478 research outputs found

    Development and Implementation of Some Controllers for Performance Enhancement and Effective Utilization of Induction Motor Drive

    Get PDF
    The technological development in the field of power electronics and DSP technology is rapidly changing the aspect of drive technology. Implementations of advanced control strategies like field oriented control, linearization control, etc. to AC drives with variable voltage, and variable frequency source is possible because of the advent of high modulating frequency PWM inverters. The modeling complexity in the drive system and the subsequent requirement for modern control algorithms are being easily taken care by high computational power, low-cost DSP controllers. The present work is directed to study, design, development, and implementation of various controllers and their comparative evaluations to identify the proper controller for high-performance induction motor (IM) drives. The dynamic modeling for decoupling control of IM is developed by making the flux and torque decoupled. The simulation is carried out in the stationary reference frame with linearized control based on state-space linearization technique. Further, comprehensive and systematic design procedures are derived to tune the PI controllers for both electrical and mechanical subsystems. However, the PI-controller performance is not satisfactory under various disturbances and system uncertainties. Also, precise mathematical model, gain values, and continuous tuning are required for the controller design to obtain high performance. Thus, to overcome these drawbacks, an adapted control strategy based on Adaptive Neuro-Fuzzy Inference System (ANFIS) based controller is developed and implemented in real-time to validate different control strategies. The superiority of the proposed controller is analyzed and is contrasted with the conventional PI controller-based linearized IM drive. The simplified neuro-fuzzy control (NFC) integrates the concept of fuzzy logic and neural network structure like conventional NFC, but it has the advantages of simplicity and improved computational efficiency over conventional NFC as the single input introduced here is an error instead of two inputs error and change in error as in conventional NFC. This structure makes the proposed NFC robust and simple as compared to conventional NFC and thus, can be easily applied to real-time industrial applications. The proposed system incorporated with different control methods is also validated with extensive experimental results using DSP2812. The effectiveness of the proposed method using feedback linearization of IM drive is investigated in simulation as well as in experiment with different working modes. It is evident from the comparative results that the system performance is not deteriorated using proposed simplified NFC as compared to the conventional NFC, rather it shows superior performance over PI-controller-based drive. A hybrid fuel cell (FC) supply system to deliver the power demanded by the feedback linearization (FBL) based IM drive is designed and implemented. The modified simple hybrid neuro-fuzzy sliding-mode control (NFSMC) incorporated with the intuitive FBL substantially reduces torque chattering and improves speed response, giving optimal drive performance under system uncertainties and disturbances. This novel technique also has the benefit of reduced computational burden over conventional NFSMC and thus, suitable for real-time industrial applications. The parameters of the modified NFC is tuned by an adaptive mechanism based on sliding-mode control (SMC). A FC stack with a dc/dc boost converter is considered here as a separate external source during interruption of main supply for maintaining the supply to the motor drive control through the inverter, thereby reducing the burden and average rating of the inverter. A rechargeable battery used as an energy storage supplements the FC during different operating conditions of the drive system. The effectiveness of the proposed method using FC-based linearized IM drive is investigated in simulation, and the efficacy of the proposed controller is validated in real-time. It is evident from the results that the system provides optimal dynamic performance in terms of ripples, overshoot, and settling time responses and is robust in terms of parameters variation and external load

    Modelling, simulation and analysis of DSIM using artificial intelligent controller

    Get PDF
    This paper presents an elaboration for speed control of dual stator induction motor (DSIM) using artificial intelligent controller. The main problem with the conventional fuzzy controllers is that the parameters associated with the membership functions and the rules depend broadly on the intuition of the experts. To overcome this problem, adaptive neuro-fuzzy inference system (ANFIS) controller is proposed in this paper. The elaboration allows to compare simulation results between classical and artificial intelligent controllers. The fuzzy logic controller (FLC) and ANFIS controllers are also introduced to the system for keeping the motor speed to be constant when the load varies. Comparison between PI, fuzzy and Adaptive neuro-fuzzy controller-based dynamic performance of DSIM drive has been presented. ANFIS-based control of DSIM will prove to be more reliable than other control methods. The performance of the DSIM drive has been analyzed for constant load and change in speed conditions.&nbsp

    ANFIS based Direct Torque Control of PMSM Motor for Speed and Torque Regulation

    Get PDF
    Nowadays, the Permanent Magnet Synchronous Motors (PMSM) are gaining popularity among electric motors due to their high efficiency, high-speed operation, ruggedness, and small size. PMSM motors comprise a trapezoidal electromotive force which is also called synchronous motors. Direct Torque Control (DTC) has been extensively applied in speed regulation systems due to its better dynamic behavior. The controller manages the amplitude of torque and stator flux directly using the direct axis current. To manage the motor speed, the torque error, flux error, and projected location of flux linkage are employed to adjust the inverter switching sequence via Space Vector Pulse Width Modulation (SVPWM). One of the most common problems encountered in a PMSM motor is Torque ripple, which is recreated by power electronic commutation and a better controller reduces the ripples to increase the drive's performance. Conventional controllers such as PI, PID and SVPWM-DTC were compared with the proposed Adaptive Neuro-Fuzzy Inference System (ANFIS) in terms of performance measures such as speed and torque ripple. In this work, the Two-Gaussian membership function of the ANFIS controller is used in conjunction with a PMSM motor to reduce torque ripple up to 0.53 Nm and maintain the speed with a distortion error of 2.33 %

    Speed Control of Parallel Connected DSIM Fed by Six Phase Inverter with IFOC Strategy Using ANFIS

    Get PDF
    This paper describe the presentation of an IM for high load and high-power applications, this kind of applications the motor have a complex coupling between the field and torque. This can be achieve with assist of Indirect Field Oriented Control (IFOC) and parallel connection of two motors. The benefit is that parallel connection can provide the decoupled control of flux and torque for each motor and their concert in different operating environments. The Speed control of two Double Star Induction Motors working in parallel configuration with IFOC using a Fuzzy Logic Controller (FLC) and Adaptive Neuro Fuzzy Inference (ANFIS) controller is investigate in different operating environments. The two motors are connected in parallel at the output of a single six-phase PWM based inverter fed from a DC source. Performance of the projected method under load disturbances is studied through simulation using a MATLAB and evaluation of speed response of two controllers is analyzed. &nbsp

    Direct space vector modulation for matrix converter fed dual star induction machine and neuro-fuzzy speed controller

    Get PDF
    This paper presents the modeling, design, and simulation of an adaptive neuro fuzzy inference strategy (ANFIS) for controlling the speed of the Double Star induction Machine (DSIM), the machine is fed by three phase direct matrix converter which makes directly AC-AC power conversion is modeled using Direct Space Vector Modulation technique(DSVM)  for direct matrix converter. Double star Induction motor is characterized by highly non-linear, complex and time-varying dynamics and inaccessibility of some of the states and outputs for measurements. Hence it can be considered as a challenging engineering problem in the industrial sector. Various advanced control techniques has been devised by various researchers across the world. Some of them are based on the neuro-fuzzy techniques. The main advantage of designing the ANFIS coordination scheme is to control the speed of the DSIM to increase the dynamic performance, to provide good stabilization. To show the effectiveness of our scheme, the proposed method was simulated on an electrical system composed of a 4.5 kW six-phase induction machine and its power inverter. Digital simulation results demonstrate that the deigned ANFIS speed controller realize a good dynamic of the DSIM, a perfect speed tracking with no overshoot, give better performance and high robustness

    Characteristic of Fuzzy, ANN, and ANFIS for Brushless DC Motor Controller: An Evaluation by Dynamic Test

    Get PDF
    Brushless DC (BLDC) motors are the most popular motors used by the industry because they are easy to control. BLDC motors are generally controlled by artificial controls such as Fuzzy Logic Controller (FLC), Artificial Neural Network (ANN), and Adaptive Neuro-Fuzzy Inference System (ANFIS). However, the performance of the BLDC control system in previous studies was compared separately with their respective parameters, making it difficult to evaluate comprehensively. Therefore, in order to investigate the characteristic performance of Fuzzy, ANN, and ANFIS, this article provides a comparison of these artificial controls. Two scenarios of the dynamic tests are conducted to investigate control performance under constant torque-various speed and constant speed-various torque. By dynamic testing, characteristics of Fuzzy, ANN, and ANFIS can be observed as real applications. The testing parameters are: Settling Time, Overshoot and Overdamp (in the graph and average value), and then statistic performance are: Integral Square Error (ISE), Integral Absolute Error (IAE), Integral Time Absolute Error (ITAE), and Mean Absolute Error (MAE). The test result in scenario 1 showed that the ANN has a better performance compared to other controllers with the MAE, IAE, ITAE, and ISE value of 31.3003; 105.6280; 208.0630; and 5,7289 e4, respectively. However, in scenario 2, ANN only has a better performance compared to other controllers on just a few parameters. In scenario 2, ANN is indeed able to maintain speed but it has a more ripple value than ANFIS. Even so, the ripple that occurs in ANN does not have too much value compared to the setpoint. Therefore, the MAE value of the ANN is smaller than the ANFIS (18.8937 of ANN and 28.4685 of ANFIS)

    Maximum power point tracking for brushless DC motor-driven photovoltaic pumping systems using a hybrid ANFIS-FLOWER pollination optimization algorithm

    Get PDF
    In this research paper, a hybrid Artificial Neural Network (ANN)-Fuzzy Logic Control (FLC) tuned Flower Pollination Algorithm (FPA) as a Maximum Power Point Tracker (MPPT) is employed to amend root mean square error (RMSE) of photovoltaic (PV) modeling. Moreover, Gaussian membership functions have been considered for fuzzy controller design. This paper interprets the Luo converter occupied brushless DC motor (BLDC)-directed PV water pump application. Experimental responses certify the effectiveness of the suggested motor-pump system supporting diverse operating states. The Luo converter, a newly developed DC-DC converter, has high power density, better voltage gain transfer and superior output waveform and can track optimal power from PV modules. For BLDC speed control there is no extra circuitry, and phase current sensors are enforced for this scheme. The most recent attempt using adaptive neuro-fuzzy inference system (ANFIS)-FPA-operated BLDC directed PV pump with advanced Luo converter, has not been formerly conferred

    Closed-Loop Drive Detection and Diagnosis of Multiple Combined Faults in Induction Motor Through Model-Based and Neuro-Fuzzy Network Techniques

    Get PDF
    In this paper, a fault detection and diagnosis approach adopted for an input-output feedback linearization (IOFL) control of induction motor (IM) drive is proposed. This approach has been employed to detect and identify the simple and mixed broken rotor bars and static air-gap eccentricity faults right from the start its operation by utilizing advanced techniques. Therefore, two techniques are applied: the model-based strategy, which is an online method used to generate residual stator current signal in order to indicate the presence of possible failures by means of the sliding mode observer (SMO) in the closed-loop drive. However, this strategy is not able to recognise the fault types and it can be affected by the other disturbances. Therefore, the offline method using the multi-adaptive neuro-fuzzy inference system (MANAFIS) technique is proposed to identify the faults and distinguish them. However, the MANAFIS required a relevant database to achieve satisfactory results. Hence, the stator current analysis based on the HFFT combination of the Hilbert transform (HT) and Fast Fourier transform (FFT) is applied to extract the amplitude of harmonics due to defects occur and used them as an input data set for the MANFIS under different loads and fault severities. The simulation results show the efficiency of the proposed techniques and its ability to detect and diagnose any minor faults in a closed-loop drive of IM

    Doubly-fed induction generator used in wind energy

    Get PDF
    Wound-rotor induction generator has numerous advantages in wind power generation over other generators. One scheme for wound-rotor induction generator is realized when a converter cascade is used between the slip-ring terminals and the utility grid to control the rotor power. This configuration is called the doubly-fed induction generator (DFIG). In this work, a novel induction machine model is developed. This model includes the saturation in the main and leakage flux paths. It shows that the model which considers the saturation effects gives more realistic results. A new technique, which was developed for synchronous machines, was applied to experimentally measure the stator and rotor leakage inductance saturation characteristics on the induction machine. A vector control scheme is developed to control the rotor side voltage-source converter. Vector control allows decoupled or independent control of both active and reactive power of DFIG. These techniques are based on the theory of controlling the B- and q- axes components of voltage or current in different reference frames. In this work, the stator flux oriented rotor current control, with decoupled control of active and reactive power, is adopted. This scheme allows the independent control of the generated active and reactive power as well as the rotor speed to track the maximum wind power point. Conventionally, the controller type used in vector controllers is of the PI type with a fixed proportional and integral gain. In this work, different intelligent schemes by which the controller can change its behavior are proposed. The first scheme is an adaptive gain scheduler which utilizes different characteristics to generate the variation in the proportional and the integral gains. The second scheme is a fuzzy logic gain scheduler and the third is a neuro-fuzzy controller. The transient responses using the above mentioned schemes are compared analytically and experimentally. It has been found that although the fuzzy logic and neuro-fuzzy schemes are more complicated and have many parameters; this complication provides a higher degree of freedom in tuning the controller which is evident in giving much better system performance. Finally, the simulation results were experimentally verified by building the experimental setup and implementing the developed control schemes
    corecore