25 research outputs found

    The SIRT1 promoter polymorphic site rs12778366 increases IL-6 related human mortality in the prospective study “Treviso Longeva (TRELONG)”

    Get PDF
    Studies on sirtuins (SIRT), a family of proteins with deacetylase activity, have provided convergent evidence of the key role of these enzymes in aging-linked physiological functions. The link between SIRT1 and longevity has emerged in model organism but few data are available in humans, in particular relying on longitudinal studies. Here, we assessed whether a genetic variant within SIRT1 gene promoter (rs12778366) was associated to human longevity. We analyzed 586 genomic DNA (gDNA) collected in the study "Treviso Longeva" (TRELONG), including elderly over 70 years of age from the municipality of Treviso, a town in the Northeast of Italy, with a 11-year follow-up. We genotyped SIRT1 rs12778366 by real-time polymerase chain reaction (RT-PCR) allelic discrimination assay. A cross-sectional analysis performed by comparing people over and under 85 years of age did not evidence association between rs12778366 and longevity. When we performed a longitudinal analysis considering mortality as dependent variable, we did not observe an association of rs12778366 with longevity in the whole population (corrected P-value = 0.33). However, when we stratified the TRELONG subjects according to circulating level of interleukin-6 (IL-6), a predictor of disability and mortality, we found that rs12778366 (TC+CC) carriers were at increased risk of mortality in comparison to the TT reference group (corrected P-value = 0.03, HR 1.47). Our data do not support a major role of rs12778366 in human longevity, but the stratified analysis on IL-6 suggests that this variant may be involved in the detrimental effect of high circulating IL-6 in the elderly

    Disrupted neural activity patterns to novelty and effort in young adult APOE-e4 carriers performing a subsequent memory task

    Get PDF
    Introduction: The APOE e4 allele has been linked to poorer cognitive aging and enhanced dementia risk. Previous imaging studies have used subsequent memory paradigms to probe hippocampal function in e4 carriers across the age range, and evidence suggests a pattern of hippocampal overactivation in young adult e4 carriers. Methods: In this study, we employed a word-based subsequent memory task under fMRI; pupillometry data were also acquired as an index of cognitive effort. Participants (26 non-e4 carriers and 28 e4 carriers) performed an incidental encoding task (presented as word categorization), followed by a surprise old/new recognition task after a 40 minute delay. Results: In e4 carriers only, subsequently remembered words were linked to increased hippocampal activity. Across all participants, increased pupil diameter differentiated subsequently remembered from forgotten words, and neural activity covaried with pupil diameter in cuneus and precuneus. These effects were weaker in e4 carriers, and e4 carriers did not show greater pupil diameter to remembered words. In the recognition phase, genotype status also modulated hippocampal activity: here, however, e4 carriers failed to show the conventional pattern of greater hippocampal activity to novel words. Conclusions: Overall, neural activity changes were unstable in e4 carriers, failed to respond to novelty, and did not link strongly to cognitive effort, as indexed by pupil diameter. This provides further evidence of abnormal hippocampal recruitment in young adult e4 carriers, manifesting as both up and downregulation of neural activity, in the absence of behavioral performance differences

    Possible Association of APOE Genotype with Working Memory in Young Adults

    Get PDF
    Possession of the ε4 allele of the Apolipoprotein E (APOE) gene is associated with an increased risk of Alzheimer's disease. Early adult life effects of ε4 are less well understood. Working memory has been relatively little studied (compared to episodic memory) in relation to APOE genotype despite its importance in cognitive functioning. Our hypothesis was that ε4 would lead to an impairment in working memory in young adults.We studied working memory using a computerised n-back task in the Avon Longitudinal Study of Parents and Children (ALSPAC) at age 18. Data was available for 1049-1927 participants and for the 2- and 3-back versions of the task. Using multiple and multi-level regression controlling for important confounders we examined the association between APOE genotype on accuracy and reaction times.There was no evidence of a genotype effect on accuracy when the two difficulty levels were examined separately. There was some evidence to support a deleterious effect of the ε4 allele on n-back accuracy in the multi-level regression. There was weak evidence that the ε22 group were less accurate but the numbers were very low in this group. The ε34 group had faster reaction times than the reference ε33 group in all adjusted analyses but the ε44 group were only faster in the 3-back condition in multi-level analyses.There was no evidence of benefit in ε4 carriers, but there was some evidence of a detrimental effect on working memory in this large study

    Mid age APOE ε4 carriers show memory-related functional differences and disrupted structure-function relationships in hippocampal regions

    Get PDF
    Carriers of the APOE e4 allele are at higher risk of age-related cognitive decline and Alzheimer's disease (AD). The underlying neural mechanisms are uncertain, but genotype differences in medial temporal lobe (MTL) functional activity and structure at mid-age might contribute. We tested 16 non-e4 and 16 e4 carriers (aged 45-55) on a subsequent memory task in conjunction with MRI to assess how hippocampal volume (from T1 structural) and microstructure (neurite orientation-dispersion, from NODDI) differs by genotype and in relation to memory encoding. No previous study has investigated APOE effects on hippocampal microstructure using NODDI. Recall performance did not differ by genotype. A genotype by condition interaction in left parahippocampus indicated that in e4 carriers activity did not differentiate subsequently remembered from forgotten words. Hippocampal volumes and microstructure also did not differ by genotype but hippocampal volumes correlated positively with recognition performance in non-e4 carriers only. Similarly, greater hippocampal neurite orientation-dispersion was linked to better recall but only in non-e4s. Thus, we suggest that mid-age e4 carriers show a breakdown of normal MTL activation and structure-performance relationships. This could reflect an inability to utilise compensatory mechanisms, and contribute to higher risk of cognitive decline and AD in later life

    Dissociable effects of APOE ε4 and β-amyloid pathology on visual working memory

    Get PDF
    Although APOE ε4 carriers are at substantially higher risk of developing Alzheimer’s disease than noncarriers, controversial evidence suggests that APOE ε4 might confer some advantages, explaining the survival of this gene (antagonistic pleiotropy). In a population-based cohort born in one week in 1946 (assessed aged 69–71 years), we assessed differential effects of APOE ε4 and β-amyloid pathology (quantified using 18F-Florbetapir-PET) on visual working memory (object–location binding). In 398 cognitively normal participants, APOE ε4 and β-amyloid had opposing effects on object identification, predicting better and poorer recall, respectively. ε4 carriers also recalled locations more precisely, with a greater advantage at higher β-amyloid burden. These results provide evidence of superior visual working memory in ε4 carriers, showing that some benefits of this genotype are demonstrable in older age, even in the preclinical stages of Alzheimer’s disease

    Putting attention in the spotlight: the influence of APOE genotype on visual search in mid adulthood

    Get PDF
    The Apolipoprotein E e4 allele is associated with greater cognitive decline with age, yet effects of this gene are also observed earlier in the lifespan. This research explores genotype differences (e2, e3, e4) in the allocation of visuospatial attention in mid-adulthood. Sixty-six volunteers, aged 45–55 years, completed two paradigms probing the active selection of information at the focus of attention (a dynamic scaling task) and perceptual capacity differences. Two methods of statistical comparison (parametric statistics, Bayesian inference) found no significant difference between e4 carriers and the homozygous e3 group on either the dynamic scaling or perceptual load task. E2 carriers, however, demonstrated less efficient visual search performance on the dynamic scaling task. The lack of an e4 difference in visuospatial attention, despite previous suggestion in the literature of genotype effects, indicates that select attentional processes are intact in e4 carriers in mid-adulthood. The association of e2 genotype with slower visual search performance complicates the premised protective effects of this allele in cognitive ageing

    Saccade latency delays in young apolipoprotein E (APOE) epsilon 4 carriers

    Get PDF
    The final publication is available at Elsevier via https://dx.doi.org/10.1016/j.bbr.2018.07.002 © 2018. This manuscript version is made available under the CC-BY-NC-ND 4.0 license https://creativecommons.org/licenses/by-nc-nd/4.0/The apolipoprotein E (APOE) epsilon 4 isoform has been associated with a significantly greater risk of developing late onset Alzheimer’s disease (AD). However, the negative effects of APOE-ε4 allele on cognitive function vary across the lifespan: reduced memory and executive function have been found in older individuals but, paradoxically, young APOE-ε4 carriers perform better on cognitive tests and show higher neural efficiency. This study aimed to assess the association between APOE genotype and saccade latency using a prosaccade and antisaccade task in young individuals (N = 97, age: 17–35 years). Results showed that prosaccade latency was significantly delayed in a group of ε4 carriers in comparison to non-carriers, which was due to a lower rate of signal accumulation rather than a change in the criterion threshold. In contrast, there was no significant genotype difference for antisaccade latency in this young cohort. These results indicate that prosaccade latency may be useful in establishing the APOE behavioural phenotype, which could ultimately assist with distinguishing between normal and pathological aging.Propel Centre for Population Health Impact, University of Waterlo

    Dissociable effects of APOE-ε4 and β-amyloid pathology on visual working memory.

    Get PDF
    Although APOE-ε4 carriers are at significantly higher risk of developing Alzheimer's disease than non-carriers1, controversial evidence suggests that APOE-ε4 might confer some advantages, explaining the survival of this gene (antagonistic pleiotropy)2,3. In a population-based cohort born in one week in 1946 (assessed aged 69-71), we assessed differential effects of APOE-ε4 and β-amyloid pathology (quantified using 18F-Florbetapir-PET) on visual working memory (object-location binding). In 398 cognitively normal participants, APOE-ε4 and β-amyloid had opposing effects on object identification, predicting better and poorer recall respectively. ε4-carriers also recalled locations more precisely, with a greater advantage at higher β-amyloid burden. These results provide evidence of superior visual working memory in ε4-carriers, showing that some benefits of this genotype are demonstrable in older age, even in the preclinical stages of Alzheimer's disease

    APOE e4 polymorphism in young adults is associated with improved attention and indexed by distinct neural signatures

    No full text
    The APOE e4 allele, which confers an increased risk of developing dementia in older adulthood, has been associated with enhanced cognitive performance in younger adults. An objective of the current study was to compare task-related behavioural and neural signatures for e4 carriers (e4+) and non-e4 carriers (e4-) to help elucidate potential mechanisms behind such cognitive differences. On two measures of attention, we recorded clear behavioural advantages in young adult e4+ relative to e4-, suggesting that e4+ performed these tasks with a wider field of attention. Behavioural advantages were associated with increased task-related brain activations detected by fMRI (BOLD). In addition, behavioural measures correlated with structural measures derived from a former DTI analysis of white matter integrity in our cohort. These data provide clear support for an antagonistic pleiotropy hypothesis - that the e4 allele confers some cognitive advantage in early life despite adverse consequences in old age. The data implicate differences in both structural and functional signatures as complementary mediators of the behavioural advantage
    corecore