56 research outputs found

    Handling Qualities Assessment of a Pilot Cueing System for Autorotation Maneuvers

    Get PDF
    This paper details the design and limited flight testing of a preliminary system for visual pilot cueing during autorotation maneuvers. The cueing system is based on a fully-autonomous, multi-phase autorotation control law that has been shown to successfully achieve autonomous autorotation landing in unmanned helicopters. To transition this control law to manned systems, it is employed within a cockpit display to drive visual markers which indicate desired collective pitch and longitudinal cyclic positions throughout the entire maneuver, from autorotation entry to touchdown. A series of simulator flight experiments performed at University of Liverpool’s HELIFLIGHT-R simulator are documented, in which pilots attempt autorotation with and without the pilot cueing system in both good and degraded visual environments. Performance of the pilot cueing system is evaluated based on both subjective pilot feedback and objective measurements of landing survivability metrics, demonstrating suitable preliminary performance of the system

    Observations on Expedited Systems Engineering Practices in Military Rapid Development Projects

    Get PDF
    This research, conducted in the Systems Engineering Research Center (SERC), examined systems engineering and engineering management practices for military rapid capability and urgent needs programs. Lifecycle of urgent needs programs is driven by “time to market” as opposed to complete satisfaction of static requirements, with delivery expected in months versus years/decades. The processes and practices applied to urgent needs must add value and not require an excessive bureaucratic oversight to implement, while at the same time address, understand, and manage risk such that programs can understand better where to include, truncate, eliminate, tailor, or scale systems engineering practices and processes. Focusing on aspects of the product, process, and people of military rapid organizations, the analysis showed that these organizations have the right team, develop innovative conceptual solutions, quickly prune the design space, and identify appropriate designs that can deliver warfighting capability expeditiously. While these observations may not seem new, they provide the foundation for a broader framework of rapid development, which is the subject of ongoing research

    Observations on Expedited Systems Engineering Practices in Military Rapid Development Projects

    Get PDF
    This research, conducted in the Systems Engineering Research Center (SERC), examined systems engineering and engineering management practices for military rapid capability and urgent needs programs. Lifecycle of urgent needs programs is driven by “time to market” as opposed to complete satisfaction of static requirements, with delivery expected in months versus years/decades. The processes and practices applied to urgent needs must add value and not require an excessive bureaucratic oversight to implement, while at the same time address, understand, and manage risk such that programs can understand better where to include, truncate, eliminate, tailor, or scale systems engineering practices and processes. Focusing on aspects of the product, process, and people of military rapid organizations, the analysis showed that these organizations have the right team, develop innovative conceptual solutions, quickly prune the design space, and identify appropriate designs that can deliver warfighting capability expeditiously. While these observations may not seem new, they provide the foundation for a broader framework of rapid development, which is the subject of ongoing research

    Space Launch System Advanced Development Office, FY 2013 Annual Report

    Get PDF
    The Advanced Development Office (ADO), part of the Space Launch System (SLS) program, provides SLS with the advanced development needed to evolve the vehicle from an initial Block 1 payload capability of 70 metric tons (t) to an eventual capability Block 2 of 130 t, with intermediary evolution options possible. ADO takes existing technologies and matures them to the point that insertion into the mainline program minimizes risk. The ADO portfolio of tasks covers a broad range of technical developmental activities. The ADO portfolio supports the development of advanced boosters, upper stages, and other advanced development activities benefiting the SLS program. A total of 34 separate tasks were funded by ADO in FY 2013

    NIRPS: An Update

    Get PDF
    No abstract availabl

    Experimental Space Shuttle Orbiter Studies to Acquire Data for Code and Flight Heating Model Validation

    Get PDF
    In an experimental study to obtain detailed heating data over the Space Shuttle Orbiter, CUBRC has completed an extensive matrix of experiments using three distinct models and two unique hypervelocity wind tunnel facilities. This detailed data will be employed to assess heating augmentation due to boundary layer transition on the Orbiter wing leading edge and wind side acreage with comparisons to computational methods and flight data obtained during the Orbiter Entry Boundary Layer Flight Experiment and HYTHIRM during STS-119 reentry. These comparisons will facilitate critical updates to be made to the engineering tools employed to make assessments about natural and tripped boundary layer transition during Orbiter reentry. To achieve the goals of this study data was obtained over a range of Mach numbers from 10 to 18, with flight scaled Reynolds numbers and model attitudes representing key points on the Orbiter reentry trajectory. The first of these studies were performed as an integral part of Return to Flight activities following the accident that occurred during the reentry of the Space Shuttle Columbia (STS-107) in February of 2003. This accident was caused by debris, which originated from the foam covering the external tank bipod fitting ramps, striking and damaging critical wing leading edge heating tiles that reside in the Orbiter bow shock/wing interaction region. During investigation of the accident aeroheating team members discovered that only a limited amount of experimental wing leading edge data existed in this critical peak heating area and a need arose to acquire a detailed dataset of heating in this region. This new dataset was acquired in three phases consisting of a risk mitigation phase employing a 1.8% scale Orbiter model with special temperature sensitive paint covering the wing leading edge, a 0.9% scale Orbiter model with high resolution thin-film instrumentation in the span direction, and the primary 1.8% scale Orbiter model with detailed thin-film resolution in both the span and chord direction in the area of peak heating. Additional objectives of this first study included: obtaining natural or tripped turbulent wing leading edge heating levels, assessing the effectiveness of protuberances and cavities placed at specified locations on the orbiter over a range of Mach numbers and Reynolds numbers to evaluate and compare to existing engineering and computational tools, obtaining cavity floor heating to aid in the verification of cavity heating correlations, acquiring control surface deflection heating data on both the main body flap and elevons, and obtain high speed schlieren videos of the interaction of the orbiter nose bow shock with the wing leading edge. To support these objectives, the stainless steel 1.8% scale orbiter model in addition to the sensors on the wing leading edge was instrumented down the windward centerline, over the wing acreage on the port side, and painted with temperature sensitive paint on the starboard side wing acreage. In all, the stainless steel 1.8% scale Orbiter model was instrumented with over three-hundred highly sensitive thin-film heating sensors, two-hundred of which were located in the wing leading edge shock interaction region. Further experimental studies will also be performed following the successful acquisition of flight data during the Orbiter Entry Boundary Layer Flight Experiment and HYTHIRM on STS-119 at specific data points simulating flight conditions and geometries. Additional instrumentation and a protuberance matching the layout present during the STS-119 boundary layer transition flight experiment were added with testing performed at Mach number and Reynolds number conditions simulating conditions experienced in flight. In addition to the experimental studies, CUBRC also performed a large amount of CFD analysis to confirm and validate not only the tunnel freestream conditions, but also 3D flows over the orbiter acreage, wing leading edge, and controlurfaces to assess data quality, shock interaction locations, and control surface separation regions. This analysis is a standard part of any experimental program at CUBRC, and this information was of key importance for post-test data quality analysis and understanding particular phenomena seen in the data. All work during this effort was sponsored and paid for by the NASA Space Shuttle Program Office at the Johnson Space Center in Houston, Texas

    FY19 Annual ITACS Accountability Report

    Get PDF

    The National Nanotechnology Initiative: Supplement to the President’s 2017 Budget

    Get PDF
    This Supplement to the President’s Budget is the annual report of the National Nanotechnology Initiative (NNI), a partnership of 20 Federal agencies and departments with activities in nanotechnology research and development (R&D), policy, and regulation. Since the inception of the NNI in 2001, participating agencies have invested nearly 24 billion (including the President’s 2017 Budget request) in fundamental and applied nanotechnology R&D; technology transfer; world-class characterization, testing, and fabrication facilities; education and workforce development; and efforts directed at understanding and controlling the environmental, health, and safety (EHS) aspects of nanotechnology. In 2015, Federal agencies invested a total of 1.5 billion in nanotechnology-related activities. The 2017 request calls for a total investment of over $1.4 billion, affirming the important role nanotechnology continues to play in the Administration’s innovation agenda. This report highlights accomplishments over the past year, discusses activities currently underway, and outlines plans for how agencies will work both in dividually and collectively in 2017 to build upon these accomplishments and further advance the goals of the NNI
    • …
    corecore