102 research outputs found

    Evaluation and Active Control of Clustered Hall Thruster Discharge Oscillations

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/77203/1/AIAA-2005-3679-597.pd

    Dynamic Electromagnetic Field Measurements of Clustered Hall Thrusters

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/77192/1/AIAA-2006-4996-870.pd

    Preliminary experimental results for a cryogenic brush seal configuration

    Get PDF
    Preliminary fluid nitrogen flow data are reported for a five-brush, ceramic-coated-rub-runner brush seal system, where the brushes and the rub runner were placed at each end of a centrally pressurized multifunction tester ('back-to-back' set of brushes) and tested at rotor speeds of 0, 10, 18, and 22.5 krpm. After testing, both the brushes and the ceramic-coated rub runner appeared pristine. The coating withstood both the thermomechanical and dynamic loadings with minor wear track scarring. The bristle tips showed some indication of material shearing (smearing) wear. The Ergun porous flow equation was applied to the brush seal data. The Ergun relation, which required heuristic information to characterize the coefficients, fit the gaseous data but was in poor agreement with the fluid results. The brush seal exit conditions were two phase. Two-phase, choked-flow design charts were applied but required one data point at each rotor speed to define the (C(sub f)A x Constant) flow and area coefficients. Reasonable agreement between prediction and data was found, as expected, but such methods are not to be construed as two-phase-flow brush seal analyses

    A critical comparison of several low Reynolds number k-epsilon turbulence models for flow over a backward facing step

    Get PDF
    Turbulent backward-facing step flow was examined using four low turbulent Reynolds number k-epsilon models and one standard high Reynolds number technique. A tunnel configuration of 1:9 (step height: exit tunnel height) was used. The models tested include: the original Jones and Launder; Chien; Launder and Sharma; and the recent Shih and Lumley formulation. The experimental reference of Driver and Seegmiller was used to make detailed comparisons between reattachment length, velocity, pressure, turbulent kinetic energy, Reynolds shear stress, and skin friction predictions. The results indicated that the use of a wall function for the standard k-epsilon technique did not reduce the calculation accuracy for this separated flow when compared to the low turbulent Reynolds number techniques

    MicroPPT-Based Secondary/Backup ACS for a 160-m, 450-kg Solar Sail Spacecraft

    Get PDF
    Solar sail tip-mounted, lightweight pulsed plasma thrusters (PPTs) are proposed for a secondary (or backup) attitude control system (ACS) of a 160-m, 450-kg solar sail spacecraft of the Solar Polar Imager (SPI) mission. A propellantless primary ACS of the SPI sailcraft employs trim control masses running along mast lanyards for pitch/yaw control together with roll stabilizer bars at the mast tips for quadrant tilt (roll) control. The robustness of such a propellantless primary ACS would be further enhanced by a secondary ACS utilizing tip-mounted, lightweight PPTs. The microPPT-based ACS is intended mainly for attitude recovery maneuvers from various off-nominal conditions that cannot be reliably handled by the propellantless primary ACS. However, it can also be employed for: i) the checkout or standby mode prior to and during sail deployment, ii) the post-deployment transition mode (prior to the propellantless primary ACS mode operation), iii) the solar sailing cruise mode of a trimmed sailcraft, and iv) the spin-stabilized, sun-pointing, safe mode. Although a conventional bus ACS is required for the SPI mission as the sail is jettisoned at the start of its science mission phase, the microPPT-based ACS option promises greater redundancy and robustness for the SPI mission. For other sailing missions, where the sail is never jettisoned, this secondary ACS provides a lower-cost, lower-mass propulsion for deployment control and greater redundancy than any traditional reaction-jet control system. This paper presents an overview nf the state--of-the--art microPPT technology, the design requirements of microPPTs for solar sail attitude control, and the preliminary ACS design and simulation results

    Design of a Subscale Propellant Slag Evaluation Motor Using Two-Phase Fluid Dynamic Analysis

    Get PDF
    Small pressure perturbations in the Space Shuttle Reusable Solid Rocket Motor (RSRM) are caused by the periodic expulsion of molten aluminum oxide slag from a pool that collects in the aft end of the motor around the submerged nozzle nose during the last half of motor operation. It is suspected that some motors produce more slag than others due to differences in aluminum oxide agglomerate particle sizes that may relate to subtle differences in propellant ingredient characteristics such as particle size distributions or processing variations. A subscale motor experiment was designed to determine the effect of propellant ingredient characteristics on the propensity for slag production. An existing 5 inch ballistic test motor was selected as the basic test vehicle. The standard converging/diverging nozzle was replaced with a submerged nose nozzle design to provide a positive trap for the slag that would increase the measured slag weights. Two-phase fluid dynamic analyses were performed to develop a nozzle nose design that maintained similitude in major flow field features with the full scale RSRM. The 5 inch motor was spun about its longitudinal axis to further enhance slag collection and retention. Two-phase flow analysis was used to select an appropriate spin rate along with other considerations, such as avoiding bum rate increases due to radial acceleration effects. Aluminum oxide particle distributions used in the flow analyses were measured in a quench bomb for RSRM type propellants with minor variations in ingredient characteristics. Detailed predictions for slag accumulation weights during motor bum compared favorably with slag weight data taken from defined zones in the subscale motor and nozzle. The use of two-phase flow analysis proved successful in gauging the viability of the experimental program during the planning phase and in guiding the design of the critical submerged nose nozzle

    Assessment of the Thermal Advantages of Biased Supersonic Cooling

    Get PDF
    The following work investigates an alternative supersonic film cooling method for hydrogen-fueled, gas-generator cycle rocket engines. The research is intended to serve as an initial proof-of-concept for a biased supersonic film cooling method envisioned for nozzle extension thermal management. The proposed method utilizes a dual-stream injection process that leverages the high heat capacity of the fuel-rich gas-generator gases. By comparing the proposed cooling strategy to the conventional mixed injection process, the research numerically validates the biased supersonic film cooling scheme for low supersonic slot Mach numbers. The average film cooling effectiveness was improved 5%-8% with increases as high as 12%. The average reduction in wall temperature ranged from 9%-15% with maximum reductions as high as 36% over the conventional method

    High-Thrust in-Space Liquid Propulsion Stage: Storable Propellants

    Get PDF
    In the frame of a project funded by ESA, a consortium led by Avio in cooperation with Snecma, Cira, and DLR is performing the preliminary design of a High-Thrust in-Space Liquid Propulsion Stage for two different types of manned missions beyond Earth orbit. For these missions, one or two 100 ton stages are to be used to propel a manned vehicle. Three different propellant combinations; LOx/LH2, LOx/CH4 and MON-3/MMH are being compared. The preliminary design of the storable variant (MON-3/MMH) has been performed by DLR. The Aestus II engine with a large nozzle expansion ratio has been chosen as baseline. A first iteration has demonstrated, that it indeed provides the best performance for the storable propellant combination, when considering all engines available today or which may be available in a short- to medium term. The RD-861 K engine has been proposed as alternative to reduce the development duration of the high-thrust stage. Structure analyses and optimisations have converged towards a common bulkhead architecture with a Whipple shield, similar to the one used on the ATV, to protect the main propellant tanks against perforations caused by meteoroids and space debris. The propulsion system has been built around six Aestus II engines equipped with TVC and placed on a circular engine thrust frame. The RCS, the thermal system, and the power system have also been included in the preliminary design, and they have been sized for the most demanding mission. The performance of the high-thrust stage, resulting from the preliminary design, has been assessed for both missions taken into consideration

    Predicting Ares I Reaction Control System Performance by Utilizing Analysis Anchored with Development Test Data

    Get PDF
    The Ares I launch vehicle is an integral part of NASA s Constellation Program, providing a foundation for a new era of space access. The Ares I is designed to lift the Orion Crew Module and will enable humans to return to the Moon as well as explore Mars.1 The Ares I is comprised of two inline stages: a Space Shuttle-derived five-segment Solid Rocket Booster (SRB) First Stage (FS) and an Upper Stage (US) powered by a Saturn V-derived J-2X engine. A dedicated Roll Control System (RoCS) located on the connecting interstage provides roll control prior to FS separation. Induced yaw and pitch moments are handled by the SRB nozzle vectoring. The FS SRB operates for approximately two minutes after which the US separates from the vehicle and the US Reaction Control System (ReCS) continues to provide reaction control for the remainder of the mission. A representation of the Ares I launch vehicle in the stacked configuration and including the Orion Crew Exploration Vehicle (CEV) is shown in Figure 1. Each Reaction Control System (RCS) design incorporates a Gaseous Helium (GHe) pressurization system combined with a monopropellant Hydrazine (N2H4) propulsion system. Both systems have two diametrically opposed thruster modules. This architecture provides one failure tolerance for function and prevention of catastrophic hazards such as inadvertent thruster firing, bulk propellant leakage, and over-pressurization. The pressurization system on the RoCS includes two ambient pressure-referenced regulators on parallel strings in order to attain the required system level single Fault Tolerant (FT) design for function while the ReCS utilizes a blow-down approach. A single burst disk and relief valve assembly is also included on the RoCS to ensure single failure tolerance for must-not-occur catastrophic hazards. The Reaction Control Systems are designed to support simultaneously firing multiple thrusters as require

    Hybrid Rocket Design Study Utilizing Nozzle Cooling and Aft-End Vortex Oxidizer Injection

    Get PDF
    The current study focused on two innovations intended to reduce the cost and enhance the performance of hybrid rockets. The majority of the emphasis was placed on the design, fabrication and testing of a 3-D printed, water cooled nozzle. This work was done as proof of concept to show that complex, high temperature components could be manufactured using these new techniques, thereby substantially bringing down fabrication costs and allowing configurations that are not feasible using traditional machining. A water-cooled calorimeter nozzle was made and used in thrust stand tests to verify analytic and numerical heating models used in the design of the nozzle. Agreement was good between the predicted and measured heating rates. This experimental work helped to validate the nozzle design approach which will now be used to devise a 3-D printed, regeneratively cooled nozzle for a hybrid engine. The secondary phase of the study was an analysis of aft-end vortex oxidizer injection as a means of enhancing fuel regression rates. Components are currently being fabricated as part of an ongoing study to compare engine performance results for traditional head end and aft-end vortex injection
    • …
    corecore