Diego, CA, 1999, pp. 45–56.

[38] R. Thakur, W. Gropp, E. Lusk, Data sieving and collective
I/O in ROMIO, in: Proceedings of the Seventh Symposium
on the Frontiers of Massively Parallel Computation, IEEE
Computer Society Press, 1999, pp. 182–189.

[39] A. Colvin, T.H. Cormen, ViC∗: a compiler for virtual-memory
C∗, in: Proceedings of the Third International Workshop
on High-level Parallel Programming Models and Supportive
Environments (HIPS’98), 1998, pp. 23–33.

[40] J. Saltzer, M. Schroeder, The protection of information in
computer systems, IEEE 63 (9) (1975) 1278–1308.

[41] C. Hawblitzel, C.-C. Chang, G. Czajkowski, D. Hu, T. von
Eicken, Implementing multiple protection domains in Java,
in: Proceedings of the 1998 Annual USENIX Technical
Conference, New Orleans, LA, 1998.

[42] R. Wahbe, S. Lucco, T.E. Anderson, S.L. Graham,
Efficient software-based fault isolation, in: Proceedings of
the Fourteenth ACM Symposium on Operating Systems
Principles, ACM Press, Asheville, NC, 1993, pp. 203–
216.

[43] R.A. Oldfield, B. D. Semeraro, J.P. VanDyke, Parallel acoustic
wave propagation and generation of a seismic dataset, in:
Proceedings of the Seventh SIAM Conference on Parallel
Processing for Scientific Computing, San Fransisco, CA,
1995, pp. 243–244.

[44] Gas and Oil National Information Infrastructure (GONII)#,
The Synthetic Seismic Dataset. http://www.llnl.gov/gonii/
ssd.html.

[45] SEG/EAEG 3-D Modeling Committee, SEP Format Des-
cription for Numerical Data. http://www.seg.org/research/
3Dmodel/SEPformat.html.

[46] National Institute of Standards and Technology, NistNet
Home page. http://snad.ncsl.nist.gov/itg/46/.

http://www.llnl.gov/gonii/ssd.html
http://www.llnl.gov/gonii/ssd.html
http://www.seg.org/research/3Dmodel/SEPformat.html
http://www.seg.org/research/3Dmodel/SEPformat.html
http://snad.ncsl.nist.gov/itg/46/

R. Oldfield, D. Kotz / Future Generation Computer Systems 18 (2002) 501–523 523

Ron Oldfield is a graduate student in the
Computer Science Department at Dart-
mouth College. He received his BSc in
Computer Science from the University
of New Mexico in 1993. From 1993 to
1997, he worked in the computational
sciences department of Sandia National
Laboratories, where he specialized in
seismic research and parallel I/O. He was
the primary developer for the GONII-SSD

(Gas and Oil National Information Infrastructure-Synthetic Seis-
mic Dataset) project. For GONII, he implemented a parallel 3D
finite-difference acoustic wave propagation code that was used to
generate a large synthetic seismic dataset. He also worked on the
R&D 100 award winning project “Salvo”, a project to develop a 3D
finite-difference prestack-depth migration algorithm for massively
parallel architectures. His work with the Salvo focused on mini-
mizing the effect of the massive I/O requirements associated with
seismic processing. At Dartmouth, his research targets parallel file

systems and parallel I/O for the grid. He is also an active member
of the Remote Data Access group of the Global Grid Forum.

David Kotz is an Associate Professor of
Computer Science at Dartmouth College,
Hanover, NH. He received his MS and
PhD degrees in Computer Science from
Duke University in 1989 and 1991, re-
spectively. He received the AB degree in
Computer Science and Physics from Dart-
mouth College, Hanover, NH, in 1986. He
rejoined Dartmouth College in 1991 and
was promoted with tenure to Associate

Professor in 1997. His research interests include mobile agents,
parallel and distributed operating systems, multiprocessor file sys-
tems, and computer ethics. He is a member of the ACM, IEEE
Computer Society, and USENIX associations, and of Computer
Professionals for Social Responsibility.

	Armada: a Parallel I/O Framework for Computational Grids
	Dartmouth Digital Commons Citation

	Armada: a parallel I/O framework for computational grids
	Introduction
	Flexibility
	Remote processing of application code
	Overview of the armada framework

	Related work
	Flexible I/O systems
	Systems that optimize data paths to improve I/O
	Systems with support for remote execution of application code

	Building an armada
	Ships
	Blueprints
	Deployment
	Control-flow and data-flow
	Blueprint optimization

	Implementation
	Ships
	Harbors
	XML blueprints

	Experimental results
	Remote file copy
	Seismic imaging

	Summary
	Acknowledgements
	References

