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Abstract—Indoor positioning based on machine-learning (ML) models has attracted widespread interest in the last few
years, given its high performance and usability. Supervised, semisupervised, and unsupervised models have thus been
widely used in this field, not only to estimate the user position, but also to compress, clean, and denoise fingerprinting
datasets. Some scholars have focused on developing, improving, and optimizing ML models to provide accurate solutions
to the end user. This article introduces a novel method to initialize the input weights in autoencoder extreme learning ma-
chine (AE-ELM), namely factorized input data (FID), which is based on the normalized form of the orthogonal component
of the input data. AE-ELM with FID weight initialization is used to efficiently reduce the radio map. Once the dimensionality
of the dataset is reduced, we use k-nearest neighbors to perform the position estimation. This research work includes a
comparative analysis with several traditional ways to initialize the input weights in AE-ELM, showing that FID provide a
significantly better reconstruction error. Finally, we perform an assessment with 13 indoor positioning datasets collected
from different buildings and in different countries. We show that the dimensionality of the datasets can be reduced more
than 11 times on average, while the positioning error suffers only a small increment of 15% (on average) in comparison to
the baseline.

Index Terms—Autoencoder (AE), extreme learning machine (ELM), indoor positioning, singular value decomposition
(SVD), weight initialization, Wi-Fi fingerprinting.

I. INTRODUCTION

G IVEN the high demand for indoor positioning services,
it is of high importance to provide reliable solutions for

indoor positioning systems (IPSs) in mobile and Internet of
Things (IoT) devices. Indoor positioning—and in particular,
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fingerprinting—is a relevant research area for mobile comput-
ing, as researchers are continuously looking for new methods not
only to improve the positioning accuracy [1], [2], [3] but also to
reduce the costs of calibration (site survey) and the maintenance
and/or execution at the operational phase [4], [5], [6], [7]. In
addition, despite the fact that the current devices and data centres
have improved their storage resources significantly over the past
few years, additional data optimization prior to the data storage
is still required. Data optimization not only allows the efficient
use of storage but also improves the speed of data extraction.

The exploitation of the crowdsourcing and crowdsensing
schemes to enrich the indoor positioning data collection, as
well as the development of new methods that allow updating the
radio map are two of the main reasons why IPSs became highly
popular in the recent years [8]. However, a higher amount of
available IPSs data might increment the data processing load
and the time-to-estimate the user position. This high amount of
data occurs due to a significant amount of samples collected
nowadays by mobile devices for positioning, sensing, and/or
communication purposes. In addition, the device diversity in-
creases the heterogeneity of the datasets [9]. Several alternatives
have been proposed to reduce the complexity and dimensionality
of radio maps [10], [11], [12] and computational load at the
operational stage [13].

Machine learning (ML) is one of the alternatives that has been
successfully used for indoor positioning, not only to estimate the
user position but also to reduce and denoise the radio maps. For
instance, Jang and Hong [14] proposed a convolutional neural
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network (CNN) model to deal with the random effects due to
wireless signal propagation in indoor scenarios. The CNN is
mainly used to extract useful information from the data, given
its strong filtering properties. As well as CNN, extreme learning
machine (ELM), is becoming more and more popular to solve
classification [15], regression [16], and data compression [17]
problems. Unlike other algorithms, ELM provides lower training
time, which makes it suitable for computationally restrained
applications. In spite of the fact that deep learning and ELM are
growing in popularity in the field of indoor positioning,k-nearest
neighbors (k-NN) is still used as the core element of many IPS
solutions to estimate the user location [10], [18], [19]. However,
it is paramount to highlight that these models and algorithms can
be, and have been, combined in more complex applications, e.g.,
Alitaleshi et al. [20] used autoencoder extreme learning machine
(AE-ELM) with CNN to extract relevant information from the
datasets and estimate the device position accurately.

Autoencoder (AE)-based ML models were successfully used
to transform high-dimensional data into a low-dimensional rep-
resentation [21]. Generally, AEs are composed of two main
submodels: the encoder, which is responsible for dimensionality
reduction or data compression, and the decoder, which attempts
to reconstruct the input data from the compressed or encoded
representation. For instance, in [22], the authors used a self-
encoder to reduce the dimensionality of IEEE 802.11 Wireless
LAN (Wi-Fi) radio maps as well as a stacked model with the
random-forest algorithm in order to reduce the positioning error.
Consequently, the authors were able to improve the floor hit rate
by more than 3% in comparison with the baselines.

This work applies AE-ELM to reduce the radio-map dimen-
sionality by extracting the most relevant features of the IPS
dataset. Subsequently, k-nearest neighbors (k-NN) is applied
on the reduced radio map to estimate the user or the device
position. The core of this work is to provide a novel and efficient
method to compute the input weights, in order to reduce the
reconstruction error after decoding. Although, the orthogonal
random initialization provides better performance than other
random weight initialization methods, it can be further improved
by using one of the orthogonal components, calculated from the
input data using singular value decomposition (SVD). The main
contributions of this article are the following.

1) Proposing factorized input data (FID), a novel analytical
estimation of the input weights for AE-ELM.

2) Exhaustive assessment of FID against six traditional
weight initialization methods from the literature.

3) Comprehensive comparison of various combinations of
AE-ELM with different weight initialization methods,
including the proposed method (FID), and algorithms
to estimate the user/device position. Furthermore, we
offer a performance analysis of the proposed combination
(AE-ELM + FID + k-NN) against two ML models from
the literature. We thus provide an overall view of the
advantages and drawbacks of the different positioning
solutions in terms of positioning accuracy.

The rest of this article is organized as follows. Section II
provides an overview of current studies in the field of interest.
Section III provides a general description of ELM, AE-ELM,

and weight initialization methods. Section IV introduces the
proposed method, FID. Section V shows the experimental setup
and the primary results. Section VI provides a discussion of
the advantages and drawbacks of FID. Finally, Section VII
concludes this article.

II. RELATED WORK

This section reviews the related literature on Fingerprinting,
radio map compression, and AE-ELM, highlighting how this
article contributes to them.

A. Wi-Fi Fingerprinting Positioning

Fingerprinting, as a method of choice for indoor positioning
purposes, has significantly gained in popularity in the recent
decade. One of the major advantages of this solution is its
independence from any path-loss model, as indoor localization is
performed in rich scattering environments with numerous mul-
tipath components for each signal modeling. Utilizing path-loss
models in such scenarios is either highly ineffective or computa-
tionally expensive, depending on the model’s parameters. In re-
cent years, multiple indoor positioning surveys were published,
such as [23], [24], [25], or [26], highlighting fingerprinting as
one of the most relevant and reliable methods.

Traditionally, fingerprinting is realized by matching the mea-
surement array we want to localize with a database of similar
arrays, which were obtained at known location coordinates. The
matching algorithm is usually based on k-NN and weighted
variants. Recently, Subedi and Pyun [27] combined k-NN with
a weighted centroid algorithm. The method was able to reduce
the number of fingerprints by 40% with a similar localization
error. Duan et al. [28] proposed multiple improvements to fin-
gerprinting, including an access point (AP) switching strategy,
by considering multiple AP power levels and introducing a new
matching algorithm called dynamic nearest neighbors, which
enabled passive user localization. The combination of the mag-
netic field strength and channel state information measurements
for fingerprinting purposes was realized in [29] and showed that
such a combination outperformed the plain k-NN algorithm
while identifying line-of-sight measurements. Cellular signals
can also be used to perform indoor positioning. For example,
Pecoraro et al. [30] used long term evolution channel frequency
response fingerprints for localization, outperforming state-of-
the-art methods.

In this case, we combined two ML algorithms, namely AE-
ELM + a new weight initialization method and k-NN, to com-
press/reduce the radio map and estimate the user/device position,
respectively. Although AE-ELM significantly reduces the radio
map size, the positioning error was not significantly affected,
while in some cases, the positioning error was even reduced.

B. Radio Map Compression

Given the high importance of data compression and dimen-
sionality reduction in today’s data management of Big Data
databases, there are several emerging approaches. Many of them
may be applied to radio-map data-size reduction [31]. Although
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the basic mechanism of each method may be different, their
most important property is their capability to reduce the amount
of data in any dimension, while keeping the information value
as high as possible, and consequently, not reducing the quality
of the data itself [32]. Many methods greatly reduce the size
of the database, but significantly reduce the capability of the
positioning system to accurately determine the position as well.
The tradeoff margin between the achievable data compression
and the reduction of the dataset’s positioning capabilities is a
key mechanism, that establishes which method is suitable for a
given task [33].

Although some of the methods are preserving or even improv-
ing their positioning capabilities, their achievable compression
may not be sufficient, or the computational cost of the whole
process may be too great to actually pay off. The higher the
computational cost, the higher the financial cost required and/or
the time needed to locate the user using that particular position-
ing system.

In recent literature, several ML-based approaches were uti-
lized in order to overcome some of these shortcomings. The
majority of the methods present mechanisms capable of signif-
icantly reducing the database size while keeping comparable or
better positioning accuracy to the benchmarks.

Seong and Seo [34] proposed an algorithm based on the
minimum description length principle and positioning based on
the Chi-squares test. The authors achieved an improvement in
positioning of up to 5% compared to the Euclidean distance
method while decreasing the size of the original radio map by
38.56%.

Similarly, Klus et al. [35] proposed a system involving
k-means clustering and k-NN-based positioning, capable of
compressing the received signal strength (RSS) fingerprinting
dataset with compression ratios of up to 15.97. The proposed
method slightly decreased the positioning error (by 1% on
average) of the system, compared to the performance without
the proposed compression on the considered datasets.

Talvitie et al. [36] used a spectral compression in order to
reduce the database used for fingerprinting maps. They achieved
up to 80% of dataset size reduction, while the positioning ac-
curacy remains comparable with the traditional approach. This
approach is later broadened and deeply analyzed in [37].

In this study, we employed the AE-ELM technique to reduce
the dimensionality of the radio map by over 1.5 times in each
dataset. This not only decreases the training effort but also
minimizes the compression error when compared to several
benchmark methods. In addition, this approach facilitates effort-
less expansion of the training database. However, it is important
to note that the average positioning error increased by 15% under
a simple configuration.

C. Autoencoder Extreme Learning Machine (AE-ELM)

AEs are artificial neural network (ANN) structures from the
unsupervised learning branch of ML. The difference over the
typical ANN model lies in utilizing the same data as both training
samples and labels, allowing an efficient feature extraction. AEs
map the input into the same output through a hidden layer,

also called encoder, which changes the passed information by
increasing (e.g., sparse encoding) or decreasing (e.g., compres-
sion) the dimensionality of the data, or otherwise augmenting the
data itself. The output layer, also called the decoder, transforms
the encoded information back to its original form. The encoder’s
output, denoted encoded layer, serves as an input of the decoder.
AEs are nowadays utilized in numerous fields, including data
compression [38], feature extraction [39], [40], encryption [41],
channel coding [42], or indoor localization [43].

An end-to-end IPS based on the AE was also proposed in [44],
where the authors specified two operational phases of the system
as offline, used for model training, and online, for prediction
and localization. The AE was able to significantly reduce the
localization error when using ANN for location prediction.

AE-ELM, proposed in [45], is a special type of the AE, which
sets the weights of the encoder layer at random, and calculates
the decoder weights using the least-squares method. The main
advantage of such approach is to remove the necessity of an
iterative training process. Ding et al. [46] showed the suitability
of the AE-ELM in electroencephalogram classification. Another
advantage of the AE-ELM is its ability to stack multiple models,
resulting in a deep AE architecture with better compression
capabilities. Nuha et al. [47] utilized a stacked AE-ELM to
efficiently compress seismic data, achieving comparable per-
formance with much lower training times and effort, compared
to the benchmark. Lu et al. [48] utilized the AE-ELM structure
for fingerprint-based indoor positioning, efficiently removing
the noise from the measurements, increasing the positioning
accuracy and reducing the worst-case error, compared to the
other IPS. The suitability of the stacked AE-ELM was also
evaluated in [21], where the proposed model outperformed the
commonly utilized fingerprinting methods such as k-NN.

In contrast to the literature, we propose an AE-ELM with
novel weight preinitialization in the encoder. The proposed
solution can learn the optimum weights from the input data,
providing a stabilized performance compared to the randomly
initialized AE.

III. BACKGROUND

In this section, we provide a general overview of ELM net-
works, AE-ELM, and weight initialization methods. This section
also introduces the most common symbols used in this work (see
Table I).

A. Extreme Learning Machine (ELM)

An ELM is considered as a learning method for single hid-
den layer feedforward neural network (SLFN), which improves
training, learning, and weight initialization process [49]. We
consider an input with distinct N sample pairs (i = 1, . . . , N ),
represented as (xi, ti), wherexi = [xi1, xi2, . . ., xin]

T ∈ Rn (n
is the number of features), ti = [ti1, ti2, . . ., tim]T ∈ Rm (m is
the number “classes”). Then, the SLFN model can be represented
as follows:

fL(xj) =

L∑
i=1

βig(wi · xj + bi) � tj , j = 1, 2, . . ., N (1)
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TABLE I
SYMBOLS AND NOTATIONS

where βi = [βi1, βi2, . . ., βim]T is the weight vector that con-
nects the ith hidden node with the output layer, g(·) is the acti-
vation function (AF) of the hidden layer, xj represents the input
vector, wi = [wi1, wi2, . . ., win] is the weight vector connecting
the ith hidden nodes with the input layer, bi (bias term) represents
the threshold of the ith hidden node andL represents the number
of hidden nodes in the hidden layer.

Equation (1) can be also represented as

Hβ = T (2)

where

H =

⎡
⎢⎢⎣
g(w1x1 + b1) . . . g(wLx1 + bL)

...
. . .

...

g(w1xN + b1) . . . g(wLxN + bL)

⎤
⎥⎥⎦
NxL

(3)

β =

⎡
⎢⎢⎣
βT

1
...

βT
L

⎤
⎥⎥⎦
L×m

and T =

⎡
⎢⎢⎣
tT1
...

tTN

⎤
⎥⎥⎦
N×m

(4)

where H represents the hidden layer output matrix of
the SLFN [50] and T is the training data target matrix.
Huang et al. [49] demonstrated that the input weights (wi) and
the hidden bias (bi) in the SLFN do not have to be necessarily
adjusted or tuned as is done in traditional neural networks. In
this case, instead of training an SLFN, it is only required to find
the least-squares solution of (2).

Thus, if the number of neurons in the hidden layer (L) is less
than the number of the inputs (N ) (L < N ), Huang et al. [49]

Fig. 1. AE-ELM general scheme.

use the Moore–Penrose generalized inverse (H†) of the matrix
H to solve the linear system (2), and therefore, the output weight
matrix (β) can be calculated by

β = H†T. (5)

The aforementioned equation is the equation of the learning
method for the SLFN, also called ELM.

There are several methods to compute the Moore–Penrose
generalized inverse, for instance, the orthogonal projection
method [49], when HTH is nonsingular, as

H† = (HTH)−1HT (6)

or

H† = HT (HTH)−1 (7)

when HHT is also nonsingular. In addition Huang et al. [49]
mention that multiple AFs can be used with ELM, including pe-
riodic functions and nonlinear functions such as sine or sigmoid
function, among others.

B. Autoencoder (AE)

In the case of the AE-ELM, the target output is identical
to the input data, therefore, is using unsupervised learning.
Thus, the AE-ELM compresses high-dimensional input data X
(X = [xT

1 ,x
T
2 , . . .,x

T
N ]T ∈ RN×n) into a low-dimensional rep-

resentation H ∈ RN×L, preserving the meaningful information
of the input data. In general, better performance can be achieved
using the orthogonal random input weights and bias [51], instead
of using uniformly distributed weights. In addition, in order
to reduce overfitting issues and provide a robust solution, a
regularization term can be added as follows [52]:

β =

(
HTH+

1
c

)−1

HTT (8)

where c (c > 0) is the regularization term.
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Fig. 1 shows a graphical representation of the AE-ELM, which
is composed of two parts, the encoder (left) and the decoder
(right). The encoder consists of the input data X, and a densely
connected layer with input weights (wi) and bias term (bi),
whereas the decoder is composed of the densely connected layer
with output weights (βi) and the training data target T . The
encoded layer is shared between the encoder and the decoder
as their output and input, respectively. Generally, the initial
weights are generated using random uniformly distributed data
in the range [−r, r]{∀r ∈ R|r �= 0}. Similarly, the bias term is
a random 1-D array.

C. Weight Initialization

In the literature, many different methods to initialize the input
weights in neural networks were analyzed and proposed, in
order to reduce the convergence time and improve the model
performance. The existing literature distinguishes two meth-
ods of weights initialization, namely the initialization of the
input weights with zeros/ones and the initialization of the in-
put weights based on a random distribution [53]. In zero/one
initialization, all weights have values of either zero or one. In
a random weight initialization, real numbers (R) will be set as
initial weights, sampled from the given distribution based on
predefined variance or range [54].

Some of the random weight initialization methods proposed
in the literature are random uniform initialization, orthogonal
random initialization, identity, or variance scaling [53]. They
are widely used in popular ML libraries and frameworks, such
as TensorFlow, Keras, and Pythorch. Their objective is to prevent
exploding or vanishing gradient issues during the training stage
in neural networks with multiple hidden layers, leading to a
stabilized propagation of gradients.

Glorot et al. [55] and He et al. [56] developed two well-known
weight initialization methods based on a random initialization.
Glorot et al. [55] proposed a formula based on the number of in-
put and output neurons using a heuristic U = [−1/

√
n, 1/

√
n],

whereU [·] is the uniform distribution between the given intervals
and n is the size of the previous layer (weights). He et al. [56]
extended the previous analysis on the basis of the nonlinearities
of the rectified linear unit (ReLU) AF. They added a scale product√

2 to the input weights, obtaining the U = [−2/n, 2/n].
In contrast with the previous methods, Romero [57] proposed

ELM-Input based on the input data to determine the input
weights in ELM networks. The authors selected n random
features from the input data, and in the case of multilayer
perceptron, the selected features were normalized with zero
mean and unit variance. ELM-Input improved the classification
accuracy by 2% to 10% with respect to the ELM network using
the radial basis function.

Narkhede et al. [54] provide an overview of the available
initialization methods for neural networks in general, high-
lighting the impact of the initialization in faster convergence,
avoiding false optima, coping with network depth, or improving
posttraining accuracy of the model. For initialization of the
ELM, particle swarm or evolutionary algorithms [58], [59] offer
strong performance with increased pretraining requirements.

Javed et al. [60] combine the wavelet theory with the ELM
for a priori weight calculation while considering neuron-wise
summation and a double AF. In comparison to the methods
presented previously, the method proposed in this work does not
require extensive and iterative pretraining for finding optimal
weights of the encoder layer, while estimating the required
network dimensionality in the process.

IV. PROPOSED METHOD

In this section, we introduce a novel method to initialize
the input weights in AE-ELM networks and describe the key
components of the proposed indoor positioning solution.

A. FID Weight Initialization

Unlike the previous methods (see Section III-C), this research
work proposes a novel weight initialization method based on the
orthogonal components of the input matrix, namely FID weight
initialization. Aiming to reduce the reconstruction error of the
decoder of the AE-ELM.

Since ELM is the method used to learn an SLFN, the weights,
bias, and output weights in an SLFN can be found using (9),
which is equivalent to minimizing the cost function. For instance,
using a gradient-based learning algorithm [see (10)]. In this case,
the weights are iteratively tuned or adjusted during the training
phase, so that

min
wi,bi,β

‖H(w1, . . .,wL, . . ., b1, . . ., bL)β −T‖ (9)

and

Ψl = Ψl−1 − γ
∂ξ(Ψ)

∂(Ψ)
(10)

whereΨ represents the weights (wi, βi, and bi), γ is the learning
rate, and ξ is the error in prediction.

Huang et al. [49] stated that an SLFN can be solved using
the minimum normal least-squares method, because the inputs
weights (wi) and biases (bi) do not need to be necessarily tuned.
However, weight initialization is crucial in any neural network,
which is why many researchers investigated the best way to
initialize this parameter.

Given the importance of weight initialization, we propose the
following method.

1) Step 1: Input Data Factorization: Based on the analysis
provided by Saxe et al. [61] in 2014, where the authors
demonstrated the advantages of using random orthogonal
initialization to have a better propagation of gradients, we
propose to determine the best initial weights by factoriz-
ing the input matrix X using SVD [see (11)] to get the
orthogonal components (V), as

X = ϕSVT (11)

where ϕ is a square matrix (N ×N ) ∈ R, V is a (n× n)
matrix ∈ R and both are orthogonal. S is a rectangular
diagonal matrix (N × n) ∈ R composed by the singular
values of X ordered in descending order of magnitude
(s1 ≥ s2 ≥ . . .sp ≥ 0, where p = min(N,n)).
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In this case, V is used to generate the input weights in the
proposed method and the S component is used to deter-
mine the initial number of dimensions to be compressed
the input data.

2) Step 2: Components Selection: To efficiently compress
the dataset, it is necessary to first determine the best ap-
proximation of the optimal number of dimensions in order
to prevent a significant increment in the positioning error.
The following procedure is used to determine the number
of compressed features, which equals to the number of
hidden nodes L.
The variance explained can be used to determine the
number of compressed features used to represent the
dataset. The overall variance explained can be obtained
as follows:

η =
s2
i∑p

j=1 s
2
j

∗ 100 (12)

where η represents the overall variance explained, si is the
ith column of the component S and sj are the individual
singular values of S (j = 1, 2, . . ., p).
The number of dimensions is determined by the percent-
age of selected variance (η). For instance, a dataset of
1000 samples and 200 features can be reduced using the
proposed method to the same number of samples and a
significantly lower number of features, while keeping,
e.g., 90% of the total variance. Therefore, the first L
components that sum up to ≥ 90% of the total variance
are selected, while the rest are discarded. The number of
hidden neurons used in the ELM is equal to the number
of the selected components.
Thus, the new initial weight matrix (F) is composed of
the firstL rows of the orthogonal componentV as follows:

F =

⎡
⎢⎢⎣
v11 . . . v1n

...
. . .

...

vL1 . . . vLn

⎤
⎥⎥⎦
L×n

. (13)

3) Step 3: Input Weight Normalization: Weight normaliza-
tion aims to restrict the weights under certain statistical
properties during the optimization (training) [62]. As a
result, the training process is more stable than without
normalization, and the difference in magnitude between
the features is reduced or removed. Although the orthogo-
nal components of the input data are already constraining
the training process, an additional restriction is introduced
to the initial weights matrix (F), which is the unit norm
normalization [63], also called vector-length normaliza-
tion, shown as follows:

F̂i =
fi
‖fi‖

, i = 1, 2, . . ., n (14)

where F̂i represents the new normalized input weight
vector (FID weight initialization vector). fi is the ith
column of initial weight matrix (F), and ‖fi‖ is the
Euclidean norm of fi. The random initial weights (wi)
are substituted by the new initial weights f̂i in (3) in order

Algorithm 1: AE-ELM and FID.
weight initialization
Require: training dataset
X ← training dataset
/* Get the orthogonal component V using SVD */
X = ϕSVT

/* Compute the number of components η */
η =

s2
i∑p

j=1 s
2
j
× 100

/* Get the initial weight form V */
F = vij , i = 1, 2, .., L and j = 1, 2, . . ., n
/* Input weight normalization - Unit norm */
F̂i =

fi
‖fi‖

/* Substitute wi by f̂i into H */
see (15)
/* Compute the output weights */
β = (HTH+ 1

c )
−1HT

Output: β, H

to compute the output weights β [see (8)]. Thus,(8) and
(15) are differentiated only by the initial weights.

H =

⎡
⎢⎢⎣
g(f̂1x1 + b1) . . . g(f̂Lx1 + bL)

...
. . .

...

g(f̂1xN + b1) . . . g(f̂LxN + bL)

⎤
⎥⎥⎦
N×L

.

(15)

Algorithm 1 summarizes the steps used to determine the input
weights, the number of components and how these parameters
are used in AE-ELM network. This algorithm returns the output
weights (β) as well as the hidden layer output (H).

B. Position Estimation

Wi-Fi fingerprinting technique consists of two phases, the
offline and the online phases. The offline phase is devoted to
collecting all the RSS values at known reference points to build
the radio map. In this phase, data processing techniques such as
data cleaning or dimensionality reduction are applied and ML
models are trained.

In the online phase, thek-NN algorithm computes the distance
between the incoming fingerprint and the fingerprints in the
radio map. Then, the fingerprints with the lowest distances to
the incoming fingerprint are selected to compute the position
estimate.

Fig. 2 shows a general scheme of how the AE-ELM is com-
bined with the well-known k-NN algorithm in order to reduce
the dimensionality of the radio map and estimate the user or
device position. As the fingerprints are transformed, we will
use the term “encoded” to refer to the fingerprints and radio
map after applying the AE-ELM over the original samples. As
we can observe, the input and output weights determined in
the offline phase (f̂i and β, respectively) are used in the online
phase to encode the incoming fingerprint. Once the incoming
fingerprint is encoded, k-NN is used to estimate the position
with the encoded radio map.
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Fig. 2. Wi-Fi fingerprinting.

Fig. 3. General diagram of the proposed combination and the bench-
marks used in the experiments. Dark red color represents the common
components; blue is the benchmark; and dark gray is the suggested
combination.

V. EXPERIMENTS AND RESULTS

Fig. 3 shows a general diagram highlighting the proposed
combination (dark gray) and the algorithms used as benchmarks
(blue). The red color denotes the common components of both
the benchmarks and the suggested combination (i.e., AE-ELM
+ k-NN). Overall, we compare the proposed AE-ELM with FID
+ k-NN with different algorithms, methods, or models (and their
combinations) to provide a general view of the advantages and
drawbacks of our proposal against other methods. For instance,
the impact of FID weight initialization on AE-ELM networks is
compared against AE-ELM combined with six different weight
initialization methods (e.g., Glorot, He, Orthogonal, etc.). Ad-
ditionally, we offer an analysis of how the AFs affect each
combination (AE-ELM and weight initializations). This first
step shows the performance of each combination to encode and
decode fingerprinting datasets with minimal errors.

TABLE II
DATASETS’ PARAMETERS

Once the datasets are reduced, they are used with different
regression algorithms to estimate the user position and determine
which combination provides the lowest mean positioning error.
The results obtained with the AE-ELM + k-NN are compared
against two positioning models from the literature (i.e., CNNLoc
and OutFin).

The following paragraph details the experiments carried out
in this research work.

A. Experimental Setup

The experiments were carried out using a computer with the
following characteristics: Intel Core i7-8700 T at 2.40 GHz and
16 GB of RAM, the operating system is Windows 10, and the
software used is MATLAB (AE-ELM and k-NN) and Python
[CNNLoc, OutFin, support vector machine (SVM), gradient
boosting regressor (GBR), and Bayesian ridge (BR)]. The devel-
oped algorithms, supporting software and data used are available
in [64] for research reproducibility and replicability.

The experimental setup consisted of 13 indoor positioning
datasets from different environments, which are available online
for the public usage [65]. The datasets were collected by the fol-
lowing entities: Tampere University (TUT 1—TUT 7) [66], [67],
[68], University of Minho (DSI 1 and DSI 2) [69], University
of Mannheim (MAN 1 and MAN 2) [70], [71], and Universitat
Jaume I (LIB 1, LIB 2) [72].

The advantage of using these datasets is that they were col-
lected in different environments with varying numbers of devices
in real-world deployments, and therefore, provide a complete
analysis of the proposed methods in a multitude of realistic
conditions. Moreover, these datasets were collected for different
purposes, including the comprehensive assessment of limited
crowdsourced radio maps over a large area in TUT 3. Assessment
with multiple diverse datasets considered in this work is being
consolidated in the indoor positioning community [73], [74],
[75], [76], [77].

Table II shows the features of the datasets used in the experi-
ments. |TTR| represents the number of samples in the training set,
|TTE| the number of samples in the test set, |A| is the number
of AP (i.e., features), #b is the number of buildings, and #f
represents the number floors. The table also includes the number
of compressed features |L| (i.e., the number of hidden nodes in
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the ELM network), and data representation (data rep.)—we use
the same data representation as in [73] and described in [78],
allowing us a better data abstraction by ML algorithms than
using the raw data. Despite the fact that each dataset considers
different scenario, scale of deployment, measurement method-
ology, sample density, etc., they were formatted into a consistent
structure with an array of RSS measurements as features, and
an array of local coordinates (x, y, z, coordinates, floor index,
and building index) as labels.

Despite the traditional assessment in indoor positioning and
ML holding a ratio ≈ 80 : 20 for training and testing, we use
the data partition provided with the datasets. Applying k-fold
cross validation is not recommended in fingerprinting as the
samples taken in a short period may end in the training and
testing sets, having overoptimistic results for them (i.e., data
leakage). Therefore, we ensure that training and testing samples
are independent, the evaluation can be reproduced as the same
data partitions can be reused, and the results can be directly
compared to previous and further works using these datasets.

Two baselines have been considered for the k-NN algorithms:
simple configuration (k = 1, city-block distance metric and
positive data representation) and best configuration, both defined
in [73] and [78]. The analyzed methods were compared in terms
of compression ratio (CR), positioning error (ε3D), and floor hit
rate (ζ). The CR is obtained by dividing the number of features in
the original dataset by the number of features in the compressed
dataset.

The proposed weight initialization is later compared with
six well-known algorithms: Gaussian (zero mean and standard
deviation equal to 0.01), random orthogonal (random values in
the range of [−1, 1]), random uniform (distribution bound 0.01),
He [56], Glorot [55], and ELM-Input [57]. The AE-ELM was
implemented using the aforementioned algorithms along with
nonlinear and periodic AFs (sine, cosine, ReLU, sigmoid, and
hyperbolic tangent sigmoid), and then, tested on each dataset.
Given that the initial weights and/or the bias terms are initialized
randomly, the AE-ELM was executed 20 times. We thus compute
the root mean square error (RMSE) of the reconstruction error
(i.e., the difference between the AE input and output), and its
confidence bounds are obtained using the standard deviation.
Likewise, the positioning model based on AE-ELM and k-NN
was run 20 times to determine the oscillation of the positioning
error.

The AE-ELM with FID weight initialization was also tested
using three regression models (SVM, GBR, and BR) to compre-
hensively analyze our proposal. These three algorithms were im-
plemented using Sklearn library (default hyperparameters). We
thus reduced the dimensionality of the datasets using AE-ELM
and each weight initialization method described previously to
subsequently estimate the mean 3-D positioning error, employ-
ing the aforementioned regression algorithms.

In addition, the proposed AE-ELM using fixed weights +
k-NN is compared with to CNNLoc [43] and OutFin [79], in
order to compare their efficiency in terms of positioning accu-
racy. Unlike CNNLoc, OutFin is not a positioning or localization
solution. Nevertheless, it consists of an AE as a part of software
provided by the authors, and therefore, is a suitable baseline to

Fig. 4. Heatmap depicts the average RMSE (unitless) of the weight ini-
tialization algorithm versus AF. Figs. 5 and 6 show in detail the average
RMSE of each combination (weight initialization model and AF) using a
different number of hidden neurons.

compare our solution to. In each case, the mean positioning error
was selected to be compared with our proposal. In both cases, the
software developed in Python was obtained from the authors’
repositories [80], [81]. We only adapted the inputs/outputs in
those scripts to fit our data structure, keeping the data processing
workflow, initialization mechanisms, and other parameters as
originally defined.

As mentioned in the previous paragraph, we utilize a deep
learning model called CNNLoc [43] to compare the positioning
performance with the proposed solution. CNNLoc’s architecture
consists of an individually trained stacked AE, whose encoder’s
part serves as an input to the consecutive convolutional parts of
the network. The model utilizes multiple 1-D convolutional lay-
ers as the core network. Three separate convolutional pipelines,
each finalized with a single densely connected layer, predict
latitude and longitude coordinates, building index and floor,
respectively.

B. Results

This section describes the results achieved by using the pro-
posed weight initialization method in the AE-ELM network.
These results include the reconstruction error, computational
performance, as well as the positioning results using the methods
described in the previous section.

1) Weight Initialization: This section provides the empirical
results of using six random initializations and the proposed FID
in AE-ELM.

Fig. 4 shows the average RMSE—reconstruction error—
(scale 1:100) of combining seven weights initialization methods
and five AFs across all datasets. Although the RMSE is com-
parable for each combination, the hyperbolic tangent sigmoid
(tansig) AF provided the lowest reconstruction error regardless
of the weight initialization method used in the network. We can
also observe that the proposed FID algorithm outperforms the
initialization algorithms commonly used in the literature.

The performance of the FID algorithm remains almost un-
changed with the sigmoid, hyperbolic tangent sigmoid, and
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Fig. 5. Performance of weight initialization methods in TUT 1 for five
AFs: (a) sine/sin, (b) cosine/cos, (c) sigmoid/sig, (d) hyperbolic tangent
sigmoid/tansig, and (e) rectified linear unit (ReLU).

ReLU AFs, providing low reconstruction error. On the contrary,
when the FID and periodic AFs are combined, the average
RMSE increased by more than 6% in comparison with the tansig
function. However, the computed error is still lower than the
error of its counterparts at the same settings.

Fig. 5 shows the performance of the AE-ELM when different
AFs and weight initialization algorithms are used in TUT 1
dataset. The x-axis represents the hidden layer size used in the
network and the y-axis represents the mean of the RMSE per
each hidden node after executing the AE-ELM 20 times.

As shown in Fig. 5(a), random uniform initial weights, or-
thogonal and Gaussian initialization, have similar performance
when the sine AF is used in the network. Similarly, FID keeps its
statistical properties, providing the lowest reconstruction error.
In the case of using the cos AF, the performance of FID and the
network is degraded with respect to sine.

When random Gaussian initialization and cos AF are used
in the AE-ELM, the reconstruction error remains high despite
increasing the hidden layer size. This behavior can be observed
in TUT 1 [see Fig. 5(b)], MAN 1 and DSI 1 (see Fig. 6).
For DSI 1 and MAN 1, the high RMSE is also produced by
the type of data representation used in each dataset (powered
and exponential, respectively). Gaussian weight initialization
provides better performance when positive data representation is

Fig. 6. Weight initialization algorithms and cosine AF. (a) MAN 1
dataset. (b) DSI 1 dataset.

TABLE III
COMPARISON OF THE WEIGHT INITIALIZATION

applied to the dataset as shown in Fig. 5(b). Moreover, the cos AF
produces a similar performance using other weight initialization
methods like uniform initialization in MAN 1.

Fig. 5(c) shows that the mean RMSE is similar in all weight
initialization methods based on random values. Again, the re-
construction error obtained with FID is lower than other initial-
ization methods. A similar behavior is obtained with tansig and
ReLU AF [see Fig. 5(e)].

ELM-Input weight initialization provided a good perfor-
mance using sigmoid, hyperbolic tangent sigmoid, and ReLU
AFs [see Fig. 5(c)–(e)]. The best performance is obtained with
the tansig AF, offering a reconstruction error lower than random-
based methods.

Table III summarizes the results of the data reconstruction
error (ξ, mean RMSE) using the tansig AF. The results are
normalized to the random orthogonal initialization (OR), which
serves as the baseline.

FID (FI) is the best-performing weight initialization, achiev-
ing 9% lower positioning error than the baseline (OR). Despite
ELM-Input (EI) being also based on the input data, its average
RMSE is 2.9% higher than the baseline (OR). The average
RMSE of random uniform (UN) and Gaussian (GA) is very
close to the baseline, and it is slightly higher for the models
proposed by He (HE) and Glorot (GL).
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Fig. 7. Evaluation of TUT 1 dataset based on the (a) number of hidden
layers, and (b) distribution of the RMSE.

Tapson et al. [82] mentioned that the random orthogonal
initialization (OR) provided better performance and better gen-
eralization of ELM network than random uniform (UN), while
we show here that their reconstruction errors are similar in
Table III for the 13 fingerprint datasets. Anyway, the worst
reconstruction errors are provided by the initialization based
on ELM-Input (EI).

Given that weights (wi) and/or bias (bi) are randomly ini-
tialized each time that the ELM is executed (with the exception
of ŵki, which is analytically determined), the model and its
reconstruction error (RMSE) may significantly vary.

Fig. 7(a) shows the distribution of RMSE along the L hidden
nodes and the confidence bound (standard deviation) of the
RMSE, using FID and random orthogonal weight initialization
on TUT 1. Despite the oscillation of the random values, the
minimum error obtained with each hidden node is higher than
the average RMSE obtained with the FID weight initialization.

Similarly, Fig. 7(b) shows the oscillation of the RMSE when
the dimensionality of the dataset (TUT 1) is reduced toL dimen-
sions. The x-axis represents the weight initialization algorithm
and the y-axis represents the RMSE. The box plot distinguishes
the median of the RMSE along with the first quartile, the third
quartile, and the minimum and the maximum values of RMSE.
The median error of using FID is lower than using He, Glorot,
Gaussian, uniform random, and ELM-Input weight initialization
by more than 13%. Furthermore, Fig. 7(b) also shows that the
distribution of RMSE is significantly more stable (narrow) in
FID than in any of its counterparts.

2) Computational Performance: This section is devoted to
analyzing the computational performance of the proposed
weight initialization. In the same vain as the previous section,
FID initialization weight is compared (in terms of processing
time) against six traditional methods from the literature: ran-
dom orthogonal (OR), uniform (UN), He (HE), Glorot (GL),
Gaussian (GA), and ELM-Input (EI) weight initializations.

Fig. 8 shows the time required by the analyzed methods to
initialize the input weights, reduce the dimensionality of the
datasets and the time used to estimate the position before and
after the dimensionality reduction.

Fig. 8(a) shows the average time required to initialize the
input weights using seven different methods, including FID. As
expected, FID requires more time than random weight initializa-
tion methods, given that FID factorizes the input data, and then,

Fig. 8. Time analysis. (a) Average time to initialize the input weights.
(b) Average time to reduce the dimension of the training dataset.
(c) Average time to reduce the dimension of the test dataset. (d) Average
time to estimate the position.

normalizes the selected dimensions. Once the input weights are
initialized, the time employed to reduce the dimensionality of the
datasets is similar in all the algorithms, except for ELM-Input,
which is slightly higher than the others [see Fig. 8(b) and (c)].
Finally, Fig. 8(d) shows the time employed to estimate the
position before the data encoding (NR = no dimensionality
reduction) and after encoding the datasets using AE-ELM with
the aforementioned initialization methods (gray bars).

It is important to emphasize that, the weight initialization
is performed only once in the offline phase of fingerprinting,
thus the computational load in the online phase will not be
significantly affected by the type of weight initialization method
used in the AE-ELM [see Fig. 8(c)].

3) Positioning Performance: In this section, we evaluate the
positioning performance on the 13 datasets. The ELM with
the proposed weight initialization (FID) and k-NN matching
algorithm is compared with ELM using six weight initialization
methods with k-NN. As such, we test the efficiency of the meth-
ods in real and heterogeneous indoor positioning deployments.
In addition, given that sigmoid and tansig AFs facilitate a better
learning process, both functions have been used to estimate
the position and floor hit rate. The k-NN parameter setting
corresponds to the best configuration baseline per each dataset,
as found in [73].

Table IV provides results after running the AE-ELM with
k-NN 20 times. We report the average and standard deviation
of the mean 3-D positioning error (ε3D) and the floor hit rate
(ζ). The baseline is the combination of AE-ELM using random
orthogonal weight initialization, sigmoid (S), and tansig (T) AFs
with k-NN.

In general, the AE-ELM with FID weight initialization
method has a good performance reducing the positioning error
by more than 1m in the best case (MAN 2 and TUT 2) in
comparison with the baseline. Likewise, the floor hit rate is
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TABLE IV
PERFORMANCE COMPARISON OF AE-ELM AND k-NN WITH SIX WEIGHT INITIALIZATIONS AND TWO AFS

TABLE V
MEAN 3-D POSITIONING ERROR—SVM, GBR, AND BR

improved by more than 10% in many datasets when using FID
weight initialization. FID also has the lowest variability for both
metrics in most of the cases.

However, there are some cases where there is a marginal
improvement compared to the baseline (random orthogonal
initialization). In addition, in TUT 4, the lowest positioning error
and floor hit rate are obtained using random orthogonal, uniform,
or Gaussian initialization. Despite the individual occurrences,
the proposed weight initialization FID provides a robust and
reliable method over a large array of state-of-the-art initialization
while reducing the variance of the positioning result caused by
the training process of the neural network. The lowest position-
ing error was achieved in 12 out of 13 datasets when using FID
initialization.

Table V shows the mean 3-D positioning error obtained using
the reduced datasets and three different regression algorithms.
As can be observed from this table, AE-ELM + FID outperform
AE-ELM using other weight initialization methods when GBR
and BR are used to estimate the user or device position. Never-
theless, when we use this combination with the SVM regressor
algorithm, the mean positioning error is slightly worse than
using orthogonal and/or uniform weight initialization methods
(5% approximately). Although GBR algorithm and AE-ELM +
FID provide good performance, the mean positioning error is
still higher than combining AE-ELM + FID and k-NN.

Despite the fact that the FID weight initialization provides
a better reconstruction of the encoded data (see Table III), the
positioning error estimated is not always the best. This is the case
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TABLE VI
PERFORMANCE OF 1-NN, STATE-OF-THE ART IPS, AND AE-ELM IN TERMS OF POSITIONING ERROR, FLOOR HIT RATE, AND COMPRESSION RATE

of TUT 1, TUT 2, and TUT 5, whose positioning error and floor
hit rate are not outstanding (see Table IV). It is worth mentioning
that the authors of those datasets applied data preprocessing
so that the original fingerprints were averaged in cell grids.
However, in the vast majority of cases, the proposed method
not only reduces the positioning error but also provides a more
stable output according to the standard deviation of the results.

4) Comparison With State-of-The-Art Positioning Models:
The previous sections demonstrated that FID is the best-
performing weight initialization method for fingerprinting based
on AE-ELM and k-nearest neighbors (k-NN). Further exper-
iments compare it to the plain k-NN and two state-of-the-art
AE-based localization/positioning algorithms CNNLoc [43],
[80], and OutFin [79]. The results of the comparison are provided
in Table VI.

Although the number of features was significantly reduced
in most datasets, the positioning error was not highly affected
after applying the AE-ELM. The proposed AE-ELM seems to
get rid off those APs that do not contribute to positioning. For
instance, the positioning error increased by only 15% on average
after reducing the dimensionality of the datasets, considering
that the same k-NN configuration and data representation were
used in both cases (simple configuration). In LIB 2 and TUT 2,
the normalized positioning error was below 1, which means that
reducing the dimensionality improved their performance.

When the AE-ELM is combined with the best configuration
setting of k-NN, as described in [73], the positioning error was
reduced by 7% compared with AE-ELM + 1-nearest neighbors
(1-NN). The lowest compression ratio was 1.87 for dataset
MAN 1, where the positioning error was reduced by approx-
imately 7% compared with the plain k-NN and 23% compared
with AE-ELM + 1-NN, improving the positioning performance
while reducing the dataset size. That database was, along with
MAN 2, already having the lowest number of APs (see Table II).
The highest compression ratio was 81.5 for TUT 5 dataset, but
its positioning error increased by more than 70% compared to
the 1-NN. In general, the dataset dimensionality was reduced
11.5 times on average, at the expense of a small increment in the
positioning error.

When considering the floor hit rate, the results show a slight
decrease in the accuracy when the dimensionality of the datasets
was reduced. The mean accuracy was reduced from 94.83% to

93.60% for simple configuration and to 93.27% when using the
best configuration. In particular, there is one dataset (TUT 5)
where the floor hit rate was strongly affected, reducing its floor
hit rate accuracy by almost 20% from 88.39% to 71.41% when
using simple configuration and to 71.80% when using the best
configuration. In TUT 5, the authors averaged the fingerprints in
areas of 25 m2. In LIB 1–2, TUT 2, and TUT 6, the floor hit rate
slightly increased, whereas in the remained multifloor datasets,
the floor hit rate slightly decreased.

The performance of CNNLoc is evaluated with two training
optimizers, Adam (CNNLoc – A) and RMSProp (CNNLoc –
R), as done in [43]. In general, CNNLoc provides an outstanding
general floor hit rate with both optimizers, with special emphasis
on TUT 5, a challenging dataset. However, the positioning
error is significantly worse than the 1-NN baseline, except for
just one dataset, LIB 2. It is worth mentioning that CNNLoc
results are obtained without doing any additional dimensional
reduction. Overall, the results show the excellent capability of
the neural network to classify the data, while accurate regression
is significantly harder to achieve. Comparing the CNNLoc–A
with AE-ELM + FID weight initialization + k-NN (simple con-
figuration), the CNNLoc is more accurate than AE-ELM + FID
weight initialization +k-NN in the floor hit rate by more than 3%.
However, our proposal outperforms CNNLoc–A by almost 40%.
The AE provided in [79] was optimized for a dataset. Here, the
bottleneck layer is modified to have the same compression ratio
as the AE-ELM for each dataset, enabling the direct comparison
between OutFin and AE-ELM. The average positioning error for
OutFin + k-NN is around 57% higher than the baseline, while
the floor hit rate is 5% worse than 1-NN. In general, OutFin is
also worse than AE-ELM in terms of positioning error and floor
hit rate, except for TUT 1 and TUT 7, where OutFin provides a
lower mean positioning error and a higher floor hit rate.

VI. DISCUSSION

The ELM has gained popularity since its inception in 2003,
given its fast learning speed and its stable performance. Thus, the
ELM was used in several applications where a fast response is a
must. Generally, the AE-ELM network uses orthogonal random
initialization in both the input weights and bias terms, offering
a good generalization as was shown in the literature.
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The initialization of the input weights and bias terms are
highly relevant to provide a better performance of the network
and in the case of AE-ELM to reconstruct the encoded data
(decode) with low error. Ideally, the output of the decoder should
be identical to the input data of the encoder. In Section III-C, we
proposed a new method to initialize the input weights, which is
based on orthogonal components of the input data. This method
offers lower reconstruction error than orthogonal random input,
random uniform, HE, Glorot, Gaussian, and ELM-Input initial-
ization, as demonstrated in Section V-B.

The proposed FID performs better than random-based weight
initialization methods in most cases. Nevertheless, if the number
of hidden nodes is less than ≈ 2% of the original dataset, the
error might not be lower than while using a random weight
initialization. Still, the proposed initialization offers a more
stable output (see Fig. 7). It is important to highlight that unit
norm normalization allows the model to constrain the input
weights, preserving its statistical characteristics.

In general, the FID weight initialization provides a better
performance when hyperbolic tangent sigmoid and sigmoid AFs
are used in the AE-ELM. On the contrary, periodic functions
(sine and cosine) reduce the capability of the network to extract
meaningful information from the dataset. This effect is more
evident when a random Gaussian distribution is used to initialize
input weights in AE-ELM networks.

In terms of positioning, the AE-ELM approach is providing
an outstanding compression rate while the positioning error and
floor hit rate are only slightly worse. In contrast, two state-
of-the-art positioning methods (CNNLoc and OutFin) may not
be appropriate for all datasets. In terms of computational load,
the analytic training of the AE-ELM with FID is usually faster
than training neural networks with Backpropagation-based algo-
rithms (CNNLoc), while the inference time (operational/online
phase) is usually slow in those models based on k-NN. The
number of fingerprints in the radio map may be a critical feature
while training a neural network with backpropagation-based
algorithms and while inferring the position estimates with a
matching model based on k-NN, where the computation of
the distances may not scale. Recent works have shown that
the efficiency of fingerprinting based on k-NN can be further
improved by applying clustering models.

However, it seems that the proposed FID works better with
unprocessed datasets. Additional data preprocessing, such as
averaging fingerprints in a medium/large area, should not be
applied in combination with data dimensionality reduction. This
may be the cause of the poor results obtained for TUT 5 datasets
with AE-ELM. Also, the improvement in the positioning and
reconstruction errors provided by FID is at the cost of an incre-
ment in the execution time, as the time for initializing the input
weights is significantly higher. Nevertheless, the time needed for
initialization is negligible when considering the time required for
training the model.

VII. CONCLUSION

ML is widely spread in the positioning community for ef-
ficient and accurate indoor position estimation. In this article,

we analyze the relevance of input weight initialization in the
AE-ELM for dimensionality reduction in fingerprint-based in-
door positioning. Due to the complexity of fingerprinting radio
maps, we also propose a new method to initialize the input
weights, FID, that helps to learn the complex patterns of radio
propagation. The AE-ELM is used in combination with k-NN
to provide the final position estimates. Discussion is based on
the results of 13 public Wi-Fi fingerprinting datasets for indoor
positioning.

We have performed a comparison of different initialization
models, including random orthogonal, Gaussian, Glorot, He,
uniform, ELM-input, and the proposed FID. The results have
shown that AE-ELM with FID provides a lighter representation
in terms of dimensions and reduces the reconstruction error
of the encoded data by up to 10% less than the traditional
initialization models, i.e., a correct initialization is of utmost
relevance when designing a light model based on AE-ELM.

Later, the positioning system based on AE-ELM with FID
and k-NN was compared to a baseline and the state-of-the-art
fingerprinting models (CNNLoc and OutFin). The results show
that the proposed AE-ELM with FID significantly outperforms
CNNLoc and OutFin in terms of the positioning error, being
similar to the baseline. CNNLoc remains as the most accurate
model for coarse floor-level localization. On average, AE-ELM
with FID provides a dimensionality reduction of more than 11
times with respect to CNNLoc and the baseline while keeping
the positioning accuracy at most 66% lower than the DNN
benchmark.

Overall, FID method offers several advantages over some
well-known weight initialization methods/algorithms and some
of them are listed as follows.

1) FID can be used with different AFs without affecting the
performance of the neural network.

2) It demonstrates robustness to different data representa-
tions, outperforming state-of-the-art methods.

3) FID ensures a consistent output by not relying on random
numbers.

4) It enhances the performance of ELM networks.
Future work will focus on extending this weight initialization

method to deep neural networks in order to analyze its advan-
tages and disadvantages. In such a way, FID can be optimized for
different neural networks and not limited to ELM. In addition,
the optimized AE-ELM will be combined with other neural
networks to provide fast learning models that can be used in
real-time indoor positioning applications.
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