
%J
rO	 1'

NASA Technical Memorandum 106173
AIAA-93-1927
CMOTT-93-9

A Critical Comparison of Several Low Reynolds
Number k-c Turbulence Models for Flow
Over a Backward-Facing Step

C.J. Steffen, Jr.
Center for Modeling of Turbulence and Transition
Lewis Research Center
Cleveland, Ohio

Prepared for the
29th AIAA Joint Propulsion Conference and Exhibit
cosponsored by the AIAA, SAE, ASME, and ASEE
Monterey, California, June 28-30, 1993

NASA

https://ntrs.nasa.gov/search.jsp?R=19930023011 2020-03-17T05:16:09+00:00Z



A CRITICAL COMPARISON OF SEVERAL LOW REYNOLDS NUMBER k-e
TURBULENCE MODELS FOR FLOW OVER A BACKWARD-FACING STEP

Christopher J. Steffen, Jr.'
Center for Modeling of Turbulence and Transition (CMOTT)

NASA Lewis Research Center, Cleveland, Ohio

Abstract

Turbulent backward-facing step flow was examined
using four low turbulent Reynolds number k-c models and
one standard high Reynolds number technique. A tunnel
configuration of 1:9 (step height: exit tunnel height) was
used. The models tested include: the original Jones and
Launder, Chien; Launder and Sharma; and the recent
Shih and Lumley formulation. The experimental refer-
ence of Driver and Seegmiller was used to make detailed
comparisons between reattachment length, velocity, pres-
sure, turbulent kinetic energy, Reynolds shear stress, and
skin friction predictions. The results indicated that the use
of a wall function for the standard k-e technique did not
reduce the calculation accuracy for this separated flow
when compared to the low turbulent Reynolds number
techniques.

Introduction

For the past two decades, researchers interested in
evaluating wall bounded flows have relied upon two equa-
tion turbulence models to facilitate this effort. In the con-
text of the Reynolds Averaged Navier Stokes (BANS)
equations, this involved an assumption that the closure
problem has been bridged by the Boussinesq approxi-
mation. This approximation relates the Reynolds stress
tensor to the velocity gradient tensor via an eddy vis-
cosity. The family of two equation models defined this
eddy viscosity in terms of characteristic turbulent veloc-
ity and length scales which resulted from the solution of
two additional partial differential equations. One example
of this theory is the energy-dissipation rate (k-e) model.
However, for wall bounded flows, the two turbulent trans-
port equations behave differently for each separate region
of near-wall flow. Modelling this near-wall flow behavior
is crucial to the success of an internal flow simulation.

One of the more challenging internal flows used to
benchmark a given model is the backward-facing step
(BFS). The presence of a strong recirculation bubble, a
reattaching shear layer, a redeveloping channel flow and
a relatively simple geometry have made this a particularly
attractive flow to analyze; it has become a de facto
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"complex canonical" flow'. BFS flow is an excellent
candidate for examining the relationship of near-wall
treatment to the k-e model performance for separated
flows.

Two definite schools of thought have emerged on
how to treat this region of low turbulent Reynolds number
(Re,) flow near a solid surface. The standard, or high
Re, (HR) formulations utilized wall functions to model
the near-wall flow, while the low Re, (LR) formulations
incorporated the use of damping functions to model the
effects of this region.

At a first glance, the empiricism involved in the use
of wall functions tends to make the more sophisticated
LR models appear more attractive. Wall functions were
based solely upon the behavior of attached equilibrium
turbulent flow. There is, however, a significant cost
savings to be realized from the appropriate use of HR
models in terms of grid size. Alternatively, the LR
models offer the ability to solve the transport equations
through the viscous sublayer. Thus a straightforward
boundary condition procedure is applied at the wall. This
permits the near-wall velocity gradient to be found as
a result of the calculation, not merely as an a priori
assumption. It is this feature which has attracted such a
great deal of attention to these LR models in the past two
decades. However, the development of these models was
also primarily based upon the characteristics of attached
bo tndary layer flow as well.

Although much effort has recently been expended
on the study of BFS flow with the k-e model, the over-
whelming majority of analysis has utilized the wall func-
tion approach due to the reduced numerical complexity.
To the author's knowledge, only So et al? and Avva et
a1.3 have examined the LR k-c formulation for BFS, and
this was limited to the Chien model. While this model is
known to be quite robust for a wide variety of flows, an
anomalous behavior exists near the separation and reat-
tachment points. This will be discussed in detail later.
Several LR k-c models exist which do not demonstrate
this same behavior for separated flow.

The intention of this study is to investigate several
LR models and compare against the performance of the
HR formulation for separating flow. The first section
describes the governing equations and turbulence models,
as well as the experimental study of backward-facing step
flow by Driver and Seegmiller°. The following section
details the numerical methods used for this simulation.
The final two sections include a discussion of the results
and the conclusions of this research.



Background

Governing Equations

The RANS equations for incompressible flow are
shown below in equation system 1. The dependent
variables include the pressure and velocity as well as
the Reynolds stress tensor, (u;u j ). Here the quantities
(P,U,V) denote the mean values while (p,u,v) are the
fluctuating components.

Ui , i = 0
1

Ui,t + Ui U iJ + 1 P ,i — vU i,ii + (u_i ui) ,i = 0	
( )

P

The Boussinesq approximation closes the system by as-
suming the relation given in equations 2.

2
uiui = —vt( U i,i + Ui,i) + 2kbii

1	
(2)

k = 2u;ui

Notice that this is a function of the mean velocity gradi-
ents and the turbulent kinetic energy, k. Now the eddy
viscosity must be modelled. Gas kinetic theory yields a
definition of the kinematic viscosity as a function of char-
acteristic velocity and length scales. An eddy viscosity
can be formulated if characteristic turbulent velocity and
length scales can be postulated. For the k-E models, the
velocity scale is given as the square root of k, while the
length scale is a ratio involving k and the dissipation rate
of turbulent kinetic energy, E. Thus, the isotropic turbu-

lent viscosity is defined as v t = CJ, ( 1:(2 l .
Transport equations are used to resolve the values of

k ar(: E and are shown here in equation 3.

k,t+Ui k,i — L Cv+ Lt ) k j] = P—E + D
vk	

'i	 ^	 (3)
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where production of turbulent kinetic energy is defined
as P= —(Fu );(Ui j + Ui , i). The constants Cµ, C i , C2,
Qk and uE are defined a priori. The terms D, E, ft,, , fi
and f2 are correction terms for the LR formulation and
are necessary to give asymptotically correct behavior if
the numerical domain is extended to the wall.

k-E Model: HR Formulation

In order to bridge the viscous sublayer, a two layer
"law of the wall" was used to establish the values of krx
and Eyc at the first point off the wall. The two layer model
used in this test is similar to that given in reference'. For
two dimensional boundary layer flow, the wall function

is expressed below.

u+ _ ^Y+	 for y + < 11
5.5 + 2.51n(y+) for y + > 11

Y+ = yu.
u+ 	 (4)

where	 u

U7" — Fw wall
 =

Distance to the nearest wall was specified as (y) and the
shear stress was denoted (T). If one assumed that this first
interior grid point was properly positioned at the edge of
the buffer layer, then empirical evidence suggests that the
production of k was equal to the dissipation of k.

Pbc = E bc	 (5)

The numerical boundary conditions for kbc and Ebc were
then derived from this equilibrium expression combined
with the definition of vt and equations 4.

a
be ( )

	

= Cµ 1 E bc = 2.5Cµ' ,bc	 6
u T 	 y

While this assumption is not valid for separated
flow due the fact that the logarithmic overlap region
is not present for this flow regime, we shall see later
that the predictive capability of the HR formulation is
not significantly diminished. To complete the model
specification, the values of the constants and functions
are listed in the tables below.

k-E Model: LR Formulation

Four different LR turbulence models were investi-
gated in this study including: the original Jones and Laun-
der (JL)6 , Chien (CH)7 , Launder and Sharma (LS) 8 and
the recent Shih and Lumley (SL) 9 formulation. These
models can be grouped into two broad categories accord-
ing to the form of the near-wall corrections. The JL and
LS models were developed as functions of the dependent
variables alone, while the CH and SL models were based
upon both the dependent and independent variables. All
four models can be implemented in a domain extending
to the wall. These are just a few of the many different
models available, and the interested reader is referred to
references to, i i. t2 for a more thorough review.

The influence of the viscous dominated near-wall
region was affected through the use of explicit damping
functions and additional destruction terms. As mentioned
earlier, these models were also developed to match the
observed behavior of an attached boundary layer flow.
Thus these LR formulations also suffer from an inherently
empirical nature. The values of these functions, destruc-
tion terms, and additional constants are listed in the tables
below. Note that for the SL model, the damping function

was derived in terms of Re k = k̂ , and the following
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constants: a l = -1.5 x 10 -4 , a3 = -1.0 x 10 -9 , and
as = -5.0 x 10

-10. The boundary conditions for the JL,
LS, and CH models were specified as

cbc = kbc = 0
	

(7)

while for the SL model the boundary conditions were
slightly more complicated.

C 1 C2 CP Uk O-E

JL 1.55 2.0 0.09 1.0 1.3

LS 1.44 1.92 0.09 1.0 1.3

CH 1.35 1.8 10.09 1.0 1.3

SL 1.44 1.92 0.09 1.0 1.3

HR 1.44 1.92 0.09 1.0 1.3

Table 1 The k-e model constants

fl f2 f

JL
j 
1.0 1-.3e-Re; e^ ,+R<;SSO

LS 1.0 1--R`^.3e e^^l+R^^iS^

CH 1.0 Rc ? 1 - e-0-0115y+1-.22e- 3E

SL 1.0
1-.22e_ 36t 1- e (a' R),+a3R3,+a3R'	 y

HR 1.0 1.0 1.0

Table 2 The LR k-e damping functions

D E

-2v k
Uv1	 i jk	 i jk

LS 12
-2v k i 21/vtUi,jkUi,jk

CH _ y2 - v ce-_5y+

SL 0 vv=Ui,jkUi,jk

HR 0 0

Table 3 The LR k-e additional terms

Shih and Lumley have derived boundary conditions
based upon an asymptotic behavior in the very near-wall
region. As one approaches the wall from outside the
boundary layer, a turbulent limit point is reached beyond
which self sustaining turbulence cannot exist. If this point
is designated by the subscript a, then Shih and Lumley
proposed the relations of equation 8.

4
e^ = 0.251 

uT 
k, = 0.25u 2 	(8)

v

For practical purposes, this limit point was assumed to
extend to the wall; hence Ebc = c, kb, = ka.

A comment on implementation in two dimensional
flow is necessary for several models. The implementation
of HR and SL involved the use of a value (y) which was
based upon the minimum distance to a no-slip boundary
in the numerical domain. This appeared to work quite
well. For the CH model, the minimum y + value was used.
This straight forward extension of the CH formulation to
two dimensions resulted in a grid dependent solution in
the region surrounding reattachment.

BFS Flow: Experimental Configuration

Many different experimental data exist for valida-
tion of turbulent flow over a backward-facing step. The
Stanford conference of 1980-81 used the Kim et al.13
data for a 1:3 (step height: exit tunnel height) tunnel
to benchmark model performance. The velocity profiles
were measured via hot wire anemometry. However, tur-
bulence data was unavailable in the recirculation zone.
Recently, Kjelgaard 14 has examined backward-facing step
flow using a three component laser velocimeter in a 1:2
tunnel configuration. Mean velocity profiles and turbu-
lent normal and shear stresses were tabulated throughout
the flow domain. However the experiment of Driver and
Seegmiller4 has been chosen here because the measure-

ments included skin friction, pressure, turbulent normal
and shear stress, and velocity profiles from the step down-
stream through the recovery region. A two component
laser velocimeter was used to obtain the velocity and tur-
bulence data. The tunnel expansion ratio of 1:9 (zero
deflection angle) produced a much lower pressure gra-
dient due to freestream sudden expansion than the other
aforementioned tunnel geometries.

ere(

+	 Zero velocfty

I	 ^ streamline

Fig. 1 Tunnel configuration for the
backward-facing step of Driver and Seegmiller4

The tunnel configuration can be seen here in figure
1. The inlet was 80H upstream from the expansion and
the exit was downstream an additional 60H. The experi-
mental Mach number was 0.128. The turbulent boundary



layer thickness was recorded as 1.5H at a location 4 step
heights upstream of the expansion. The experiment was
conducted at a Reynolds number (ReH) of 33420, based
upon the step height. According to Driver and Seeg-
miller, this value insured that the boundary layer was
fully turbulent as it passed over the step.

Numerical Method

RANS Equations

A modified version of the finite volume code,
DTNS2D 15 was chosen for this study. Chorin'S 16 pseudo
compressibility technique was used to resolve the in-
compressible RANS equations. The system of equations
solved for the two dimensional pseudo compressibility
method differs from the incompressible flow equations
by the addition of a time dependent term in the conti-
nuity equation, ^ a . This is shown in nondimensional
form for 2D laminar flow in equations 9. Note that x
and y are the independent variables and Re refers to the
Reynolds number. The variable (P) is defined as the pres-
sure normalized by the constant density. For turbulent
flow, the kinematic viscosity is replaced with the sum of
turbulent and kinematic viscosities. This system can be
regarded as hyperbolic in nature while the incompress-
ible flow equations are elliptic. The pseudo sound speed,
C = U? + Q, is governed by the value of the parameter
Q and the contravariant velocity U, whereas the physical
sound speed is infinite. For this study, the value of /3
was set to unity.

N(q)+ ax (fl+gl)+ ay (f2+g2) = 0

	

P	 UQ	 V(3
q = U fl = U2 + P f2 = UV

	

V	 UV	 V2 + P	 (9'

-1 ^	 -1 ^
ygl = Re a^ , g2 = Re ay

as	 ay

The chief advantage of the pseudo compressibility
technique is that the system of equations can now be
marched in time towards a steady solution. With this
in mind, the approximate factorization scheme was cho-
sen to resolve the governing equations 9. The system
is expressed in generalized coordinates Wx, y), r)(x, y))
below in the equation system 10.

at ( q) + a^ (fl+gl) 
+ aT) 

(f2+g2) = 0

a(^, 77)	 q__
J	

a(x, Y)
, q = J	 (10)

fl =
CC

Gfl 
J CC^j2 fz = 27yf l J 77yf2

Ssgl + Syg2	 77T91 + 77y92

	

gl = 	 J	 , g2 = 	 J

This system can be factored as shown below in equations
11

r+

{ of + a- A + + 
0+ 

A- + a/ A„ Oq` = RHS

l r v	 a-	 a+_	 (91 l 	v_
S Ot + a

77 

B+ + a B + a B
°1

°q= Ot°q`
l 	 77	 7J

(11)
where A and B refer to the approximate convective flux
Jacobians and Av and By are the viscous flux Jacobians.
The cell volume and timestep are defined as V and °t,
respectively. The time integration is complete given that

a (fl +gl) 8(f2+gz)

	

RHS = -	
a^	

+	
a77	

(12)

and by defining the update qn+l = qn + D4. The no-
tation (a + , a- , a) refers to the forward, backward, and
central difference operators, respectively. The approxi-
mate convective flux Jacobian A l = RAI L is defined
in terms of eigenvalues and the left and right eigenvec-
tors, shown here for completeness.

Uc+a 0	 0
A =	 0	 U^	 0	 A± _ (A 2 ^ A ^) (13)

	

0	 0 U' - a

The contravariant velocity is defined in terms of the
metrics which correspond to both generalized coordinate
directions (^,rl), depending on which Jacobian is being
formed.

U, =n.,U+nyV

N=n2 +ny(14)

n E (^,'I)

The LHS was discretized to first order accuracy; how-
ever, the RHS was based upon the second order accu-
rate upwind TVD scheme of Chakravarthy and Osher17.
The approximate Riemann solver and variable extrapola-
tion technique are described in Gorski 15 . The interested
reader is encouraged to examine this reference for fur-
ther details. It was not necessary to utilize the limiter
function in order to get a smooth solution for the RANS
equations.

Right Eigenvectors

-a(U, - a) 0 -a(U, + a)

-ns(U, - a) + UN - ny n.{U, +a) -UN

-,X,-a)+VN nz ny(U,+a)-VA'

Table 4 The right eigenvectors of the
2D incompressible RANS equations
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Left Eigenvectors

1 n r U^+a n	 U,+a )
2a 2a2N 2a2N

Un,-Vn, V U,+n,G U.O
a2 a2 a

U,-a) n	 U,-a)
2a 2 2a2N 2a2

Table 5 The left eigenvectors of the
2D incompressible BANS equations

Turbulent Transport Equations

The approximate factorization technique was also
applied to the turbulent transport equations 3. For two
dimensional flow, the system is expressed as follows:

a (qt ) + a (fi+gi^+	 y(f2+gz) = S`-j

iqt = [ k ] fi = [ UI] f2 = [
VVkl

t	 1 Vk ax 	 t	 1 vk ay	
(15)

91= 
Re [v k, g2= Re 

[v 
a']

Ear	 cay

`
S - 1	 P - cRe+D

Re [Clfi kP-C 2 f2 k Re+E

with vk = v -{ k , v, = v + o and the production term

P = vi {2 [(2a2y)2 + (ay) 
zl

J
 + (ay + ate) 2 } . After

transforming the equations into generalized coordinates,
the system was approximately factored as:

jOt+:^A`++^^A`-+^^Av-a£H` .Aqt. =RHS`

fVA t	 rl-:
-B`+ + +̂ B `- + 7. B t -a,^i ` }Aqt = Aqt*rl 	 1I	 ) At

RHS t _ - a(fi
+gi) - (f2	 1) 

+S`
a^	 a7,

(16)

Evaluation of the LR source terms for the CH model
was straightforward. However, the other three LR models
required an evaluation of the volume integrals:

if (Ui ,ik) 2 d, - (Ui,ik)2V

V	

(17)If  [ 	 dv - [ (
vk-)

 i ^ V
V

The following second order accurate linearizations were
implemented:

22
(7") +O(,^x',Dy')

J7 2	 (18)kX

The convective flux Jacobian for system 16 is equal
to the identity matrix multiplied by the contravariant
velocity, U, The eigenvalue matrix is equivalent to the
convective flux Jacobian matrix. Thus the left and right
eigenvector matrices are both equal to the identity matrix.
This permits a straightforward application of the same
techniques used upon the flow equations 11.

Michelassi and Shih 12 proposed a linearization for
the source term Jacobian H l based upon retaining the
positive leading order terms. After considerable effort, a
similar formulation was found to be the most effective.
These terms are shown in table 6. All off diagonal terms
were set to zero so as not to impede diagonal dominance.
The coefficients (aa^) were used to include the implicit
treatment of the source terms in both directions as needed
for elliptic flows. The convergence was best when both
were set equal to one half. The TVD variable extrap-
olation is used for resolving the right hand side of this
system, also. The limiter function is necessary for this
system to avoid the nonphysical overshoots introduced
by the linearization of Hl.

model a^i asz

JL — —C2f2 k

LS — —C2f2 L

CH _	 2
re, 2 E

E

SL - -2C2 f2 k

HR 0 0

Table 6 Diagonal terms for the
approximate source Jacobian, Hi

BFS Flow: Numerical Configuration

The numerical domain extended 15H upstream and
60H downstream of the step. These values were found
to generate results independent of the inlet and exit lo-
cations, respectively. A mesh is constructed from three
individual blocks with shared boundaries. However, the
grid dimensions will be referred to as the total number of
cells in each direction over the entire domain. Recently,
Thangam and Hun g found that for a 1:3 tunnel configura-
tion, a 16603 cell Cartesian grid was necessary to fully
resolve the flow features using a HR model. This grid was
stretched towards the step in the streamwise (x) direction
and uniform in the transverse (y) direction. However, due
to the different nature of this 1:9 tunnel configuration, a
separate grid independence study was carried out for the
HR formulation.

Three grids were used in the mesh dependence study.
Due to the assumptions of the wall function given in
equation 4, the normal distance from the wall to the first
cell center was specified to yield y + ,z:^ 30 for regions



outside the recirculation zones. The three grids exam-
ined were 62x40, 122x80, and 250xl60 cells. Figure 2
demonstrates the grid independence of the medium sized
mesh results using profiles of the velocity and turbulence
quantities at five step heights downstream of the step. By
examining just the velocity data, one might assume that
grid independence is achieved using the coarsest grid.
However, the turbulence profiles reveal an improvement
between the coarse and medium mesh results. The dif-
ferences between the medium and fine mesh predictions
for all quantities are negligible. Thus, the medium grid
of 122x80 cells was chosen to conduct the HR testing
on. For the LR formulations, the near-wall grid spacing
was dictated by a discretization criterion of yi ^ 1.0
for the first cell along a no-slip boundary. Furthermore,
15-20 cells were placed below the y+ ;^-_ 30.0 location.
The LR grid was adapted using TurboI 19 so that the thin
layer of high aspect ratio cells, necessary to resolve the
separating shear layer, did not extend through the whole
numerical domain. The mesh configurations used can be

seen in figure 3 below.

Driver and Seegmiller
------ 62x40 cell mesh

122x80 cell mesh
250x160 cell mesh

3

2

o

^ 1	 ^

0.0 0.5 1.0	 0.0 1.0 2.0 3.0	 0 2 4 6 810

Ulu,,,	 k/(UZtix10)	 lu'v'I/(U2tix10)

Fig. 2 Mesh refinement study:
velocity and turbulence profiles

downstream of the step at x/H = 5.

HR Gud	 71.58	 Blockl

100X58	 Bloct2

100X22	 Block3

LR and	 49161	 Bl k 1
169.64	 Biud 2
169150	 Bind 7

Fig. 3 Multiblock mesh configuration for the HR and LR k-e models



Experimental data for the mean velocity and turbu-
lent intensity profiles are available for the inlet tunnel
at a location four step heights upstream of separation.
These values were used at the numerical inlet. Pitot tube
measurements of the velocity profiles helped to insure
a reasonable massflbw rate at the inlet. This was criti-
cal to proper resolution of the pressure drop across the
tunnel. However, the boundary layer along the wall op-
posite the step was not accurately resolved using the laser

jDoppler velocimeter. Thus, the profiles of the turbulent
quantities were mirrored about the inlet tunnel centerline.
Even though the conditions were applied at fifteen step
heights upstream of separation, the effect upon the result
is negligible. Figure 4 demonstrates that the comparison
between experiment and calculation at four step heights
upstream from separation is good.

5	 5

4	 Q	 4

T3	 3 4

2	 2

1	 1
0.0	 0.5	 1.0	 0.0	 0.5	 1.0

U/U ,^	 k/(UZ , x 10 2)

Fig. 4 Inlet tunnel conditions at x/H=-4.0

Results

The primary reattachment length is often used for
measuring the overall performance for backward-facing
step flow calculations. The experimental reattachment
length for this tunnel geometry was given by Driver
and Seegmiller as 6.26H. Numerically, this value was
extrapolated from the velocity field and corresponds to
the location where the value of wall shear stress was
zero. The results are shown here in table 7. The LS,
CH and HR performed the best, followed by the SL and
JL models.

model JL LS

AT]

SL HR

xr 49 5.4 5.1 5.5

Table 7 Primary reattachment length

The velocities were specified and pressure was ex-
trapolated at inlet, and vice versa at exit For the tur-
bulence equations, both k and c were specified at inlet
and extrapolated at exit. Using the two turbulent inten-
sity profiles, a kinetic energy profile was estimated using
k = 9 (uu + vv). This implied that the third component
was an average of the other two. Kjelgaard's results 14
support this assumption. The value for the mixing length
(I ) was calculated using the simple ramp function 20 de-
scribed in figure 5.

t=KY	 lID

lm

x=.435
.09

a/x	 1.0
y/s

Fig. 5 Ramp function definition
of turbulent length scale

The velocity fields predicted by all five models were
nearly identical. The superimposed profiles of figure 6
clearly indicate this. Except for the reattachment region,
the velocity profiles were indistinguishable. They have
been plotted merely to demonstrate this point. The wall
static pressure coefficient, shown in figure 7 below, was
more helpful in discriminating between the various model
results. The trends evident in the reattachment length data
were echoed here for the pressure rise along the stepside
wall, with the exception of the Chien result. It should be
noted that all five formulations underpredicted the pres-
sure drop in the recirculating flow and overpredicted the
pressure rise near reattachment. The CH model underpre-
dicted the pressure rise more than any other technique,
while the LS model yielded the best agreement with the
experimental data. The HR model has an especially dif-
ficult problem in predicting the proper coefficient in the
redeveloping flow region, although all four LR models
overpredict this value to some degree as well. This might
be a result of a slight error in massflow rate. This offset
is also visible in the numerical results of Sindifl.
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Fig. 6 Mean velocity profiles downstream of the step
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Fig. 7 Wall static pressure coefficient downstream of the step
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The profiles for the turbulent kinetic energy are also
shown below. In the neighborhood of reattachment, the
peak values were consistently located too far from the
wall. In figure 8 the profiles at - = 1 agree in location
and magnitude for the peak value of k. Behavior within
the recirculation bubble was best predicted here by the
Chien model. The data at H = 2.5 appeared the most
irregular and it is difficult to say which model performs
best. The predictions appear to vary the most at this
location. The turbulent kinetic energy was not well
predicted by any technique for the next three profiles
shown. However, the differences between the five k-e

models are becoming much smaller. The peak values

were also slightly overestimated. The remaining five
profiles, beginning with - = 10, describe the recovery
of redeveloping channel flow. The models overestimated
the turbulent kinetic energy of the reattached shear layer
initially, but this was significantly improved after H =
20. For the HR model, the peak values of k are slightly
lower throughout the redeveloping flow region. It should
be noted that overall, the standard HR k-E model predicts
similar results to the LR formulations for the turbulent
kinetic energy, except in the region of high gradient near
the separation line. This can be most easily seen in the
first four profiles near y/H = 1.0.

o Driver and Seegmiller
Jones and Launder

--------- Launder and Sharma
- - - Chien
— — Shih and Lumley
— - - Standard High Re

0	 1	 2	 3	 0	 1	 2	 3	 0	 1	 2 3	 0	 1	 2	 3	 0	 1	 2	 3

W(U2,ar x 10-)

Fig. 8 Turbulent kinetic energy profiles downstream of the step
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Similar behavior was observed in the prediction of
the turbulent shear stress shown in figure 9. Relatively
good agreement was exhibited for all models at the H = 1
location. However, by H = 2.5 the peak value of turbu-
lent shear was overpredicted by the JL and CH models.
Also, the vertical position was located too far from the
wail. It is interesting to note that the various LR profiles
are bracketed here by the maximum values of JL and
the minimum of LS. These two differ only in the damp-

ing function fu and the constants C1 and C2 . As one
Proceeded downstream towards reattachment, the differ-
ences between models were reduced and the overpredic-
Lions more pronounced. After reattachment, the various
k-e models continued to overpredict the turbulent shear
stress even throughout the recovery zone, although this
effect was reduced as the exit was approached. Note that
the HR results were predicting peak values slightly lower
than the LR models.

o Driver and Seegmiller
Jones and Launder

......... Launder and Sharma
- - - Chien
— — Shih and Lumley
— - Standard High Re

3

2

1

0 2 4 6 810	 0 2 4 6 810	 0 2 4 6 810	 0 2 4 6 810	 0 2 4 6 810

10.0 12.0 16.0 20.0 32.0

0 2 4 6 810	 0 2 4 6 810	 0 2 4 6 810	 0 2 4 6 810	 0 2 4 6 810
U V,/(U2"f X 10-)

Fig. 9 Turbulent shear stress profiles downstream of the step

For the backward-facing step flow, prediction of the
skin friction coefficient along the stepside wall was the
most difficult task. Results for the five models tested
are given below in figure 10. The HR formulation pre-
dicted the wall shear stress better than any of the LR
formulations tested. However, all of the models have in-
accurately predicted the near-wall velocity gradient for
the recirculating flow close to reattachment. The Chien
model yielded the largest overshoot in Cf. This was in
contrast to the relatively good reattachment length predic-

Lion of table 7. However, an examination of the Chien
damping function fu indicated a dependence upon the
y+ parameter, or the nearest wall shear stress. In the
neighborhood of a separation or reattachment point, an
anomalous region of very low eddy viscosity results due
to excessive damping in the neighborhood of zero wall
shear stress. Figure 11 below demonstrates the effect of
this y+ dependence on the calculation of eddy viscosity.
The behavior of the SL model in figure 12 was typical
of the JL, LS, and HR results.
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Fig. 11 Nondimensional eddy viscosity field for the CH model
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Fig. 10 Friction coefficient for the stepside wall downstream of the step
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Fig. 12 Nondimensional eddy viscosity field for the SL model
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Close examination of the experimental skin friction
data indicates a small corner eddy was present at H = 0.5.
However, byH = 1.8 the primary recirculation zone was
encountered. Numerical evidence of the corner eddy was
demonstrated by two of the LR models: CH and SL. The
JL, LS and HR formulations did not reveal any secondary
recirculation zones. See table 8 below. This zone was
confined to a very small region in the corner where the
Re, values are low.

A trend in the length of this secondary recirculation
zone can be correlated to the damping function used in the
definition of eddy viscosity for the LR models. Following
the example of Patel et al.", the damping functions
were examined for attached boundary layer flows. From
figure 13 we can see that for the JL and LS models,
the damping in the viscous sublayer was never complete
because the functions tend to small positive values instead
of zero. In addition, there is a steep rise in the damping
function around y + & 10. The SL and CH models both
damped the eddy viscosity to zero at the wall, and also
diffused the viscous effects further out from the wall. The
most diffusive of the near-wall treatments was indeed the
CH model. The largest secondary recirculation bubble
also corresponds to the CH calculation. It appears that
the interplay between the near-wall, viscous dominated
flow and the fully turbulent, high Re, flow is critical to
proper resolution of this corner region. However, more
experimental and numerical work needs to be undertaken
before any meaningful conclusions can be drawn.

model JL LS CH SL

z_^	 11 0.0 0.0 0.8 0.1

Table 8 Secondary flow reattachment length

^ — — a L-ld
L-4. utl Snamr
Chop

— — SM anC

Fig. 13 Damping function behavior
for attached boundary layer flow

The preceding calculations were carried out on the
Cray YMP at NASA Lewis. On average, a LR calculation

needed roughly 5000 iterations to converge (CFLr--3.0),
depending upon the quality of the initial condition. Like-
wise, a HR calculation required approximately 3300 iter-
ations to converge to the same extent. The convergence
criterion was based upon the L 2 norm of the transient
terms dropping five orders in magnitude. This was real-
ized in all but the LS model, which tended to level off
after a drop of three and a half orders.

Conclusion

Results for flow over the backward-facing step tun-
nel configuration of Driver and Seegmiller were calcu-
lated for the standard HR, and four LR k-E models. The
velocity profiles and pressure coefficient data demon-
strated how similar the results were among all five for-
mulations. Slight differences appeared in the vicinity of
reattachment. All five models underpredicted the rede-
veloping flow velocity profiles. Similarly, all five models
yielded an early prediction of the pressure rise. A more
discriminating measure of the near-wall velocity field was
the reattachment length, x,. This was tabulated in table
7. It appeared that the LS, CH, and HR models yielded
similar performances in underpredicting this parameter
by approximately 14%. Examination of the experimental
velocity data near reattachment indicates that the reversed
flow is confined to a very thin near-wall region; perhaps
an improved damping strategy can be devised to resolve
this low Re, region. However, I believe that the accurate
prediction of skin friction is the most significant challenge
to the LR k-e models for backward-facing step flow.

Only the HR technique can claim to predict the wall
shear stress in a bounded sense. The SL model produced
the best prediction of the LR techniques, while the CH
model produced the least reliable wall shear stress pre-
diction. This appeared to be a result of the y+ based
damping function, f^t . I believe that a modification to
the CH damping function which reduces this local sep-
aration/reattachment effect may improve the shear stress
prediction.

The turbulent kinetic energy and shear stress profiles
were generally overpredicted in the recirculation zone.
The position of the peak values were consistently lo-
cated too far from the wall as well. Perhaps the strong
anisotropy of the flow contributes to this. Two anisotropic
eddy viscosity models 5,21 have been reported to improve
behavior for this flow.

The significant conclusion of this study is that the
assumption of local equilibrium inherent in the wall func-
tion technique yields a credible result for separated flow.
This conclusion is shared by So et al .2 Furthermore, the
near-wall modelling techniques employed in the JL, LS,
SL, and CH appear to be much more sensitive to adverse
pressure gradients than does the HR formulation. It is
apparent that LR models do not adequately resolve the
near-wall velocity gradient. However, different LR for-
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mulations yield significantly different near-wall predic-
tions as evidenced by the skin friction results. Of the four
LR models examined, the SL technique yields the most
accurate prediction for the backward-facing step flow in
the 1:9 channel geometry. However, the standard HR k-e
model is still superior due to the more accurate prediction
of the skin friction behavior along the step side wall.
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