106 research outputs found

    Map-assisted Indoor Positioning Utilizing Ubiquitous WiFi Signals

    Get PDF
    The demand of indoor positioning solution is on the increase dramatically, and WiFi-based indoor positioning is known as a very promising approach because of the ubiquitous WiFi signals and WiFi-compatible mobile devices. Improving the positioning accuracy is the primary target of most recent works, while the excessive deployment overhead is also a challenging problem behind. In this thesis, the author is investigating the indoor positioning problem from the aspects of indoor map information and the ubiquity of WiFi signals. This thesis proposes a set of novel WiFi positioning schemes to improve the accuracy and efficiency. Firstly, considering the access point (AP) placement is the first step to deploy indoor positioning system using WiFi, an AP placement algorithm is provided to generate the placement of APs in a given indoor environment. The AP placement algorithm utilises the floor plan information from the indoor map, in which the placement of APs is optimised to benefit the fingerprinting- based positioning. Secondly, the patterns of WiFi signals are observed and deeply analysed from sibling and spatial aspects in conjunction with pathway map from indoor map to address the problem of inconsistent WiFi signal observations. The sibling and spatial signal patterns are used to improve both positioning accuracy and efficiency. Thirdly, an AP-centred architecture is proposed by moving the positioning modules from mobile handheld to APs to facilitate the applications where mobile handheld doesn’t directly participate positioning. Meanwhile, the fingerprint technique is adopted into the AP-centred architecture to maintain comparable positioning accuracy. All the proposed works in this thesis are adequately designed, implemented and evaluated in the real-world environment and show improved performance

    A Meta-Review of Indoor Positioning Systems

    Get PDF
    An accurate and reliable Indoor Positioning System (IPS) applicable to most indoor scenarios has been sought for many years. The number of technologies, techniques, and approaches in general used in IPS proposals is remarkable. Such diversity, coupled with the lack of strict and verifiable evaluations, leads to difficulties for appreciating the true value of most proposals. This paper provides a meta-review that performed a comprehensive compilation of 62 survey papers in the area of indoor positioning. The paper provides the reader with an introduction to IPS and the different technologies, techniques, and some methods commonly employed. The introduction is supported by consensus found in the selected surveys and referenced using them. Thus, the meta-review allows the reader to inspect the IPS current state at a glance and serve as a guide for the reader to easily find further details on each technology used in IPS. The analyses of the meta-review contributed with insights on the abundance and academic significance of published IPS proposals using the criterion of the number of citations. Moreover, 75 works are identified as relevant works in the research topic from a selection of about 4000 works cited in the analyzed surveys

    Autoencoder extreme learning machine for fingerprint-based positioning: A good weight initialization is decisive

    Get PDF
    Indoor positioning based on machine-learning (ML) models has attracted widespread interest in the last few years, given its high performance and usability. Supervised, semisupervised, and unsupervised models have thus been widely used in this field, not only to estimate the user position, but also to compress, clean, and denoise fingerprinting datasets. Some scholars have focused on developing, improving, and optimizing ML models to provide accurate solutions to the end user. This article introduces a novel method to initialize the input weights in autoencoder extreme learning machine (AE-ELM), namely factorized input data (FID), which is based on the normalized form of the orthogonal component of the input data. AE-ELM with FID weight initialization is used to efficiently reduce the radio map. Once the dimensionality of the dataset is reduced, we use k -nearest neighbors to perform the position estimation. This research work includes a comparative analysis with several traditional ways to initialize the input weights in AE-ELM, showing that FID provide a significantly better reconstruction error. Finally, we perform an assessment with 13 indoor positioning datasets collected from different buildings and in different countries. We show that the dimensionality of the datasets can be reduced more than 11 times on average, while the positioning error suffers only a small increment of 15% (on average) in comparison to the baseline

    Indoor Positioning and Navigation

    Get PDF
    In recent years, rapid development in robotics, mobile, and communication technologies has encouraged many studies in the field of localization and navigation in indoor environments. An accurate localization system that can operate in an indoor environment has considerable practical value, because it can be built into autonomous mobile systems or a personal navigation system on a smartphone for guiding people through airports, shopping malls, museums and other public institutions, etc. Such a system would be particularly useful for blind people. Modern smartphones are equipped with numerous sensors (such as inertial sensors, cameras, and barometers) and communication modules (such as WiFi, Bluetooth, NFC, LTE/5G, and UWB capabilities), which enable the implementation of various localization algorithms, namely, visual localization, inertial navigation system, and radio localization. For the mapping of indoor environments and localization of autonomous mobile sysems, LIDAR sensors are also frequently used in addition to smartphone sensors. Visual localization and inertial navigation systems are sensitive to external disturbances; therefore, sensor fusion approaches can be used for the implementation of robust localization algorithms. These have to be optimized in order to be computationally efficient, which is essential for real-time processing and low energy consumption on a smartphone or robot

    Time of Flight and Fingerprinting Based Methods for Wireless Rogue Device Detection

    Get PDF
    Existing network detection techniques rely on SSIDs, network patterns or MAC addresses of genuine wireless devices to identify malicious attacks on the network. However, these device characteristics can be manipulated posing a security threat to information integrity, lowering detection accuracy, and weakening device protection. This research study focuses on empirical analysis to elaborate the relationship between received signal strength (RSSI) and distance; investigates methods to detect rogue devices and access points on Wi-Fi networks using network traffic analysis and fingerprint identification methods. In this paper, we conducted three experiments to evaluate the performance of RSSI and clock skews as features to detect rogue devices for indoor and outdoor locations. Results from the experiments suggest different devices connected to the same access point can be detected (p \u3c 0.05) using RSSI values. However, the magnitude of the difference was not consistent as devices were placed further from the same access point. Therefore, an optimal distance for maximizing the detection rate requires further examination. The random forest classifier provided the best performance with a mean accuracy of 79% across all distances. Our experiment on clock skew shows improved accuracy in using beacon timestamps to detect rogue APs on the network

    Recent Advances in Indoor Localization Systems and Technologies

    Get PDF
    Despite the enormous technical progress seen in the past few years, the maturity of indoor localization technologies has not yet reached the level of GNSS solutions. The 23 selected papers in this book present the recent advances and new developments in indoor localization systems and technologies, propose novel or improved methods with increased performance, provide insight into various aspects of quality control, and also introduce some unorthodox positioning methods

    Smart and Intelligent Automation for Industry 4.0 using Millimeter-Wave and Deep Reinforcement Learning

    Get PDF
    Innovations in communication systems, compute hardware, and deep learning algorithms have led to the advancement of smart industry automation. Smart automation includes industrial sectors such as intelligent warehouse management, smart infrastructure for first responders, and smart monitoring systems. Automation aims to maximize efficiency, safety, and reliability. Autonomous forklifts can significantly increase productivity, reduce safety-related accidents, and improve operation speed to enhance the efficiency of a warehouse. Forklifts or robotic agents are required to perform different tasks such as position estimation, mapping, and dispatching. Each of the tasks involves different requirements and design constraints. Smart infrastructure for first responder applications requires robotic agents like Unmanned Aerial Vehicles (UAVs) to provide situation awareness surrounding an emergency. An immediate and efficient response to a safety-critical situation is crucial, as a better first response significantly impacts the safety and recovery of parties involved. But these UAVs lack the computational power required to run Deep Neural Networks (DNNs) that are used to provide the necessary intelligence. In this dissertation, we focus on two applications in smart industry automation. In the first part, we target smart warehouse automation for Intelligent Material Handling (IMH), where we design an accurate and robust Machine Learning (ML) based indoor localization system for robotic agents working in a warehouse. The localization system utilizes millimeter-wave (mmWave) wireless sensors to provide feature information in the form of a radio map which the ML model uses to learn indoor positioning. In the second part, we target smart infrastructure for first responders, where we present a computationally efficient adaptive exit strategy in multi-exit Deep Neural Networks using Deep Reinforcement Learning (DRL). The proposed adaptive exit strategy provides faster inference time and significantly reduces computations

    Location-Enabled IoT (LE-IoT): A Survey of Positioning Techniques, Error Sources, and Mitigation

    Get PDF
    The Internet of Things (IoT) has started to empower the future of many industrial and mass-market applications. Localization techniques are becoming key to add location context to IoT data without human perception and intervention. Meanwhile, the newly-emerged Low-Power Wide-Area Network (LPWAN) technologies have advantages such as long-range, low power consumption, low cost, massive connections, and the capability for communication in both indoor and outdoor areas. These features make LPWAN signals strong candidates for mass-market localization applications. However, there are various error sources that have limited localization performance by using such IoT signals. This paper reviews the IoT localization system through the following sequence: IoT localization system review -- localization data sources -- localization algorithms -- localization error sources and mitigation -- localization performance evaluation. Compared to the related surveys, this paper has a more comprehensive and state-of-the-art review on IoT localization methods, an original review on IoT localization error sources and mitigation, an original review on IoT localization performance evaluation, and a more comprehensive review of IoT localization applications, opportunities, and challenges. Thus, this survey provides comprehensive guidance for peers who are interested in enabling localization ability in the existing IoT systems, using IoT systems for localization, or integrating IoT signals with the existing localization sensors
    • …
    corecore